四川省成都市2019-2020年下学期高二数学(理)期末试卷【含答案】
遂宁市高二数学下学期期末考试试题理含解析
![遂宁市高二数学下学期期末考试试题理含解析](https://img.taocdn.com/s3/m/c7262dadd1d233d4b14e852458fb770bf78a3b89.png)
C。 该家庭2019年休闲旅游的消费额是2015年休闲旅游的消费额的六倍
D。 该家庭2019年生活用品的消费额与2015年生活用品的消费额相当
【答案】C
【解析】
【分析】
先对折线图信息的理解及处理,再结合数据进行简单的合情推理逐一检验即可得解。
A。x-2y—1=0B. 2x+y—2=0
C。x+2y—1=0D。 2x-y—2=0
【答案】A
【解析】
【分析】
线段AB经过抛物线y2=4x焦点,由“阿基米德三角形”的特征可得P点坐标,从而得直线PF的斜率,又PF⊥AB,即得直线AB斜率,由点斜式可求直线AB的方程.
【详解】抛物线y2=4x的焦点F的坐标为(1,0),准线方程为:x=﹣1,
二、填空题(本大题共4小题,每小题5分,共20分。)
13。 抛物线 的焦点坐标是__________.
【答案】
【解析】
【分析】
由抛物线的标准方程,可直接写出其焦点坐标.
【详解】因为抛物线方程为 ,所以焦点在 轴上,且焦点为 。
故答案为
【点睛】本题主要考查由抛物线的方程求焦点坐标的问题,属于基础题型.
14。 在 的展开式中, 的系数为__________________。(用数字作答)
【答案】60。
【解析】
试题分析:因为 ,所以 的系数为
考点:二项式定理
【方法点睛】求二项展开式有关问题的常见类型及解题策略
(1)求展开式中的特定项。可依据条件写出第r+1项,再由特定项的特点求出r值即可.
(2)已知展开式 某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数。
2019-2020年高二下学期期末考试数学(理)试题 含答案
![2019-2020年高二下学期期末考试数学(理)试题 含答案](https://img.taocdn.com/s3/m/299909f8cfc789eb162dc869.png)
2019-2020年高二下学期期末考试数学(理)试题 含答案命题教师:张金荣一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A ={x |y =lg(2x -x 2)},B ={y |y =2x ,x >0},R 是实数集,则(∁R B )∩A 等于( )A .[0,1]B .(0,1]C .(-∞,0]D .以上都不对2.函数f(x)=ln(x-2)-的零点所在的大致区间是( )A .(1,2) B.(2,3) C.(3,4) D.(4,5)3.函数f(x)=的定义域为( )A . B. C. D.4.设a =60.7,b =0.76,c =log 0.76,则a ,b ,c 的大小关系为 ( )A .c <b <aB .c <a <bC .b <a <cD .a <c <b5.以下说法错误的是( )A .命题“若x 2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2-3x+2≠0”B .“x=1”是“x 2-3x+2=0”的充分不必要条件C .若p ∧q 为假命题,则p,q 均为假命题D .若命题p:∃x 0∈R,使得+x 0+1<0,则﹁p:∀x ∈R,则x 2+x+1≥06.函数y=lg|x |x 的图象在致是( )7.偶函数y=f (x )在x ∈时,f (x )=x-1,则f(x -1)<0的解集是( )A .{x|-1<x <0B .{x|x <0或1<x <2C .{x|0<x <2D .{x|1<x <28.函数f(x)= 满足对任意成立,则实数a 的取值范围是( )A .B .C .D .9.若不等式x 2+ax+1≥0对于一切x(0,)恒成立,则a 的取值范围是( )A .a≥0B .a≥-2C .a≥-D .a≥-310.已知函数f (x )=的值域为[0,+∞),则它的定义域可以是( )A .(0,1]B .(0,1)C .(-∞,1]D .(-∞,0]11.已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,() A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( ) A .(0,12]∪[2,+∞) B .[14,1)∪(1,4] C .[12,1)∪(1,2] D .(0,14]∪[4,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=ax 2+bx+3a+b 是偶函数,定义域为[a-1,2a],则a+b= .14.已知函数f(x)是定义在区间上的函数,且在该区间上单调递增,则满足f(2x-1)<f()的x 的取值范围为__________15.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________.16.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时f (x )=(12)1-x ,则 ①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数;③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=(12)x -3. 其中所有正确命题的序号是________.三、解答题(共70分)17.(12分)给定两个命题::对任意实数都有恒成立;:关于的方程有实数根;如果P ∨q 为真,P ∧q 为假,求实数的取值范围.18.(12分)对定义在实数集上的函数f (x ),若存在实数x 0,使得f (x 0)=x 0,那么称x 0为函数f (x )的一个不动点.(1)已知函数f (x )=ax 2+bx -b (a ≠0)有不动点(1,1)、(-3,-3),求a 、b ;(2)若对于任意实数b ,函数f (x )=ax 2+bx -b (a ≠0)总有两个相异的不动点,求实数a 的取值范围.19.(12分)已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a 2x (a ∈R). (1)写出f (x )在[0,1]上的解析式;(2)求f (x )在[0,1]上的最大值.20.(12分)C D E AB P 经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元). (1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.21.(12分)已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x ,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—1: 几何证明选讲.如图,在正ΔABC 中,点D 、E 分别在边BC, AC 上,且,,AD ,BE 相交于点P.求证:(I) 四点P 、D 、C 、E 共 圆;(II) AP ⊥CP 。
2019年四川省成都市高考数学一诊试卷(理科)(解析版)
![2019年四川省成都市高考数学一诊试卷(理科)(解析版)](https://img.taocdn.com/s3/m/2b894932eff9aef8941e06f7.png)
2019年四川省成都市高考数学一诊试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x>﹣2},B={x|x≥1},则A∪B=()A.{x|x>﹣2}B.{x|﹣2<x≤1}C.{x|x≤﹣2}D.{x|x≥1}2.(5分)复数(i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)一个三棱锥的正视图和侧视图如图所示(均为直角三角形),则该三棱锥的体积为()A.4B.8C.16D.244.(5分)设实数x,y满足约束条件,则z=3x+y的最小值为()A.1B.2C.3D.65.(5分)执行如图所示的程序框图,则输出的n值是()A.5B.7C.9D.116.(5分)设S n为等差数列{a n}的前n项和,且2+a5=a6+a3,则S7=()A.28B.14C.7D.27.(5分)下列判断正确的是()A.“x<﹣2”是“ln(x+3)<0”的充分不必要条件B.函数的最小值为2C.当α,β∈R时,命题“若α=β,则sinα=sinβ”的逆否命题为真命题D.命题“∀x>0,2019x+2019>0”的否定是“∃x0≤0,2019x+2019≤0”8.(5分)已知函数f(x)=3x+2cos x,若,b=f(2),c=f(log27),则a,b,c的大小关系是()A.a<b<c B.c<a<b C.b<a<c D.b<c<a9.(5分)在各棱长均相等的直三棱柱ABC﹣A1B1C1中,已知M是棱BB1的中点,N是棱AC的中点,则异面直线A1M与BN所成角的正切值为()A.B.1C.D.10.(5分)齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为()A.B.C.D.11.(5分)已知定义在R上的函数f(x)的图象关于直线x=a(a>0)对称,且当x≥a时,f(x)=e x﹣2a.若A,B是函数f(x)图象上的两个动点,点P(a,0),则当的最小值为0时,函数f(x)的最小值为()A.e B.e﹣1C.e D.e﹣212.(5分)设椭圆C:=1(a>b>0)的左,右顶点为A,B.P是椭圆上不同于A,B的一点,设直线AP,BP的斜率分别为m,n,则当(3﹣)+3(ln|m|+ln|n|)取得最小值时,椭圆C的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.(5分)已知双曲线C:x2﹣y2=1的右焦点为F,则点F到双曲线C的一条渐近线的距离为.14.(5分)(2x+)4展开式的常数项是.15.(5分)设S n为数列{a n}的前n项和,且a1=4,,则a5=.16.(5分)已知G为△ABC的重心,过点G的直线与边AB,AC分别相交于点P,Q,若AP=λAB,则当△ABC与△APQ的面积之比为时,实数λ的值为.三、解答题:本大题共5小题,共70分.解答应写出文字说明证明过程或演算步骤.17.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知,.(1)求a的值;(2)若b=1,求△ABC的面积.18.(12分)如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形,∠ABC=,P A ⊥平面ABCD,点M是棱PC的中点.(Ⅰ)证明:P A∥平面BMD;(Ⅱ)当P A=时,求直线AM与平面PBC所成角的正弦值.19.(12分)在2018年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾标有等级代码.为得到小龙虾等级代码数值x与销售单价y之间的关系,经统计得到如下数据:(Ⅰ)已知销售单价y与等级代码数值x之间存在线性相关关系,求y关于x的线性回归方程(系数精确到0.1);(Ⅱ)若莫斯科某个餐厅打算从上表的6种等级的中国小龙虾中随机选2种进行促销,记被选中的2种等级代码数值在60以下(不含60)的数量为X,求X的分布列及数学期望.参考公式:对一组数据(x1,y1),(x2,y2),…(x n,y n),其回归直线=x的斜率和截距最小二乘估计分别为:=,=.参考数据:x i y i=8440,x=25564.20.(12分)已知长度为4的线段AB的两个端点A,B分别在x轴和y轴上运动,动点P 满足=3,记动点P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设不经过点H(0,1)的直线y=2x+t与曲线C相交于两点M,N.若直线HM与HN的斜率之和为1,求实数t的值.21.(12分)已知函数.(Ⅰ)当a<0时,讨论函数f(x)的单调性;(Ⅱ)当a=1时,若关于x的不等式f(x)+(x+)e x﹣bx≥1恒成立,求实数b的取值范围.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数).在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)设点P(0,﹣1).若直线l与曲线C相交于两点A,B,求|P A|+|PB|的值.[选修4-5:不等式选讲]23.已知函数|.(Ⅰ)求不等式f(x)﹣3<0的解集;(Ⅱ)若关于x的方程f(x)﹣m2﹣2m﹣=0无实数解,求实数m的取值范围.2019年四川省成都市高考数学一诊试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:集合A={x|x>﹣2},B={x|x≥1},则A∪B={x|x>﹣2}.故选:A.2.【解答】解:∵=,∴复数在复平面内对应的点的坐标为(1,﹣2),位于第四象限.故选:D.3.【解答】解:由三视图知几何体为三棱锥,且侧棱AO与底面OCB垂直,其直观图如图:∵其俯视图是直角三角形,直角边长为2;4;∴OA=6,∴棱锥的体积V==8.故选:B.4.【解答】解:作出实数x,y满足约束条件表示的平面区域(如图示:阴影部分):由得A(0,1),由z=3x+y得y=﹣3x+z,平移y=﹣3x,易知过点A时直线在y上截距最小,所以z=1.故选:A.5.【解答】解:执行如图所示的程序框图如下,n=1时,S==,n=3时,S=+=,n=5时,S=++=,n=7时,S=+++=,满足循环终止条件,此时n=9,则输出的n值是9.故选:C.6.【解答】解:∵2+a5=a6+a3,∴a4=2,S7==7a4=14.故选:B.7.【解答】解:“x<﹣2”推不出“ln(x+3)<0”,反正成立,所以“x<﹣2”是“ln(x+3)<0”的充分不必要条件,所以A不正确;函数的最小值为3+;所以B不正确;当α,β∈R时,命题“若α=β,则sinα=sinβ”是真命题,所以它的逆否命题为真命题;所以C正确;命题“∀x>0,2019x+2019>0”的否定是“∃x0≤0,2019x+2019≤0”不满足命题的否定形式,所以D不正确;故选:C.8.【解答】解:根据题意,函数f(x)=3x+2cos x,其导数函数f′(x)=3﹣2sin x,则有f′(x)=3﹣2sin x>0在R上恒成立,则f(x)在R上为增函数;又由2=log24<log27<3<,则b<c<a;故选:D.9.【解答】解:高各棱长均相等的直三棱柱ABC﹣A1B1C1中,棱长为2,以A为原点,AC为y轴,AA1为z轴,建立空间直角坐标系,则A1(0,0,2),M(,1,1),B(,1,0),N(0,1,0),=(,﹣1),=(﹣,0,0),设异面直线A1M与BN所成角为θ,则cosθ===,∴tanθ=.∴异面直线A1M与BN所成角的正切值为.故选:C.10.【解答】解:设齐王上等,中等,下等马分别为A,B,C,田忌上等,中等,下等马分别为a,b,c,现从双方的马匹中随机各选一匹进行一场比赛,基本事件有:(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(C,a),(C,b),(C,c),共9种,有优势的马一定获胜,齐王的马获胜包含的基本事件有:(A,a),(A,b),(A,c),(B,b),(B,c),(C,c),共6种,∴齐王的马获胜的概率为p==.故选:C.11.【解答】解如图,显然的模不为0,故当最小值为0时,只能是图中的情况,此时,P A⊥PB,且P A,PB与函数图象相切,根据对称性,易得∠BPD=45°,设B(x0,y0),当x≥a时,f′(x)=e x﹣2a,∴∴x0=2a∵P(a,0)∴PD=a,∴BD=a,即B(2a,a),∴e2a﹣2a=a,∴a=1,∴当x≥1时,f(x)=e x﹣2,递增,故其最小值为:e﹣1,根据对称性可知,函数f(x)在R上最小值为e﹣1.故选:B.12.【解答】解:A(﹣a,0),B(a,0),设P(x0,y0),则,则m=,n=,∴mn==,∴(3﹣)+3(ln|m|+ln|n|)==,令=t>1,则f(t)=.f′(t)==,∴当t=2时,函数f(t)取得最小值f(2).∴.∴e=,故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.【解答】解:双曲线C:x2﹣y2=1的a=b=1,c=,则可设F(,0),设双曲线的一条渐近线方程为y=x,则F到渐近线的距离为d==1.故答案为:1.14.【解答】解:由通项公式得:T r+1=C(2x)4﹣r()r=24﹣r C x4﹣2r,令r=2,得展开式的常数项为:24﹣2C=24,故答案为:2415.【解答】解:S n为数列{a n}的前n项和,且a1=4,a n+1=S n,①,则:当n≥2时,a n=S n﹣1②①﹣②得:a n+1﹣a n=a n,所以:(常数),所以:数列{a n}是以4为首项,2为公比的等比数列.所以:(首项不符合通项).故:,当n=5时,.故答案为:3216.【解答】解:∵设AQ=μACG为△ABC的重心,∴==.∵P,G,Q三点共线,∴.△ABC与△APQ的面积之比为时,.∴或,故答案为:或.三、解答题:本大题共5小题,共70分.解答应写出文字说明证明过程或演算步骤. 17.【解答】解:(1)由题意可得,,由余弦定理可得,cos A=(2分)即=,(4分)∴a=(6分)(2)∵a=,b=1,由正弦定理可得,sin B===(8分)∵a>b,∴B=,(9分)C=π﹣A﹣B=(10分)∴S△ABC===(12分)18.【解答】证明:(Ⅰ)如图,连结AC,交BD于点O,连结MO,∵M,O分别为PC,AC的中点,∴P A∥MO∵P A⊄平面BMD,MO⊂平面BMD,∴P A∥平面BMD.解:(Ⅱ)如图,取线段BC的中点H,连结AH,∵ABCD为菱形,∠ABC=,∴AH⊥AD,分别以AH,AD,AP所在直线为x轴,y轴,z轴,建立空间直角坐标系,∴A(0,0,0),B(),C(),P(0,0,),M(),∴=(,),=(0,2,0),=(),设平面PBC的法向量=(x,y,z),则,取z=1,∴=(1,0,1),设直线AM与平面PBC所成角为θ,∴sinθ=|cos<>|===.∴直线AM与平面PBC所成角的正弦值为.19.【解答】解:(Ⅰ)由题意得:=(38+48+58+68+78+88)=63,=(16.8+18.8+20.8+22.8+24+25.8)=21.5,=≈0.2,=﹣=8.9,故所求回归方程是:=0.2x+8.9;(Ⅱ)由题意知X的所有可能为0,1,2,∵P(X=0)==,P(X=1)==,P(X=2)==,故X的分布列为:故E(X)=0×+1×+2×=1.20.【解答】解:(Ⅰ)设P(x,y),A(m,0),B(0,n),∵,∴(x,y﹣n)=3(m﹣x,﹣y)=(3m﹣3x,﹣3y),即,∴,∵|AB|=4,∴m2+n2=16,∴,∴曲线C的方程为:;(Ⅱ)设M(x1,y1),N(x2,y2),由,消去y得,37x2+36tx+9(t2﹣1)=0,由△=(36t)2﹣4×37×9(t2﹣1)>0,可得﹣,又直线y=2x+t不经过点H(0,1),且直线HM与HN的斜率存在,∴t≠±1,又,,∴k HM+k HN===4﹣=1,解得t=3,故t的值为3.21.【解答】解:(Ⅰ)由题意知:f′(x)=,∵当a<0,x>0时,有ax﹣e x<0,∴当x>1时,f′(x)<0,当0<x<1时,f′(x)>0,∴函数f(x)在(0,1)递增,在(1,+∞)递减;(Ⅱ)由题意当a=1时,不等式f(x)+(x+)e x﹣bx≥1恒成立,即xe x﹣lnx+(1﹣b)x≥1恒成立,即b﹣1≤e x﹣﹣恒成立,设g(x)=e x﹣﹣,则g′(x)=,设h(x)=x2e x+lnx,则h′(x)=(x2+2x)e x+,当x>0时,有h′(x)>0,故h(x)在(0,+∞)递增,且h(1)=e>0,h()=﹣ln2<0,故函数h(x)有唯一零点x0,且<x0<1,故当x∈(0,x0)时,h(x)<0,g′(x)<0,g(x)递减,当x∈(x0,+∞)时,h(x)>0,g′(x)>0,g(x)递增,即g(x0)为g(x)在定义域内的最小值,故b﹣1≤﹣﹣,∵h(x0)=0,得x0=﹣,<x0<1,…(*)令k(x)=xe x,<x<1,故方程(*)等价于k(x)=k(﹣lnx),<x<1,而k(x)=k(﹣lnx)等价于x=﹣lnx,<x<1,设函数m(x)=x+lnx,<x<1,易知m(x)单调递增,又m()=﹣ln2<0,m(1)=1>0,故x0是函数的唯一零点,即lnx0=﹣x0,=,故g(x)的最小值g(x0)=1,故实数b的取值范围是(﹣∞,2].请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.【解答】解:(1)已知直线l的参数方程为(t为参数).转换为直角坐标方程为:.曲线C的极坐标方程是.转换为直角坐标方程为:x2+y2=2x+2y,整理得:(x﹣1)2+(y﹣1)2=2,(2)将直线l的参数方程为(t为参数),代入(x﹣1)2+(y﹣1)2=2.得到:,化简得:,所以:(t 1和t2为A、B对应的参数).故:.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)当x≥,f(x)﹣3=2x﹣1++1﹣3<0,解得x<,即有≤x <;当﹣2<x<时,f(x)﹣3=1﹣2x++1﹣3<0,解得x>﹣,即有﹣<x<;当x≤﹣2时,f(x)﹣3=1﹣2x﹣﹣1﹣3<0,解得x>﹣,即有x∈∅.综上可得原不等式的解集为(﹣,):(Ⅱ)由f(x)=,可得f(x)的值域为[,+∞),关于x的方程f(x)﹣m2﹣2m﹣=0无实数解,可得m2+2m+<,即m2+2m<0,解得﹣2<m<0,则m的范围是(﹣2,0).。
2019-2020学年四川省成都市嘉祥外校四年级(上)期末数学试卷(2)(含答案)
![2019-2020学年四川省成都市嘉祥外校四年级(上)期末数学试卷(2)(含答案)](https://img.taocdn.com/s3/m/6a83ae36b6360b4c2e3f5727a5e9856a561226ce.png)
2019-2020 学年四川省成都市嘉祥外校四年级(上)期末数学试卷(2)一、填空题.1.赵阿姨所在城市出租车收费标准为:起步价10 元(3 千米以内),3 千米以上部分每千米2 元.她从甲地打车到乙地共行驶s 千米(大于3 千米),表示应付车款的算式是.2.在一个三角形中,最多有个锐角,最少有个,最多可有钝角和直角.3.笑笑家一年水电支出a 元,平均每月水电支出元.4.如图,∠1=80°,∠4=48°,∠3=°5.妈妈烙饼,每次只能烙两张,两面都要烙,每面烙2 分钟,烙5 张饼至少要分钟.6.淘气期末考试考了语文、数学、英语三门科目,平均分92 分.如果不算数学,平均分89 分,数学考了分.7.从统计图中能直观地看出各种数量的多少;从统计图中不仅能看出那个数量的多少,还能看出数量的增减变化情况.8.在锐角三角形中,任何两个内角的度数之和都90°.9.等腰三角形ABC,其中AB 等于AC,∠B=,∠A=.10.三个连续自然数的和是3a,那么其中最大的数是,最小的数是.第页(共22 页) 111.玩搭积木游戏,每一阶段增多的积木的个数相同,所搭起来的积木的形状如下图所示.搭第8 阶段一共需要积木个.二、判断题.12.计算小数乘法时,算出来的积不一定比乘数大.(判断对错)13.等式两边同时乘或除以一个不为0 的数,等式仍然成立..(判断对错)14.一个等腰三角形中,有一个角是60°,这个三角形一定是等边三角形..(判断对错)15.一个三角形有两条边都是4 厘米,第三条边一定大于4 厘米..(判断对错)16.在小数点的后面添上“0”或去掉“0”,小数的大小不变..(判断对错)三、选择题.17.如图,可以看出在解方程时运用了()A.商不变的规律B.等式的性质C.乘数=积÷另一个乘数18.将厚度为0.05 毫米的一张纸连续对折4 次后,总厚度将达到()A.0.2 毫米B.0.4 毫米C.0.8 毫米第页(共22 页) 219.依据如图所提供的信息,这个立体图形一共用了()个小正方体(不考虑棱相接情况).A.一定是3 个B.一定是4 个C.4 个或5 个20.笑笑打算从273 里连续减去13,要计算减去多少次后结果还是13.下列方程错误的是()A.273﹣13x=13 B.13x=273﹣13 C.13x=273 D.13x+13=27321.一位同学在计算a+235 时,把235 当做23.5,那么()A.和增加10 倍B.和减少10 倍C.和减少了235﹣23.522.一个三角形的两个内角和是100°,这是一个()三角形.A.锐角B.直角C.钝角D.以上都有可能23.在梯形里,画一条线段,将梯形变成一个三角形和一个平行四边形,最多有()种画法.A.1 B.2 C.3 D.无数24.有一列数按如下方式排列:2,4,6,8,10……x,□……那么方框里应填()A.x+2 B.2x C.y25.小丽参加了三次英语测试,第一次得90 分,第二次95 分,第三次比第二次成绩好,但不超过97 分,请估计小丽这三次的平均成绩在()A.90 分以下B.90 分到95 分之间C.95 分到97 分之间D.97 分以上第页(共22 页) 3126.一个乘数缩小到原来的,另一个乘数(),积不变.10A.扩大到原来的10 倍B.不变1C.缩小到原来的1027.长方形、正方形的两组对边分别()A.平行且相等B.平行且垂直C.垂直且相等28.两个完全一样的()可以拼成一个正方形.A.锐角三角形B.等腰直角三角形C.直角三角形29.6.□3>6.3,□里可以填的符合条件的数字有()个.A.8 B.无数C.730.5x﹣3 错写成5(x﹣3),结果比原来()A.多12 B.少12 C.多331.甲数是a,比乙数的2 倍少b,表示乙数的式子是()A.2a﹣b B.a÷2﹣b C.(a﹣b)÷2 D.(a+b)÷232.小勇今年a 岁,爸爸今年b 岁,爸爸比小勇大k 岁.m 年后爸爸比小勇大多少岁?可列出等式()A.a﹣b=k B.b﹣a=k C.b﹣a=k+m33.游泳池平均水深130 厘米,小红身高1.35 米,她在游泳池里一定不会有危险.这句话对吗?()A.对B.不对C.不知道第页(共22 页) 4四、解决问题.34.甲、乙两辆车分别从A、B 两站同时相对开出,甲每小时行驶82.3 千米,乙每小时行驶97.7 千米,经过2.5 小时后,两车还相距32.5 千米,A、B 两地相距多少千米?35.一个等腰三角形的顶角是底角的4 倍,这个等腰三角形的底角和顶角分别是多少度?36.看图列式并解答.37.沙场用卡车运沙子,3 辆卡车5 时运走465 吨沙子,照这样的速度计算,5 辆卡车2.5 时能运走多少吨沙子?38.有甲、乙两袋球,甲袋里有39 个,乙袋里有27 个,如果小刚每次从甲袋里取出4 个,从乙袋里取出2 个,那么取几次后,甲、乙袋里剩下的球的个数相等?39.看图列方程并解答.40.小力在文具店买了2 支钢笔和5 个文具盒,共用去74 元,已知1 支钢笔7 元,求1 个文具盒多少元?41.如图,∠1=65°,∠2=25°,求∠3 的度数.42.笑笑和爸爸、妈妈乘车去故宫参观,单程票价每人22.5 元,儿童票半价.请你计算出他们家三口人往返的总票价.第页(共22 页) 5第页(共22 页) 62019-2020 学年四川省成都市嘉祥外校四年级(上)期末数学试卷(2)参考答案与试题解析一、填空题.1.【分析】首先根据:总价=单价×路程,用3 千米以上部分每千米的车费乘超过3 千米的路程,求出超过3 千米的车费是多少;然后用它加上起步价,求出应付车款多少元即可.【解答】解:2(s﹣3)+10=2s﹣6+10=2s+4(元)答:应付车款(2s+4)元.故答案为:(2s+4).【点评】此题主要考查了乘法、加法的意义的应用,解答此题的关键是熟练掌握单价、总价、路程的关系.2.【分析】根据三角形内角和是180°,可知在一个三角形中,最多有3 个锐角,最少有2 个,最多可有1 个钝角和直角.【解答】解:在一个三角形中,最多有3 个锐角,最少有2 个,最多可有1 个钝角和直角.故答案为:3,2,1 个.【点评】本题考查了三角形内角和以及角的分类,属于基础题,关键是掌握三角形内角和为180 度.3.【分析】求平均每个月水电支出多少元,根据:总价÷数量=单价,由此带入解答即可.【解答】解:笑笑家一年水电支出 a 元,平均每月水电支出(a÷12)元.第页(共22 页)7故答案为:(a÷12).【点评】明确总价、数量和单价之间的关系,是解答此题的关键.4.【分析】根据三角形的内角和是180 度,再根据平角的定义,平角是180 度,根据图形可知:∠2=90°﹣∠4=90°﹣48°=42°,因为∠1+∠2+∠3=180°,所以∠3=180°﹣∠1﹣∠2,据此解答.【解答】解:∠2=90°﹣∠4=90°﹣48°=42° 因为∠1+∠2+∠3=180° 所以∠3=180°﹣∠1﹣∠2=180°﹣80°﹣42°=58° 故答案为:58.【点评】此题考查的目的是理解掌握三角形的内角和(180°),平角的定义(180°)及应用.5.【分析】先烙前2 张饼,共需4 分钟,为了便于说明问题把剩下三张饼分别编号为1、2、3 号,可以采用交替烙的办法,先放1、2 号,2 分钟后把其中的一个取出,比如把2 号取出,再把3 号放入,1 号烙反面;2 分钟后,1 号熟了取出,再把2 号放入;再过2 分钟,2、3 都熟了;这样后三张一共用了6 分钟.所以一共需要:4+6=10 分钟.【解答】解:2×2+2×3=4+6=10(分钟)答:烙五张饼最少需要10 分钟.故答案为:10.【点评】本题需要采用交替烙的办法,这样使锅里始终没有空位,能比先烙两个后烙一个要节省2 分钟.第页(共22 页)86.【分析】根据题意,用92×3 即可求出语文、数学和英语三科的总成绩,用89×2 即可求出语文和英语的总成绩,进而相减即可求出数学的成绩.【解答】解:92×3﹣89×2=276﹣178=98(分)答:数学考了98 分.故答案为:98.【点评】解决此题关键是明确要求数学的成绩,就用语、数、英三科的总成绩减去语、英两科的总成绩得解.7.【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【解答】解:由统计图的特点可知:从条形统计图中能直观地看出各种数量的多少;从折线统计图中不仅能看出那个数量的多少,还能看出数量的增减变化情况.故答案为:条形,折线.【点评】此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.8.【分析】根据锐角三角形的性质和三角形内角和是180°解答即可.【解答】解:锐角三角形中,三个角都是锐角,因为三角形的内角和是180°,所以任意两个锐角之和都大于90°.故答案为:大于.【点评】此题是考查了三角形内角和以及锐角三角形的性质的灵活应用.9.【分析】已知角为145°,它的补角是等腰三角形的一个底角,可求出底角度数为180°﹣145°=35°,两底角度数相等,三角形内角和是180°,则顶角度数为180°﹣35°﹣35°=第页(共22 页)9110°.【解答】解:∠B=∠C=180°﹣145°=35°∠A=180°﹣35°﹣35°=110°故答案为:35°,110°.【点评】本题考查了三角形内角和定理,属于基础题,关键是掌握三角形内角和为180 度.10.【分析】因为三个连续自然数的和是3a,所以3 个三个连续自然数中,中间的数即是这三个数的平均数,平均数加1 即是最大的数;平均数减1 即是最小的数;据此解答.【解答】解:3a÷3=a;最大:a+1,最小:a﹣1;答:这三个自然数最大的数是a+1,最小的数是a﹣1;故答案为:a+1,a﹣1.【点评】此题主要考查连续自然数的特点,即每相邻两个自然数相差1,所以只要求出三个自然数的平均数(即中间的数),即可求出前、后相邻的数.11.【分析】观察图形可知,第一阶段,积木个数是3=3×1;第二阶段,积木个数是6=3×2;第三阶段,积木个数是9=3×3,第四阶段,积木个数是12=3×4…,据此可得,第n 阶段,积木个数是3n;据此即可解答.【解答】解:根据题干分析可得:第n 阶段,积木个数是3n;当n=8 时,3×8=24(个),答:第8 阶段有24 个积木.故答案为:24.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首第页(共22 页)10先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直第页(共22 页)10接利用规律求解.二、判断题.12.【分析】当一个小数与0 相乘时,积为0,此时积会小于这个小数;据此解答.【解答】解:当一个小数与0 相乘时,积为0;例如:1.5×0=0所以,计算小数乘法时,算出来的积不一定比乘数大,题干的说法是正确的.故答案为:√.【点评】本题主要考查因数与积的关系,运用举例的方法解答更容易.13.【分析】等式的性质:等式的两边同时加上、减去、乘上或除以一个相同的数(0 除外),等式仍然成立;据此直接进行判断即可.【解答】解:等式两边同时乘或除以同一个不为0 的数,等式仍然成立,一定注意是同一个不为0 的数,所以此说法错误;故判定为:×.【点评】此题考查等式的性质,要注意:除以一个相同的数时,必须此数不等于0.14.【分析】根据等腰三角形的性质可知,等腰三角形的两个底角相等,如果这个60 度的角是底角,则另一个底角也是60 度,三角形内角和是180 度,所以第三个角也是180﹣60﹣60=60 度,即三个角相等,即为等边三角形;如果这个角是顶角,则另外两个底角是(180﹣60)÷2=60 度,即三个角相等,也是等边三角形.所以等腰三角形中有一个角是60°,这个三角形一定是等边三角形.【解答】解:如果这个60 度的角是底角,则另一个底角也是60 度,所以第三个角也是180﹣60﹣60=60 度,第页(共22 页)11即三个角相等,即为等边三角形;如果这个角是顶角,则另外两个底角是(180﹣60)÷2=60 度,即三个角相等,也是等边三角形.所以等腰三角形中有一个角是60°,这个三角形一定是等边三角形是正确的.故答案为:√.【点评】等腰三角形两腰相等,底角相等;等边三角形等边等角.15.【分析】根据三角形的三边关系:任意两边之和大于第三边,三角形的任意两边的差一定小于第三边;进行解答即可.【解答】解:4﹣4<第三边<4+4即0<第三边<8,所以一个三角形有两条边都是4 厘米,第三条边一定大于4 厘米,说法错误;故答案为:×.【点评】解答此题的关键是根据三角形的三边关系进行分析、解答即可.16.【分析】根据小数的性质:在小数的末尾添上“0”或去掉“0”,小数的大小不变,这叫做小数的性质.据此判断即可.【解答】解:在小数的末尾添上“0”或去掉“0”,小数的大小不变.所以,在小数点的后面添上“0”或去掉“0”,小数的大小不变.此说法错误.故答案为:×.【点评】此题考查的目的是理解掌握小数的性质,在小数的末尾添上“0”或去掉“0”,小数的大小不变.三、选择题.17.【分析】根据等式的性质,方程两边同时除以4 求解.第页(共22 页)12【解答】解:4y=20004y÷4=2000÷4y=500 解方程时运用了等式的性质;故选:B.【点评】此题考查了根据等式的性质解方程,即等式两边同加上、同减去、同乘上或同除以一个不为0 的数,等式仍相等.同时注意“=”上下要对齐..18.【分析】首先用这张纸的厚度乘2,求出对折1 次后的厚度是多少;然后用它乘2,求出对折2 次后的厚度是多少;最后用对折2 次后的厚度乘2×2,求出这张纸连续对折4 次后,总厚度将达到多少毫米即可.【解答】解:0.05×2×2×2×2=0.1×2×2×2=0.2×2×2=0.8(毫米)答:将厚度为0.05 毫米的一张纸连续对折4 次后,总厚度将达到0.8 毫米.故选:C.【点评】此题主要考查了乘法的意义的应用,要熟练掌握,解答此题的关键是弄清楚题中的各个量之间的数量关系.19.【分析】根据从正面、右面看到的形状,这个立体图形最少用4 个相同的小正方体,最多用5 个相同的小正方体.用4 个小正方体时,这4 个小正方体分前、后两排,上、下两层.下层前排2 个,后排1 个,左齐;上层在前排左边1 个;用5 个小正方体时,这5 个小正方体分前、后两排,上、下两层.下层前排2 个,后排2 个,呈“田”字形;上层在前排左边1 个.第页(共22 页)13【解答】解:根据从正面、右面看到的形状,这个立体图形的形状如下:即这个立体图形一共用了4 个或5 个小正方体.故选:C.【点评】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.20.【分析】设笑笑要连续减去x 次,连续减去x 次13 是13x,根据从273 里减去13x 次后结果还是13,列出方程求解即可.【解答】解:设笑笑要连续减去x 次,可列方程,273﹣13x=13,13x=273﹣13,13x+13=273 所以方程错误的是13x=273;故选:C.【点评】完成本题要注意分析题目中数量之间的关系,然后列出方程解答即可.21.【分析】把235 当作23.5 来加就是少加了235﹣23.5=211.5,就是和减少了211.5,据此选择.【解答】解:一位同学在计算a+235 时,把235 当做23.5,那么和减少了(235﹣23.5);故选:C.【点评】解答本题关键是理解:把235 当作23.5 来加就是少加了(235﹣23.5).22.【分析】和为100°的两个角有可能含有钝角或直角或锐角,根据三角形的分类:三个角都是锐角的三角形,是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三第页(共22 页)14角形是直角三角形;依此即可作答.【解答】解:因为一个三角形的两个内角之和是100°,这两个角中可能含有钝角,也可能含有锐角,还有可能含有直角;根据三角形的分类可知:这个三角形可能是锐角三角形,可能是直角三角形,可能是钝角三角形.故选:D.【点评】此题主要考查三角形的分类,应明确锐角、直角和钝角三角形的含义,并灵活运用.23.【分析】将三角板的一条直角边和直尺的上边缘都与梯形的一个腰重合,然后平移直尺,当直尺的上边缘正好与梯形上底的另一个端点重合时,过这个端点沿直尺上边缘画线段,与梯形的下底交于一点,此线段即为平行于梯形腰的线段,从而可以得到符合要求的平行四边形和三角形.【解答】解:根据题干分析可得:把梯形形分割成一个三角形和一个平行四边形,最多有2 种画法;故选:B.【点评】本题主要考查了学生根据平行四边形、三角形、梯形的定义来对图形进行分割的能力.24.【分析】2,4,6,8,10,后一个数比前一个数多2,所以□里面的前一个数加上2 即可求解.【解答】解:□里面的前一个数是x,则□里面应填:x+2.故选:A.第页(共22 页)15【点评】关键是根据已知的数得出前后数之间的变化关系的规律,然后再利用这个变化规律再回到问题中去解决问题;注意用字母表示数的方法.25.【分析】根据“第二次得了95 分,第三次比第二次成绩好,”知道第三次的成绩大于95 分,再由题中条件知不超过97 分.所以小丽的第三次成绩在95 分与97 分之间,由此根据平均数的意义即可求出小丽这三次的平均成绩的范围.【解答】解:假设小丽的成绩是96 分,则平均成绩是:(90+95+96)÷3=281÷3≈93.67(分)假设小丽的第三次成绩是97 分,则平均成绩是:(90+95+97)÷3=282÷3=94(分)所以小丽这三次的平均成绩在93.67 到94 之间;故选:B.【点评】关键是根据题意判断出小丽第三次成绩的范围,再利用平均数的计算方法解决问题.26.【分析】一个因数扩大(或缩小)若干倍(0 除外),另一个因数缩小(或扩大)相同的倍数,积不变;据此解答.【解答】解:根据积不变性质可知,1如果一个乘数缩小到原来的,另一个乘数应扩大到原来的10 倍,积不变.10故选:A.第页(共22 页)16【点评】此题考查了积不变性质的灵活运用.27.【分析】四个角都为直角的平行四边形是长方形,四条边都相等的长方形是正方形;也就是说:长方形和正方形的两组对边分别平行且相等,由此解答即可.【解答】解:长方形、正方形的两组对边分别平行且相等;故选:A.【点评】此题应根据长方形和正方形的含义进行解答.28.【分析】因正方形的四条边都相等,四个角都是直角.所以拼成正方形的两个三角形,一定得是等腰直角三角形.【解答】解:如图:两个完全一样的等腰直角三角形,可以拼成一个正方形.故选:B.【点评】本题关键是根据拼成图形的特点,来寻找能拼成正方形的图形.29.【分析】由小数大小的比较方法可知:□里可以填的符合条件的数字应该大于等于3 小于等于9,据此即可得解.【解答】解:6.□3>6.3,□里可以填的符合条件的数字有3~9,一共7个.故选:C.【点评】考查了小数大小的比较,属于基础题.30.【分析】根据题意知道,用5(x﹣3)减去5x﹣3,得出的数大于0 说明结果比原来大,得出的数小于0 说明结果比原来小.【解答】解:5(x﹣3)﹣(5x﹣3)第页(共22 页)17=5x﹣15﹣5x+3=﹣12答:把5x﹣3 错写成5(x﹣3),结果比原来少12,故选:B.【点评】注意括号前面是减号,去掉括号时,括号里面的运算符合要改变.31.【分析】根据题意得出甲数=乙数×2﹣b,由此先求出乙数的2 倍,再除以2 即可.【解答】解:甲数是a,比乙数的2 倍少b,表示乙数的式子是:(a+b)÷2;故选:D.【点评】解答本题的关键是根据题意得出数量关系式:乙数×2﹣b=甲数;进而求出乙数.32.【分析】爸爸今年比小勇大k 岁,m 年后小勇年龄长大m 岁,小勇爸爸也长m 岁,爸爸还是比小勇大k 岁,进而解答即可.【解答】解:b﹣a=k(岁);故选:B.【点评】解答此题的关键:应明确爸爸现在比小勇大多少岁,那么m 年后还是比小勇大多少岁,因为小勇年龄增长多少岁,爸爸也增长同样的岁数.33.【分析】平均数只能反映一组数据的平均水平,并不能反应这组数据的中所有数据的大小,游泳池平均水深130 厘米,可能有的地方水深超过130 厘米好多,所以下水游泳不一定没有危险,据此解答即可.【解答】解:平均数只能反映一组数据的平均水平,并不能反应这组数据的中所有数据的大小,小红身高1.35 米化成厘米是135 厘米,游泳池平均水深130 厘米,可能有的地方水深超过130 厘米,甚至超过135 厘米,所以她下水游泳不一定没有危险,第页(共22 页)18所以原题说法错误;故选:B.【点评】此题主要考查了平均数的含义的应用,解答此题的关键是要明确:平均数只能反映一组数据的平均水平,并不能反应这组数据的中所有数据的大小.四、解决问题.34.【分析】首先根据:速度×时间=路程,用两车的速度之和乘2.5,求出两车2.5 小时行驶的路程之和是多少;然后用它加上32.5,求出A、B 两地相距多少千米即可.【解答】解:(82.3+97.7)×2.5+32.5=180×2.5+32.5=450+32.5=482.5(千米)答:A、B 两地相距482.5 千米.【点评】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握.35.【分析】设底角为x 度,那么顶角是4x 度,依据三角形的内角和是180 度,及等腰三角形的两个底角相等,根据等量关系式:底角+底角+顶角=180 度,列方程解答即可.【解答】解:设底角为x 度,那么顶角是4x 度,则x+x+4x=1806x=180x=30 30°×4=120°;答:这个等腰三角形度底角是30°,顶角是120°.第页(共22 页)19【点评】此题主要考查三角形的内角和及等腰三角形的角的度数特点.36.【分析】由图文可知,白菜的价格是4.7 元,黄瓜是白菜的3 倍还多0.8 元,所以用4.7+(4.7 ×3+0.8)计算即可得到白菜和黄瓜总的钱数,本题得以解决.【解答】解:4.7+(4.7×3+0.8)=4.7+(14.1+0.8)=4.7+14.9=19.6(元)答:白菜和黄瓜一共19.6 元.【点评】本题是一道图文应用题,明确题意,从图文中获取解答问题的信息是解答本题的关键.37.【分析】根据题意,首先用除法求出每辆卡车每小时运沙子多少吨,照这样的速度计算,也就是运沙子的吨数不变,再根据乘法的意义,求出5 辆卡车2.5 时能运货多少吨.【解答】解:465÷3÷5×5×2.5=31×5×2.5=155×2.5=387.5(吨)答:5 辆卡车2.5 时能运走387.5 吨沙子.【点评】此题属于“二次正归一”应用题,首先根据“等分”除法的意义,用除法求出单一量,再乘法求出总数量.38.【分析】甲袋里有39 个,乙袋里有27 个,那么甲比乙多39﹣27=12 个;小刚每次从甲袋里取出4 个,从乙袋里取出2 个,那么每次甲比乙多取出4﹣2=2 个;12 个里面有几个2,那么就取几次,甲乙剩下的个数就相等,据此解答.第页(共22 页)20【解答】解:(39﹣27)÷(4﹣2)=12÷2=6(次)答:取6 次后,甲、乙袋里剩下的球的个数相等.【点评】本题关键是求出甲乙两袋之间的个数差以及每次取出的个数差,然后再根据除法的意义进行解答.39.【分析】设连环画有x 本,故事书比连环画本数的4 倍多28 本,则故事书就是4x+28 本,已知故事书一共有320 本,可列方程4x+28=320,解答即可.【解答】解:设连环画有x 本,4x+28=3204x=292x=73答:连环画有73 本.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.40.【分析】根据题意,1 支钢笔7 元,2 支钢笔用去2 个7 元,即7×2=14 元,用总钱数减去2 支钢笔的钱数,就是5 个文具盒的钱数,即74﹣14=60 元,然后再除以文具盒的数量即可.【解答】解:(74﹣7×2)÷5=(74﹣14)÷5=60÷5=12(元)答:1 个文具盒12 元.第页(共22 页)21【点评】考查了整数乘除法和减法的意义的灵活运用.41.【分析】∠2=25°,则在直角三角形ABD 中,∠ADB=180°﹣90°﹣∠2=65°,∠1、∠ADB 和∠EDC 组成一个平角,则∠EDC=180°﹣65°﹣65°=50°,在直角三角形EDC 中,∠3=180°﹣90°﹣∠EDC=40°.【解答】解:在直角三角形ABD 中,∠ADB=180°﹣90°﹣25°=65°则∠EDC=180°﹣65°﹣65°=50°,在直角三角形EDC 中,∠3=180°﹣90°﹣50°=40°【点评】此题考查了三角形内角和的灵活运用.42.【分析】首先用每张单程票的价格乘2,求出2 张单程票的价格是多少,再用它加上一张儿童票的价格,求出一共需要多少钱;然后用它乘2,求出他们家三口人往返的总票价是多少即可.【解答】解:(22.5×2+22.5÷2)×2=(45+11.25)×2=56.25×2=112.5(元)答:他们家三口人往返的总票价是112.5 元.【点评】此题主要考查了乘法、加法的意义的应用,解答此题的关键是熟练掌握单价、总价、数量的关系.第页(共22 页)22。
2018-2019学年四川省广安市高二(上)期末数学试卷(理科)(解析版)
![2018-2019学年四川省广安市高二(上)期末数学试卷(理科)(解析版)](https://img.taocdn.com/s3/m/ab314db7ec3a87c24028c46b.png)
2018-2019学年四川省广安市高二(上)期末数学试卷(理科)一、选择題(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.(5分)已知空间直角坐标系中A(2,﹣1,﹣2),B(3,2,1),则|AB|=(()A.B.C.D.2.(5分)直线的倾斜角大小为()A.30°B.60°C.120°D.150°3.(5分)以x=1为准线的抛物线的标准方程为()A.y2=2x B.y2=﹣2x C.y2=4x D.y2=﹣4x 4.(5分)“若x<1,则x2﹣3x+2>0”的否命题是()A.若x≥1,则x2﹣3x+2≤0B.若x<l,则x2﹣3x+2≤0C.若x≥1,则x2﹣3x+2>0D.若x2﹣3x+2≤0,则x≥15.(5分)已知直线l:x+ay+1=0与圆N:(x﹣1)2+(y﹣1)2=1相切,则a为()A.﹣B.C.D.﹣6.(5分)设某高中的学生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.67x ﹣60.9,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该高中某学生身高为170cm,则可断定其体重必为53kgD.若该高中某学生身高增加1cm,则其体重约增加0.67kg7.(5分)“2<m<6”是“方程+=1为椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(5分)从甲、乙两种棉花中各抽测了25根棉花的纤维长度(单位:mm)组成一个样本,得到如图所示的茎叶图.若甲、乙两种棉花纤维的平均长度分别用,表示,标准差分别用s1,s2表示,则()A.>,s 1>s2B.>,s1<s2C.<,s 1>s2D.<,s1<s29.(5分)秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,3,则输出v的值为()A.16B.18C.48D.14310.(5分)小华和小明两人约定在7:30到8:30之间在“思源广场”会面,并约定先到者等候另一人30分钟,过时离去,则两人能会面的概率是()A.B.C.D.11.(5分)双曲线C的渐近线方程为y=±x,一个焦点为F(0,﹣6),点A(﹣,0),点P为双曲线第二象限内的点,则当点P的位置变化时,△P AF周长的最小值为()A.16B.7+3C.14+D.1812.(5分)已知A,B是以F为焦点的抛物线y2=4x上两点,且满足=5,则弦AB 中点到准线距离为()A.B.C.D.二、填空题:本大题共4个小题,每小题5分,共20分.13.(5分)把二进制数10011(2)转化为十进制的数为.14.(5分)已知双曲线x2﹣y2=1,则它的右焦点到它的渐近线的距离是.15.(5分)若命题“∃x0∈R,x02+(a﹣1)x0+1<0”是假命题,则实数a的取值范围为.16.(5分)已知椭圆C:=1(a>b>0)的左右焦点分别为F1、F2,抛物线y2=4cx(c2=a2﹣b2且c>b)与椭圆C在第一象限的交点为P,若cos∠PF1F2=,则椭圆C的离心率为.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知直线l1:kx﹣2y+k﹣8=0(k∈R),l2:2x+y+1=0.(Ⅰ)若l1∥l2,求l1,l2间的距离;(Ⅱ)求证:直线l1必过第三象限.18.(12分)已知命题p:实数m满m2﹣2am﹣3a2<0,其中a>0;命题q:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣10=0的内部.(Ⅰ)当a=1,p∧q为真时,求m的取值范围;(Ⅱ)若¬p是¬q的充分不必要条件,求a的取值范围.19.(12分)已知线段AB的端点B在圆C1:x2+(y﹣4)2=16上运动,端点A的坐标为(4,0),线段AB中点为M,(Ⅰ)试求M点的轨迹C2方程;(Ⅱ)若圆C1与曲线C2交于C,D两点,试求线段CD的长.20.(12分)随着2018年央视大型文化节目《经典咏流传》的热播,在全民中掀起了诵读诗词的热潮广安某社团调查了广安某校300名学生每天诵读诗词的时间(所有学生诵读时间都在两小时内,并按时间(单位:分钟)将学生分成六个组:[0,20),[20,40),[40,60),[60,80),[80,100),[100,120]经统计得到了如图所示的频率分布直方图.(Ⅰ)求频率分布直方图中a的值,并估计该校学生每天诵读诗词的时间的平均数和中位数.(Ⅱ)若两个同学诵读诗词的时间x,y满足|x﹣y|>60,则这两个同学组成一个“Team”,已知从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,现从这5人中随机选取2人,求选取的两人能组成一个“Team”的概率.21.(12分)已知椭圆C:+y2=1(a>0),过椭圆C右顶点和上顶点的直线l与圆x2+y2=相切.(1)求椭圆C的方程;(2)设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2(1+sin2θ)=2.(Ⅰ)求l的直角坐标方程和C的直角坐标方程;(Ⅱ)若l和C相交于A,B两点,求|AB|的值.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣1|,g(x)=|2x﹣4|.(Ⅰ)求不等式f(x)>g(x)的解集.(Ⅱ)若存在x∈R,使得不等式2f(x+1)+g(x)<ax+1成立,求实数a的取值范围.2018-2019学年四川省广安市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择題(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.【解答】解:∵空间直角坐标系中A(2,﹣1,﹣2),B(3,2,1),∴|AB|==.故选:B.2.【解答】解:由题意,直线的斜率为k=,即直线倾斜角的正切值是又倾斜角大于或等于0°且小于180°,故直线的倾斜角为30°,故选:A.3.【解答】解:以x=1为准线的抛物线,开口向左,可得p=2,所以抛物线的标准方程为:y2=﹣4x.故选:D.4.【解答】解:若p则q的否命题为若¬p则¬q,即命题的否命题为:若x≥1,则x2﹣3x+2≤0,故选:A.5.【解答】解:根据题意,直线l:x+ay+1=0与圆N:(x﹣1)2+(y﹣1)2=1相切,则有=1,解可得:a=﹣;故选:D.6.【解答】解:根据y与x的线性回归方程为=0.67x﹣60.9,则b=0.67>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该高中某学生身高为170cm,则可预测其体重必为53kg,C错误;若该高中某学生身高增加1cm,则其体重约增加0.67kg,D正确.∴不正确的结论是C.故选:C.7.【解答】解:若方程+=1为椭圆方程,则,解得:2<m<6,且m≠4,故“2<m<6”是“方程+=1为椭圆方程”的必要不充分条件,故选:B.8.【解答】解:由茎叶图得:甲的数据相对分散,而乙的数据相对集中于茎叶图的右下方,∴<,s 1>s2.故选:C.9.【解答】解:初始值n=3,x=3,程序运行过程如下表所示:v=1i=2,v=1×3+2=5i=1,v=5×3+1=16i=0,v=16×3+0=48i=﹣1,不满足条件,跳出循环,输出v的值为48.故选:C.10.【解答】解:设记7:30为0,则8:30记为60,设小华到达“思源广场”为x时刻,小明小华到达“思源广场”为y时刻,则0≤x≤60,0≤y≤60,记“两人能会面”为事件A,则事件A:|x﹣y|≤30,由图知:两人能会面的概率是:==,故选:B.11.【解答】解:双曲线C的渐近线方程为y=±x,一个焦点为F(0,﹣6),可得,c==6,a=2,b=4.双曲线方程为,设双曲线的上焦点为F'(0,6),则|PF|=|PF'|+4,△P AF的周长为|PF|+|P A|+|AF|=|PF'|+2a+|P A|+AF,当P点在第二象限时,|PF'|+|P A|的最小值为|AF'|=7,故△P AF的周长的最小值为14+4=18.故选:D.12.【解答】解:设BF=m,由抛物线的定义知AA1=5m,BB1=m,∴△ABC中,AC=4m,AB=6m,kAB=,直线AB方程为y=(x﹣1),与抛物线方程联立消y得5x2﹣26x+5=0,所以AB中点到准线距离为+1=+1=.故选:A.二、填空题:本大题共4个小题,每小题5分,共20分.13.【解答】解:10011(2)=1+1×2+1×24=19故答案为:1914.【解答】解:双曲线x2﹣y2=1,可得a=1,b=1,c=,则右焦点(1,0)到它的渐近线y=x的距离为d==.故答案为:.15.【解答】解:∵命题“∃x0∈R,x+(a﹣1)x0+1<0”是假命题,∴命题“∀x∈R,x2+(a﹣1)x+1≥0”是真命题,即对应的判别式△=(a﹣1)2﹣4≤0,即(a﹣1)2≤4,∴﹣2≤a﹣1≤2,即﹣1≤a≤3,故答案为:[﹣1,3].16.【解答】解:抛物线y2=4cx的焦点为F2(c,0),如下图所示,作抛物线的准线l,则直线l过点F1,过点P作PE垂直于直线l,垂足为点E,由抛物线的定义知|PE|=|PF2|,易知,PE∥x轴,则∠EPF1=∠PF1F2,所以,=,设|PF1|=5t(t>0),则|PF2|=4t,由椭圆定义可知,2a=|PF1|+|PF2|=9t,在△PF1F2中,由余弦定理可得,整理得,解得,或.∵c>b,则c2>b2=a2﹣c2,可得离心率.当时,离心率为,合乎题意;当时,离心率为,不合乎题意.综上所述,椭圆C的离心率为.故答案为:.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.【解答】解:(Ⅰ)若l1∥l2,直线l1:kx﹣2y+k﹣8=0(k∈R),l2:2x+y+1=0,则有=≠,求得k=﹣4,故直线l1即:2x+y+6=0,故l1,l2间的距离为=.(Ⅱ)证明:直线l1:kx﹣2y+k﹣8=0(k∈R),即k(x+1)﹣2y﹣8=0,必经过直线x+1=0和直线﹣2y﹣8=0的交点(﹣1,﹣4),而点(﹣1,﹣4)在第三象限,直线l1必过第三象限.18.【解答】解:(Ⅰ)当a=1,命题p:m2﹣2m﹣3<0,﹣1<m<3,命题q:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣10=0的内部,∴m2﹣4<0,∴﹣2<m<2,∵p∧q为真,∴m的取值范围为(﹣1,3)∩(﹣2,2)=(﹣1,2);(Ⅱ)命题p:(m﹣3a)(m+a)<0,∵a>0,∴﹣a<m<3a,设A=(﹣a,3a)命题q:﹣2<m<2,设B=(﹣2,2)∵¬p是¬q的充分不必要条件,∴¬p⇒¬q,¬q推不出¬p,∴q⇒p,p推不出q,∴B⊊A,∴,∴a≥2,∴a的取值范围为[2,+∞).19.【解答】解:(Ⅰ)设M(x,y),B(x′,y′),则由题意可得:,解得:,∵点B在圆C1:x2+(y﹣4)2=16上,∴(x′)2+(y′﹣4)2=16,∴(2x﹣4)2+(2y﹣4)2=16,即(x﹣2)2+(y﹣2)2=4.∴轨迹C2方程为(x﹣2)2+(y﹣2)2=4;(Ⅱ)由方程组,解得直线CD的方程为x﹣y﹣1=0,圆C1的圆心C1(0,4)到直线CD的距离为,圆C1的半径为4,∴线段CD的长为.20.【解答】解:(Ⅰ)由频率分布直方图得:(a+a+6a+8a+3a+a)×20=1,解得a=0.0025.该校学生每天诵读诗词的时间的平均数为:0.05×10+0.05×30+0.3×50+0.4×70+0.15×90+0.05×110=64.[0,60)的频率为:0.05+0.05+0.3=0.4,[60,80)的频率为:0.4,∴估计该校学生每天诵读诗词的时间的中位数为:60+=65.(Ⅱ)从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,则从每天诵读时间小于20分钟的学生中抽取:5×=1人,从每天诵读时间大于或等于80分钟的所有学生中抽取:5×=4人,现从这5人中随机选取2人,基本事件总数n==10,两个同学诵读诗词的时间x,y满足|x﹣y|>60,则这两个同学组成一个“Team”,选取的两人能组成一个“Team”包含的基本事件个数m==4.∴选取的两人能组成一个“Team”的概率p===.21.【解答】解:(1)椭圆C的右顶点(a,0),上顶点(0,1),设直线l的方程为:+y=1,化为:x+ay﹣a=0,∵直线l与圆x2+y2=相切,∴=,a>0,解得a=.∴椭圆C的方程为.(2)当直线AB的斜率不存在时,设A(x0,y0),则B(x0,﹣y0),由k1+k2=2得,得x0=﹣1.当直线AB的斜率存在时,设AB的方程为y=kx+m(m≠1),A(x1,y1),B(x2,y2),,得,∴,即,由m≠1,(1﹣k)(m+1)=﹣km⇒k=m+1,即y=kx+m=(m+1)x+m⇒m(x+1)=y﹣x,故直线AB过定点(﹣1,﹣1).[选修4-4:坐标系与参数方程]22.【解答】解:(1)∵直线l的参数方程为(t为参数),∴l的直角坐标方程为+=0,∵曲线C的极坐标方程为ρ2(1+sin2θ)=2,即ρ2+ρ2sin2θ=2,∴C的直角坐标方程为x2+y2+y2=2,即=1.(2)联立,得7x2+12x+4=0,△=144﹣4×7×4=32>0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=,∴|AB|==.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)由|x﹣1|>|2x﹣4|,得:x2﹣2x+1>4x2﹣16x+16,解得:<x<3,故不等式的解集是(,3);(Ⅱ)若存在x∈R,使得不等式2f(x+1)+g(x)<ax+1成立,即存在x∈R,使得2|x|+|2x﹣4|<ax+1成立,当x<0时,﹣4x+4<ax+1即a<﹣4在(﹣∞,0)上有解,故a<﹣4,当x=0时,4<1不成立,当0<x≤2时,4<ax+1即a>在(0,2]上有解,故a>,当x>2时,4x﹣4<ax+1即a>4﹣在(2,+∞)上有解,故a>,综上,a>或a<﹣4.。
2020年四川省绵阳市科学城第一中学高二数学理下学期期末试卷含解析
![2020年四川省绵阳市科学城第一中学高二数学理下学期期末试卷含解析](https://img.taocdn.com/s3/m/048595798762caaedc33d409.png)
2020年四川省绵阳市科学城第一中学高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 不等式表示的平面区域在直线的( )A.左上方B.左下方C.右上方D.右下方参考答案:C2. 双曲线两条渐近线互相垂直,那么它的离心率为 -()A. B. C. 2 D.参考答案:A3. 阅读下列程序:输入x;if x<0, then y =;else if x >0, then y =;else y=0;输出y.如果输入x=-2,则输出结果y 为( )A.-5 B.--5 C. 3+ D. 3-参考答案:D4. 焦点为直线-2-4=0与坐标轴的交点的抛物线的标准方程是()(A) =16 (B) =-8 或 =16(C) = 8 (D) =8 或 =-16参考答案:B5. 设R,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:B6. 若函数有两个零点,则的取值范围()A. B. C. D.参考答案:A7. 已知定义在R上的奇函数f(x),当x≥0时,f(x)单调递增,若不等式f(﹣4t)>f(2mt2+m)对任意实数t恒成立,则实数m的取值范围是()A.(﹣∞,﹣)B.(﹣,0)C.(﹣∞,0)∪(,+∞)D.(﹣∞,﹣)∪(,+∞)参考答案:A8. 已知集合A={3m+2n|m>n且m,n∈N},若将集合A中的数按从小到大排成数列{a n},则有a1=31+2×0=3,a2=32+2×0=9,a3=32+2×1=11,a4=33=27,…,依此类推,将数列依次排成如图所示的三角形数阵,则第六行第三个数为( )a1a2a3a4a5a6…A.247 B.735C.733 D.731参考答案:C该三角形数阵中,每一行所排的数成等差数列,因此前5行已经排了15个数,∴第六行第三个数是数列中的第18项,∵a1=31+2×0=3,a2=32+2×0=9,a3=32+2×1=11,a4=33=27,…∴a18=36+2×2=733,故选C.9. 已知全集,集合,集合,则下图中阴部分所表示的集合是:A. B.C. D.参考答案:A略10. 有一段“三段论”推理是这样的:对于可导函数f(x),如果f′(x0)=0,那么x=x0是函数f (x)的极值点,因为函数f(x)=x3在x=0处的导数值f′(x0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中( )A.大前提错误B.小前提错误C.推理形式错误D.结论正确参考答案:A考点:演绎推理的基本方法.专题:计算题;推理和证明.分析:在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是推理形式错误,我们分析的其大前提的形式:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不难得到结论.解答:解:大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f'(x0)=0,且满足当x>x0时和当x<x0时的导函数值异号时,那么x=x0是函数f(x)的极值点,∴大前提错误,故选A.点评:本题考查的知识点是演绎推理的基本方法,演绎推理是一种必然性推理,演绎推理的前提与结论之间有蕴涵关系.因而,只要前提是真实的,推理的形式是正确的,那么结论必定是真实的,但错误的前提可能导致错误的结论.二、填空题:本大题共7小题,每小题4分,共28分11. 已知数据a1,a2,…,a n的方差为4,则数据2a1,2a2,…,2a n的方差为.参考答案:16【考点】极差、方差与标准差.【分析】根据数据x1,x2,…,x n的平均数与方差,即可求出数据ax1+b,ax2+b,…,ax n+b的平均数和方差.【解答】解:设数据x1,x2,…,x n的平均数为,方差为s2;则数据ax1+b,ax2+b,…,ax n+b的平均数是a+b,方差为a2s2;当a=2时,数据2a1,2a2,…,2a n的方差为22×4=16.故答案为:16.12. 某处有水龙头3个,调查表明每个水龙头被打开的可能性是0.1,随机变量X表示同时被打开的水龙头的个数,则_______(用数字作答).参考答案:0.027【分析】根据二项分布概率计算公式计算出的值.【详解】由于每个龙头被打开的概率为,根据二项分布概率计算公式有.【点睛】本小题主要考查二项分布的概率计算,考查运算求解能力,属于基础题.13. 设,则。
四川省成都市温江区2019-2020学年二年级下学期期末数学试卷
![四川省成都市温江区2019-2020学年二年级下学期期末数学试卷](https://img.taocdn.com/s3/m/3e6a75e9cf2f0066f5335a8102d276a2002960c8.png)
2019-2020学年四川省成都市温江区二年级(下)期末数学试卷一、填空题(共11小题,每小题1分,满分35分)1.(1分)如图,一共有个“”2.(4分)请把980,1002,890,908按从大到小的顺序排列。
>>>3.(3分)如图,计数器上表示的数写作,读作。
4.(1分)在如图上用“△”标出2350的大致位置。
5.(4分)找规律,填一填。
(1)225,250,275,,。
(2)820,,620,520,。
6.(1分)如图,方框中的棋子有20枚,估一估,图中约有枚棋子。
7.(3分)桌上有55个草莓,每8个放一盘,可以放几盘?还剩几个?淘气用竖式计算出了结果(如图所示),填一填。
8.(4分)在横线里填上合适的长度单位。
一柞大约长1 一本数学书厚约1一张床约长2 马拉松长跑比赛全长约429.(12分)在横线里填上“>”“<”或“=”,在横线里填上适当的数。
678+35 678+531米99厘米2时120分300﹣75 300+5710mm10cm2米200厘米50mm=cm6千米=米110分=时分8米=厘米99+=105﹣47=280 10.(1分)□÷4=8......△,当△最大时,这时□里的数是。
11.(1分)如果□827>6827,那么□里的数字可能是。
二、计算题(共2小题,满分26分)12.(12分)看谁算得又快又准。
40+60=28÷4=1000﹣300=9×6=300﹣30=56÷8=20+800=550﹣50=42÷7=320﹣30=640+40=1000﹣10=13.(14分)用竖式计算。
30÷7=46÷9=605﹣246=168+579=验算:54+466=验算:400﹣198=验算:三、操作题(共2小题,满分11分)14.(6分)想一想,画一画。
15.(5分)我们可以利用数线来研究经过的时间。
你能看懂淘气用数线来计算从6:55到7:15经5分15分过了多长时间吗?请用数线研究从9:35到10:15经过了多长时间,并写出计算的过程。
2019年高二数学期末试卷及答案解析
![2019年高二数学期末试卷及答案解析](https://img.taocdn.com/s3/m/a1261eebdd88d0d232d46a49.png)
高二数学期末试卷及答案解析
高中数学2018.8
考试时间:100分钟考试范围:xxx
姓名:__________班级:__________考号:__________
题号
一二三总分得分
△注意事项:
1.填写答题卡请使用2B 铅笔填涂
2.提前5分钟收答题卡
一、选择题(本大题共
12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.如果角的终边经过点,则()A. B. C. D.
2.为了解1500名学生对学校食堂伙食的意见,打算从中抽取一个容量为
30的样本,考虑采用系统抽样,则分段的
间隔k 为(
)A 50 B 40 C 20 D 30 3.函数()
sin cos f x x x 最小值是(**** )A .1
2B .1
2C .1 D .1
4.如图,将1,2,3,4,5,6六个数字分别填入小正方形后,
按虚线折成正方体,则所得正方体相对面上两个数字的和均
相等的概率是(
)A .
1201B .601C .151
D .6
1
5.已知,则()A .B . C .D .θ)2
1,23(θcos 21
23
33
3
2
sin 3cos(2)
5
31
91
95
3。
2018-2019学年四川省乐山市高二(下)期末数学试卷(理科)(含答案)
![2018-2019学年四川省乐山市高二(下)期末数学试卷(理科)(含答案)](https://img.taocdn.com/s3/m/da5121e0dd88d0d232d46a2b.png)
高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是()A. 随机抽样B. 分层抽样C. 系统抽样D. 以上都是2.在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是()A. 4+8iB. 8+2iC. 4+iD. 2+4i3.从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是()A. 18B. 24C. 30D. 364.设i为虚数单位,则(x-i)6的展开式中含x4的项为()A. -15x4B. 15x4C. -20ix4D. 20ix45.掷两颗均匀的骰子,则点数之和为5的概率等于()A. B. C. D.6.曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为()A. (1,3)B. (-1,3)C. (1,3)和(-1,3)D. (1,-3)7.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的x=0,则一开始输入的x的值为()A.B.C.D.8.p设η=2ξ+3,则E(η)的值为()A. 4B.C.D. 19.在区间[0,1]上任取两个实数a,b,则函数f(x)=x2+ax+b2无零点的概率为()A. B. C. D.10.根据如下样本数据,得到回归方程=bx+a,则()x345678y4.02.5-0.50.5-2.0-3.0A. a>0,b>0B. a>0,b<0C. a<0,b>0D. a<0,b<011.若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是()A. (-∞,]B. (-∞,3]C. [,+∞)D. [3,+∞)12.已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是( )A. (-∞,0)B.C. (0,1)D. (0,+∞)二、填空题(本大题共4小题,共20.0分)13.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为______.14.已知复数z满足(1+2i)z=4+3i,则|z|=______.15.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为______.16.若曲线C1:y=ax2(a>0)与曲线C2:y=e x在(0,+∞)上存在公共点,则a的取值范围为______.三、解答题(本大题共6小题,共70.0分)17.已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R)(1)若函数f(x)的导函数为偶函数,求a的值;(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围18.为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.数学888311792108100112物理949110896104101106(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明;(2)已知该生的物理成绩y与数学成绩x是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.参考公式:方差公式:,其中为样本平均数==,=-19.已知函数,.(1)求f(x)在区间(-∞,1)上的极小值和极大值点;(2)求f(x)在[-1,e](e为自然对数的底数)上的最大值.20.如图,在矩形ABCD中,AB=4,AD=2,E是CD的中点,以AE为折痕将△DAE向上折起,D变为D',且平面D'AE⊥平面ABCE.(Ⅰ)求证:AD'⊥EB;(Ⅱ)求二面角A-BD'-E的大小.21.交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T,其范围为[0,10],分为五个级别,T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如右图.(Ⅰ)这50个路段为中度拥堵的有多少个?(Ⅱ)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.22.已知函数f(x)=(ax-1)e x(x>0,a∈R)(e为自然对数的底数).(1)讨论函数f(x)的单调性;(2)当a=1时,f(x)>kx-2恒成立,求整数k的最大值.答案和解析1.【答案】C【解析】解:∵学生人数比较多,∵把每个班级学生从1到最后一号编排,要求每班编号是5的倍数的同学留下进行作业检查,这样选出的样本是采用系统抽样的方法,故选:C.学生人数比较多,把每个班级学生从1到最后一号编排,要求每班学号是5的倍数的同学留下进行作业检查,这样选出的样本是具有相同的间隔的样本,是采用系统抽样的方法.本题考查系统抽样,当总体容量N较大时,采用系统抽样,将总体分成均衡的若干部分即将总体分段,分段的间隔要求相等,系统抽样又称等距抽样.2.【答案】D【解析】解:因为复数6+5i,-2+3i对应的点分别为A(6,5),B(-2,3).且C为线段AB的中点,所以C(2,4).则点C对应的复数是2+4i.故选:D.写出复数所对应点的坐标,有中点坐标公式求出C的坐标,则答案可求.本题考查了中点坐标公式,考查了复数的代数表示法及其几何意义,是基础题.3.【答案】C【解析】解:根据题意,分2种情况讨论:①,选出的3人为2男1女,有C42C31=18种选法;②,选出的3人为1男2女,有C41C32=12种选法;则男女生都有的选法有18+12=30种;故选:C.根据题意,分2种情况讨论:①,选出的3人为2男1女,②,选出的3人为1男2女,由加法原理计算可得答案.本题考查排列、组合的应用,涉及分类计数原理,属于基础题.4.【答案】A【解析】解:(x-i)6的展开式的通项公式为T r+1=•x6-r•(-i)r,令6-r=4,求得r=2,故展开式中含x4的项为•(-i)2•x4=-15x4,故选:A.在二项式展开式的通项公式中,令x的幂指数等于4,求得r的值,可得展开式中含x4的项.本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.5.【答案】B【解析】【分析】这是一个古典概率模型,求出所有的基本事件数N与事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”包含的基本事件数n,再由公式求出概率得到答案本题是一个古典概率模型问题,解题的关键是理解事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”,由列举法计算出事件所包含的基本事件数,判断出概率模型,理解求解公式是本题的重点,正确求出事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”所包含的基本事件数是本题的难点.【解答】解:抛掷两颗骰子所出现的不同结果数是6×6=36事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”所包含的基本事件有(1,4),(2,3),(3,2),(4,1)共四种故事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”的概率是=,故选B.6.【答案】C【解析】解:设P的坐标为(m,n),则n=m3-m+3,f(x)=x3-x+3的导数为f′(x)=3x2-1,在点P处的切线斜率为3m2-1,由切线平行于直线y=2x-1,可得3m2-1=2,解得m=±1,即有P(1,3)或(-1,3),故选:C.设P的坐标为(m,n),则n=m3-m+3,求出函数的导数,求得切线的斜率,由两直线平行的条件:斜率相等,可得m的方程,求得m的值,即可得到所求P的坐标.本题考查导数的运用:求切线的斜率,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,考查两直线平行的条件:斜率相等,属于基础题.7.【答案】C【解析】【分析】求出对应的函数关系,由题输出的结果的值为0,由此关系建立方程求出自变量的值即可.解答本题,关键是根据所给的框图,得出函数关系,然后通过解方程求得输入的值.本题是算法框图考试常见的题型,其作题步骤是识图得出函数关系,由此函数关系解题,得出答案.【解答】解:第一次输入x=x,i=1第二次输入x=2x-1,i=2,第三次输入x=2(2x-1)-1=4x-3,i=3,第四次输入x=2(4x-3)-1=8x-7,i=4>3,第五次输入x=2(8x-7)-1=16x-15,i=5>4,输出16x-15=0,解得:x=,故选:C.8.【答案】B【解析】解:由题意可知E(ξ)=-1×+0×+1×=-.∵η=2ξ+3,所以E(η)=E(2ξ+3)=2E(ξ)+3=+3=.故选:B.求出ξ的期望,然后利用η=2ξ+3,求解E(η)即可.本题考查有一定关系的两个变量之间的期望之间的关系,本题也可以这样来解,根据两个变量之间的关系写出η的分布列,再由分布列求出期望.9.【答案】B【解析】解:∵a,b是区间[0,1]上的两个数,∴a,b对应区域面积为1×1=1若函数f(x)=x2+ax+b2无零点,则△=a2-4b2<0,对应的区域为直线a-2b=0的上方,面积为1-=,则根据几何概型的概率公式可得所求的概率为.故选:B.函数f(x)=x2+ax+b2无零点的条件,得到a,b满足的条件,利用几何概型的概率公式求出对应的面积即可得到结论.本题主要考查几何概型的概率计算,根据二次函数无零点的条件求出a,b满足的条件是解决本题的关键.10.【答案】B【解析】解:由题意可知:回归方程经过的样本数据对应的点附近,是减函数,所以b <0,且回归方程经过(3,4)与(4,2.5)附近,所以a>0.故选:B.通过样本数据表,容易判断回归方程中,b、a的符号.本题考查回归方程的应用,基本知识的考查.11.【答案】C【解析】解:∵函数f(x)=x3-tx2+3x,∴f′(x)=3x2-2tx+3,若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,则f′(x)≤0即3x2-2tx+3≤0在[1,4]上恒成立,∴t≥(x+)在[1,4]上恒成立,令y=(x+),由对勾函数的图象和性质可得:函数在[1,4]为增函数,当x=4时,函数取最大值,∴t≥,即实数t的取值范围是[,+∞),由题意可得f′(x)≤0即3x2-2tx+3≤0在[1,4]上恒成立,由二次函数的性质可得不等式组的解集.本题主要考查函数的单调性和导数符号间的关系,二次函数的性质,属于中档题.12.【答案】B【解析】【分析】本题主要考查函数的零点以及数形结合方法,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.先求导函数,函数f(x)=x(ln x-ax)有两个极值点,等价于f′(x)=ln x-2ax+1有两个零点,等价于函数y=ln x与y=2ax-1的图象由两个交点,在同一个坐标系中作出它们的图象.由图可求得实数a的取值范围.【解答】解:函数f(x)=x(ln x-ax),则f′(x)=ln x-ax+x(-a)=ln x-2ax+1,令f′(x)=ln x-2ax+1=0得ln x=2ax-1,函数f(x)=x(ln x-ax)有两个极值点,等价于f′(x)=ln x-2ax+1有两个零点,等价于函数y=ln x与y=2ax-1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax-1与y=ln x的图象相切,由图可知,当0<a<时,y=ln x与y=2ax-1的图象有两个交点.则实数a的取值范围是(0,).简解:函数f(x)=x(ln x-ax),则f′(x)=ln x-ax+x(-a)=ln x-2ax+1,令f′(x)=ln x-2ax+1=0得ln x=2ax-1,可得2a=有两个不同的解,设g(x)=,则g′(x)=,当x>1时,g(x)递减,0<x<1时,g(x)递增,可得g(1)取得极大值1,作出y=g(x)的图象,可得0<2a<1,即0<a<,13.【答案】【解析】解:根据题意,简单随机抽样中每个个体被抽到的概率是相等的,若在含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率P==;故答案为:.根据题意,由简单随机抽样的性质以及古典概型的计算公式可得个体m被抽到的概率P=,化简即可得答案.本题考查古典概型的计算,涉及随机抽样的性质,属于基础题.14.【答案】【解析】解:∵(1+2i)z=4+3i,∴z=,则|z|=||=.故答案为:.把已知等式变形,再由商的模等于模的商求解.本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.15.【答案】【解析】解:将三棱锥D1-EDF选择△D1ED为底面,F为顶点,则=,其==,F到底面D1ED的距离等于棱长1,所以=××1=S故答案为:将三棱锥D1-EDF选择△D1ED为底面,F为顶点,进行等体积转化V D 1-EDF=V F -D1ED后体积易求.本题考查了三棱柱体积的计算,等体积转化法是常常需要优先考虑的策略.16.【答案】[,+∞)【解析】解:根据题意,函数y=ax2(a>0)与函数y=e x在(0,+∞)上有公共点,令ax2=e x得:,设则,由f'(x)=0得:x=2,当x>2时,f'(x)>0,函数在区间(2,+∞)上是增函数,所以当x=2时,函数在(0,+∞)上有最小值,所以.故答案为:.由题意可得,ax2=e x有解,运用参数分离,再令,求出导数,求得单调区间、极值和最值,即可得到所求范围.本题考查导数的运用:求单调区间和极值、最值,考查函数方程的转化思想的运用,属于中档题.17.【答案】解:(1):f(x)=3x2+2(1-a)x-a(a+2),由题因为f(x)为偶函数,∴2(1-a)=0,即a=1.(2)∵曲线y=f(x)存在两条垂直于y轴的切线,∴关于x的方程f′(x)=3x2+2(1-a)x-a(a+2)有两个不相等的实数根,∴△=4(1-a)2+12a(a+2)>0,即4a2+4a+1>0,∴,∴a的取值范围为()∪().【解析】(1)求出导函数,利用函数的奇偶性求出a即可.(2)求出函数的导数,利用曲线y=f(x)存在两条垂直于y轴的切线,通过△>0求解即可.本题考查函数的导数的应用,切线方程的求法,考查计算能力.18.【答案】解:(1)根据题意,由表中的数据可得:=100+=100,=100+=100,则有,从而,故物理成绩更稳定;(2)由于x与y之间具有线性相关关系,则==0.5,则=100-0.5×100=50,则线性回归方程为=0.5x+50,当y=115时,x=130;建议:进一步加强对数学的学习,提高数学成绩的稳定性,将有助于物理成绩的进一步提高.【解析】(1)根据题意,由数据计算数学、物理的平均数、方差,进而分析可得答案;(2)根据题意,求出线性回归方程,据此分析可得答案.本题考查线性回归方程的计算,涉及数据的平均数、方差的计算,属于基础题.19.【答案】解:(1)当x<1时,f′(x)=-3x2+2x=-x(3x-2),令f′(x)=0,得x=0或x=.当x变化时,f′(x),f(x)的变化情况如下表:x(-∞,0) 0(0,)(,1)f′(x)- 0+ 0-f(x)极小值极大值∴当x=0时,函数f(x)取得极小值f(0)=0,函数f(x)取得极大值点为x=.(2)①当-1≤x<1时,f(x)=-x3+x2,由(1)知,函数f(x)在[-1,0]和[,1)上单调递减,在[0,]上单调递增.∵,∴f(x)在[-1,1)上的最大值为2.②当1≤x≤e时,f(x)=a ln x.当a≤0时,f(x)在[1,e],上单调递增,∴f(x)max=a.综上所述,当a≥2时,f(x)在[-1,e]上的最大值为a;当a<2时,f(x)在[-1,e]上的最大值为2.【解析】(1)当x<1时,求导函数,确定函数的单调性,可得f(x)在区间(-∞,1)上的极小值和极大值点;(2)分类讨论,确定函数的单调性,即可得到f(x)在[-1,e](e为自然对数的底数)上的最大值.本题考查导数知识的应用,考查函数的单调性与极值、最值,考查分类讨论的数学思想,属于中档题.20.【答案】证明:(Ⅰ)∵,AB=4,∴AB2=AE2+BE2,∴AE⊥EB,取AE的中点M,连结MD',则AD=D'E=2⇒MD'⊥AE,∵平面D'AE⊥平面ABCE,∴MD'⊥平面ABCE,∴MD'⊥BE,从而EB⊥平面AD'E,∴AD'⊥EB;解:(Ⅱ)以C为原点,CE为x轴,CB为y轴,过C作平面ABCE的垂线为z轴,如图建立空间直角坐标系,则A(4,2,0)、C(0,0,0)、B(0,2,0)、,E(2,0,0),从而=(4,0,0),,.设为平面ABD'的法向量,则,取z=1,得设为平面BD'E的法向量,则,取x=1,得因此,,有,即平面ABD'⊥平面BD'E,故二面角A-BD'-E的大小为90°.【解析】(Ⅰ)推导出AE⊥EB,取AE的中点M,连结MD',则MD'⊥BE,从而EB⊥平面AD'E,由此能证明AD'⊥EB;(Ⅱ)以C为原点,CE为x轴,CB为y轴,过C作平面ABCE的垂线为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD'-E的大小.本题考查线线垂直的证明,考查二面角的求法,考查空间中线线、线面、面面的性质等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.21.【答案】解:(Ⅰ)(0.2+0.16)×1×50=18,这50路段为中度拥堵的有18个.(Ⅱ)设事件A“一个路段严重拥堵”,则P(A)=0.1,事件B至少一个路段严重拥堵”,则P=(1-P(A))3=0.729.P(B)=1-P()=0.271,所以三个路段至少有一个是严重拥堵的概率是0.271.(III)由频率分布直方图可得:分布列如下表:X30364260P0.10.440.360.1E(X)=30×0.1+36×0.44+42×0.36+60×0.1=39.96.此人经过该路段所用时间的数学期望是39.96分钟.【解析】(Ⅰ)利用(0.2+0.16)×1×50即可得出这50路段为中度拥堵的个数.(Ⅱ)设事件A“一个路段严重拥堵”,则P(A)=0.1,事件B至少一个路段严重拥堵”,则P=(1-P(A))3.P(B)=1-P()=0.271,可得三个路段至少有一个是严重拥堵的概率.(III)利用频率分布直方图即可得出分布列,进而得出数学期望.本题考查了频率分布直方图的应用、互斥事件的概率计算公式、数学期望,考查了推理能力与计算能力,属于中档题.22.【答案】解:(1)f′(x)=[ax-(1-a)]e x(x>0,a∈R),当a≥1时,f′(x)≥0,f(x)在(0,+∞)上递增;当0<a<1时,f(x)在(0,)上递减,在(,+∞)上递增;当a≤0时,f′(x)≤0,f(x)在(0,+∞)上递减.(2)依题意得(x-1)e x>kx-2对于x>0恒成立,方法一:令g(x)=(x-1)e x-kx+2(x≥0),则g′(x)=xe x-k(x≥0),当k≤0时,f(x)在(0,+∞)上递增,且g(0)=1>0,符合题意;当k>0时,易知x≥0时,g′(x)单调递增.则存在x0>0,使得,且g(x)在(0,x0]上递减,在[x0,+∞)上递增,∴,∴,,由得,0<k<2,又k∈Z,∴整数k的最大值为1.另一方面,k=1时,,g′(1)=e-1>0∴x0∈(,1),∈(1,2),∴k=1时成立.方法二:恒成立,令,则,令t(x)=(x2-x+1)e x-2(x>0),则t′(x)=x(x+1)e x>0,∴t(x)在(0,+∞)上递增,又t(1)>0,,∴存在x0∈(,1),使得,且h(x)在在(0,x0]上递减,在[x0,+∞)上递增,∴,又x0∈(,1),∴∈(1,),∴h(x0)∈(,2),∴k<2,又k∈Z,∴整数k的最大值为1.【解析】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,函数恒成立问题,是一道综合题.(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)方法一:令g(x)=(x-1)e x-kx+2(x≥0),通过讨论k的范围,求出g(x)的最小值,从而确定k的最大值;方法二:分离参数k,得到恒成立,令,根据函数的单调性求出k的最大值即可.。
四川省成都市郫都区2019-2020学年高二上学期期中考试数学(理)试题 含解析
![四川省成都市郫都区2019-2020学年高二上学期期中考试数学(理)试题 含解析](https://img.taocdn.com/s3/m/2de4fc322b160b4e777fcf3e.png)
四川省成都市郫都区2019-2020学年度上期期中考试高二数学(理)试题一、选择题(本大题共12小题)1.直线x+y-1=0的倾斜角为()A. B. C. D.2.抛物线y=4x2的焦点坐标是()A. B. C. D.3.双曲线的一个焦点到它的渐近线的距离为()A. 1B.C.D. 24.下列说法正确的是()A. 命题“3能被2整除”是真命题B. 命题“,”的否定是“,”C. 命题“47是7的倍数或49是7的倍数”是真命题D. 命题“若a、b都是偶数,则是偶数”的逆否命题是假命题5.已知α、β是两个不同的平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点,命题q:α∥β,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.直线l1:x+ay+6=0与l2:(a-2)x+3y+2a=0平行,则a的值等于()A. 或3B. 1或3C.D.7.设m、n是两条不同的直线α,β,γ,是三个不同的平面,下列四个命题中正确的序号是()①若m⊥α,n∥α,则m⊥n②若α⊥γ,β⊥γ,则α∥β③若m∥α,n∥α,则m∥n④若α∥β,β∥γ,m⊥α,则m⊥γA. 和B. 和C. 和D. 和8.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),则k的值为()A. B. C. D.9.一空间几何体的三视图如图所示,则该几何体的体积为()A. 1B. 3C. 6D. 210.已知圆,圆,则这两个圆的公切线条数为()A. 1条B. 2 条C. 3 条D. 4 条11.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为()A. B. C. D.12.已知椭圆的左右焦点分别为F1,F2,点Q为椭圆上一点.△QF1F2的重心为G,内心为I,且,则该椭圆的离心率为()A. B. C. D.二、填空题(本大题共4小题)13.已知x、y满足不等式组,则z=3x+y的最大值为______.14.体积为4π的球的内接正方体的棱长为______.15.椭圆+=1与双曲线-=1有公共的焦点F1,F2,P是两曲线的一个交点,则cos∠F1PF2= ______ .16.抛物线x2=2py(p>0)上一点A(,m)(m>1)到抛物线准线的距离为,点A关于y轴的对称点为B,O为坐标原点,△OAB的内切圆与OA切于点E,点F为内切圆上任意一点,则的取值范围为______.三、解答题(本大题共6小题)17.已知p:方程x2+2mx+(m+2)=0有两个不等的正根;q:方程表示焦点在y轴上的双曲线.(1)若q为真命题,求实数m的取值范围;(2)若“p或q”为真,“p且q”为假,求实数m的取值范围.18.在△ABC中,a,b,c分别是角A,B,C的对边,且2cos A cos C(tan A tan C-1)=1.(Ⅰ)求B的大小;(Ⅱ)若,,求△ABC的面积.19.已知在等比数列{a n}中,a1=2,且a1,a2,a3-2成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足:,求数列{b n}的前n项和S n.20.如图,多面体ABCDEF中,底面ABCD是菱形,∠BCD=60°,四边形BDEF是正方形且DE⊥平面ABCD.(Ⅰ)求证:CF∥平面ADE;(Ⅱ)若AE=,求多面体ABCDEF的体积V.21.已知动点M(x,y)满足:.(1)求动点M的轨迹E的方程;(2)设过点N(-1,0)的直线l与曲线E交于A,B两点,点A关于x轴的对称点为C(点C与点B不重合),证明:直线BC恒过定点,并求该定点的坐标.22.已知椭圆C:+=1(a>b>0)的离心率为,且过点(1,).(1)求椭圆C的方程;(2)设与圆O:x2+y2=相切的直线l交椭圆C于A,B两点,求△OAB面积的最大值,及取得最大值时直线l 的方程.答案和解析1.【答案】D【解析】解:设直线x+y-1=0的倾斜角为α.直线x+y-1=0化为.∴tanα=-.∵α∈[0°,180°),∴α=150°.故选:D.利用直线的倾斜角与斜率的关系即可得出.本题考查了直线的倾斜角与斜率的关系,属于基础题.2.【答案】C【解析】解:抛物线y=4x2的标准方程为x2=y,p=,开口向上,焦点在y轴的正半轴上,故焦点坐标为(0,),故选:C.把抛物线y=4x2的方程化为标准形式,确定开口方向和p值,即可得到焦点坐标.本题考查抛物线的标准方程,以及简单性质的应用;把抛物线y=4x2的方程化为标准形式,是解题的关键.3.【答案】C【解析】解:根据题意,由双曲线的方程为,可得焦点坐标为(-2,0)(2,0),渐近线的方程为y=±x;结合双曲线的对称性,其任一个焦点到它的渐近线的距离相等,故只需计算一个焦点到其中一条渐近线的距离即可,其距离为d==,故选:C.根据双曲线的方称可得其焦点坐标与渐近线的方程,由于双曲线的对称性,只需计算一个焦点到其中一条渐近线的距离即可,由点到直线的距离公式,计算可得答案.本题考查双曲线的性质,解题时注意结合双曲线的对称性,只需计算一个焦点到其中一条渐近线的距离即可.4.【答案】C【解析】解:对于A,3不能被2整除,∴“3能被2整除”是假命题,A错误;对于B,“∃x0∈R,x02-x0-1<0”的否定是“∀x∈R,x2-x-1≥0”,∴B错误;对于C,47不是7的倍数,49是7的倍数,∴“47是7的倍数或49是7的倍数”是真命题,C正确;对于D,“若a、b都是偶数,则a+b是偶数”是真命题,则它的逆否命题也是真命题,∴D错误.故选:C.A,3不能被2整除,判断A是假命题;B,写出命题的否定,即可判断B是假命题;C,由47不是7的倍数,49是7的倍数,利用复合命题的真假性判断即可;D,根据原命题与它的逆否命题真假性相同,判断即可.本题考查了命题真假的判断问题,是基础题.5.【答案】B【解析】解:当a,b都平行于α与β的交线时,a与b无公共点,但α与β相交.当α∥β时,a与b一定无公共点,∴q⇒p,但p⇒/q故选:B.利用量平面平行的定义推出a与b没有公共点;a与b没有公共点时推不出α∥β,举一个反例即可.利用充要条件定义得选项.本题考查两个平面平行的定义:两平面无公共点;充要条件的判断.6.【答案】D【解析】解:因为两条直线平行,两直线的斜率都存在,故它们的斜率相等,由,解得:a=-1,故选:D.直接利用两直线平行的充要条件,列出方程求解,解得a的值.本题考查两直线平行的条件,要注意特殊情况即直线斜率不存在的情况,要进行检验.7.【答案】D【解析】解:由m、n是两条不同的直线α,β,γ,是三个不同的平面,知:∵m⊥α,n∥α,∴m⊥n,故①正确;∵α⊥γ,β⊥γ,∴α∥β或α与β相交,故②不正确;∵m∥α,n∥α,∴m与n相交、平行或异面,故③不正确;∵α∥β,β∥γ,∴α∥γ,∵m⊥α,∴m⊥γ,故④正确.故选:D.由m、n是两条不同的直线α,β,γ,是三个不同的平面,知:m⊥α,n∥α⇒m⊥n;α⊥γ,β⊥γ⇒α∥β或α与β相交;m∥α,n∥α⇒m与n相交、平行或异面,故③不正确;α∥β,β∥γ⇒α∥γ,由m⊥α,知m⊥γ.本题考查平面的基本性质及其推论,是基础题.解题时要认真审题,仔细解答.8.【答案】A【解析】解:如图,直线过定点(0,1),∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°,∴k=±.故选:A.直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果.本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题.9.【答案】D【解析】【分析】本题主要考查由三视图求几何体的体积,在三个图形中,俯视图确定锥体的名称,即是几棱锥,正视图和侧视图确定锥体的高,注意高的大小,侧视图是最不好理解的一个图形,注意图形上的虚线部分,根据体积公式得到结果.【解答】解:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2,∴四棱锥的体积是=2.故选D.10.【答案】D【解析】解:根据题意,圆C1:x2+y2+2x-4y+1=0,即(x+1)2+(y-2)2=4,其圆心为(-1,2),半径r1=2,圆C2:(x-3)2+(y+1)2=1,其圆心为(3,-1),半径r2=1,则有|C1C2|==5>r1+r2,两圆外离,有4条公切线;故选:D.根据题意,分析两圆的圆心与半径,进而分析两圆的位置关系,据此分析可得答案.本题考查圆与圆的位置关系以及两圆的公切线,关键是分析两圆的位置关系,属于基础题.11.【答案】A【解析】【分析】本题主要考查了直线与圆的位置关系,考查圆的面积的最小值的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.由已知得|OC|=|CE|=r,过点O作直线2x+y-4=0的垂直线段OF,交AB于D,交直线2x+y-4=0于F,则当D恰为AB中点时,圆C的半径最小,即面积最小.【解答】解:如图,设AB的中点为C,坐标原点为O,圆半径为r,由已知得|OC|=|CE|=r,过点O作直线2x+y-4=0的垂直线段OF,交AB于D,交直线2x+y-4=0于F,则当D恰为OF中点时,圆C的半径最小,即面积最小.此时圆的直径为O(0,0)到直线2x+y-4=0的距离为:d==,此时r=,∴圆C的面积的最小值为:S min=π×()2=.故选A.12.【答案】A【解析】解:椭圆的左右焦点分别为F1(-c,0),F2(c,0),设Q(x0,y0),∵G为△F1QF2的重心,∴G点坐标为G(,),∵,则∥,∴I的纵坐标为,又∵|QF1|+|QF2|=2a,|F1F2|=2c,∴=•|F1F2|•|y0|,又∵I为△F1QF2的内心,∴||即为内切圆的半径,内心I把△F1QF2分为三个底分别为△F1MF2的三边,高为内切圆半径的小三角形,∴=(|QF1|+|F1F2|+|QF2|)||,即×2c•|y0|=(2a+2c)||,∴2c=a,∴椭圆C的离心率为e=,∴该椭圆的离心率,故选:A.由题意,设Q(x0,y0),由G为△F1QF2的重心,得G点坐标为(,),利用面积相等可得,×2c•|y0|=(2a+2c)||,从而求椭圆的离心率.本题考查了椭圆的标准方程及其性质、三角形的重心与内心的性质、三角形面积计算公式、向量共线定理,考查了推理能力与计算能力,属于难题.13.【答案】9【解析】解:作出x、y满足不等式组表示的平面区域,得到如图的三角形及其内部,其中A(2,3),设z=F(x,y)=3x+y,将直线l:z=3x+y进行平移,当l经过点A时,目标函数z达到最大值,∴z最大值=F(2,3)=9.故答案为:9.作出题中不等式组表示的平面区域,再将目标函数z=2x+y对应的直线进行平移,可得当x=2,y=3时,求出z=3x+y取得最大值.本题给出二元一次不等式组,求目标函数z=3x+y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.14.【答案】2【解析】解:设球的半径为R,正方体的棱长a,则=4,∴R3=,∴R=,则由正方体的性质可知,正方体的体对角线=2R=2,∴a=2,故答案为:2.先确定球的半径,利用球的内接正方体的对角线为球的直径,即可求得结论.本题考查球的内接正方体,解题的关键是利用球的内接正方体的对角线为球的直径,属于基础题.15.【答案】【解析】解:由题意设焦点F2(2,0)、F1(-2,0),∴3+b2=4,求得b2=1,双曲线-=1,即双曲线-y2=1.不妨设点P在第一象限,再根据椭圆、双曲线的定义和性质,可得|PF1|+|PF2|=2,|PF1|-|PF2|=2,可得|PF1|=+,|PF2|=-,且|F1F2|=4.再由余弦定理可得cos∠F1PF2=即=,故答案为:.不妨设点P在第一象限,再根据椭圆、双曲线的定义和性质,可得|PF1|+|PF2|=2,|PF1|-|PF2|=2,求得|PF1|和|PF2|的值,根据|F1F2|=4,利用余弦定理可得cos∠F1PF2的值.本题主要考查椭圆、双曲线的定义和性质及其标准方程,余弦定理的应用,属于中档题.16.【答案】【解析】解:因为点在抛物线上,所以,点A到准线的距离为,解得或p=6.当p=6时,,故p=6舍去,所以抛物线方程为x2=y,∴,所以△OAB是正三角形,边长为,其内切圆方程为x2+(y-2)2=1,如图4,∴.设点F(cosθ,2+sinθ)(θ为参数),则,∴.故答案为:.利用点在抛物线上,求出m,点A到准线的距离为,求出p,即可解出抛物线方程,设点F(cosθ,2+sinθ)(θ为参数),化简数量积,求解范围即可.本题考查抛物线的简单性质,直线与抛物线的位置关系圆的方程的应用,考查转化思想以及计算能力.17.【答案】解:(1)由已知方程表示焦点在y轴上的双曲线,则,得,得m<-3,即q:m<-3.(2)若方程x2+2mx+(m+2)=0有两个不等的正根则,解得-2<m<-1,即p:-2<m<-1.因p或q为真,所以p、q至少有一个为真.又p且q为假,所以p,q至少有一个为假.因此,p,q两命题应一真一假,当p为真,q为假时,,解得-2<m<-1;当p为假,q为真时,,解得m<-3.综上,-2<m<-1或m<-3.【解析】(1)根据双曲线的标准方程进行求解即可.(2)根据复合命题真假关系得到p,q两命题应一真一假,进行求解即可.本题主要考查复合命题的真假应用,根据条件求出命题为真命题的等价条件是解决本题的关键.18.【答案】解:(Ⅰ)由2cos A cos C(tan A tan C-1)=1得:2cos A cos C(-1)=1,∴2(sin A sin C-cos A cos C)=1,即cos(A+C)=-,∴cos B=-cos(A+C)=,又0<B<π,∴B=;(Ⅱ)由余弦定理得:cos B==,∴=,又a+c=,b=,∴-2ac-3=ac,即ac=,∴S△ABC=ac sin B=××=.【解析】(Ⅰ)已知等式括号中利用同角三角函数间基本关系切化弦,去括号后利用两角和与差的余弦函数公式化简,再由诱导公式变形求出cos B的值,即可确定出B的大小;(Ⅱ)由cos B,b的值,利用余弦定理列出关系式,再利用完全平方公式变形,将a+b以及b的值代入求出ac的值,再由cos B的值,利用三角形面积公式即可求出三角形ABC面积.此题考查了余弦定理,三角形面积公式,两角和与差的余弦函数公式,熟练掌握余弦定理是解本题的关键.19.【答案】解:(Ⅰ)等比数列{a n}的公比设为q,a1=2,a1,a2,a3-2成等差数列,可得2a2=a1+a3-2,即为4q=2+2q2-2,解得q=2,则a n=a1q n-1=2n,n∈N*;(Ⅱ)=+2log22n-1=+2n-1,则数列{b n}的前n项和S n=(++…+)+(1+3+…+2n-1)=+n(1+2n-1)=1-+n2.【解析】(Ⅰ)等比数列{a n}的公比设为q,由等差数列中项性质和等比数列的通项公式,解方程可得q,进而得到所求通项公式;(Ⅱ)求得=+2log22n-1=+2n-1,由数列的分组求和和等差数列、等比数列的求和公式,计算可得所求和.本题考查等差数列中项性质和等比数列的通项公式和求和公式的运用,考查数列分组求和,以及化简整理的运算能力,属于中档题.20.【答案】(Ⅰ)证明:∵底面ABCD是菱形,∴AD∥BC,∵四边形BDEF是正方形,∴DE∥BF,∵BF∩BC=B,∴平面ADE∥平面BCF,∵CF⊂平面BCF,∴CF∥平面ADE.(Ⅱ)解:连结AC,交BD于O,∵四边形BDEF是正方形且DE⊥平面ABCD.∴DE⊥平面ABCD,又AC⊂平面ABCD,∴AC⊥DE,∵底面ABCD是菱形,∴AC⊥BD,又BD∩DE=D,∴AC⊥平面BDEF,∵AE=,∠BCD=60°,∴AD=DE=BD=1,∴AO=CO=,∴多面体ABCDEF的体积:V=2V A-BDEF=2×=2×=.【解析】(Ⅰ)由已知得AD∥BC,DE∥BF,从而平面ADE∥平面BCF,由此能证明CF∥平面ADE.(Ⅱ)连结AC,交BD于O,由线面垂直得AC⊥DE,由菱形性质得AC⊥BD,从而AC⊥平面BDEF,进而多面体ABCDEF的体积V=2V A-BDEF,由此能求出多面体ABCDEF的体积V.本题考查线面平行证明,考查多面体的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.21.【答案】解:(1)由已知,动点M到点P(-1,0),Q(1,0)的距离之和为2,且|PQ|<2,所以动点M的轨迹为椭圆,而a=,c=1,所以b=1,所以,动点M的轨迹E的方程:+y2=1.(2)设A(x1,y1),B(x2,y2),则C(x1,-y1),由已知得直线l的斜率存在,设斜率为k,则直线l的方程为:y=k(x+1),由,得(1+2k2)x2+4k2x+2k2-2=0,所以x1+x2=-,x1x2=,直线BC的方程为:y-y2=(x-x2),所以y=x-,令y=0,则x====-2,所以直BC与x轴交于定点D(-2,0).【解析】(1)分别求出a,b,c的值,求出M的轨迹方程即可;(2)输出直线l的方程为:y=k(x+1),联立直线和椭圆的方程,根据根与系数的关系,求出定点D的坐标即可.本题考查了求椭圆的轨迹方程问题,考查直线和椭圆的关系以及韦达定理的应用,是一道中档题.22.【答案】解:(1)由题意可得,e==,a2-b2=c2,点(1,)代入椭圆方程,可得+=1,解得a=,b=1,即有椭圆的方程为+y2=1;(2)①当k不存在时,x=±时,可得y=±,S△OAB=××=;②当k存在时,设直线为y=kx+m(k≠0),A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆方程可得(1+3k2)x2+6kmx+3m2-3=0,x1+x2=-,x1x2=,由直线l与圆O:x2+y2=相切,可得=,即有4m2=3(1+k2),|AB|=•=•=•=•=•≤•=2,当且仅当9k2= 即k=±时等号成立,可得S△OAB=|AB|•r≤×2×=,即有△OAB面积的最大值为,此时直线方程y=±x±1.【解析】(1)运用椭圆的离心率公式和点满足椭圆方程,解方程可得a,b,进而得到椭圆方程;(2)讨论①当k不存在时,②当k存在时,设直线为y=kx+m,A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆方程,运用韦达定理和弦长公式,以及直线和圆相切的条件:d=r,结合基本不等式即可得到所求面积的最大值和直线l的方程.本题考查椭圆的方程的求法,注意运用离心率公式和点满足椭圆方程,考查三角形的面积的最大值,注意运用分类讨论的思想方法,联立直线方程和椭圆方程,运用韦达定理和弦长公式,以及直线和圆相切的条件:d=r,和基本不等式的运用,属于中档题.。
【精品高二数学期末试卷】2019年成都高二(下)数学期末试卷1+答案
![【精品高二数学期末试卷】2019年成都高二(下)数学期末试卷1+答案](https://img.taocdn.com/s3/m/793744646c175f0e7dd13735.png)
1 / 16高二(下)数学期末试卷(学生版)一、单选题(60分)1.(5分)已知集合A={x|x>2},B={x|(x-1)(x-3)<0},则A∩B=( )2.(5分)当a>1时,在同一坐标系中,函数y=a -x 与y=log a x 的图象为( )A. B.C. D.3.(5分)分别和两条异面直线平行的两条直线的位置关系是( )4.(5分)某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程= x+ 的 为9.4,据此模型预报广告费用为6万元时销售额为( ) 5.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )6.(5分)已知函数,其图象相邻两条对称轴之间的距离为,且函数是偶函数,下列判断正确的是()7.(5分)已知,,y满足约束条件,若的最小值为1,则等于()8.(5分)“1<m<3”是“方程+=1表示椭圆”的()9.(5分)函数的图象大致是()A. B. C. D.10.(5分)已知方程的四个根组成一个首项为的等差数列,则|m-n|等于()11.(5分)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()12.(5分)设函数,其中,若有且只有一个整数使得,则a的取值范围是()二、填空题(20分)13.(5分)已知,则.14.(5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为.15.(5分)关于x的方程有三个不相等的实数根,则实数a的值是.16.(5分)如图,在正方体ABCD-A1B1C1D1中,棱长为1,点P为线段A1C上的动点(包含线段端点),则下列结论正确的.①当时,D1P∥平面BDC1;②当时,A1C⊥平面D1AP;③∠APD1的最大值为90°;④AP+PD1的最小值为.三、解答题(70分)17.(12分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(1)求{a n}的通项公式.(2)求和:b1+b3+b5+…+b2n-1.3 / 1618.(12分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).19.(12分)如图,三棱柱ABC-A1B1C1中,点D为BC的中点.(1)求证:A1B∥平面AC1D.(2)若底面ABC为正三角形,AB=2,AA1=3,侧面A1ACC1⊥底面ABC,,求四棱锥B1-A1ACC1的体积.5 / 1620.(12分)已知双曲线渐近线方程为,O为坐标原点,点在双曲线上.(1)求双曲线的方程.(2)已知P,Q为双曲线上不同两点,点O在以PQ为直径的圆上,求的值.21.(12分)已知函数,.(1)当时,存在,使成立,求m的取值范围.(2)若在区间上,函数的图像恒在直线的下方,求实数a的取值范围.7 / 1622.(10分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为(θ为参数),曲线C2的极坐标方程为ρcosθ-ρsinθ-4=0.(1)求曲线C1的普通方程和曲线C2的直角坐标方程.(2)设P为曲线C1上一点,Q为曲线C2上一点,求|PQ|的最小值.高二(下)数学期末试卷(教师版)一、单选题(60分)1.(5分)已知集合A={x|x>2},B={x|(x-1)(x-3)<0},则A∩B=()【答案】B2.(5分)当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象为()A. B.C. D.【答案】C3.(5分)分别和两条异面直线平行的两条直线的位置关系是()【答案】C4.(5分)某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为()【答案】B9 / 165.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()【答案】D6.(5分)已知函数,其图象相邻两条对称轴之间的距离为,且函数是偶函数,下列判断正确的是()【答案】D7.(5分)已知,,y满足约束条件,若的最小值为1,则等于()【答案】B8.(5分)“1<m<3”是“方程+=1表示椭圆”的()【答案】B9.(5分)函数的图象大致是()A. B. C. D.【答案】D10.(5分)已知方程的四个根组成一个首项为的等差数列,则|m-n|等于()11 / 16【答案】C11.(5分)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=( )【答案】C12.(5分)设函数 ,其中 ,若有且只有一个整数 使得 ,则a 的取值范围是( )【答案】C二、填空题(20分)13.(5分)已知 ,则.【答案】14.(5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为 .【答案】x 2+y 2-2x=0(或(x-1)2+y 2=1)15.(5分)关于x 的方程 有三个不相等的实数根,则实数a 的值是 . 【答案】116.(5分)如图,在正方体ABCD-A 1B 1C 1D 1中,棱长为1,点P 为线段A 1C 上的动点(包含线段端点),则下列结论正确的 .①当 时,D 1P ∥平面BDC 1; ②当 时,A 1C ⊥平面D 1AP ; ③∠APD 1的最大值为90°; ④AP+PD 1的最小值为.【答案】①②④三、解答题(70分)17.(12分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(1)求{a n}的通项公式.(2)求和:b1+b3+b5+…+b2n-1.【答案】(1)解:等差数列{a n},a1=1,a2+a4=10,可得1+d+1+3d=10,解得:d=2,所以{a n}的通项公式为:a n=1+(n-1)×2=2n-1.(2)解:由(1)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9,可得b3=3或-3(舍去)(等比数列奇数项符号相同).所以q2=3,{b2n-1}是等比数列,公比为3,首项为1.∴=.18.(12分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1)解:C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.则由频率分布直方图得:,解得乙离子残留百分比直方图中a=0.35,b=0.10.(2)解:估计甲离子残留百分比的平均值为:=2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.甲=3×0.05+4×0.1+5×0.15+6×0.35+7×0.2+8×0.15=6.乙离子残留百分比的平均值为:乙19.(12分)如图,三棱柱ABC-A1B1C1中,点D为BC的中点.(1)求证:A1B∥平面AC1D.(2)若底面ABC为正三角形,AB=2,AA1=3,侧面A1ACC1⊥底面ABC,,求四棱锥B1-A1ACC1的体积.【答案】(1)证明:连接A1C,交AC1于点E,13 / 16∵四边形A1ACC1是平行四边形,则点E是A1C及AC1的中点.而D为BC的中点,∴连接DE,则DE∥A1B.因为DE⊂平面ADC1,A1B⊄平面ADC1,所以A1B∥平面ADC1.(2)解:因为侧面A1ACC1⊥底面ABC,所以正△ABC的高就是点B到平面A1ACC1的距离,也就是四棱锥B1-A1ACC1的高,由条件得h.因为,所以sin∠A1AC,所以四棱锥B1-A1ACC1的底面积S.所以四棱锥B1-A1ACC1的体积.20.(12分)已知双曲线渐近线方程为,O为坐标原点,点在双曲线上.(1)求双曲线的方程.(2)已知P,Q为双曲线上不同两点,点O在以PQ为直径的圆上,求的值.【答案】(1)解:∵双曲线的渐近线方程为,∴设双曲线方程为,∵点在双曲线上.∴,∴双曲线方程为,即.(2)解:设OP直线方程为y=kx,由,解得,∴∵OP⊥OQ,∴设OQ直线方程为以代替上式中的k,可得∴.21.(12分)已知函数,.(1)当时,存在,使成立,求m的取值范围.(2)若在区间上,函数的图像恒在直线的下方,求实数a的取值范围.【答案】(1)解:当时,,由,可得,所以在上单调递增,所以值域为,故存在,使成立,则,所以实数m的取值范围是.(2)解:在区间上,函数的图像恒在直线的下方,等价于恒成立.记,则,由;①若,即时,,函数在区间上递减,所以,即时,恒成立;②若时,令得,函数在区间上递减,在上递增,∈,不合题意;③若,即时,,函数在区间上递增,不合题意;综上可知:当时,在上函数的图像恒在直线的下方.22.(10分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为(θ为参数),曲线C2的极坐标方程为ρcosθ-ρsinθ-4=0.(1)求曲线C1的普通方程和曲线C2的直角坐标方程.(2)设P为曲线C1上一点,Q为曲线C2上一点,求|PQ|的最小值.【答案】(1)解:由曲线C1的参数方程为(θ为参数),消去参数θ得,曲线C1的普通方程得+=1.由ρcosθ-ρsinθ-4=0得,曲线C2的直角坐标方程为x-y-4=0.(2)解:设P(2cosθ,2sinθ),15 / 16则点P到曲线C2的距离为d==,当cos(θ+45°)=1时,d有最小值0,所以|PQ|的最小值为0.。
2019-2020年高二下学期期末数学试卷(文科)含解析
![2019-2020年高二下学期期末数学试卷(文科)含解析](https://img.taocdn.com/s3/m/069f8f0ff111f18583d05a5b.png)
2019-2020年高二下学期期末数学试卷(文科)含解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>04.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.45.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.58.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.0049.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=_______.12.函数y=的值域为_______.13.若P=﹣1,Q=﹣,则P与Q的大小关系是_______.14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于_______.15.已知函数则的值为_______.16.按程序框图运算:若x=5,则运算进行_______次才停止;若运算进行3次才停止,则x的取值范围是_______.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?20.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.2015-2016学年北京市东城区高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)【考点】交集及其运算.【分析】先求出不等式x(x﹣2)<0的解集,即求出A,再由交集的运算求出A∩B.【解答】解:由x(x﹣2)<0得,0<x<2,则A={x|0<x<2},B={x|x﹣1>0}={x|x>1},∴A∩B═{x|1<x<2}=(1,2),故选D.2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式an2=2+(n﹣1)×3=3n﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n2﹣a n﹣12=3,又∵a12=2,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0 C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>0【考点】四种命题的真假关系.【分析】注意判断区分∃和∀.【解答】解:A错误,因为,不存在x0∉ZB错误,因为C错误,x=3时不满足;D中,△<0,正确,故选D答案:D4.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.4【考点】导数的运算.【分析】先求原函数的导函数,再把x=1的值代入即可.【解答】解:∵y′=,∴y′|x=1==1.故选:A.5.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断;复数的基本概念.【分析】把a=﹣2代入复数,可以得到复数是纯虚数,当复数是纯虚数时,得到的不仅是a=﹣2这个条件,所以得到结论,前者是后者的充分不必要条件.【解答】解:a=﹣2时,Z=(22﹣4)+(﹣2+1)i=﹣i是纯虚数;Z为纯虚数时a2﹣4=0,且a+1≠0∴a=±2.∴“a=2”可以推出“Z为纯虚数”,反之不成立,故选A.6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】a=30.2>1,利用换底公式可得:b=log64=,c=log32=,由于1<log26<log29,即可得出大小关系.【解答】解:∵a=30.2>1,b=log64=,c=log32==,∵1<log26<log29,∴1>b>c,则a>b>c,故选:B.7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.5【考点】函数奇偶性的性质;函数的值.【分析】利用奇函数的定义、函数满足的性质转化求解函数在特定自变量处的函数值是解决本题的关键.利用函数的性质寻找并建立所求的函数值与已知函数值之间的关系,用到赋值法.【解答】解:由f(1)=,对f(x+2)=f(x)+f(2),令x=﹣1,得f(1)=f(﹣1)+f(2).又∵f(x)为奇函数,∴f(﹣1)=﹣f(1).于是f(2)=2f(1)=1;令x=1,得f(3)=f(1)+f(2)=,于是f(5)=f(3)+f(2)=.故选:C.8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.004【考点】独立性检验的应用.【分析】本题考查的知识点是独立性检验公式,我们由列联表易得:a=11,b=34,c=8,d=37,代入K2的计算公式:K2=即可得到结果.【解答】解:由列联表我们易得:a=11,b=34,c=8,d=37则K2===0.6004≈0.60故选A9.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f(x)=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C.10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011【考点】抽象函数及其应用.【分析】首先理解⊕的运算规则,然后各选项依次分析即可.【解答】解:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B 选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C 选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D 选项正确;故选C.二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=﹣1+i.【考点】复数相等的充要条件;复数代数形式的乘除运算.【分析】由条件利用两个复数相除,分子和分母同时乘以分母的共轭复数,计算求得结果.【解答】解:∵复数z满足(1﹣i)z=2i,则z====﹣1+i,故答案为:﹣1+i.12.函数y=的值域为{y|y≠2} .【考点】函数的值域.【分析】函数y===2+,利用反比例函数的单调性即可得出.【解答】解:函数y===2+,当x>1时,>0,∴y>2.当x<1时,<0,∴y<2.综上可得:函数y=的值域为{y|y≠2}.故答案为:{y|y≠2}.13.若P=﹣1,Q=﹣,则P与Q的大小关系是P>Q.【考点】不等式比较大小.【分析】利用作差法,和平方法即可比较大小.【解答】解:∵P=﹣1,Q=﹣,∴P﹣Q=﹣1﹣+=(+)﹣(+1)∵(+)2=12+2,( +1)2=12+2∴+>+1,∴P﹣Q>0,故答案为:P>Q14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于0.9.【考点】线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.【解答】解:∵==1.5,==3,∴这组数据的样本中心点是(1.5,3)把样本中心点代入回归直线方程,∴3=1.4×1.5+a,∴a=0.9.故答案为:0.9.15.已知函数则的值为﹣.【考点】函数的值;函数迭代.【分析】由题意可得=f(﹣)=3×(﹣),运算求得结果.【解答】解:∵函数,则=f(﹣)=3×(﹣)=﹣,故答案为﹣.16.按程序框图运算:若x=5,则运算进行4次才停止;若运算进行3次才停止,则x 的取值范围是(10,28] .【考点】循环结构.【分析】本题的考查点是计算循环的次数,及变量初值的设定,在算法中属于难度较高的题型,处理的办法为:模拟程序的运行过程,用表格将程序运行过程中各变量的值进行管理,并分析变量的变化情况,最终得到答案.【解答】解:(1)程序在运行过程中各变量的值如下表示:x x 是否继续循环循环前5∥第一圈15 13 是第二圈39 37 是第三圈111 109 是第四圈327 325 否故循环共进行了4次;(2)由(1)中数据不难发现第n圈循环结束时,经x=(x0﹣1)×3n+1:x 是否继续循环循环前x0/第一圈(x0﹣1)×3+1 是第二圈(x0﹣1)×32+1 是第三圈(x0﹣1)×33+1 否则可得(x0﹣1)×32+1≤244且(x0﹣1)×33+1>244解得:10<x0≤28故答案为:4,(10,28]三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.【考点】函数奇偶性的判断;函数的定义域及其求法.【分析】(1)使函数各部分都有意义的自变量的范围,即列出不等式组,解此不等式组求出x范围就是函数的定义域;(2)根据函数奇偶性的定义进行证明即可.【解答】解:(1)由题得,使解析式有意义的x范围是使不等式组成立的x范围,解得﹣1<x<1,所以函数f(x)的定义域为{x|﹣1<x<1}.(2)函数f(x)为奇函数,证明:由(1)知函数f(x)的定义域关于原点对称,且f(﹣x)=log a(﹣x+1)﹣log a(1+x)=﹣log a(1+x)+log a(1﹣x)=﹣[log a(1+x)﹣log a (1﹣x)]=﹣f(x)所以函数f(x)为奇函数.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.【考点】复合命题的真假.【分析】先将命题p,q分别化简,然后根据若“p或q”为真命题,“p且q”为假命题,判断出p,q一真一假,分类讨论即可.【解答】解:由题意命题P:x2+mx+1=0有两个不等的实根,则△=m2﹣4>0,解得m>2或m<﹣2,命题Q:方程4x2+4(m+2)x+1=0无实根,则△<0,解得﹣3<m<﹣1,若“p或q”为真命题,“p且q”为假命题,则p,q一真一假,(1)当P真q假时:,解得m≤﹣3,或m>2,(2)当P假q真时:,解得﹣2≤m<﹣1,综上所述:m的取值范围为m≤﹣3,或m>2,或﹣2≤m<﹣1.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】先设箱底边长为xcm,则箱高cm,得箱子容积,再利用导数的方法解决,应注意函数的定义域.【解答】解:设箱底边长为xcm,则箱高cm,得箱子容积(0<x<60).(0<x<60)令=0,解得x=0(舍去),x=40,并求得V(40)=16 000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm320.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)把a的值代入f(x)中,求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率,可得曲线y=f(x)在x=1处的切线方程;(Ⅱ)求出f(x)的导函数,分a大于等于0和a小于0两种情况讨论导函数的正负,进而得到函数的单调区间;(Ⅲ)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围.【解答】解:(Ⅰ)由已知,f'(1)=2+1=3,所以斜率k=3,又切点(1,2),所以切线方程为y﹣2=3(x﹣1)),即3x﹣y﹣1=0故曲线y=f(x)在x=1处切线的切线方程为3x﹣y﹣1=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)①当a≥0时,由于x>0,故ax+1>0,f'(x)>0,所以f(x)的单调递增区间为(0,+∞).﹣﹣﹣﹣﹣﹣②当a<0时,由f'(x)=0,得.在区间上,f'(x)>0,在区间上,f'(x)<0,所以,函数f(x)的单调递增区间为,单调递减区间为.﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由已知,转化为f(x)max<g(x)max.g(x)=(x﹣1)2+1,x∈[0,1],所以g (x)max=2由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,,所以2>﹣1﹣ln(﹣a),解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.【考点】数列的求和;数列的应用.【分析】(I)由{a n}伴随数列{b n}的定义可得前5项为1,1,1,2,3.(II)由a n=3n﹣1≤m,可得n≤1+log3m,m∈N*,分类讨论:当1≤m≤2时,m∈N*,b1=b2=1;当3≤m≤8时,m∈N*,b3=b4=…=b8=2;当9≤m≤20时,m∈N*,b9=b10=…=3;即可得出数列{a n}的伴随数列{b n}的前20项和.【解答】解:(Ⅰ)数列1,4,5,…的伴随数列{b n}的前5项1,1,1,2,3;(Ⅱ)由,得n≤1+log3m(m∈N*).∴当1≤m≤2,m∈N*时,b1=b2=1;当3≤m≤8,m∈N*时,b3=b4=…=b8=2;当9≤m≤20,m∈N*时,b9=b10=…=b20=3.∴b1+b2+…+b20=1×2+2×6+3×12=50.2016年9月9日。
四川省成都市2019-2020年下学期高二数学(理)期末试卷【含答案】
![四川省成都市2019-2020年下学期高二数学(理)期末试卷【含答案】](https://img.taocdn.com/s3/m/0731fa2771fe910ef12df8fa.png)
四川省成都市2019-2020年下学期高二数学(理)期末试卷第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是 符合题目要求的.1.已知}3|{≤∈=*x N x A ,2{|-40}B x x x x =≤,则( )【答案】A【解析】由题意得:,,所以.【方法总结】集合中的元素有关问题的求解策略:(1)确定集合的元素是什么,即集合是数集、点集还是其他类型的集合.(2)看这些元素满足什么限制条件.(3)根据限制条件求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性.2.已知复数满足为虚数单位) ,则在复平面内复数对应的点的坐标为( )A .B .C .D .【答案】B【解析】由题意,得.则,其在复数平面内对应的点的坐标为.故选:B. 3.随着我国经济实力的不断提升,居民收入也在不断增加.某家庭2019年全年的收入与2015年全年的收入相比增加了一倍,实现翻番.同时该家庭的消费结构随之也发生了变化,现统计了该家庭这两年不同品类的消费额占全年总收入的比例,得到了如下折线图: 则下列结论中正确的是( )A .该家庭2019年食品的消费额是2015年食品的消费额的一半B .该家庭2019年教育医疗的消费额与2015年教育医疗的消费额相当C .该家庭2019年休闲旅游的消费额是2015年休闲旅游的消费额的五倍D .该家庭2019年生活用品的消费额是2015年生活用品的消费额的两倍=⋂B A }3,2,1.{A }2,1.{B (]3,0.C (]4,3.D {1,2,3}}3|{=≤∈=*x N x A []2{|-40}1,4B x x x =≤==⋂B A }3,2,1{z (3425z i i i ⋅-=+z 21,5⎛⎫ ⎪⎝⎭2,15⎛⎫ ⎪⎝⎭21,5⎛⎫-- ⎪⎝⎭2,15⎛⎫-- ⎪⎝⎭525z i ⋅=+25z i =+2,15⎛⎫⎪⎝⎭4.解析:选C.设该家庭2015年全年收入为a ,则2019年全年收入为2a .对于A ,2019年食品消费额为0.2×2a =0.4a ,2015年食品消费额为0.4a ,故两者相等,A 不正确.对于B ,2019年教育医疗消费额为0.2×2a =0.4a ,2015年教育医疗消费额为0.2a ,故B 不正确.对于C ,2019年休闲旅游消费额为0.25×2a =0.5a ,2015年休闲旅游消费额为0.1a ,故C 正确.对于D ,2019年生活用品的消费额为0.3×2a =0.6a ,2015年生活用品的消费额为0.15a ,故D 不正确.故选C.4.某三棱锥的三视图如图所示,则它的外接球的表面积为( )A .B .C .D .【答案】A的等腰直角三角形,高为2..故外接球表面积.故选:A 5.下列函数中,与函数的奇偶性、单调性均相同的是( ) . A .B .C .D .【答案】D解析 由已知,,则,所以为上的奇函数.8π6π4π823π2222+2=2222224482S R πππ⎛=== ⎝⎭()11122x x f x -+=-e xy =(2ln 1y x x =+2y x =tan y x =()111=22x x f x -+-x ∈R ()()111111=2222x x x x f x f x ----++--=-=-()f x R设,.易判断为上的增函数,也为上的增函数,所以为上的增函数.A 选项中的不是奇函数,排除A ;B 选项中令,则,所以为奇函数.设为增函数,而也为增函数,由复合函数的单调性知为增函数,所以B 选项中的函数的奇偶性、单调性与的奇偶性、单调性相同;C 选项中不是奇函数,排除C ;D 选项中在上不是单调函数.排除D. 故选B.5.我国南宋时期的数学家秦九韶在他的著作《数书九章》中提出了计算多项式的值的秦九韶算法,即将改写成如下形式:,首先计算最内层一次多项式的值,然后由内向外逐层计算一次多项式的值.这种算法至今仍是比较先进的算法.将秦九韶算法用程序框图表示如下图,则在空白的执行框内应填入( ).A. B. C. D.()112x f x -=()2112x f x +=-()1f x R ()2f x R ()()()12f x f x f x =+R e x y =()(2ln 1f x x x =+()()(2ln 1f x x x -=-+-+2ln1x x ==++(()2ln 1x x f x -+=-()f x ()21u x x x =+()u x ln y u =(2ln 1y x x =++()111=22x x f x -+-2y x =tan y x =R ()11nn n n f x a x a x--=++10a x a ++()f x ()()()()1210nn n f x a x ax a x a x a --=+++++i v vx a =+()i v v x a =+i v a x v =+()i v a x v =+解析 秦九韶算法的过程是.这个过程用循环结构来实现,则在空白的执行框内应填入.故选A.7.平面直角坐标系中,若角的顶点为坐标原点,始边与x 轴的非负半轴重合,终边与单位圆O 交于点,且,,则的值为( ) A B C D 【答案】A【解析】因为,,所以,若,,所以不符合, 所以, 所以. 是结束输出vi ≥0?i =i -1i =n -1输入n ,a n ,x开始v =a n输入a i否()011,2,,nk k n k v a v v x a k n --=⎧⎪⎨=+=⎪⎩i v vx a =+xOy α00(,)P x y (,0)2απ∈-3cos()65πα+=0x 334-433-334±433±(,0)2απ∈-3cos()65πα+=(,)636πππα+∈-(0,)66ππα+∈33cos()65πα+>>(,0)63ππα+∈-4sin()65πα+=-03341334cos cos ()66552x ππαα-⎡⎤==+-=-⨯=⎢⎥⎣⎦8. 已知,给出下列四个命题:; ;; ; 其中真命题的是( ).A. B. C. D. 【答案】D解析 画出的可行域如图所示.对于命题,在点处, ,则是假命题; 对于命题,在点处, 取最大值为,,故是真命题; 对于命题,点到的斜率最小值在点处取到为,,故是假命题; 对于命题,在点处,,故是真命题.故选D.9.唐代诗人李顾的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河。
四川省成都市高二数学上学期期末试卷 理(含解析)-人教版高二全册数学试题
![四川省成都市高二数学上学期期末试卷 理(含解析)-人教版高二全册数学试题](https://img.taocdn.com/s3/m/e25782e0162ded630b1c59eef8c75fbfc77d94ca.png)
2014-2015学年某某省某某市高二(上)期末数学试卷(理科)一、选择题(每小题5分,共50分)1.在空间直角坐标系Oxyz中,已知点A(2,1,﹣1),则与点A关于原点对称的点A1的坐标为()A.(﹣2,﹣1,1) B.(﹣2,1,﹣1) C.(2,﹣1,1) D.(﹣2,﹣1,﹣1)2.如图是某样本数据的茎叶图,则该样本数据的众数为()A. 10 B. 21 C. 35 D. 463.已知点A(﹣1,2),B(1,3),若直线l与直线AB平行,则直线l的斜率为() A.﹣2 B. 2 C.﹣ D.4.根据如图的程序语句,当输入的x的值为2时,则执行程序后输出的结果是()A. 4 B. 6 C. 8 D. 105.经过点(2,1),且倾斜角为135°的直线方程为()A. x+y﹣3=0 B. x﹣y﹣1=0 C. 2x﹣y﹣3=0 D. x﹣2y=06.已知圆C1:x2+y2+2x﹣4y+1=0,圆C2:(x﹣3)2+(y+1)2=1,则这两圆的位置关系是() A.相交 B.相离 C.外切 D.内含7.如图,在平行六面体ABCD﹣A1B1C1D1中,E为BC1与B1C的交点,记=,=,=,则=()A.++ B.++ C.++ D.﹣﹣8.已知l,m是两条不同的直线,α,β是两个不同的平面,则在下列条件中,一定能得到l⊥m的是()A.α∩β=l,m与α,β所成角相等B.α⊥β,l⊥α,m∥βC. l,m与平面α所成角之和为90°D.α∥β,l⊥α,m∥β9.已知直线l:xsinα﹣ycosα=1,其中α为常数且α∈[0,2π).有以下结论:①直线l的倾斜角为α;②无论α为何值,直线l总与一定圆相切;③若直线l与两坐标轴都相交,则与两坐标轴围成的三角形的面积不小于1;④若P(x,y)是直线l上的任意一点,则x2+y2≥1.其中正确结论的个数为()A. 1 B. 2 C. 3 D. 410.在Rt△ABC中,已知D是斜边AB上任意一点(如图①),沿直线CD将△ABC折成直二面角B﹣CD﹣A(如图②).若折叠后A,B两点间的距离为d,则下列说法正确的是()A.当CD为Rt△ABC的中线时,d取得最小值B.当CD为Rt△ABC的角平分线时,d取得最小值C.当CD为Rt△ABC的高线时,d取得最小值D.当D在Rt△ABC的AB边上移动时,d为定值二、填空题(每小题5分,共25分)11.在空间直角坐标系Oxyz中,已知点P(1,0,5),Q(1,3,4),则线段PQ的长度为.12.某单位有1200名职工,其中年龄在50岁以上的有500人,35~50岁的400人,20~35岁的300人.为了解该单位职工的身体健康状况,现采用分层抽样的方法,从1200名职工抽取一个容量为60的样本,则在35~50岁年龄段应抽取的人数为.13.执行如图所示的程序框图,则输出的结果为.14.在正方体ABCD﹣A1B1C1D1的12条面对角线所在的直线中,与A1B所在的直线异面而且夹角为60°的直线有条.15.记空间向量=,=,=,其中,,均为单位向量.若⊥,且与,的夹角均为θ,θ∈[0,π].有以下结论:①⊥(﹣);②直线OC与平面OAB所成角等于向量与+的夹角;③若向量+所在直线与平面ABC垂直,则θ=60°;④当θ=90°时,P为△ABC内(含边界)一动点,若向量与++夹角的余弦值为,则动点P的轨迹为圆.其中,正确的结论有(写出所有正确结论的序号).三、解答题(共75分,解答应写出文字说明、证明过程或演算步骤)16.(12分)(2014秋•某某期末)如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别是棱AB,A1D1,AD的中点,求证:(Ⅰ)平面MNP∥平面BDD1B1;(Ⅱ)MN⊥AC.17.(12分)(2014秋•某某期末)某校要调查高中二年级男生的身高情况,现从全年级男生中随机抽取一个容量为100的样本.样本数据统计如表,对应的频率分布直方图如图所示.(1)求频率分布直方图中a,b的值;(2)用样本估计总体,若该校高中二年级男生共有1000人,求该年级中男生身高不低于170cm的人数.身高(单位:cm) [150,155) [155,160) [160,165) [165,170) [170,175) [175,180) [180,185) [185,190)人数 2 8 15 20 25 18 10 218.(12分)(2014秋•某某期末)如图,在三棱柱ABC﹣A1B1C1中,向量,,两两垂直,||=1,||=2,E,F分别为棱BB1,BC的中点,且•=0.(Ⅰ)求向量的模;(Ⅱ)求直线AA1与平面A1EF所成角的正弦值.19.(12分)(2014秋•某某期末)已知直线l1:mx﹣(m+1)y﹣2=0,l2:x+2y+1=0,l3:y=x ﹣2是三条不同的直线,其中m∈R.(Ⅰ)求证:直线l1恒过定点,并求出该点的坐标;(Ⅱ)若l2,l3的交点为圆心,2为半径的圆C与直线l1相交于A,B两点,求|AB|的最小值.20.(13分)(2014秋•某某期末)如图,在四棱锥P﹣ABCD中,△PAB是边长为2的正三角形,底面ABCD为菱形,且平面PAB⊥平面ABCD,PC⊥AB,E为PD上一点,且PD=3PE.(Ⅰ)求异面直线AB与CE所成角的余弦值;(Ⅱ)求平面PAC与平面ABCD所成的锐二面角的余弦值.21.(14分)(2014秋•某某期末)已知点P(0,2),设直线l:y=kx+b(k,b∈R)与圆C:x2+y2=4相交于异于点P的A,B两点.(Ⅰ)若•=0,求b的值;(Ⅱ)若|AB|=2,且直线l与两坐标轴围成的三角形的面积为,求直线l的斜率k的值;(Ⅲ)当|PA|•|PB|=4时,是否存在一定圆M,使得直线l与圆M相切?若存在,求出该圆的标准方程;若不存在,请说明理由.2014-2015学年某某省某某市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共50分)1.在空间直角坐标系Oxyz中,已知点A(2,1,﹣1),则与点A关于原点对称的点A1的坐标为()A.(﹣2,﹣1,1) B.(﹣2,1,﹣1) C.(2,﹣1,1) D.(﹣2,﹣1,﹣1)考点:空间中的点的坐标.专题:空间位置关系与距离.分析:利用关于原点对称的点的特点即可得出.解答:解:与点A关于原点对称的点A1的坐标为(﹣2,﹣1,1),故选:A.点评:本题考查了关于原点对称的点的特点,属于基础题.2.如图是某样本数据的茎叶图,则该样本数据的众数为()A. 10 B. 21 C. 35 D. 46考点:众数、中位数、平均数.专题:概率与统计.分析:通过样本数据的茎叶图直接读出即可.解答:解:通过样本数据的茎叶图发现,有3个数据是35,最多,故选:C.点评:本题考查了样本数据的众数,考查了茎叶图,是一道基础题.3.已知点A(﹣1,2),B(1,3),若直线l与直线AB平行,则直线l的斜率为() A.﹣2 B. 2 C.﹣ D.考点:直线的斜率.专题:直线与圆.分析:直接由两点坐标求得直线AB的斜率,再由两直线平行斜率相等得答案.解答:解:∵A(﹣1,2),B(1,3),∴,又直线l与直线AB平行,则直线l的斜率为.故选:D.点评:本题考查了由直线上的两点的坐标求直线的斜率公式,是基础的计算题.4.根据如图的程序语句,当输入的x的值为2时,则执行程序后输出的结果是()A. 4 B. 6 C. 8 D. 10考点:选择结构.专题:算法和程序框图.分析:执行程序语句,可得程序的功能是计算并输出分段函数y=的值,将x=2代入即可求值.解答:解:执行程序语句,可得程序的功能是计算并输出分段函数y=的值,故当x=2时,y=2×(2+1)=6.故选:B.点评:本题主要考查了程序与算法,正确理解程序的功能是解题的关键,属于基础题.5.经过点(2,1),且倾斜角为135°的直线方程为()A. x+y﹣3=0 B. x﹣y﹣1=0 C. 2x﹣y﹣3=0 D. x﹣2y=0考点:直线的点斜式方程.专题:直线与圆.分析:由直线的倾斜角求出直线的斜率,代入直线的点斜式方程得答案.解答:解:∵直线的倾斜角为135°,∴直线的斜率k=tan135°=﹣1.又直线过点(2,1),由直线的点斜式可得直线方程为y﹣1=﹣1×(x﹣2),即x+y﹣3=0.故选:A.点评:本题考查了直线的倾斜角与斜率的关系,考查了直线的点斜式方程,是基础题.6.已知圆C1:x2+y2+2x﹣4y+1=0,圆C2:(x﹣3)2+(y+1)2=1,则这两圆的位置关系是() A.相交 B.相离 C.外切 D.内含考点:圆与圆的位置关系及其判定.专题:计算题;直线与圆.分析:把圆的方程化为标准方程,分别找出两圆的圆心坐标和半径R与r,利用两点间的距离公式求出两圆心的距离d,由d>R+r得到两圆的位置关系为相离.解答:解:由圆C1:x2+y2+2x﹣4y+1=0,化为(x+1)2+(y﹣2)2=4,圆心C1(﹣1,2),R=2圆C2:(x﹣3)2+(y+1)2=1,圆心C2(3,﹣1),r=1,∴两圆心间的距离d==5>2+1,∴圆C1和圆C2的位置关系是相离.故选:B.点评:此题考查了圆与圆的位置关系及其判定,以及两点间的距离公式.圆与圆位置关系的判定方法为:0≤d<R﹣r,两圆内含;d=R﹣r,两圆内切;R﹣r<d<R+r时,两圆相交;d=R+r时,两圆外切;d>R+r时,两圆相离(d为两圆心间的距离,R和r分别为两圆的半径).7.如图,在平行六面体ABCD﹣A1B1C1D1中,E为BC1与B1C的交点,记=,=,=,则=()A.++ B.++ C.++ D.﹣﹣考点:空间向量的加减法.专题:空间向量及应用.分析:利用向量三角形法则、平行四边形法则即可得出.解答:解:,,,∴=+=.故选:C.点评:本题考查了向量三角形法则、平行四边形法则,属于基础题.8.已知l,m是两条不同的直线,α,β是两个不同的平面,则在下列条件中,一定能得到l⊥m的是()A.α∩β=l,m与α,β所成角相等B.α⊥β,l⊥α,m∥βC. l,m与平面α所成角之和为90°D.α∥β,l⊥α,m∥β考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:充分利用面面垂直和面面平行的性质定理对选项分别分析选择.解答:解:对于A,α∩β=l,m与α,β所成角相等,当m∥α,β时,m∥l,得不到l⊥m;对于B,α⊥β,l⊥α,得到l∥β或者l⊂β,又m∥β,所以l与m不一定垂直;对于C,l,m与平面α所成角之和为90°,当l,m与平面α都成45°时,可能平行,故C错误;对于D,α∥β,l⊥α,得到l⊥β,又m∥β,所以l⊥m;故选D.点评:本题考查了直线垂直的判断,用到了线面垂直、线面平行的性质定理和判定定理,熟练运用相关的定理是关键,属于中档题目.9.已知直线l:xsinα﹣ycosα=1,其中α为常数且α∈[0,2π).有以下结论:①直线l的倾斜角为α;②无论α为何值,直线l总与一定圆相切;③若直线l与两坐标轴都相交,则与两坐标轴围成的三角形的面积不小于1;④若P(x,y)是直线l上的任意一点,则x2+y2≥1.其中正确结论的个数为()A. 1 B. 2 C. 3 D. 4考点:命题的真假判断与应用.专题:简易逻辑.分析:举例说明①错误;由点到直线的距离公式求得(0,0)到直线的距离判断②;求出三角形面积公式,结合三角函数的有界性判断③;由②说明④正确.解答:解:直线l:xsinα﹣ycosα=1,当α=时,直线方程为:x=﹣1,直线的倾斜角为,命题①错误;∵坐标原点O(0,0)到直线xsinα﹣ycosα=1的距离为,∴无论α为何值,直线l总与一定圆x2+y2=1相切,命题②正确;当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积S=≥1,故③正确;∵无论α为何值,直线l总与一定圆x2+y2=1相切,∴④正确.∴正确的命题是3个.故选:C.点评:本题考查了命题的真假判断与应用,考查了直线的倾斜角,点与直线的关系,直线与圆的位置关系,三角函数的值域等,是中档题.10.在Rt△ABC中,已知D是斜边AB上任意一点(如图①),沿直线CD将△ABC折成直二面角B﹣CD﹣A(如图②).若折叠后A,B两点间的距离为d,则下列说法正确的是()A.当CD为Rt△ABC的中线时,d取得最小值B.当CD为Rt△ABC的角平分线时,d取得最小值C.当CD为Rt△ABC的高线时,d取得最小值D.当D在Rt△ABC的AB边上移动时,d为定值考点:平面与平面之间的位置关系.专题:空间位置关系与距离.分析:过A作CD的垂线AG,过B作CD的延长线的垂线BH,设BC=a,AC=b,∠ACD=θ,利用两条异面直线上两点间的距离转化为含有θ的三角函数求得最值.解答:解:如图,设BC=a,AC=b,∠ACD=θ,则(0),过A作CD的垂线AG,过B作CD的延长线的垂线BH,∴AG=bsinθ,BH=acosθ,CG=bcosθ,CH=asinθ,则HG=CH﹣CG=asinθ﹣bcosθ,∴d=|AB|====.∴当,即当CD为Rt△ABC的角平分线时,d取得最小值.故选:B.点评:本题考查平面与平面之间的位置关系,考查了两条异面直线上两点间的距离,运用数学转化思想方法是解答该题的关键,是中档题.二、填空题(每小题5分,共25分)11.在空间直角坐标系Oxyz中,已知点P(1,0,5),Q(1,3,4),则线段PQ的长度为.考点:空间两点间的距离公式.专题:空间位置关系与距离.分析:直接利用空间两点间距离公式求解即可.解答:解:空间直角坐标系中,P(1,0,5),Q(1,3,4),则线段|PQ|==.故答案为:.点评:本题考查空间两点间的距离公式的应用,基本知识的考查.12.某单位有1200名职工,其中年龄在50岁以上的有500人,35~50岁的400人,20~35岁的300人.为了解该单位职工的身体健康状况,现采用分层抽样的方法,从1200名职工抽取一个容量为60的样本,则在35~50岁年龄段应抽取的人数为20 .考点:分层抽样方法.专题:概率与统计.分析:根据题意,求出抽取样本的比例,计算抽取的人数即可.解答:解:根据题意,得;抽样比例是=,∴在35~50岁年龄段应抽取的人数为400×=20.故答案为:20.点评:本题考查了分层抽样方法的应用问题,是基础题目.13.执行如图所示的程序框图,则输出的结果为 4 .考点:程序框图.专题:算法和程序框图.分析:执行程序框图,依次写出每次循环得到的x,y的值,当x=8时,不满足条件x≤4,输出y的值为4.解答:解:执行程序框图,可得x=1,y=1满足条件x≤4,x=2,y=2满足条件x≤4,x=4,y=3满足条件x≤4,x=8,y=4不满足条件x≤4,输出y的值为4.故答案为:4.点评:本题主要考查了程序框图和算法,准确执行循环得到y的值是解题的关键,属于基础题.14.在正方体ABCD﹣A1B1C1D1的12条面对角线所在的直线中,与A1B所在的直线异面而且夹角为60°的直线有 4 条.考点:空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:作出正方体,利用正方体的空间结构,根据异面直线的定义进行判断解答:解:如图,在正方体ABCD﹣A1B1C1D1中,与A1B异面而且夹角为60°的有:AC,AD1,CB1,B1D1,共有4条.故答案为:4.点评:本题考查异面直线的定义,是基础题,解题时要熟练掌握异面直线的概念.15.记空间向量=,=,=,其中,,均为单位向量.若⊥,且与,的夹角均为θ,θ∈[0,π].有以下结论:①⊥(﹣);②直线OC与平面OAB所成角等于向量与+的夹角;③若向量+所在直线与平面ABC垂直,则θ=60°;④当θ=90°时,P为△ABC内(含边界)一动点,若向量与++夹角的余弦值为,则动点P的轨迹为圆.其中,正确的结论有①③④(写出所有正确结论的序号).考点:平面向量数量积的运算.专题:平面向量及应用.分析:①•(﹣)==cosθ﹣cosθ=0,可得⊥(﹣);②当时,直线OC与平面OAB所成角的补角等于向量与+的夹角,即可判断出正误;③向量+所在直线OD与平面ABC垂直于点D,又BC=AC,D为AB的中点,则CD⊥AB,可得OD⊥CD,可得AC=1=OC=OA,可得θ=60°,即可判断出正误;④补全正方体,对角线OD与平面ABC相交于点M,点M为等边三角形的中心,可得OM=,OP=,MP=.即可得出动点P的轨迹为圆,点M为圆心,MP为半径的圆.解答:解:①∵•(﹣)==cosθ﹣cosθ=0,∴⊥(﹣),正确;②当时,直线OC与平面OAB所成角等于向量与+的夹角;当时,直线OC与平面OAB所成角的补角等于向量与+的夹角,因此不正确;③向量+所在直线OD与平面ABC垂直于点D,又BC=AC,D为AB的中点,则CD⊥AB,∴OD⊥CD,又OD=DA==CD,∴AC=1=OC=OA,则θ=60°,正确;④当θ=90°时,P为△ABC内(含边界)一动点,补全正方体,对角线OD与平面ABC相交于点M,点M为等边三角形的中心,OM==,∵向量与++(即与)的夹角的余弦值为,∴=,∴=.∴动点P的轨迹为圆,点M为圆心,MP为半径的圆,因此正确.其中,正确的结论有①③④.故答案为:①③④.点评:本题考查了向量的数量积运算性质、空间线面位置关系、空间角、正方体的性质,考查了空间想象能力,考查了推理能力与计算能力,属于难题.三、解答题(共75分,解答应写出文字说明、证明过程或演算步骤)16.(12分)(2014秋•某某期末)如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别是棱AB,A1D1,AD的中点,求证:(Ⅰ)平面MNP∥平面BDD1B1;(Ⅱ)MN⊥AC.考点:空间中直线与直线之间的位置关系;平面与平面平行的判定.专题:空间位置关系与距离.分析:(Ⅰ)只要证明MP∥BD,NP∥DD1,利用面面平行的判定定理可证;(Ⅱ)由已知容易得到NP⊥底面ABCD,利用射影定理,只要证明MP⊥AC即可.解答:证明:(Ⅰ)∵在正方体ABCD﹣A1B1C1D1中,M,N,P分别是棱AB,A1D1,AD的中点,∴MP∥BD,NP∥DD1,∴平面MNP∥平面BDD1B1;(Ⅱ)由已知,可得NP∥DD1,又DD1⊥底面ABCD,∴NP⊥底面ABCD,∴MN在底面ABCD的射影为MP,∵M,N是AB,A1D1的中点,∴MP∥BD,又BD⊥AC,∴MP⊥AC,∴MN⊥AC.点评:本题考查了正方体的性质以及线面平行、面面平行的判定定理和性质定理的运用.17.(12分)(2014秋•某某期末)某校要调查高中二年级男生的身高情况,现从全年级男生中随机抽取一个容量为100的样本.样本数据统计如表,对应的频率分布直方图如图所示.(1)求频率分布直方图中a,b的值;(2)用样本估计总体,若该校高中二年级男生共有1000人,求该年级中男生身高不低于170cm的人数.身高(单位:cm) [150,155) [155,160) [160,165) [165,170) [170,175) [175,180) [180,185) [185,190)人数 2 8 15 20 25 18 10 2考点:频率分布直方图.专题:概率与统计.分析:(1)根据频率、频数与样本容量的关系,结合频率分布直方图中小矩形的高,求出a、b的值;(2)求出该年级中男生身高不低于170cm的频率,计算对应的频数即可.解答:解:(1)身高在[160,165)的频率为=0.15,∴==0.03,即a=0.03;身高在[170,175)的频率为=0.25,∴==0.05,即b=0.05;(2)该年级中男生身高不低于170cm的频率为0.25+0.036×5+0.02×5+0.004×5=0.55,∴估计该年级中男生身高不低于170cm的人数是1000×0.55=550.点评:本题考查了频率分布表与频率分布直方图的应用问题,是基础题目.18.(12分)(2014秋•某某期末)如图,在三棱柱ABC﹣A1B1C1中,向量,,两两垂直,||=1,||=2,E,F分别为棱BB1,BC的中点,且•=0.(Ⅰ)求向量的模;(Ⅱ)求直线AA1与平面A1EF所成角的正弦值.考点:平面向量数量积的运算;直线与平面所成的角.专题:平面向量及应用.分析:(Ⅰ)分别以AC,AB,AA1为x,y,z轴建立空间直角坐标系,设A1(0,0,z),得到•=4﹣=0,解出即可.(Ⅱ)分别求出,,的坐标,设平面A1EF的法向量=(x,y,z),得到方程组,求出一个,从而求出直线AA1与平面A1EF所成角的正弦值.解答:解:(Ⅰ)分别以AC,AB,AA1为x,y,z轴建立空间直角坐标系,如图示:,∴C(1,0,0),B(0,2,0),F(1,1,0),设A1(0,0,z),则E(0,2,),B1(0,2,z),∴=(﹣1,2,z),=(0,2,﹣),∴•=4﹣=0,解得:z=2,∴||=2;(Ⅱ)由(Ⅰ)得:=(0,0,2),=(1,1,﹣2),=(0,2,﹣),设平面A1EF的法向量=(x,y,z),∴,令z=2,∴=(3,,2),设直线AA1与平面A1EF所成的角为θ,∴sinθ===.点评:本题考查了平面向量的数量积的运算及应用,考查了线面角问题,是一道中档题.19.(12分)(2014秋•某某期末)已知直线l1:mx﹣(m+1)y﹣2=0,l2:x+2y+1=0,l3:y=x ﹣2是三条不同的直线,其中m∈R.(Ⅰ)求证:直线l1恒过定点,并求出该点的坐标;(Ⅱ)若l2,l3的交点为圆心,2为半径的圆C与直线l1相交于A,B两点,求|AB|的最小值.考点:直线与圆相交的性质;恒过定点的直线.专题:计算题;直线与圆.分析:(Ⅰ)直线l1:mx﹣(m+1)y﹣2=0,可化为m(x﹣y)﹣(y+2)=0,可得,即可得出直线l1恒过定点,及该点的坐标;(Ⅱ)求|AB|的最小值,即求圆心到直线的距离的最大值,此时CD⊥直线l1.解答:(Ⅰ)证明:直线l1:mx﹣(m+1)y﹣2=0,可化为m(x﹣y)﹣(y+2)=0,∴,∴x=y=﹣2,∴直线l1恒过定点D(﹣2,﹣2);(Ⅱ)解:l2:x+2y+1=0,l3:y=x﹣2联立可得交点坐标C(1,﹣1),求|AB|的最小值,即求圆心到直线的距离的最大值,此时CD⊥直线l1,∵|CD|==,∴|AB|的最小值为2=2.点评:本题考查直线l1恒过定点,考查弦长的计算,考查学生分析解决问题的能力,比较基础.20.(13分)(2014秋•某某期末)如图,在四棱锥P﹣ABCD中,△PAB是边长为2的正三角形,底面ABCD为菱形,且平面PAB⊥平面ABCD,PC⊥AB,E为PD上一点,且PD=3PE.(Ⅰ)求异面直线AB与CE所成角的余弦值;(Ⅱ)求平面PAC与平面ABCD所成的锐二面角的余弦值.考点:二面角的平面角及求法;异面直线及其所成的角.专题:空间角.分析:(Ⅰ)建立空间坐标系,利用向量法即可求异面直线AB与CE所成角的余弦值;(Ⅱ)建立空间坐标系,利用向量法即可求平面PAC与平面ABCD所成的锐二面角的余弦值.解答:解:(I)取AB的中点O,连接PO,OC∵△PAB为边长为2的正三角形,∴PO⊥AB又∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PO⊂平面PAB∴PO⊥平面ABCD,又∵PC⊥AB,PO∩PC=P,PO,PC⊂平面POC∴AB⊥平面POC又∵OC⊂平面POC∴AB⊥OC以O为坐标原点,建立如图所示的空间坐标系,则A(﹣1,0,0),C(0,,0),P(0,0,),D(﹣2,,0),B(1,0,0),∵PD=3PE,∴E(,,)则=(2,0,0),=(,﹣,),则||=,则cos<,>===﹣,即异面直线AB与CE所成角的余弦值为.(2)设平面PAC的法向量为=(x,y,z),∵=(1,,0),=(0,﹣,),∴由,即,令z=1,则y=1,x=,即=(,1,1),平面ABCD的法向量为=(0,0,1),则cos<,>===,故平面PAC与平面ABCD所成的锐二面角的余弦值为.点评:本题主要考查异面直线所成角的求解,以及二面角的求解,建立空间坐标系,利用向量法是解决二面角的常用方法.考查学生的运算和推理能力.21.(14分)(2014秋•某某期末)已知点P(0,2),设直线l:y=kx+b(k,b∈R)与圆C:x2+y2=4相交于异于点P的A,B两点.(Ⅰ)若•=0,求b的值;(Ⅱ)若|AB|=2,且直线l与两坐标轴围成的三角形的面积为,求直线l的斜率k的值;(Ⅲ)当|PA|•|PB|=4时,是否存在一定圆M,使得直线l与圆M相切?若存在,求出该圆的标准方程;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题;平面向量数量积的运算.专题:向量与圆锥曲线;圆锥曲线的定义、性质与方程.分析:(1)由P在圆上,且•=0,可知直线l过圆心O,由此求出b的值;(2)由|AB|=2得到原点O到直线l的距离,再由面积为得另一关于k和b的等式,联立方程组求得满足条件的k值;(3)联立直线方程和圆的方程,化为关于x的一元二次方程,由|PA|•|PB|=4得到A,B两点横坐标的关系,结合根与系数的关系得到直线l的斜率和截距的关系,由点到直线的距离公式求出P到直线l的距离为定值,由此可得存在一定圆M,方程是x2+(y﹣2)2=1,使得直线l与圆M相切.解答:解:(Ⅰ)∵点P(0,2)在圆C:x2+y2=4上,且直线l:y=kx+b与圆C交于A,B 两点,当•=0时,,∴直线l过圆心O(0,0),则b=0;(Ⅱ)由题意可知,直线l不过原点O,不妨设k>0,b>0,由|AB|=2,得,①取x=0,得y=b,取y=0,得x=﹣,∴,②联立①②解得:或k=,由对称性可得满足条件的直线l的斜率的值为或;(Ⅲ)联立,消去y,得(k2+1)x2+2kbx+b2﹣4=0.设A(x1,y1),B(x2,y2),∴x1+x2=﹣,x1x2=,∵|PA|•|PB|=4,∴,∴=16,即(2﹣y1)(2﹣y2)=1,∴y1y2﹣2(y1+y2)+3=0,则(kx1+b)(kx2+b)﹣2(kx1+b+kx2+b)+3=0,k2x1x2+(kb﹣2k)(x1+x2)﹣4b+3=0,∴k2•+(kb﹣2b)•(﹣)﹣4b+3=0.化简得:化简得k2=b2﹣4b+3,即k2+1=(b﹣2)2,∴.∵点P(0,2)到直线l:y=kx+b的距离d==1,∴存在一定圆M,方程是x2+(y﹣2)2=1,使得直线l与圆M相切.点评:本题考查了平面向量的应用,考查了直线与圆的位置关系,考查了定值的应用问题,综合性强,属难题.。
四川省成都市郫都区2019-2020学年七年级(下)期末考试数学试卷 解析版
![四川省成都市郫都区2019-2020学年七年级(下)期末考试数学试卷 解析版](https://img.taocdn.com/s3/m/de0ee5a8964bcf84b9d57bf6.png)
2019-2020学年四川省成都市郫都区七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)下列图形是公共设施标志,其中是轴对称图形的是()A.B.C.D.2.(3分)如图,两条直线AB,CD交于点O,射线OM是∠AOC的平分线,若∠BOD=80°,则∠COM的大小为()A.70°B.60°C.50°D.40°3.(3分)下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.a3•a2=a6D.(﹣ab)3=﹣a3b34.(3分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示0.0000034是()A.0.34×10﹣5B.3.4×106C.3.4×10﹣5D.3.4×10﹣6 5.(3分)如图,△ABC与△A′B′C′关于直线l对称,若∠A=50°,∠C=20°,则∠B'度数为()A.110°B.70°C.90°D.30°6.(3分)一个不透明的盒子中装有9个白球和1个黑球,它们除了颜色外都相同.从中任意摸出一球,则下列叙述正确的是()A.摸到白球是必然事件B.摸到黑球是必然事件C.摸到白球是随机事件D.摸到黑球是不可能事件7.(3分)地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是()A.地表B.岩层的温度C.所处深度D.时间8.(3分)如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是()A.三角形具有稳定性B.两点之间,线段最短C.直角三角形的两个锐角互为余角D.垂线段最短9.(3分)若要植一块三角形草坪,两边长分别是20米和50米,则这块草坪第三边长不能为()A.60米B.50米C.40米D.30米10.(3分)如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥DF二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)若二次三项式x2+2mx+81是完全平方式,则常数m的值为.12.(4分)如图,在△ABC中,AB=AC,BC=6cm,AD是△ABC的中线,且AD=5cm,则△ABC的面积为.13.(4分)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是.14.(4分)某人购进一批苹果到市场上零售,已知卖出苹果数量x与售价y的关系如下表.数量x(千克)12345售价y(元)3+0.1 6+0.2 9+0.3 12+0.4 15+0.5 则当卖出苹果数量为10千克时,售价y为元.三、解答题(本大题共6小题,共54分,解答过程写在答题卡上)15.(12分)计算:(1)25×(﹣)2﹣4×(﹣)0+()﹣2;(2)2a(5a﹣4)+(5a+3)(4a﹣2).16.(6分)先化简,再求值:[(x﹣3y)2+(x﹣2y)(x+2y)﹣x(2x﹣5y)]+(﹣y),其中x=﹣2,y=﹣3.17.(8分)根据题意及解答,填注推导理由:如图,直线AB∥CD,并且被直线EF所截,交AB和CD于点M、N,MP平分∠AME,NQ平分∠CNE.试说明MP∥NQ.解:∵AB∥CD,∴∠AME=∠CNE.()∵MP平分∠AME,NQ平分∠CNE,∴∠1=∠AME,∠CNE.()∵∠AME=∠CNE,∴∠1=∠2.()∵∠1=∠2,∴MP∥NQ.()18.(8分)为了准备体育艺术节的比赛,某篮球运动员在进行定点罚球训练,如表是部分训练记录:罚球次数20406080100120命中次数153248658096命中频率0.750.80.80.810.80.8(1)根据上表:估计该运动员罚球命中的概率是;(2)根据上表分析,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),估计他罚球能得多少分,请说明理由.19.(10分)如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.20.(10分)如图,AD为△ABC的中线,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF ⊥DF.(1)求证;DE⊥DF;(2)求证:△BDE≌△DCF;(3)求证:EF∥BC.一、填空题(本大题共5小题,每小题4分,共20分,答案写在答题卡上)21.(4分)计算:()2019×()﹣2020=.22.(4分)如图,把一条两边边沿互相平行的纸带折叠,在∠α与∠β的数量关系中,若用∠α的代数式表示∠β,则∠β=.23.(4分)有五张正面分别标有数﹣2,0,1,3,4的纸片做成无差别的纸团,洗匀后从中任取一个纸团,若展开后将纸片上的数记为a,则使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的概率为.24.(4分)如图所示,在△ABC中,AB=6,AC=4,AD是△ABC的中线,若AD的长为偶数,则AD=.25.(4分)如图所示,∠AOB=60°,点P是∠AOB内一定点,并且OP=2,点M、N分别是射线OA,OB上异于点O的动点,当△PMN的周长取最小值时,点O到线段MN 的距离为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)小明周末外出爬山,他从山脚爬到山项的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t(分),所走的路程为s(米),s与t之间的函数关系如图所示.(1)小明中途休息用了分钟;上述过程中,小明所走的路程为米;(2)若小明休息后爬山的平均速度是25米/分,求a的值.27.(10分)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个全等长方形拼成一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a﹣b)2、(a+b)2、ab三者之间的等量关系式:;【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:;【成果运用】利用上面所得的结论解答:(1)已知x+y=6,xy=,求x﹣y的值;(2)已知|a+b﹣6|+(ab﹣7)2=0,求a3+b3的值.28.(12分)探究等边三角形“手拉手”问题.(1)如图1,已如△ABC,△ADE均为等边三角形,点D在线段BC上,且不与点B、点C重合,连接CE,试判断CE与BA的位置关系,并说明理由;(2)如图2,已知△ABC、△ADE均为等边三角形,连接CE、BD,若∠DEC=60°,试说明点B,点D,点E在同一直线上;(3)如图3,已知点E在ABC外,并且与点B位于线段AC的异侧,连接BE、CE.若∠BEC=60°,猜测线段BE、AE、CE三者之间的数量关系,并说明理由.2019-2020学年四川省成都市郫都区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)下列图形是公共设施标志,其中是轴对称图形的是()A.B.C.D.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.(3分)如图,两条直线AB,CD交于点O,射线OM是∠AOC的平分线,若∠BOD=80°,则∠COM的大小为()A.70°B.60°C.50°D.40°【分析】利用对顶角的定义得出∠AOC=80°,进而利用角平分线的性质得出∠COM的度数.【解答】解:∵∠BOD=∠AOC(对顶角相等),∠BOD=80°,∴∠AOC=80°,∵射线OM是∠AOC的平分线,∴∠COM=×∠AOC=×80°=40°.故选:D.3.(3分)下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.a3•a2=a6D.(﹣ab)3=﹣a3b3【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、(a3)2=a6,故此选项错误;B、a6÷a3=a3,故此选项错误;C、a3•a2=a5,故此选项错误;D、(﹣ab)3=﹣a3b3,正确.故选:D.4.(3分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示0.0000034是()A.0.34×10﹣5B.3.4×106C.3.4×10﹣5D.3.4×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示0.0000034是3.4×10﹣6.故选:D.5.(3分)如图,△ABC与△A′B′C′关于直线l对称,若∠A=50°,∠C=20°,则∠B'度数为()A.110°B.70°C.90°D.30°【分析】利用三角形内角和定理求出∠B,再利用轴对称的性质解决问题即可.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠B′=∠B,∵∠B=180°﹣∠A﹣∠C=180°﹣50°﹣20°=110°,∴∠B′=110°,故选:A.6.(3分)一个不透明的盒子中装有9个白球和1个黑球,它们除了颜色外都相同.从中任意摸出一球,则下列叙述正确的是()A.摸到白球是必然事件B.摸到黑球是必然事件C.摸到白球是随机事件D.摸到黑球是不可能事件【分析】根据可能性的大小,以及随机事件的判断方法,逐项判断即可.【解答】解:∵摸到白球是随机事件,不是必然事件,∴选项A不符合题意,选项C符合题意;∵摸到黑球是随机事件,∴选项B、D不符合题意;故选:C.7.(3分)地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是()A.地表B.岩层的温度C.所处深度D.时间【分析】地表以下岩层的温度随着所处深度的变化而变化,符合“对于一个变化过程中的两个量x和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是深度,因变量是岩层的温度.【解答】解:∵地表以下岩层的温度随着所处深度的变化而变化,∴自变量是深度,因变量是岩层的温度.故选:B.8.(3分)如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是()A.三角形具有稳定性B.两点之间,线段最短C.直角三角形的两个锐角互为余角D.垂线段最短【分析】根据三角形具有稳定性解答即可.【解答】解:工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是三角形具有稳定性,故选:A.9.(3分)若要植一块三角形草坪,两边长分别是20米和50米,则这块草坪第三边长不能为()A.60米B.50米C.40米D.30米【分析】根据三角形的三边关系定理可得50﹣20<x<50+20,再解即可.【解答】解:由题意得:50﹣20<x<50+20,即30<x<70,观察选项,D选项符合题意.故选:D.10.(3分)如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥DF【分析】由平行可得到∠B=∠DEF,又BE=CF推知BC=EF,结合全等三角形的判定方法可得出答案.【解答】解:∵AB∥DE,∴∠B=∠DEF,∵BE=CF,∴BC=EF.A、当AB=DE时,可用SAS证明△ABC≌△DEF,故本选项错误;B、当∠A=∠D时,可用AAS证明△ABC≌△DEF,故本选项错误;C、当AC=DF时,根据SSA不能判定△ABC≌△DEF,故本选项正确;D、当AC∥DF时,可知∠ACB=∠F,可用ASA证明△ABC≌△DEF,故本选项错误;故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)若二次三项式x2+2mx+81是完全平方式,则常数m的值为9或﹣9.【分析】根据两平方项确定出这两个数,再根据乘积二倍项列式求解即可.【解答】解:∵x2+2mx+81是一个完全平方式,∴2mx=±2•x•9,解得:m=±9.故答案为:9或﹣9.12.(4分)如图,在△ABC中,AB=AC,BC=6cm,AD是△ABC的中线,且AD=5cm,则△ABC的面积为15cm2.【分析】根据三角形的面积公式解答即可.【解答】解:∵在△ABC中,AB=AC,BC=6cm,AD是△ABC的中线,∴AD⊥BC,∴△ABC的面积=,故答案为:15cm2.13.(4分)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是55°.【分析】先根据平角的定义求出∠3,再利用平行线的性质求出∠2=∠3即可.【解答】解:∵∠1+∠3=180°﹣90°=90°,∠1=35°,∴∠3=55°,∵AB∥CD,∴∠2=∠3=55°,故答案为:55°.14.(4分)某人购进一批苹果到市场上零售,已知卖出苹果数量x与售价y的关系如下表.数量x(千克)12345售价y(元)3+0.1 6+0.2 9+0.3 12+0.4 15+0.5 则当卖出苹果数量为10千克时,售价y为31元.【分析】根据图表中数据可得出,y与x的函数关系进而得出答案.【解答】解:由图表可得出:y=3x+0.1x=3.1x.当x=10时,y=3.1×10=31,故答案为:31.三、解答题(本大题共6小题,共54分,解答过程写在答题卡上)15.(12分)计算:(1)25×(﹣)2﹣4×(﹣)0+()﹣2;(2)2a(5a﹣4)+(5a+3)(4a﹣2).【分析】(1)根据零指数次幂,负指数次幂的性质,有理数的乘方进行计算,再乘除,后加减即可求解;(2)根据整式乘法的法则计算,再合并同类项即可求解.【解答】解:(1)原式==1﹣4+9=6;(2)原式=10a2﹣8a+20a2+2a﹣6=30a2﹣6a﹣6.16.(6分)先化简,再求值:[(x﹣3y)2+(x﹣2y)(x+2y)﹣x(2x﹣5y)]+(﹣y),其中x=﹣2,y=﹣3.【分析】原式中括号中利用单项式乘多项式,完全平方公式以及平方差公式化简,去括号合并后得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=(x2﹣6xy+9y2+x2﹣4y2﹣2x2+5xy)﹣y=﹣xy+5y2﹣y,当x=﹣2,y=﹣3时,原式=﹣6+45+3=42.17.(8分)根据题意及解答,填注推导理由:如图,直线AB∥CD,并且被直线EF所截,交AB和CD于点M、N,MP平分∠AME,NQ平分∠CNE.试说明MP∥NQ.解:∵AB∥CD,∴∠AME=∠CNE.(两直线平行,同位角相等)∵MP平分∠AME,NQ平分∠CNE,∴∠1=∠AME,∠CNE.(角平分线的定义)∵∠AME=∠CNE,∴∠1=∠2.(等量代换)∵∠1=∠2,∴MP∥NQ.(同位角相等,两直线平行)【分析】利用平行线的性质定理和判定定理解答即可.【解答】解:∵AB∥CD,∴∠AME=∠CNE.(两直线平行,同位角相等),∵MP平分∠AME,NQ平分∠CNE,∴∠1=∠AME,∠CNE.(角平分线的定义),∵∠AME=∠CNE,∴∠1=∠2.(等量代换),∵∠1=∠2,∴MP∥NQ.(同位角相等,两直线平行).故答案为:两直线平行,同位角相等;角平分线的定义;等量代换;同位角相等,两直线平行.18.(8分)为了准备体育艺术节的比赛,某篮球运动员在进行定点罚球训练,如表是部分训练记录:罚球次数20406080100120命中次数153248658096命中频率0.750.80.80.810.80.8(1)根据上表:估计该运动员罚球命中的概率是0.8;(2)根据上表分析,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),估计他罚球能得多少分,请说明理由.【分析】(1)直接由表格数据可估计该运动员罚球命中的概率;(2)根据(1)可知运动员罚球命中的概率,由题意可知20次罚球得分多少.【解答】解:(1)根据表格数据可知该运动员罚球命中的概率0.8,故答案为0.8;(2)由题意可知,罚球一次命中概率为0.8,则罚球10次得分为10×2×0.8=16,∴估计他能得16分.19.(10分)如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.【分析】(1)根据三角形内角和定理计算,得到答案;(2)根据线段垂直平分线的性质、等腰三角形的性质计算;(3)根据线段垂直平分线的性质、三角形的周长公式计算,得到答案.【解答】解:(1)∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC=180°﹣30°﹣50°=100°;(2)∵DE是线段AB的垂直平分线,∴DA=DB,∴∠DAB=∠ABC=30°,同理可得,∠F AC=∠ACB=50°,∴∠DAF=∠BAC﹣∠DAB﹣∠F AC=100°﹣30°﹣50°=20°;(3)∵△DAF的周长为20,∴DA+DF+F A=20,由(2)可知,DA=DB,F A=FC,∴BC=DB+DF=FC=DA+DF+F A=20.20.(10分)如图,AD为△ABC的中线,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF ⊥DF.(1)求证;DE⊥DF;(2)求证:△BDE≌△DCF;(3)求证:EF∥BC.【分析】(1)由角平分线的性质和平角的性质可求结论;(2)由“AAS”可证△BDE≌△DCF;(3)通过证明四边形DEFC是平行四边形,可得EF∥BC.【解答】证明:(1)∵DE平分∠ADB,DF平分∠ADC,∴∠PDE=∠ADB,∠FDP=∠ADC,∴∠EDF=∠PDE+∠PDF=∠ADB+∠ADC=(∠ADB+∠ADC)=90°,∴DE⊥DF;(2)∵BE⊥DE,DF⊥CF,∴∠BED=∠DFC=90°,∵∠BDE+∠CDF=90°,∠CDF+∠DCF=90°,∴∠BDE=∠DCF,∴DE∥CF,∵D是BC中点,∴BD=DC,在△BDE和△DCF中,,∴△BDE≌△DCF(AAS),(2)∵△BDE≌△DCF,∴DE=CF,∵DE∥CF,∴四边形DEFC是平行四边形,∴EF∥BC.一、填空题(本大题共5小题,每小题4分,共20分,答案写在答题卡上)21.(4分)计算:()2019×()﹣2020=.【分析】根据负整数指数幂的定义以及同底数幂的乘法法则计算即可.【解答】解:()2019×()﹣2020===.故答案为:.22.(4分)如图,把一条两边边沿互相平行的纸带折叠,在∠α与∠β的数量关系中,若用∠α的代数式表示∠β,则∠β=180°﹣2∠α.【分析】利用平行线的性质可得∠α=∠3,∠1=∠β,再利用平角定义可得答案.【解答】解:∵AB∥CD,∴∠α=∠3,∠1=∠β,由折叠可得∠3=∠2,∵∠2+∠3+∠1=180°,∴∠β+2∠α=180°,∴∠β=180°﹣2∠α,故答案为:180°﹣2∠α.23.(4分)有五张正面分别标有数﹣2,0,1,3,4的纸片做成无差别的纸团,洗匀后从中任取一个纸团,若展开后将纸片上的数记为a,则使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的概率为.【分析】当a分别取2,0,1,3,4时,解方程ax﹣1﹣3(x+1)=﹣3x得到正整数的个数,然后根据概率公式求解.【解答】解:当a=﹣2时,方程ax﹣1﹣3(x+1)=﹣3x化为﹣2x﹣1﹣3x﹣3=﹣3x,解得x=﹣2;当a=0时,方程ax﹣1﹣3(x+1)=﹣3x化为﹣1﹣3x﹣3=﹣3x,无解;当a=1时,方程ax﹣1﹣3(x+1)=﹣3x化为x﹣1﹣3x﹣3=﹣3x,解得x=4;当a=3时,方程ax﹣1﹣3(x+1)=﹣3x化为3x﹣1﹣3x﹣3=﹣3x,解得x=;当a=4时,方程ax﹣1﹣3(x+1)=﹣3x化为4x﹣1﹣3x﹣3=﹣3x,解得x=1;所以使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的结果数为2,所以展开后将纸片上的数记为a,则使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的概率=.故答案为.24.(4分)如图所示,在△ABC中,AB=6,AC=4,AD是△ABC的中线,若AD的长为偶数,则AD=2或4.【分析】延长AD至E,使DE=AD,连接CE,由“SAS”可证△ABD≌△ECD,可得CE=AB=6,由三角形的三边关系可得1<AD<5,即可求解.【解答】解:延长AD至E,使DE=AD,连接CE,在△ABD与△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB=6,在△ACE中,CE﹣AC<AE<CE+AC,即2<2AD<10,∴1<AD<5,∵AD为偶数,∴AD=2或4,故答案为2或4.25.(4分)如图所示,∠AOB=60°,点P是∠AOB内一定点,并且OP=2,点M、N分别是射线OA,OB上异于点O的动点,当△PMN的周长取最小值时,点O到线段MN 的距离为1.【分析】作点P关于OB的对称点P',点P关于OA的对称点P'',连接P'P''与OA,OB 分别交于点M与N则P'P''的长即为△PMN周长的最小值;连接OP',OP'',过点O作OC⊥P'P'',在Rt△OCP'中求出OC即可.【解答】解:作点P关于OB的对称点P',点P关于OA的对称点P'',连接P'P''与OA,OB分别交于点M与N则P'P''的长即为△PMN周长的最小值,连接OP',OP'',过点O作OC⊥P'P''于点C由对称性可知OP=OP'=OP'',∵OP=2,∠AOB=60°,∴∠P'=∠P''=30°,OP′=OP''=2,∴OC==1;故答案为1.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)小明周末外出爬山,他从山脚爬到山项的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t(分),所走的路程为s(米),s与t之间的函数关系如图所示.(1)小明中途休息用了20分钟;上述过程中,小明所走的路程为3800米;(2)若小明休息后爬山的平均速度是25米/分,求a的值.【分析】(1)根据函数图象中的数据,可以计算出小明中途休息用了多少分钟,小明所走的路程是多少;(2)根据函数图象中的数据和题意,可以计算出a的值.【解答】解:(1)由图象可得,小明中途休息用了60﹣40=20(分钟),上述过程中,小明所走的路程为3800米,故答案为:20,3800;(2)由题意可得,a﹣60=(3800﹣2800)÷25,解得,a=100,即a的值是100.27.(10分)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个全等长方形拼成一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a﹣b)2、(a+b)2、ab三者之间的等量关系式:(a+b)2﹣4ab=(a﹣b)2;【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:(a+b)3=a3+b3+3a2b+3ab2;【成果运用】利用上面所得的结论解答:(1)已知x+y=6,xy=,求x﹣y的值;(2)已知|a+b﹣6|+(ab﹣7)2=0,求a3+b3的值.【分析】【知识生成】利用面积相等推导公式(a+b)2﹣4ab=(a﹣b)2;【知识迁移】利用体积相等推导(a+b)3=a3+b3+3a2b+3ab2;(1)应用知识生成的公式,进行变形,代入计算即可;(2)先根据非负数的性质得:a+b=6,ab=7,由知识迁移的等式可得结论.【解答】解:【知识生成】如图1,方法一:已知边长直接求面积为(a﹣b)2;方法二:阴影面积是大正方形面积减去四个长方形面积,∴面积为(a+b)2﹣4ab,∴由阴影部分面积相等可得(a+b)2﹣4ab=(a﹣b)2;故答案为:(a+b)2﹣4ab=(a﹣b)2;【知识迁移】方法一:正方体棱长为a+b,∴体积为(a+b)3,方法二:正方体体积是长方体和小正方体的体积和,即a3+b3+3a2b+3ab2,∴(a+b)3=a3+b3+3a2b+3ab2;故答案为:(a+b)3=a3+b3+3a2b+3ab2;(1)由(a+b)2﹣4ab=(a﹣b)2,可得(x﹣y)2=(x+y)2﹣4xy,∵x+y=6,xy=,∴(x﹣y)2=62﹣4×,∴(x﹣y)2=25,∴x﹣y=±5;(2)∵|a+b﹣6|+(ab﹣7)2=0,∴a+b=6,ab=7,∵(a+b)3=a3+b3+3a2b+3ab2;∴a3+b3=(a+b)3﹣3a2b﹣3ab2=63﹣3ab(a+b)=216﹣3×7×6=90.28.(12分)探究等边三角形“手拉手”问题.(1)如图1,已如△ABC,△ADE均为等边三角形,点D在线段BC上,且不与点B、点C重合,连接CE,试判断CE与BA的位置关系,并说明理由;(2)如图2,已知△ABC、△ADE均为等边三角形,连接CE、BD,若∠DEC=60°,试说明点B,点D,点E在同一直线上;(3)如图3,已知点E在ABC外,并且与点B位于线段AC的异侧,连接BE、CE.若∠BEC=60°,猜测线段BE、AE、CE三者之间的数量关系,并说明理由.【分析】(1)结论:CE∥AB.证明△BAD≌△CAE(SAS)可得结论.(2)利用全等三角形的性质证明∠ADB=∠AEC=120°,证明∠ADB+∠ADE=180°即可解决问题.(3)结论:BE=AE+EC.在线段BE上取一点H,使得BH=CE,设AC交BE于点O.利用全等三角形的性质证明△AEH是等边三角形即可.【解答】(1)解:结论:CE∥AB.理由:如图1中,∵△ABC,△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠B=∠ACE=60°,∴∠BAC=∠ACE=60°,∴AB∥CE.(2)证明:如图2中,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC,∵△ADE是等边三角形,∴∠AED=∠ADE=60°,∵∠BEC=60°,∴∠AEC=∠AED+∠BEC=120°,∴∠ADB=∠AEC=120°,∴∠ADB+∠ADE=120°+60°=180°,∴B,D,E共线.(3)解:结论:BE=AE+EC.理由:在线段BE上取一点H,使得BH=CE,设AC交BE于点O.∵△ABC是等边三角形,∴AB=BC,∠BAC=60°,∵∠BEC=60°,∴∠BAO=∠OEC=60°,∵∠AOB=∠EOC,∴∠ABH=∠ACE,∵BA=CA,BH=CE,∴△ABH≌△ACE(SAS),∴∠BAH=∠CAE,AH=AE,∴∠HAE=∠BAC=60°,∴△AEH是等边三角形,∴AE=EH,∴BE=BH+EH=EC+AE,即BE=AE+EC.。
2019-2020年高二下学期期末数学试卷(理科) 含解析
![2019-2020年高二下学期期末数学试卷(理科) 含解析](https://img.taocdn.com/s3/m/0aede295284ac850ad02425a.png)
2019-2020年高二下学期期末数学试卷(理科)含解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.23.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=45.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.46.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.38.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是.16.在平面直角坐标系xOy中,直线1与曲线y=x2(x>0)和y=x3(x>0)均相切,切点分别为A(x1,y1)和B(x2,y2),则的值为.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),直线l过点(0,2)且倾斜角为.(Ⅰ)求圆C的普通方程及直线l的参数方程;(Ⅱ)设直线l与圆C交于A,B两点,求弦|AB|的长.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.2015-2016学年吉林省东北师大附中净月校区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]【考点】交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再根据复数相等的充要条件列出方程组,求解即可得答案.【解答】解:===i,则,解得:a=1.故选:C.3.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)【考点】简单曲线的极坐标方程.【分析】利用x=ρcosθ,y=ρsinθ即可得出直角坐标.【解答】解:点M的极坐标(4,)化成直角坐标为,即.故选:B.4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=4【考点】伸缩变换.【分析】把伸缩变换的式子变为用x′,y′表示x,y,再代入原方程即可求出.【解答】解:由得,代入直线x﹣2y=2得,即2x′﹣y′=4.故选B.5.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.4【考点】定积分在求面积中的应用.【分析】利用积分的几何意义即可得到结论.【解答】解:由题意,S===4﹣=,故选:C.6.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.【考点】条件概率与独立事件.【分析】根据题意,易得在第一次抽到次品后,有2件次品,7件正品,由概率计算公式,计算可得答案.【解答】解:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为故选:C.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据逆否命题的定义进行判断②根据充分条件和必要条件的定义进行判断,③根据集合关系进行判断.【解答】解:①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”正确,故①正确,②由|x|>1得x>1或x<﹣1,则“x>1”是“|x|>1”的充分不必要条件;故②正确,③集合A={1},B={x|ax﹣1=0},若B⊆A,当a=0时,B=∅,也满足B⊆A,当a≠0时,B={},由=1,得a=1,则实数a的所有可能取值构成的集合为{0,1}.故③错误,故正确的是①②,故选:C8.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【考点】n次独立重复试验中恰好发生k次的概率.【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选C.9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出取出的3件产品中一等品件数多于二等品件数包含的基本事件个数,由此能求出取出的3件产品中一等品件数多于二等品件数的概率.【解答】解:∵在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,基本事件总数n==120,取出的3件产品中一等品件数多于二等品件数包含的基本事件个数m==22,∴取出的3件产品中一等品件数多于二等品件数的概率p===.故选:C.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】利用在切点处的导数值是切线的斜率,令f′(x)=2有解;利用有解问题即求函数的值域问题,求出值域即a的范围.【解答】解:f′(x)=﹣e﹣x+a据题意知﹣e﹣x+a=2有解即a=e﹣x+2有解∵e﹣x+2>2∴a>2故选C11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.【考点】抽象函数及其应用.【分析】先研究函数的奇偶性知它是非奇非偶函数,从而排除A、D两个选项,再看此函数的最值情况,即可作出正确的判断.【解答】解:由于f(x)=e sinx,∴f(﹣x)=e sin(﹣x)=e﹣sinx∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A,D;又当x=时,y=e sinx取得最大值,排除B;故选:C.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1【考点】利用导数求闭区间上函数的最值.【分析】当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,一方面0<1+ln(x2﹣m)≤,.利用lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.可得1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,可得m≥x﹣e x﹣e,利用导数求其最大值即可得出.【解答】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为0.3.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P (X<0).【解答】解:∵随机变量X服从正态分布N(2,o2),∴正态曲线的对称轴是x=2∵P(X>4)=0.3,∴P(X<0)=P(X>4)=0.3.故答案为:0.3.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(1)=0,得到关于a的方程,解出即可.【解答】解:∵f(x)=x2﹣alnx,x>0,∴f′(x)=2x﹣=,若函数f(x)在x=1处取极值,则f′(1)=2﹣a=0,解得:a=2,经检验,a=2符合题意,故答案为:2.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是46.【考点】归纳推理.【分析】由三角形阵可知,上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,利用累加法可求.【解答】解:设第一行的第二个数为a 1=1,由此可得上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,即a 2﹣a 1=1,a 3﹣a 2=2,a 4﹣a 3=3,…a n ﹣1﹣a n ﹣2=n ﹣2,a n ﹣a n ﹣1=n ﹣1, ∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =(n ﹣1)+(n ﹣2)+…+3+2+1+1 =+1=,∴a 10==46.故答案为:46.16.在平面直角坐标系xOy 中,直线1与曲线y=x 2(x >0)和y=x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则的值为.【考点】抛物线的简单性质.【分析】求出导数得出切线方程,即可得出结论.【解答】解:由y=x 2,得y ′=2x ,切线方程为y ﹣x 12=2x 1(x ﹣x 1),即y=2x 1x ﹣x 12, 由y=x 3,得y ′=3x 2,切线方程为y ﹣x 23=3x 22(x ﹣x 2),即y=3x 22x ﹣2x 23, ∴2x 1=3x 22,x 12=2x 23, 两式相除,可得=.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤) 17.在平面直角坐标系xOy 中,圆C 的参数方程为(φ为参数),直线l 过点(0,2)且倾斜角为.(Ⅰ)求圆C 的普通方程及直线l 的参数方程;(Ⅱ)设直线l 与圆C 交于A ,B 两点,求弦|AB |的长. 【考点】参数方程化成普通方程. 【分析】(Ⅰ)圆C 的参数方程为(φ为参数),利用cos 2φ+sin 2φ=1消去参数可得圆C 的普通方程.由题意可得:直线l 的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离d,利用|AB|=2即可得出.【解答】解:(Ⅰ)圆C的参数方程为(φ为参数),消去参数可得:圆C的普通方程为x2+y2=4.由题意可得:直线l的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离,∴|AB|=2=2.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)直线l:(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.(Ⅱ)把代入椭圆方程中,整理得,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.【解答】解:(Ⅰ)直线l:(t为参数),消去参数t可得普通方程:l:x﹣y+1=0.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,可得直角坐标方程:x2+y2+y2=2,即.(Ⅱ)把代入中,整理得,设A,B对应的参数分别为t1,t2,∴,由t得几何意义可知,.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)利用等可能事件概率计算公式能求出元件甲,乙为正品的概率.(Ⅱ)随机变量X的所有取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(Ⅰ)元件甲为正品的概率约为:,元件乙为正品的概率约为:.(Ⅱ)随机变量X的所有取值为0,1,2,,,,所以随机变量X的分布列为:X 0 1 2P所以:.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为在区间[1,4]上恒成立,令,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)函数的定义域为R,当a=1时,f(x)=x3﹣x2+6x,f′(x)=3(x﹣1)(x﹣2),当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0,∴f(x)的单调增区间为(﹣∞,1),(2,+∞),单调减区间为(1,2).(Ⅱ)即在区间[1,4]上恒成立,令,故当时,g(x)单调递减,当时,g(x)单调递增,时,∴,即.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828【考点】离散型随机变量的期望与方差;独立性检验;离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数40 15 55女性驾驶员人数20 25 45合计60 40 100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X 0 1 2 3P.…22.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,问题转化为a≤x2,求出a的范围即可;(2)问题可化为,设,求出函数的导数,问题等价于m≥x3﹣ax在[1,2]上恒成立,求出m的最小值即可.【解答】解:(1)∵在[1,2]上是增函数,∴恒成立,…所以a≤x2…只需a≤(x2)min=1…(2)因为﹣2≤a<0,由(1)知,函数f(x)在[1,2]上单调递增,…不妨设1≤x1≤x2≤2,则,可化为,设,则h(x1)≥h(x2).所以h(x)为[1,2]上的减函数,即在[1,2]上恒成立,等价于m≥x3﹣ax在[1,2]上恒成立,…设g(x)=x3﹣ax,所以m≥g(x)max,因﹣2≤a<0,所以g'(x)=3x2﹣a>0,所以函数g(x)在[1,2]上是增函数,所以g(x)max=g(2)=8﹣2a≤12(当且仅当a=﹣2时等号成立).所以m≥12.即m的最小值为12.…2016年10月17日。
2018-2019学年四川省内江市高二(上)期末数学试卷(理科)解析版
![2018-2019学年四川省内江市高二(上)期末数学试卷(理科)解析版](https://img.taocdn.com/s3/m/d5dab3c6856a561253d36f29.png)
2018-2019学年四川省内江市高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.在空间直角坐标系中,点A(1,-1,1)关于坐标原点对称的点的坐标为()A. B. C. D. 1,2.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3:5:7,现用分层抽样的方法抽出容量为n的样本,其中甲种产品有18件,则样本容量n=()A. 45B. 54C. 90D. 1263.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A. 56B. 60C. 120D. 1404.图为某个几何体的三视图,则该几何体的表面积为()A. 32B.C. 48D.5.如图的正方体ABCD-A1B1C1D1中,异面直线A1B与B1C所成的角是()A.B.C.D.6.已知a、b、c是直线,β是平面,给出下列命题:①若a⊥b,b⊥c则a∥c;②若a∥b,b⊥c则a⊥c;③若a∥β,b⊂β,则a∥b;④若a与b异面,且a∥β则b与β相交;其中真命题的个数是()A. 1B. 2C. 3D. 47.直线x-2y+1=0关于直线x=1对称的直线方程是()A. B. C. D.8.已知直线l1:x-2y-1=0,直线l2:ax-by+1=0,其中a,b∈{1,2,3,4,5,6,}.则直线l1与l2的交点位于第一象限的概率为()A. B. C. D.9.若变量x,y满足,则x2+y2的最大值是()A. 18B. 20C.D.10.与圆O1;x2+y2+4x-4y+7=0,圆O2:x2+y2-4x-10y+13=0都相切的直线条数是()A. 3B. 1C. 2D. 411.如图,边长为2的正方形ABCD中,点E、F分别是AB、BC的中点,将△ADE,△EBF,△FCD分别沿DE,EF,FD折起,使得A、B、C三点重合于点A′,若四面体A′EFD的四个顶点在同一个球面上,则该球的表面积为()A. B. C. D.12.已知圆O:x2+y2=1,直线l:y=ax+2,在直线l上存在点M,过点M作圆O的两条切线,切点为A、B,且四边形OAMB为正方形,则实数a的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.如图茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为______,______.14.执行如图所示的程序框图若输人x的值为3,则输出y的值为______.15.在平面直角坐标系xOy中,以点(2,0)为圆心,且与直线ax-y-4a-2=0(a∈R)相切的所有圆中,半径最大的圆的标准方程为______.16.正四棱锥(底面是正方形,顶点在底面上的射影是底面中心)S-ABCD的底面边长为4,高为4,点E、F、G分别为SD,CD,BC的中点,动点P在正四棱锥的表面上运动,并且总保持PG∥平面AEF,则动点P的轨迹的周长为______.三、解答题(本大题共6小题,共70.0分)17.(1)求经过直线3x+4y-2=0与直线x-y+4=0的交点P,且垂直于直线x-2y-1=0的直线方程;(2)求过点P(-1,3),并且在两坐标轴上的截距相等的直线方程.18.如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥平面AB1C.19.已知一圆经过点A(3,1),B(-1,3),且它的圆心在直线3x-y-2=0上.(1)求此圆的方程;(2)若点D为所求圆上任意一点,且点C(3,0),求线段CD的中点M的轨迹方程.20.(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2012年至2018年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2020年农村居民家庭人均纯收入.附:参考公式:=,=.=.21.如图:高为1的等腰梯形ABCD中,AM=CD=1,AB=3,现将△AMD沿MD折起,使平面AMD⊥平面MBCD,连接AB、AC.(1)在AB边上是否存在点P,使AD∥平面MPC?(2)当点P为AB边中点时,求点B到平面MPC的距离.22.已知圆O:x2+y2=2,直线.l:y=kx-2.(1)若直线l与圆O相切,求k的值;(2)若直线l与圆O交于不同的两点A,B,当∠AOB为锐角时,求k的取值范围;(3)若,P是直线l上的动点,过P作圆O的两条切线PC,PD,切点为C,D,探究:直线CD 是否过定点.答案和解析1.【答案】B【解析】解:空间坐标关于原点对称,则所有坐标都为原坐标的相反数,即点A(1,-1,1)关于坐标原点对称的点的坐标为(-1,-1,-1),故选:B.根据空间坐标的对称性进行求解即可.本题主要考查空间坐标对称的计算,结合空间坐标的对称性是解决本题的关键.比较基础.2.【答案】C【解析】解:A种型号产品所占的比例为=,18,故样本容量n=90.故选:C.由分层抽样的特点,用A种型号产品的样本数除以A种型号产品所占的比例,即得样本的容量n.本题考查分层抽样的定义和方法,各层的个体数之比等于各层对应的样本数之比,属于基础题.3.【答案】D【解析】解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,故自习时间不少于22.5小时的频数为:0.7×200=140,故选:D.根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数.本题考查的知识点是频率分布直方图,难度不大,属于基础题目.4.【答案】B【解析】解:根据几何体的三视图,得;该几何体是底面边长为4,高为2的正四棱锥,所以该四棱锥的斜高为=2;所以该四棱锥的侧面积为4××4×2=16,底面积为4×4=16,所以几何体的表面积为16+16.故选:B.根据几何体的三视图,得出该几何体是正四棱锥,结合图中数据,即可求出它的表面积.本题考查了利用空间几何体的三视图求表面积的应用问题,是基础题目.5.【答案】C【解析】解:连接A1D,由正方体的几何特征可得:A1D∥B1C,则∠BA1D即为异面直线A1B与B1C所成的角,连接BD,易得:BD=A1D=A1B故∠BA1D=60°故选:C.连接A1D,根据正方体的几何特征及异面直线夹角的定义,我们可得∠BA1D即为异面直线A1B与B1C所成的角,连接BD后,解三角形BA1D即可得到异面直线A1B与B1C所成的角.本题考查的知识点是异面直线及其所成的角,其中根据正方体的几何特征及异面直线夹角的定义判断出∠BA1D即为异面直线A1B与B1C所成的角,是解答本题的关键.6.【答案】A【解析】解:①利用正方体的棱的位置关系可得:a与c可以平行、相交或为异面直线,故不正确;②若a∥b,b⊥c,利用“等角定理”可得a⊥c,故正确;③若a∥β,b⊂β,则a与平面β内的直线可以平行或为异面直线,不正确;④∵a与b异面,且a∥β,则b与β相交,平行或b⊂β,故不正确.综上可知:只有②正确.故选:A.①利用正方体的棱的位置关系即可得出;②若a∥b,b⊥c,利用“等角定理”可得a⊥c;③若a∥β,b⊂β,利用线面平行的性质可得:a与平面β内的直线可以平行或为异面直线;④由a与b异面,且a∥β,则b与β相交,平行或b⊂β,即可判断出.熟练掌握空间空间中线线、线面的位置关系是解题的关键.7.【答案】D【解析】解:解法一(利用相关点法)设所求直线上任一点(x,y),则它关于x=1对称点为(2-x,y)在直线x-2y+1=0上,∴2-x-2y+1=0化简得x+2y-3=0故选答案D.解法二:根据直线x-2y+1=0关于直线x=1对称的直线斜率是互为相反数得答案A或D,再根据两直线交点在直线x=1选答案D故选:D.设所求直线上任一点(x,y),关于x=1的对称点求出,代入已知直线方程,即可得到所求直线方程.本题采用两种方法解答,一是相关点法:求轨迹方程法;法二筛选和排除法.本题还有点斜式、两点式等方法.8.【答案】A【解析】解:设事件A为“直线l1与l2的交点位于第一象限”,由于直线l1与l2有交点,则b≠2a.联立方程组解得x=,y=,∵直线l1与l2的交点位于第一象限,则x=>0,y=>0,解得b>2a.a,b∈{1,2,3,4,5,6}的总事件数为36种.满足条件的实数对(a,b)有(1,3)、(1,4)、(1,5)、(1,6)、(2,5)、(2,6)共六种.∴P(A)==即直线l1与l2的交点位于第一象限的概率为.故选:A.本题是一个等可能事件的概率,试验发生包含的事件数是36,满足条件的事件是两条直线的交点在第一象限,写出两条直线的交点坐标,根据在第一象限写出不等式组,解出结果,根据a,b之间的关系写出满足条件的事件数,得到结果.本题考查等可能事件的概率,考查两条直线的交点在第一象限的特点,本题是一个综合题,在解题时注意解析几何知识点的应用.9.【答案】C【解析】解:作出不等式组对应的平面区域如图:设z=x2+y2,则z的几何意义是区域内的点到原点的距离的平方,由图象知,C点到原点的距离最大,由得,即C (,),此时x2+y2=,故选:C.作出不等式组对应的平面区域,利用z=x2+y2的几何意义是区域内的点到原点的距离的平方,利用数形结合进行求解即可.本题主要考查线性规划的应用,利用两点间距离的几何意义,以及数形结合是解决本题的关键.10.【答案】A【解析】解:圆的圆心坐标为(-2,2),半径为1,圆的圆心坐标为(2,5),半径为4,两个圆心之间的距离d=5,等于半径和,故两圆外切,故公切线共有3条,故选:A.根据已知中圆的方程,求出圆心坐标和半径,判断出两圆外切,可得答案.本题考查的知识点是圆的位置关系,圆的一般方程,难度中档.11.【答案】B【解析】解:由题意可知△A′EF是等腰直角三角形,且A′D⊥平面A′EF.三棱锥的底面A′EF扩展为边长为1的正方形,然后扩展为正四棱柱,三棱锥的外接球与正四棱柱的外接球是同一个球,正四棱柱的对角线的长度就是外接球的直径,直径为:=.∴球的半径为,∴球的表面积为=6π.故选:B.把棱锥扩展为正四棱柱,求出正四棱柱的外接球的半径就是三棱锥的外接球的半径,从而可求球的表面积.本题考查几何体的折叠问题,几何体的外接球的半径的求法,考查球的表面积,考查空间想象能力.12.【答案】B【解析】解:根据题意,圆O:x2+y2=1,圆心为O(0,0),半径r=1,若过点M作圆O的两条切线,切点为A、B,且四边形OAMB为正方形,则|OM|=,则M的轨迹为以O为圆心,为半径为圆,其方程为x2+y2=2,若在直线l上存在点M,则直线l与圆x2+y2=2有交点,则有d=≤,解可得:a≤-1或a≥1,即a的取值范围为(-∞,-1][1,+∞);故选:B.根据题意,由正方形的性质可得|OM|=,分析可得M的轨迹为以O为圆心,为半径为圆,其方程为x2+y2=2,进而可得若在直线l上存在点M,则直线l与圆x2+y2=2有交点,则有d=≤,解可得a的取值范围,即可得答案.本题考查直线与圆的位置关系,涉及与圆有关的轨迹问题,关键是分析M的轨迹,属于基础题.13.【答案】5 8【解析】解:根据茎叶图中的数据,得:∵甲组数据的中位数为15,∴x=5;又∵乙组数据的平均数为16.8,∴=16.8,解得:y=8;综上,x、y的值分别为5、8.故答案为:5 8.根据茎叶图中的数据,结合中位数与平均数的概念,求出x、y的值.本题考查了利用茎叶图求数据的中位数与平均数的问题,是基础题.14.【答案】63【解析】解:模拟程序的运行,可得x=3y=7不满足条件|x-y|>31,执行循环体,x=7,y=15不满足条件|x-y|>31,执行循环体,x=15,y=31不满足条件|x-y|>31,执行循环体,x=31,y=63此时,满足条件|x-y|>31,退出循环,输出y的值为63.故答案为:63.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.15.【答案】(x-2)2+y2=8【解析】解:根据题意,直线ax-y-4a-2=0,即y+2=a(x-4),恒过定点(4,-2),设P为(4,-2)设要求圆的半径为r,其圆心C的坐标为(2,0),分析可得:以点(2,0)为圆心,且与直线ax-y-4a-2=0(a∈R)相切的所有圆中,半径最大为CP,此时r2=|CP|2=(4-2)2+(-2-0)2=8,则要求圆的方程为(x-2)2+y2=8,故答案为:(x-2)2+y2=8.根据题意,将直线的方程变形,分析可得其恒过点(4,-2),结合直线与圆的位置关系可得以点(2,0)为圆心,且与直线ax-y-4a-2=0(a∈R)相切的所有圆中,半径最大的圆的半径为CP,求出圆的半径,结合圆的标准方程分析可得答案.本题考查直线与圆的位置关系,涉及直线过定点问题,注意分析直线所过的定点,属于基础题.16.【答案】2+.【解析】解:取SB,AB中点H,P,连接HG,PC,取PB中点Q,连接HQ,GQ,因为E、F分别为SD,CD中点,所以EF∥SC,SC∥HG,所以HG∥EF,HG不在面AEF内,所以HG∥面AEF.因为QG是中位线所以QG∥PC,PC∥AF,所以QG∥AF,因为QG不在面AEF 内,所以QG∥面AEF,因为HG∩QG=G,所以面HQG∥面AEF.动点P在正四棱锥的表面上运动,并且总保持PG∥平面AEF,则动点P的轨迹的周长为△HQG 的周长.正四棱锥S-ABCD的底面边长为4,高为4,所以QG=,HG=,SP=2,HQ=,所以动点P的轨迹的周长为2+.过G做一个平面与面AEF平行,且与正四棱锥的表面相交,交线之和即为动点P的轨迹的周长.本题考查面面平行的位置关系,属于中档题.17.【答案】解:(1)联立,解得,∴两直线的焦点坐标为(-2,2),直线x-2y-1=0斜率为,则所求直线的斜率为-2.∴直线方程为y-2=-2(x+2),即2x+y+2=0;(2)当直线过原点时,直线方程为y=-3x;当直线不过原点时,设直线方程为x+y=a,则-1+3=a,即a=2.是求直线方程为x+y=2.∴所求直线方程为3x+y=0或x+y-2=0.【解析】(1)联立直线方程求出点的坐标,再求出所求直线的斜率,代入直线方程点斜式得答案;(2)当直线过原点时,直线方程为y=-3x;当直线不过原点时,设直线方程为x+y=a,把点的坐标代入求得a,则直线方程可求.本题考查直线方程的求法,体现了分类讨论的数学思想方法,是基础题.18.【答案】证明:(1)因为四边形BB1C1C为正方形,B1C∩BC1=E,所以E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是三棱柱,AA1⊥底面ABC所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以B1C⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面AB1C.【解析】(1)由正方形性质得E为B1C的中点,从而DE∥AC,由此能证明DE∥平面AA1C1C.(2)由线面垂直得AC⊥CC1,由AC⊥BC,得AC⊥平面BCC1B1,由此能证明BC1⊥平面AB1C.本题考查线面平行的证明,考查线面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.19.【答案】解:(1)由已知可设圆心N(a,3a-2),又由已知得|NA|=|NB|,从而有=a=2.于是圆N的圆心N(2,4),半径r=.所以,圆N的方程为(x-2)2+(y-4)2=10.(2)设M(x,y),又点D是圆N:(x-2)2+(y-4)2=10上任意一点,可设D(2+cosα,4+sinα).∵C(3,0),点M是线段CD的中点,∴有x=,y=,消去参数α得:(x-)2+(y-2)2=.故所求的轨迹方程为:(x-)2+(y-2)2=【解析】(1)首先设出方程,将点坐标代入得到关于参数的方程组,通过解方程组得到参数值,从而确定其方程;(2)首先设出点M的坐标,利用中点得到点D坐标,代入圆的方程整理化简得到的中点M的轨迹方程.本题考查圆的方程,考查参数法,圆的方程一般采用待定系数法,属于中档题.20.【答案】解:(1)==4,==4.3,===0.5,=-×=4.3-0.5×4=2.3,y关于t的线性回归方程为:=0.5x+2.3.(2)2012年至2018年该地区农村居民家庭人均纯收入逐步提高,翻了一番.当t=8时,y=0.5×8+2.3=6.3千元.∴预测该地区2020年农村居民家庭人均纯收入为6.3千元.【解析】(1)根据公式计算可得:=0.5x+2.3.(2)t=8代入计算可得.本题考查了线性回归方程,属中档题.21.【答案】解:(1)在AB边上存在点P,满足PB=2PA,使AD∥平面MPC.连接BD,交MC于O,连接OP,则由题意,DC=1,MB=2,又∵DC∥MB,∴△MOB∽△COD,∴OB:OD=MB:DC,∴OB=2OD,∵PB=2PA,∴OP∥AD,∵AD⊄平面MPC,OP⊂平面MPC,∴AD∥平面MPC;(2)由题意,AM⊥MD,平面AMD⊥平面MBCD,∴AM⊥平面MBCD,∴P到平面MBC的距离为,△MBC中,MC=BC=,MB=2,∴MC⊥BC,∴S△MBC=×=1,△MPC中,MP==CP,MC=,∴S△MPC=×=.设点B到平面MPC的距离为h,则由等体积可得,∴h=.【解析】(1)在AB边上存在点P,满足PB=2PA,使AD∥平面MPC,证明AD∥OP,即可证明AD∥平面MPC?(2)当点P为AB边中点时,利用等体积方法,即可求点B到平面MPC的距离.本题考查线面平行的判定,考查点到平面距离的计算,考查体积的计算,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.22.【答案】解:(1)∵圆O:x2+y2=2,直线l:y=kx-2.直线l与圆O相切,∴圆心O(0,0)到直线l的距离等于半径r=,即d==,解得k=±1.(2)设A,B的坐标分别为(x1,y1),(x2,y2),将直线l:y=kx-2代入x2+y2=2,整理,得(1+k2)x2-4kx+2=0,∴ ,,△=(-4k)2-8(1+k2)>0,即k2>1,当∠AOB为锐角时,=x1x2+y1y2=x1x2+(kx1-2)(kx2-2)==>0,解得k2<3,又k2>1,∴-<<或1<k<.故k的取值范围为(-,)(1,).(3)由题意知O,P,C,D四点共圆且在以OP为直径的圆上,设P(t,),其方程为x(x-t)+y(y-)=0,∴,又C,D在圆O:x2+y2=2上,∴l CD:tx+,即(x-)t-2y-2=0,由,得,∴直线CD过定点(,).【解析】(1)由直线l与圆O相切,得圆心O(0,0)到直线l的距离等于半径r=,由此能求出k.(2)设A,B的坐标分别为(x1,y1),(x2,y2),将直线l:y=kx-2代入x2+y2=2,得(1+k2)x2-4kx+2=0,由此利用根的判断式、向量的数量积公式能求出k的取值范围.(3)由题意知O,P,C,D四点共圆且在以OP为直径的圆上,设P(t,),其方程为,C,D在圆O:x2+y2=2上,求出直线CD:(x-)t-2y-2=0,联立方程组能求出直线CD过定点().本题考查实数的取值范围的求法,考查直线是否过定点的判断与求法,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.。
四川省成都市天府新区2019-2020学年二年级下学期期末数学试卷
![四川省成都市天府新区2019-2020学年二年级下学期期末数学试卷](https://img.taocdn.com/s3/m/13f62613abea998fcc22bcd126fff705cc175c0a.png)
2019-2020学年四川省成都市天府新区二年级(下)期末数学试卷一、计算题(共2小题,满分28分)1.(12分)直接写出得数。
24÷4=5×7=30÷6=9×3=18÷2=1000﹣700=650+70=50﹣24=43+20=430﹣80=36+64=9+9+8=2.(16分)竖式计算。
199+635=364+119=验算:52÷8=412﹣89=验算:二、填空题(共10小题,每小题2分,满分30分)3.(2分)看图填数。
4.(1分)一个数由3个千、5个百和8个一组成,这个数是。
5.(4分)换算单位。
7米=分米60厘米=分米4千米=米1时20分=分6.(4分)在横线里填上合适的长度单位。
一棵大树高约10 火车每小时行驶约120床长约2 一本数学书长约267.(3分)横线里最大能填几?4×<22×3<207×<628.(6分)找规律,填一填。
930,830,,,530,4302150,,2350,2450,,2650〇〇△〇〇△〇〇△〇〇,……9.(3分)方向与位置。
食堂在教学楼的面大门在教学楼的面在教学楼的西面10.(2分)淘气早上7:50从家出发,经过20分钟后到达学校,他到达学校时是时分。
11.(2分)用“6,5,1,0”这四个数组成四位数(每个数字只用一次),最大是,最小是。
12.(3分)25个气球,每6个绑成一束。
最多可以绑成束,还剩个,再添个气球就可以再绑束。
三、选择题(共5小题,每小题1分,满分5分)13.(1分)△÷7=4……〇,△最大是()A.34B.3514.(1分)1254里的“2”,表示的是2个()A.百B.千15.(1分)23人去划船,每条船限乘4人,至少要租()A.5条船B.6条船16.(1分)估一估,289+392的结果一定()A.小于700B.大于70017.(1分)比最大的三位数多1的数是()A.101B.1000四、操作题(共2小题,满分12分)18.(6分)用三角板比一比,填一填。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省成都市2019-2020年下学期高二数学(理)期末试卷第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是 符合题目要求的.1.已知}3|{≤∈=*x N x A ,2{|-40}B x x x x =≤,则( )【答案】A【解析】由题意得:,,所以.【方法总结】集合中的元素有关问题的求解策略:(1)确定集合的元素是什么,即集合是数集、点集还是其他类型的集合.(2)看这些元素满足什么限制条件.(3)根据限制条件求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性.2.已知复数满足为虚数单位) ,则在复平面内复数对应的点的坐标为( )A .B .C .D .【答案】B【解析】由题意,得.则,其在复数平面内对应的点的坐标为.故选:B. 3.随着我国经济实力的不断提升,居民收入也在不断增加.某家庭2019年全年的收入与2015年全年的收入相比增加了一倍,实现翻番.同时该家庭的消费结构随之也发生了变化,现统计了该家庭这两年不同品类的消费额占全年总收入的比例,得到了如下折线图: 则下列结论中正确的是( )A .该家庭2019年食品的消费额是2015年食品的消费额的一半B .该家庭2019年教育医疗的消费额与2015年教育医疗的消费额相当C .该家庭2019年休闲旅游的消费额是2015年休闲旅游的消费额的五倍D .该家庭2019年生活用品的消费额是2015年生活用品的消费额的两倍=⋂B A }3,2,1.{A }2,1.{B (]3,0.C (]4,3.D {1,2,3}}3|{=≤∈=*x N x A []2{|-40}1,4B x x x =≤==⋂B A }3,2,1{z (3425z i i i ⋅-=+z 21,5⎛⎫ ⎪⎝⎭2,15⎛⎫ ⎪⎝⎭21,5⎛⎫-- ⎪⎝⎭2,15⎛⎫-- ⎪⎝⎭525z i ⋅=+25z i =+2,15⎛⎫⎪⎝⎭4.解析:选C.设该家庭2015年全年收入为a ,则2019年全年收入为2a .对于A ,2019年食品消费额为0.2×2a =0.4a ,2015年食品消费额为0.4a ,故两者相等,A 不正确.对于B ,2019年教育医疗消费额为0.2×2a =0.4a ,2015年教育医疗消费额为0.2a ,故B 不正确.对于C ,2019年休闲旅游消费额为0.25×2a =0.5a ,2015年休闲旅游消费额为0.1a ,故C 正确.对于D ,2019年生活用品的消费额为0.3×2a =0.6a ,2015年生活用品的消费额为0.15a ,故D 不正确.故选C.4.某三棱锥的三视图如图所示,则它的外接球的表面积为( )A .B .C .D .【答案】A的等腰直角三角形,高为2..故外接球表面积.故选:A 5.下列函数中,与函数的奇偶性、单调性均相同的是( ) . A .B .C .D .【答案】D解析 由已知,,则,所以为上的奇函数.8π6π4π823π2222+2=2222224482S R πππ⎛=== ⎝⎭()11122x x f x -+=-e xy =(2ln 1y x x =+2y x =tan y x =()111=22x x f x -+-x ∈R ()()111111=2222x x x x f x f x ----++--=-=-()f x R设,.易判断为上的增函数,也为上的增函数,所以为上的增函数.A 选项中的不是奇函数,排除A ;B 选项中令,则,所以为奇函数.设为增函数,而也为增函数,由复合函数的单调性知为增函数,所以B 选项中的函数的奇偶性、单调性与的奇偶性、单调性相同;C 选项中不是奇函数,排除C ;D 选项中在上不是单调函数.排除D. 故选B.5.我国南宋时期的数学家秦九韶在他的著作《数书九章》中提出了计算多项式的值的秦九韶算法,即将改写成如下形式:,首先计算最内层一次多项式的值,然后由内向外逐层计算一次多项式的值.这种算法至今仍是比较先进的算法.将秦九韶算法用程序框图表示如下图,则在空白的执行框内应填入( ).A. B. C. D.()112x f x -=()2112x f x +=-()1f x R ()2f x R ()()()12f x f x f x =+R e x y =()(2ln 1f x x x =+()()(2ln 1f x x x -=-+-+2ln1x x ==++(()2ln 1x x f x -+=-()f x ()21u x x x =+()u x ln y u =(2ln 1y x x =++()111=22x x f x -+-2y x =tan y x =R ()11nn n n f x a x a x--=++10a x a ++()f x ()()()()1210nn n f x a x ax a x a x a --=+++++i v vx a =+()i v v x a =+i v a x v =+()i v a x v =+解析 秦九韶算法的过程是.这个过程用循环结构来实现,则在空白的执行框内应填入.故选A.7.平面直角坐标系中,若角的顶点为坐标原点,始边与x 轴的非负半轴重合,终边与单位圆O 交于点,且,,则的值为( ) A B C D 【答案】A【解析】因为,,所以,若,,所以不符合, 所以, 所以. 是结束输出vi ≥0?i =i -1i =n -1输入n ,a n ,x开始v =a n输入a i否()011,2,,nk k n k v a v v x a k n --=⎧⎪⎨=+=⎪⎩i v vx a =+xOy α00(,)P x y (,0)2απ∈-3cos()65πα+=0x 334-433-334±433±(,0)2απ∈-3cos()65πα+=(,)636πππα+∈-(0,)66ππα+∈33cos()65πα+>>(,0)63ππα+∈-4sin()65πα+=-03341334cos cos ()66552x ππαα-⎡⎤==+-=-⨯=⎢⎥⎣⎦8. 已知,给出下列四个命题:; ;; ; 其中真命题的是( ).A. B. C. D. 【答案】D解析 画出的可行域如图所示.对于命题,在点处, ,则是假命题; 对于命题,在点处, 取最大值为,,故是真命题; 对于命题,点到的斜率最小值在点处取到为,,故是假命题; 对于命题,在点处,,故是真命题.故选D.9.唐代诗人李顾的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河。
”诗中隐含着一个有趣的数学问题一“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为,若将军从点处出发,河岸线所在直线方程为,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的()20,20360x y D x y x y x y ⎧⎫+-⎧⎪⎪⎪=-+⎨⎨⎬⎪⎪⎪-+⎩⎩⎭()1:,,0P x y D x y ∀∈+()2,,210P x y D x y ∀∈-+:()31:,,41y P x y D x +∃∈--()224,,2P x y D x y ∃∈+:12,P P 23,P P 34,P P 24,P P D 1P ()2,0A -202<0x y +=-+=-1P 2P ()0,2C 21x y -+1-1<0-2P 3P (),x y ()1,1-()0,2C 21301+=--3>4--3P 4P ()0,2C 22024>2+=4P xyx+y -2=03x-y+6=0A (-2,0)B (-1,3)C (0,2)x-y+2=0221x y +≤()3,0A 4x y +=最短总路程为( )D.【答案】A【解析】分析:求出关于的对称点,根据题意,为最短距离,求出即可. 解:设点关于直线的对称点,设军营所在区域为的圆心为, 根据题意,为最短距离,先求出的坐标,的中点为,直线的斜率为1,故直线为, 由,联立得故,,所以故,故选:A.10.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为,若. 则该双曲线的离心率为( ) A. 2B. 3C.D.【答案】D解:根据题意可画出以下图像,过点作垂线并交于点, 因为,在双曲线上,所以根据双曲线性质可知,,即, 因为圆的半径为,是圆的半径,所以,因为,所以,三角形是直角三角形, 因为,所以,,即点纵坐标为, 将点纵坐标带入圆的方程中可得,解得, 1711721732A 4x y +=A '2A C 'A 4x y +=(),A a b 'C 1A C '-A 'AA '3,22a b +⎛⎫⎪⎝⎭AA 'AA '3y x =-34223a bb a +⎧+=⎪⎨⎪=-⎩4a =1b =224117A C '+=1171A C '-=22221(0,0)x y a b a b-=>>12,F F 222x y b +=M 123MF MF =23M 12F F 12F F H 123MF MF =M 122MF MF a -=2232MF MF a -=2MF a =222x y b +=b OM 222x y b +=OM b =22222,,,OM b MF a OF c a b c ===+=290OMF ∠=︒2OMF 2MH OF ⊥22,ab OF MH OM MF MH c ⨯=⨯=M ab cM 22222a b x b c +=22,,b b ab x M c c c ⎛⎫= ⎪⎝⎭将点坐标带入双曲线中可得,化简得,,,,选D.11.已知过抛物线()220y px p =>的焦点F 的直线与抛物线交于A ,B 两点,且3AF FB =,抛物线的准线l 与x 轴交于C ,1AA l ⊥于点1A ,且四边形1AA CF 的面积为3,过()1,0K -的直线'l 交抛物线于M ,N两点,且(]()1,2KM KN λλ=∈,点G 为线段MN 的垂直平分线与x 轴的交点, 则点G 的横坐标0x 的取值范围为() A .133,4⎛⎤ ⎥⎝⎦B .92,4⎛⎤ ⎥⎝⎦C .93,2⎛⎤ ⎥⎝⎦D .11,72⎛⎤ ⎥⎝⎦【答案】A【解析】过B 作1BB l ⊥于1B ,设直线AB 与l 交点为D ,由抛物线的性质可知1AA AF =,1BB BF =,CF p =, 设BD m =,BF n =,则1113BB BD BF AD AA AF ===,即143m m n =+,∴2m n =. 又1BB BD CF DF =,∴23n m p m n ==+,∴23pn =,∴2DF m n p =+=,∴130ADA ∠=︒, M 422221b a a c c-=4422b a a c -=()222422c aa a c --=223c a =3ce a==又132AA n p ==,CF p =,∴123A D =,3CD =,∴13A C =, ∴直角梯形1AA CF 的面积为()123632p p +=,解得2p =,∴24y x =, 设()11,M x y ,()22,N x y ,∵KM KN λ=,∴12y y λ=, 设直线:1l x my '=-代入到24y x =中得2440y my +=-,∴124y y m +=,124y y =,∴()21212242x x m y y m =+-=-+,由以上式子可得()221142m λλλλ+==++,由12λ<≤可得12y λλ=++递增,即有2944,2m ⎛⎤∈ ⎥⎝⎦,即291,8m ⎛⎤∈ ⎥⎝⎦, 又MN 中点()221,2m m -,∴直线MN 的垂直平分线的方程为()2221y m m x m -=--+,令0y =,可得2013213,4x m ⎛⎤=+∈ ⎥⎝⎦,故选A .12.已知函数有两个零点,函数,则方程的实根个数至多为 A .2 B .3 C .4 D .5【答案】C【命题意图】主要考查函数的零点,函数与导数等基础知识;考查运算求解能力,推理论证能力,抽象与概括能力和创新意识;考查数形结合思想,分类与整合思想,函数与方程思想.【解析】选C .令,则即,此方程有两根.对于函数,时,,, 所以在单调递减,在单调递增,所以有极小值. 当时,,,在单调递增, 且时,;时,.作出的大致图象可知,有1个实根;至多有3个实根,所以方程的实根至多有4个.()f x 1212(01)x x x x <<<,2()ln()g x x x =-[()]0f g x =()t g x =()[]0f g x =()0f t =1212,(01)t t t t <<<()2ln()g x x x =-0x >()2ln g x x x =-()221x g x x x-'=-=()g x (0,2)(2,)+∞()g x (2)22ln 2(0,1)g =-∈0x <()2ln()g x x x =--()210g x x'=->()g x (,0)-∞x →-∞y →-∞0x →+y →∞()g x ()10g x t =<()2(0,1)g x t =∈()[]0f g x =第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.记S n 为等差数列{a n }的前n 项和,若5a 2=S 5+5,则数列{a n }的公差为 ﹣1 . 【答案】﹣1解析:利用等差数列的通项公式及求和公式即可得出. 设等差数列{a n }的公差为d .∵5a 2=S 5+5,∴5(a 1+d )=5a 1+10d +5,则数列{a n }的公差d =﹣1.故答案为:﹣1. 本题考查了等差数列的通项公式及求和公式,考查了推理能力与计算能力,属于基础题.14.在极坐标系中,圆1C 的极坐标方程为24(cos sin )p p θθ=+,以极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系xOy .已知曲线2C 的参数方程为22||x t y t =+⎧⎨=⎩(t 为参数),曲线2C 与圆1C 交于,A B 两点,则圆1C 夹在,A B 两点间的劣弧AB 的长为 . 2π解析:圆1C 的直角坐标方程为22(2)(2)8x y -+-=; 圆1C 夹在,A B 两点间的劣弧AB 的长为122224ππ⨯⨯.15.如图所示,在平面直角坐标系中,将直线与直线及轴所围成的图形绕轴旋转一周得到一个圆锥,圆锥的体积 据此类比:将曲线与直线及轴所围成的图形绕轴旋转一周得到一个旋转体,该旋转体的体积.xOy 2xy =1x =x x 210πd 2x V x ⎛⎫= ⎪⎝⎭⎰圆锥310ππ.1212x ==2(0)y x x =≥2y =y y ______V =【答案】2π 解析:因为曲线是绕轴旋转,故需将其方程变形为, 可求旋转体体积.16若以曲线上任意一点为切点作切线,曲线上总存在异于点的点,使得以点为切点作切线满足,则称曲线具有“可平行性”.已知下列曲线:①;②;③;④. 其中具有“可平行性”的曲线是 .(写出所有正确的编号) 【答案】②③解析①有两个相等实根,因此曲线不具有“可平行性”;②,总有两个不同的实根与之对应,因此曲线是具有“可平行性”的曲线;③,则至少有两个不同的实根与之对应,因此曲线是具有“可平行性”的曲线; ④,当时,只有一个实根,因此曲线不具有“可平行性”. 综上,②③是具有“可平行性”的曲线.评注 本题将“可平行性”这一抽象的概念转化为曲线对应函数的导函数是否存在2个不同的零点的问题,使解答变得易于操作.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)设函数()32f x x ax bx c =+++.(1)求曲线()y f x =在点()()0,0f 处的切线方程;()20y xx =y x y =()2222002ππd πd 2π02V y y y y y ====⎰⎰()y f x =(),M x y l M (),N x y ''N l 'l l '∥()y f x =3y x x =-1y x x=+sin y x =()22ln y x x =-+()231,1y'=x f x '-=-3y x x =-211y'x =-()f x a '=()(),1a ∈-∞1y x x=+cos y'x =cos x a =[]()1,1a ∈-sin y x =124y'=x+x-()224f x '=-22x =()22ln x x -+第13题图y =x=1y x xOyy =2y =O(2)设4a b ==,若函数()f x 有三个不同零点,求c 的取值范围;解析 (1)由()32f x x ax bx c =+++,得()232f x x ax b '=++.因为()0f c =,()0f b '=,所以曲线()y f x =在点()()0,0f 处的切线方程为y bx c =+.(2)当4a b ==时,()3244f x x x x c =+++,所以()2384f x x x '=++.令()0f x '=,得23840x x ++=,解得2x =-或23x =-. ()f x '与()f x 在区间(),-∞+∞上的变化情况如下表所示.x(),2-∞-2-22,3⎛⎫-- ⎪⎝⎭23-2,3⎛⎫-+∞ ⎪⎝⎭()f x '+ 0-+ ()f x↑c↓3227c -↑所以当0c >且32027c -<时,存在()14,2x ∈--,222,3x ⎛⎫∈-- ⎪⎝⎭,32,03x ⎛⎫∈- ⎪⎝⎭,使得()()()1230f x f x f x ===. 由()f x 的单调性,当且仅当320,27c ⎛⎫∈ ⎪⎝⎭时,函数()3244f x x x x c =+++有三个不同零点. 19.(12分)如图所示,在四棱柱1111ABCD A B C D -中,侧棱1AA ⊥平面ABCD ,底面ABCD 是直角梯形,AD AB ⊥,//AB CD ,1224AB AD AA ===.(1)证明:1A D ⊥平面11ABC D ;(2)若四棱锥111A ABC D -的体积为103,求四棱柱1111ABCD A B C D -的侧面积.【解析】(1)因为侧棱1AA ⊥平面ABCD ,所以1AA AD ⊥,1AA AB ⊥, 又AB AD ⊥,1AA AD A =,所以AB ⊥平面11ADD A ,而1A D ⊂平面11ADD A ,所以1AB A D ⊥;又1AA AD ⊥,1AA AD =,所以四边形11ADD A 为正方形,所以11A D AD ⊥, 又1ABAD A =,所以1A D ⊥平面11ABC D .(2)记1A D 与1AD 的交点为O ,所以1A O ⊥平面11ABC D , 又1224AB AD AA ===,所以12AO =,122AD = 设11CD C D x ==,则1111111128103233A ABC D V ABCD x AD AO -++⋅⋅⋅===,解得1x =,即1CD =, 所以22(41)213BC =-+=所以四棱柱1111ABCD A B C D -的侧面积为(12413)214213S =+++⨯=+.18.(12分)某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本y (元)与生产该产品的数量(千件)有关,经统计得到如下数据:x 12345678y112 61 44.5 35 30.5 28 2524系,现考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合,已求得:用指数函数模型拟合的回归方程为,与的相关系数;, , ,,,, (其中);(1)用反比例函数模型求关于的回归方程;(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.01),并用其估计产量为10千件时每件产品的非原料成本.x b y a x=+dxy ce =0.296.54x y e -=ln y x 10.94r =-81=183.4i i i u y =∑=0.34u 2=0.115u 821=1.53ii u=∑81360ii y==∑82122385.5i i y==∑1,1,2,3,,8i iu i x ==y x,参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,,相关系数.19.【解析】(1)令,则可转化为, ··············································1分 因为,所以, ···················4分则,所以, ···················································5分 所以关于的回归方程为; ·········································································6分 (2)与的相关系数为: , ···································9分 因为,所以用反比例函数模型拟合效果更好, ························································ 10分 把代入回归方程:,(元), ······································ 11分 所以当产量为10千件时,每件产品的非原料成本估计为21元.············································ 12分 20.(12分)已知点()10F -,,直线4l x P =-:,为平面内的动点,过点P 作直线l 的垂线,垂足为点M ,且11022PF PM PF PM ⎛⎫⎛⎫-⋅+= ⎪ ⎪⎝⎭⎝⎭. (1)求动点P 的轨迹C 的方程;(2)过点1F 作直线1l (与x 轴不重合)交C 轨迹于A ,B 两点,求三角形面积OAB 的取值范围.(O 为坐标原点) 【解析】(1)设动点()P x y ,,则()4H y -, 由11022PF PM PF PM ⎛⎫⎛⎫-+= ⎪⎪⎝⎭⎝⎭2214PF PM ∴=,即2214PF PM = ,()2221144x y x ∴++=+ ,化简得22143x y +=0.616185.561.4⨯20.135e -=()11,u υ()22,u υ(),n n u υˆu υαβ=+1221ni i i nii u nu unuυυβ==-=-∑∑u αυβ=-1222211ni ii n ni i i i u nu r u nu n υυυυ===-=⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑∑1u x =by a x=+y a bu =+360458y ==8221818183.480.3445611001.5380.1150.6ˆ18i i iii u y uyb uu ==--⨯⨯====-⨯-∑∑45ˆˆ1000.3411ay bu =-=-⨯=11100ˆy u =+y x 10011ˆyx=+y 1x28822221181888i ii i i i i u y uyr u u y y ===-=⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑∑610.9961.40.616185.5==≈⨯12r r <10x =10011ˆyx =+100112110y =+=(2)由(1)知轨迹C 的方程为22143x y +=,当直线1l 斜率不存在时31,2A ⎛⎫-- ⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭1322DAB S AB OF ∆∴=⋅= 当直线1l 斜率存在时,设直线l 方程为1x my =- ()0m ≠,设()11,A x y ()22,B x y由221143x my x y =-⎧⎪⎨+=⎪⎩得()2234690m y my +--=.则21441440m ∆=+>,122634m y y m +=+,122934y y m -=+, 11212OABS OF y y ∆=⋅-()212121142y y y y =⨯+-()22221363623434m m m=+++()2221634m m+=+令21(1)m t t +=>,则()2631OAB tS t ∆==+ 216196196t t t t t=++++令()196f t t t =++,则()21'9f t t =-,当1t >时,()'0f t >, ()196f t t t ∴=++在()1,+∞上单调递增,()()116f t f ∴>=,136162OAB S ∆∴<=综上所述,三角形OAB 面积的取值范围是30,2⎛⎤⎥⎝⎦21.(12分)已知2()(ln )2x f x x x ae =-+.(1)证明()f x 在1x =处的切线恒过定点;(2)若()f x 有两个极值点,求实数a 的取值范围.解析:(1)∵2(ln )()x x x axe f x x+-'=,所以()12f ae '=-又因为()12f ae =-,所以()f x 在1x =处的切线方程()()()221y ae ae x --=-- 即()2y ae x =-,所以()f x 在1x =处的切线恒过定点()0,0.(2)∵l ()()n 2x x x xe x x f a +-=',其中0x >,设()2(ln )xg x x x axe =+-,则(1)(2)()x x axe g x x+-'=,当0a ≤时,()0g x '>,则()g x 在(0,)+∞单调递增,()g x 在(0,)+∞上至多有一个零点,即()f x '在(0,)+∞上至多有一个零点,∴()f x 至多只有一个极值点,不合题意,舍去.当0a >时,设()2x h x axe =-,()(1)xh x a x e '=-+,∴()0h x '<,∴()h x 在(0,)+∞上单调递减,∵()020h =>,22()220ah e a =-<,∴02(0,)a∃∈,使得()00h x =,即002x ax e =2,当()00,x x ∈时,()0h x >,此时()0g x '>,∴()g x 在()00,x 单调递增, 当0(),x x ∈+∞时,()0h x <,此时()0g x '<,∴()g x 在0(),x +∞单调递减, ∴()g x 在(0,)+∞有极大值()0g x ,即()0max 000[()]2ln x g x x x ax e =+-()()00002ln 22ln 1x x x x =+-=+-若00ln 10x x +-≤,则()0g x ≤,∴()0f x '≤,()f x 在(0,)+∞单调递减,不合题意, 若00ln 10x x +->,设()ln p x x x =+,1()10p x x'=+>,∴()p x 在(0,)+∞单调递增, 又()11p =,∴01x >,∵()(1)0x x xe x e '=+>,∴xy xe =在(0,)+∞单调递增,∴002x x e e a =>,即20a e<<,此时()00g x >,()00f x '> ∵1111112()2(1)20e ea e ae e e e eg -=-+-=-+-<,()g x 在()00,x 单调递增,()00g x >101(,)x x e∃∈,使得()10g x =,当()10,x x ∈时,()0g x <,∴()0f x '<,()f x 在()10,x 上单调递减,当()10,x x x ∈时,()0g x >,∴()0f x '>,()f x 在()10,x x 上单调递增,∴()f x 在1x x =取得极小值. 又∵11ln x e x x x ≥+>-≥,1xe x x ≥+>∴444444442ln 42ln 0a a ag e e e a a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=+-=-+-<⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦∵()g x 在0(),x +∞单调递减,()00g x >, 又∵02(0,)x a ∈,∴04x a >,∴204(,)x x a∃∈,使得()20g x =, 当()02,x x x ∈时,()0g x >,∴()0f x '>,()f x 在()02,x x 上单调递增, 当()2,x x ∈+∞时,()0g x <,∴()0f x '<,()f x 在2(),x +∞上单调递减,∴()f x 在2x x =处取得极大值.综上所述,若()f x 有两个极值点,则实数a 的取值范围为2(0,)e.(注:利用当x →+∞时,()0g x <,当0x →时,()0g x <,证明存在两个极值点,得1分) 22..(10分)如图,有一种赛车跑道类似“梨形”曲线,由圆弧BC ,AD 和线段AB ,CD 四部分组成,在极坐标系Ox 中,A (2,3π),B (1,23π),C (1,43π),D (2,3π-),弧BC ,AD 所在圆的圆心分别是(0,0),(2,0),曲线是弧BC ,曲线M 2是弧AD .(1)分别写出M 1,M 2的极坐标方程:(2)点E ,F 位于曲线M 2上,且3EOF π∠=,求△EOF 面积的取值范围.解析(1)由题意可知:M 1的极坐标方程为24133ππρθ⎛⎫=≤≤⎪⎝⎭. 记圆弧AD 所在圆的圆心(2,0)易得极点O 在圆弧AD 上. 设P (ρ,θ)为M 2上任意一点,则在△OO 1P 中,可得ρ=4cosθ(33ππθ-≤≤).所以:M 1,M 2的极坐标方程为24133ππρθ⎛⎫=≤≤⎪⎝⎭和ρ=4cosθ(33ππθ-≤≤). (2)设点E (ρ1,α),点F (2,3πρα-),(03πα≤≤),所以ρ1=4cosα,24cos 3πρα⎛⎫=-⎪⎝⎭. 所以121sin 43cos cos sin sin 232323336EOF S ππππρρααααα∆⎛⎫⎛⎫==+=++ ⎪ ⎪⎝⎭⎝⎭ 由于03πα≤≤,所以1sin 2126πα⎛⎫≤+≤ ⎪⎝⎭.故23,33EOF S ∆⎡⎤∈⎣⎦.。