大学物理第5章-角动量守恒定律-刚体的转动
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 角动量守恒定律 刚体的转动
5-1 质点的动量守恒与角动量守恒的条件各是什么,质点动量与角动量能否同时守恒?試说明之。
答:质点的动量守恒的条件是:
当0F =时,p mv ==恒矢量。
质点的角动量守恒的条件是:
当0M =时,即000,F r θπ⎧=⎪⎪=⎨⎪=⎪⎩
时,L =恒矢量。
可见,当0F =时,质点动量与角动量能同时守恒。
5-2 质点在有心力场中的运动具有什么性质?
答:质点在有心力场中运动时,0,0F M ≠=,则角动量守恒,即:
当0M =时,L =恒矢量。
又因为有心力是保守力,则机械能守恒,即:
当0ex in nc
A A +=时,K P E E E =+=恒量。 5-3 人造地球卫星是沿着一个椭圆轨道运行的,地心O 是这一轨道的一个焦点。卫星经过近地点和远地点时的速率一样吗?卫星在近地点和远地点时的速率与地心到卫星的距离有什么关系?
答:卫星经过近地点和远地点时的速率不一样,由角动量守恒定律得:
a a
b b r mv r mv = a b b a
v r v r ∴= 可见,速率与距离成反比。
5-4 作匀速圆周运动的质点,对于圆周上某一定点,它的角动量是否守恒?对于通过圆心而与圆面垂直的轴上的任意一点,它的角动量是否守恒?对于哪一个定点,它的角动量守恒?
答:作匀速圆周运动的质点,对于圆周上某一定点,它的角动量不守恒;对于通过圆心而与圆面垂直的轴上的任意一点,它的角动量不守恒;对于圆心定点,
它的角动量守恒。
5-5 以初速度0v 将质量为m 的小球斜上抛,抛射角为θ,小球运动过程中,相对于抛射点的角动量如何变化?小球运动到轨道最高点时,相对于抛射点的角动量为多少?
答:取抛射点为坐标原点,取平面直角坐标系Oxy ,y 轴正方向向上,则质点的运动方程和速度表达式为:
020cos 1sin 2x v t y v t gt θθ=⎫⎪⎬=-⎪⎭
, 00cos sin x y v v v v gt θθ=⎫⎬=-⎭ 对于抛射点的角动量:
()()
x y y x L r mv xi y j mv i mv j xmv k ymv k =⨯=+⨯+=- 将,,,x y x y v v 代入得:
201cos 2L mgv t k θ=- 当小球到达最高点时,时刻为:0sin v t g
θ=,代入上式得: 小球相对于抛射点的角动量为:320sin cos 2mv L k g
θθ=-。 5-6 为什么说刚体平动的讨论可归结为对质点运动的研究?
答:由于刚体平动时,各点的运动状态相同,则可取刚体上任意一点运动代表刚体的运动,所以刚体的平动可用质点运动来描述。
5-7如果刚体所受的合外力为零,其合外力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否一定为零?
答:如果0i i F =∑,但力不共轴,则力矩不为零0i i M ≠∑。
如果0i i M =∑,但力方向相同,则力不为零0i i
F ≠∑。
5-8 在某一瞬时,如果刚体受到的合外力矩不为零,其角加速度可以为零吗?其角速度可以为零吗?
答:由刚体的转动定理:M J β=
当0,0M J ≠≠时,则0M J
β=≠ 可见,力矩与角加速度有关,力矩与角速度无关,所以角速度可以为零。 5-9 两个同样大小的轮子,质量也相同。一个轮子的质量主要集中在轮緣,另一个轮子的质量主要集中在轮轴附近。问:
(1)如果它们的角速度相同,哪一个飞轮的动能较大?
(2)如果它们的角加速度相等,作用在哪一个飞轮上的力矩较大?
(3)如果它们的角动量相等,哪一个飞轮转得快?
答:质量主要集中在轮緣的轮子的转动惯量用J A 表示,质量主要集中在轮
轴附近的轮子的转动惯量用J B 表示。由∑=i
i i r m J 2
Δ可知,J A >J B 。 βJ M =
A 轮相当于圆环,转动惯量 2A J mR =
B 轮相当于圆盘, 转动惯量 212
B J mR = (1)当ω一定时,转动动能 2221122
KA A E J mR ωω== 2221124
KB B E J mR ωω== 所以 kB kA E E >
(2)当β一定时,转动定理 2A A M J mR ββ== 212
B B M J mR ββ== 所以 B A M M >
(3)当L 一定时,角动量 2A A A L J mR ωω==
212
B B B L J mR ωω== 2A A L L J mR ω== , 22B B L L J mR
ω== 所以 B A ωω<
5-10 将一个生鸡蛋和一个熟鸡蛋放在桌子上使其转动,如何判断哪一个是
生的?哪一个是熟的?为什么?
答:转动时,生、熟鸡蛋所受阻力矩相同。根据角动量定理
00t
Mdt J J ωω=-⎰
停止时,0ω=,则 0J t M
ω∆= 因为熟鸡蛋部凝固,而生鸡蛋部不固定,转动惯量随转动而增大,即J J >生熟,
所以t t ∆>∆生熟
生鸡蛋转动时间较长,熟鸡蛋转动时间较短。
5-11 一半径为r 的均质小球,沿两个高度相同,倾角不同的斜面无滑动地滚下,在这两种情况下,小球到达斜面下端的速率是否相同?
答:因为小球只作滚动,没有滑动,故摩擦力不作功,机械能守恒。
221122
c c mgh mv J ω=
+ 其中:小球的转动惯量225c J mr =,质心的速度c v r ω=,代入上式得:
c v ∴= 可见,只要小球从同一高度滚下,与斜面的夹角无关,则小球到达斜面下端时的速率是相同的。
5-12 一个人将两臂伸平,两手各拿一只重量相等的哑铃坐在角速度为ω的转台上(ω为人与转台共同角速度),突然,他将哑铃丢下,但两臂不动,问角动量是否守恒?它们的角速度是否改变?
答:因为0i i
M =∑,所以角动量守恒。
设人和转台的转动惯量为J ,哑铃的质量为m ,手臂的长为l ,开始时角速度为ω,丢掉哑铃时角速度为ω',由角动量守恒得:
()2
2J ml J ωω'+= 221ml J ωωω⎛⎫'∴=+> ⎪⎝⎭
可见,丢掉哑铃后,角速度变大。
5-13 你骑自行车前进时,车轮的角动量指向什么方向?当你的身体向左侧倾