数学建模BP神经网络论文-参考模板

合集下载

2005年A题全国数学建模优秀论文3

2005年A题全国数学建模优秀论文3
+ 0.7193x3 − 0.6910x4 y3 = -0.0076x1 − 0.7399x2 + 0.4626x3 + 0.4883x4 根据线性表达式中的系数及符号,可对各主成分的实际意义作如下解释:第一主成 分为除 x1 之外的三项指标的综合;第二主成分与 x3 成正相关,与 x4 成负相关;第三主成
问题假设
1. 2. 3. 假设干流的自然净化能力是均匀的; 假设两个观测站之间河段的平均流速是等于两个观测站流速的平均值; 假设废水的处理对各类污染程度的河流的影响是均匀的。
符号说明
X1 X2 X3 X4 溶解氧的浓度(DO) 高锰酸盐指数(CODMn) 氨氮浓度(NH3-N) PH 值 污染物的浓度 水流的流量 污染物的降解系数 水流的流速 污染物流过的距离 第 n 个观测站(地区)水流所含污染物的质量 第 n 个观测站(地区)排放污染物的质量 第 i 类污染程度的河流总长度比例 第 t 年排污量
再根据排污量预测值,利用 BP 神经网络对未来十年的不同水质的河长比例进行了 预测。 为了得到排污量与各类水质的河长比例,本文再次利用 BP 神经网络的高精度逼近 能力对排污量与六类水质的河长比例的关系进行拟合。 从而可以得到每年控制污染所应 当处理的废水量:单位(亿吨) 年份 废水处理量 2005 58.2 2006 123.6 2007 133.3 2008 174.3 2009 163.0 2010 189.9 2011 245.4 2012 272.1 2013 300.5 2014 300.7
华南理工大学:李宁、董泽彦、林泽彬,指导教师:陶志穗
有很多传统的系统评估方法比如加权评估法、专家评估法、综合评分法以及层次分 析法都不免受到主观因素不同程度的影响。 而本文使用的基于主成分分析所构造的评估 机制则可以避免主观因素对评估的影响,使得评估结果客观的反映系统状况。 主成分分析方法是一种将多维因子纳入同一系统进行定量化研究、 理论成熟的多元 统计分析方法。通过分析变量之间的相关性,使得所反映信息重叠的变量 被某一主成分替代,减少了变量数目,从而降低了系统评价的复杂性。再以方差贡献率 作为每个主成分的权重,由每个主成分的得分加权即可完成对水质的综合评价。 为了确定主要污染物高锰酸盐指数(CODMn)和氨氮(NH3-N)的主要污染源,我 们需要知道各个地区主要污染物的排放质量。 而本地区污染物的排放质量可以通过当前 观测站的污染物质量与上游对本地区影响部分质量的差值来确定。 通过污染物的降解公 式分析出上游对本地区影响部分质量变化关系, 进而得出本地区污染物排放的质量关系 式。根据长江干流近一年多的基本数据计算出各地区污染物的平均排放速度,进而确定 主要污染源。 长江水质被分为六个级别,代表了不同程度的污染,不同水质河长的比例可以表征 一定时期内的水污染状况。所以说预测长江未来十年的水污染趋势,就是要预测未来不 同水质的河长的比例。对每年的排污量与不同水质河长的比例做一个相关性分析: 第I类 第 II 类 第 III 类 第 IV 类 第V类 劣V类 -0.8058 0.3164 -0.3371 0.3183 0.6624 0.9570 相关系数 可见排污量与不同水质河长的比例有很高的相关性, 与劣 V 类的相关系数更是达到 了 0.9570 的水平, 因此在作对不同水质河长的比例之前, 必须先对未来的排污量有比较 精确的预测。 由于附件中数据样本少,需要预测的时间长,直接应用神经网络很难取得理想的效 果,因此本文采用 GM(1,1)模型与神经网络模型联合预测长江未来十年的水污染趋势, 尝试着首先较精确预测出部分重要的数据, 为建立神经网络预测未来不同水质的河长的 比例提供更多的数据,从而完成对不同水质河长的比例的预测。GM(1,1)模型就可以用 来较好的预测出未来的排污量。

神经网络模型的研究毕业论文

神经网络模型的研究毕业论文

神经网络模型的研究毕业论文简介本文旨在研究神经网络模型在机器研究中的应用。

神经网络是一种模仿人类神经系统工作的数学模型,能够研究输入和输出之间的复杂关系,并通过调整模型参数来提高预测准确度。

本文将探讨神经网络的基本原理、常见的网络结构和训练方法。

神经网络的基本原理神经网络由许多神经元组成,每个神经元接收来自其他神经元的输入,并通过激活函数进行处理,最终产生输出。

神经网络通过不断调整神经元之间的连接权重来研究输入和输出之间的关系。

常见的神经网络结构本文将介绍几种常见的神经网络结构,包括前馈神经网络、卷积神经网络和循环神经网络。

前馈神经网络是最基本的神经网络结构,信息只在一个方向传递。

卷积神经网络在图像处理中有广泛应用,能够从原始像素中提取特征。

循环神经网络则可以处理具有时序关系的数据,如文本和语音。

神经网络的训练方法神经网络的训练是通过优化算法来调整网络参数以减小预测误差。

本文将介绍几种常用的优化算法,包括梯度下降法和反向传播算法。

梯度下降法通过计算损失函数的梯度来更新网络参数,以使预测结果与实际输出更接近。

反向传播算法则是一种高效计算梯度的方法。

实验与结果分析本文将设计并实施几个实验来验证神经网络模型的性能。

通过使用公开的数据集和适当的评估指标,我们将对不同网络结构和训练方法进行比较,并对实验结果进行分析和讨论。

结论神经网络模型在机器研究中有着广泛的应用前景。

本文通过对神经网络的基本原理、常见的网络结构和训练方法的介绍,以及实验结果的分析,为研究和应用神经网络模型提供了有效的参考。

以上为《神经网络模型的研究毕业论文》的大纲。

数学建模竞赛-神经网络

数学建模竞赛-神经网络

神经网络例解:设计BP网,编写文件ch14eg4.m,结构和参数见程序中的说明。

clear;close all;x = [0:0.25:10]; y = 0.12*exp(-0.213*x)+0.54*exp(-0.17*x).*sin(1.23*x); % x,y分别为输入和目标向量net=newff(minmax(x),[20,1],{'tansig','purelin'}); % 创建一个前馈网络y0 = sim(net,x); % 仿真未经训练的网络netnet.trainFcn='trainlm'; % 采用L-M优化算法TRAINLMnet.trainParam.epochs = 500; net.trainParam.goal = 1e-6; % 设置训练参数[net,tr]=train(net,x,y); % 调用相应算法训练网络y1 = sim(net,x); % 对BP网络进行仿真E = y-y1; MSE=mse(E) % 计算仿真误差figure; % 下面绘制匹配结果曲线plot(x,y0,':',x,y1,'r*',x,0.12*exp(-0.213*x)+0.54*exp(-0.17*x).*sin(1.23*x),'b');运行如下:>> ch14eg4MSE =9.6867e-007例14.6 蠓虫分类问题。

两种蠓虫Af和Apf已由生物学家W.L.Grogan和W.W.Wirth(1981)根据他们的触角长度和翅长加以区分。

现测得6只Apf蠓虫和9只Af蠓虫的触长、翅长的数据如下:Apf: (1.14,1.78),(1.18,1.96),(1.20,1.86),(1.26,2.),(1.28,2.00),(1.30,1.96).Af: (1.24,1.72),(1.36,1.74),(1.38,1.64),(1.38,1.82),(1.38,1.90),(1.4,1.7),(1.48,1.82),(1.54,1.82),(1.56,2.08)请用恰当的方法对触长、翅长分别为(1.24,1.80),(1.28,1.84),(1.40,2.04)的3个样本进行识别。

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。

建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。

本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。

关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。

从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。

但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。

其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。

二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。

他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。

同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。

但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。

因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。

三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。

建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。

把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。

(采用BP神经网络完成非线性函数的逼近)神经网络

(采用BP神经网络完成非线性函数的逼近)神经网络

控制系统仿真与模型处理设计报告(采用BP神经网络完成非线性函数的逼近)1、题目要求:(1)确定一种神经网络、网络结构参数和学习算法。

(2)选择适当的训练样本和检验样本,给出选取方法。

(3)训练网络使学习目标误差函数达到0.01,写出学习结束后的网络各参数,并绘制学习之前、第100次学习和学习结束后各期望输出曲线、实际输出曲线。

绘制网络训练过程的目标误差函数曲线。

(4)验证网络的泛化能力,给出网络的泛化误差。

绘制网络检验样本的期望输出曲线和网络输出曲线。

(5)分别改变神经网络的中间节点个数、改变网络的层数、改变学习算法进行比较实验,讨论系统的逼近情况,给出你自己的结论和看法。

2、设计方案:在MATLAB中建立M文件下输入如下命令:x=[0:0.01:1];y=2.2*power(x-0.25,2)+sin(5*pi*x);plot(x,y)xlabel('x');ylabel('y');title('非线性函数');得到如下图形,即所给的非线性函数曲线图:构造一个1-7-1的BP神经网络,第一层为输入层,节点个数为1;第二层为隐层,节点个数为7;变换函数选正切s型函数(tansig);第三层为输出层,节点个数为1,输出层神经元传递函数为purelin函数。

并且选Levenberg-Marquardt算法(trainlm)为BP网络的学习算法。

对于该初始网络,我们选用sim()函数观察网络输出。

继续在M函数中如下输入。

net=newff(minmax(x),[1,7,1],{'tansig','tansig','purelin'},'trainlm'); y1=sim(net,x);figure;plot(x,y,'b',x,y1,'r')title('期望输出与实际输出比较');xlabel('t');则得到以下所示训练的BP网络期望输出与实际输出曲线比较:应用函数train()对网络进行训练之前,需要预先设置训练参数。

数学建模 -的范例

数学建模 -的范例

针对问题三,本文首先对主要风险因子进行了灰色预测,计算出未来几年水资源总量、降水量、平均气温、生活用水量、工业用水量。

然后采用问题二中的BP神经网络预测每年的缺水量。

最后通过整合往年的数据,运用问题二中的熵值取权的模糊评价模型预测出未来几年内水资源短缺的风险等级。

由于考虑到降水量和地下储水相关系数高,我们依据历年的降水量估测出平水年,偏枯年,枯水年三种不同年份的水资源总量,并应用问题二的风险评价模型进行评估,得到三种不同年份水资源短缺风险等级依次为高,较高,较低。

最后我们分析了南水北调工程对北京市未来两年水资源短缺的风险等级影响,风险等级依次变为低,偏低,无。

针对问题四,我们从北京市水资源现状及分析、北京市严重缺水的原因探究、北京市水资源开发利用对策三个层面向相关行政主管部门提交建议报告,以求帮助其合理规避水资源短缺风险。

关键字:水资源短缺风险、灰色关联度分析、主成分分析,模糊综合评价、BP 神经网络、熵值取权一、问题重述1.1 问题背景水是生命之源,万物之本,是人类生存和发展不可或缺的物质,是地球上最普遍、最常见同时也是最珍贵的自然资源。

水是人类一切生产活动的基础,有水的地方欣欣向荣,水资源枯竭的地方则文明消失。

长期以来,我们注重经济社会发展,却忽略了水资源的承载能力,注重水资源开发利用,却没有同等重视节约和保护。

随着经济社会发展,1.2 问题重述水资源短缺危险泛指在特定的时空环境下,由于来水和用水的不确定性,室区域水资源系统发生供水短缺的可能性以及有此产生的损失。

近年来我国水资源短缺问题日趋严重,以北京市为例,北京是世界上水资源严重缺乏的大都市之一,属严重缺水地区。

虽然政府采取了一些列措施,如南水北调工程建设, 建立污水处理厂,产业结构调整等。

但是,气候变化和经济社会不断发展,水资源短缺风险始终存在。

如何对水资源风险的主要因子进行识别,对风险造成的危害等级进行划分,对不同风险因子采取相应的有效措施规避风险或减少其造成的危害,这对社会经济的稳定、可持续发展战略的实施具有重要的意义。

毕业设计论文基于遗传算法的BP神经网络的优化问题研究.doc

毕业设计论文基于遗传算法的BP神经网络的优化问题研究.doc

编号:审定成绩:重庆邮电大学毕业设计(论文)设计(论文)题目:基于遗传算法的BP神经网络的优化问题研究学院名称:学生姓名:专业:班级:学号:指导教师:答辩组负责人:填表时间:2010年06月重庆邮电大学教务处制摘要本文的主要研究工作如下:1、介绍了遗传算法的起源、发展和应用,阐述了遗传算法的基本操作,基本原理和遗传算法的特点。

2、介绍了人工神经网络的发展,基本原理,BP神经网络的结构以及BP算法。

3、利用遗传算法全局搜索能力强的特点与人工神经网络模型学习能力强的特点,把遗传算法用于神经网络初始权重的优化,设计出混合GA-BP算法,可以在一定程度上克服神经网络模型训练中普遍存在的局部极小点问题。

4、对某型导弹测试设备故障诊断建立神经网络,用GA直接训练BP神经网络权值,然后与纯BP算法相比较。

再用改进的GA-BP算法进行神经网络训练和检验,运用Matlab软件进行仿真,结果表明,用改进的GA-BP算法优化神经网络无论从收敛速度、误差及精度都明显高于未进行优化的BP神经网络,将两者结合从而得到比现有学习算法更好的学习效果。

【关键词】神经网络BP算法遗传算法ABSTRACTThe main research work is as follows:1. Describing the origin of the genetic algorithm, development and application, explain the basic operations of genetic algorithm, the basic principles and characteristics of genetic algorithms.2. Describing the development of artificial neural network, the basic principle, BP neural network structure and BP.3. Using the genetic algorithm global search capability of the characteristics and learning ability of artificial neural network model with strong features, the genetic algorithm for neural network initial weights of the optimization, design hybrid GA-BP algorithm, to a certain extent, overcome nerves ubiquitous network model training local minimum problem.4. A missile test on the fault diagnosis of neural network, trained with the GA directly to BP neural network weights, and then compared with the pure BP algorithm. Then the improved GA-BP algorithm neural network training and testing, use of Matlab software simulation results show that the improved GA-BP algorithm to optimize neural network in terms of convergence rate, error and accuracy were significantly higher than optimized BP neural network, a combination of both to be better than existing learning algorithm learning.Key words:neural network back-propagation algorithms genetic algorithms目录第一章绪论 (1)1.1 遗传算法的起源 (1)1.2 遗传算法的发展和应用 (1)1.2.1 遗传算法的发展过程 (1)1.2.2 遗传算法的应用领域 (2)1.3 基于遗传算法的BP神经网络 (3)1.4 本章小结 (4)第二章遗传算法 (5)2.1 遗传算法基本操作 (5)2.1.1 选择(Selection) (5)2.1.2 交叉(Crossover) (6)2.1.3 变异(Mutation) (7)2.2 遗传算法基本思想 (8)2.3 遗传算法的特点 (9)2.3.1 常规的寻优算法 (9)2.3.2 遗传算法与常规寻优算法的比较 (10)2.4 本章小结 (11)第三章神经网络 (12)3.1 人工神经网络发展 (12)3.2 神经网络基本原理 (12)3.2.1 神经元模型 (12)3.2.2 神经网络结构及工作方式 (14)3.2.3 神经网络原理概要 (15)3.3 BP神经网络 (15)3.4 本章小结 (21)第四章遗传算法优化BP神经网络 (22)4.1 遗传算法优化神经网络概述 (22)4.1.1 用遗传算法优化神经网络结构 (22)4.1.2 用遗传算法优化神经网络连接权值 (22)4.2 GA-BP优化方案及算法实现 (23)4.3 GA-BP仿真实现 (24)4.3.1 用GA直接训练BP网络的权值算法 (25)4.3.2 纯BP算法 (26)4.3.3 GA训练BP网络的权值与纯BP算法的比较 (28)4.3.4 混合GA-BP算法 (28)4.4 本章小结 (31)结论 (32)致谢 (33)参考文献 (34)附录 (35)1 英文原文 (35)2 英文翻译 (42)3 源程序 (47)第一章绪论1.1 遗传算法的起源从生物学上看,生物个体是由细胞组成的,而细胞则主要由细胞膜、细胞质、和细胞核构成。

2011数学建模A题神经网络优秀论文,带代码

2011数学建模A题神经网络优秀论文,带代码

图 1 该城区的地形分布图
首先,我们根据样本点的位置和海拔绘制出该城区的地貌,见图 1。我们运 用 matlab 软件,根据各个网格区域中的重金属含量,用三角形线性插值的方法 得到各种重金属含量在空间上分布的等值线图。
1 图 2-1
2
1 图 2-2
2
图 2-1 给出了 As 在该区域的空间分布:图中可以观察到 As 有两个明显的高 值中心,我们标记为区域 1 和 2。这两个区域都处于工业区分布范围内,并以该 两个区域作为中心向外延伸, 浓度逐渐减少,同时我们注意到在山区的很多区域
Ni
(3211,5686) (24001,12366)
Pb
(1991,3329) (4508,5412)
Zn
(1699,2867) (3725,5487) (9583,4512) (13653,9655)
综合分析所得污染源所在位置,发现不同金属的污染源有同源现象,依据 同源性汇聚污染源,绘制了八种重金属的污染源汇总图。 问题四:神经网络模型的优点是具有较强的自组织、自学习能力、泛化能 力和充分利用了海拔高度的信息;缺点是训练要求样本点容量较大。可以通过搜 集前几年该城区八种重金属浓度的采样数据和近几年工厂分布多少位置的变化、 交通路段车流量的变化、 人口及生活区分布变化与植被分布多少位置的变化等数 据,进一步拓展神经网络模型,得到该城市地质环境的演变模式。
符号
意义
k i j
x ij
xi
表示不同功能区 表示金属的种类 表示不同的样本 表示样本 j 中金属 i 的浓度 表示金属 i 背景值的平均值 表示金属 i 背景值的标准差
表示 x i j 标准化后的值
i
Y ij
i
Ik

BP神经网络原理与应用实习论文

BP神经网络原理与应用实习论文

学年论文(本科)学院数学与信息科学学院专业信息与计算科学专业年级10级4班姓名徐玉琳于正平马孝慧李运凤郭双双任培培论文题目BP神经网络原理与应用指导教师冯志敏成绩2013年 9月 24日BP神经网络的原理与应用1.BP神经网络的原理1.1 BP神经网络的结构BP神经网络模型是一个三层网络,它的拓扑结构可被划分为:输入层(InputLayer )、输出层(Outp ut Layer ) ,隐含层(Hide Layer ).其中,输入层与输出层具有更重要的意义,因此也可以为两层网络结构(把隐含层划入输入层,或者把隐含层去掉)每层都有许多简单的能够执行并行运算的神经元组成,这些神经元与生物系统中的那些神经元非常类似,但其并行性并没有生物神经元的并行性高.BP神经网络的特点:1)网络由多层构成,层与层之间全连接,同一层之间的神经元无连接.2)BP网络的传递函数必须可微.因此,感知器的传递函数-——二值函数在这里没有用武之地.BP网络一般使用Sigmoid函数或线性函数作为传递函数.3)采用误差反向传播算法(Back-Propagation Algorithm)进行学习.在BP 网络中,数据从输入层隐含层逐层向后传播,训练网络权值时,则沿着减少误差的方向,从输出层经过中间各层逐层向前修正网络的连接权值.随着学习的不断进行,最终的误差越来越来小.BP神经网络的学习过程BP神经网络的学习算法实际上就是对误差函数求极小值的算法,它采用的算法是最速下降法,使它对多个样本进行反复的学习训练并通过误差的反向传播来修改连接权系数,它是沿着输出误差函数的负梯度方向对其进行改变的,并且到最后使误差函数收敛于该函数的最小点.1.3 BP网络的学习算法BP网络的学习属于有监督学习,需要一组已知目标输出的学习样本集.训练时先使用随机值作为权值,修改权值有不同的规则.标准的BP神经网络沿着误差性能函数梯度的反向修改权值,原理与LMS算法比较类似,属于最速下降法.拟牛顿算法牛顿法是一种基于二阶泰勒级数的快速优化算法.其基本方法是1(1)()()()x k x k A k g k -+=-式中 ()A k ----误差性能函数在当前权值和阀值下的Hessian 矩阵(二阶导数),即2()()()x x k A k F x ==∇牛顿法通常比较梯度法的收敛速度快,但对于前向型神经网络计算Hessian 矩阵是很复杂的,付出的代价也很大.有一类基于牛顿法的算法不需要二阶导数,此类方法称为拟牛顿法(或正切法),在算法中的Hessian 矩阵用其近似值进行修正,修正值被看成梯度的函数. 1)BFGS 算法在公开发表的研究成果中,你牛顿法应用最为成功得有Boryden,Fletcher,Goldfard 和Shanno 修正算法,合称为BFG 算法. 该算法虽然收敛所需的步长通常较少,但在每次迭代过程所需要的计算量和存储空间比变梯度算法都要大,对近似Hessian 矩阵必须进行存储,其大小为n n ⨯,这里n 网络的链接权和阀值的数量.所以对于规模很大的网络用RPROP 算法或任何一种梯度算法可能好些;而对于规模较小的网络则用BFGS 算法可能更有效. 2)OSS 算法 由于BFGS 算法在每次迭代时比变梯度算法需要更多的存储空间和计算量,所以对于正切近似法减少其存储量和计算量是必要的.OSS 算法试图解决变梯度法和拟牛顿(正切)法之间的矛盾,该算法不必存储全部Hessian 矩阵,它假设每一次迭代时与前一次迭代的Hessian 矩阵具有一致性,这样做的一个有点是,在新的搜索方向进行计算时不必计算矩阵的逆.该算法每次迭代所需要的存储量和计算量介于梯度算法和完全拟牛顿算法之间. 最速下降BP 法最速下降BP 算法的BP 神经网络,设k 为迭代次数,则每一层权值和阀值的修正按下式进行(1)()()x k x k g k α+=-式中()x k —第k 次迭代各层之间的连接权向量或阀值向量;()g k =()()E k x k ∂∂—第k 次迭代的神经网络输出误差对各权值或阀值的梯度向量.负号表示梯度的反方向,即梯度的最速下降方向;α—学习效率,在训练时是一常数.在MATLAB 神经网络工具箱中,,可以通过改变训练参数进行设置;()E K —第k 次迭代的网络输出的总误差性能函数,在MATLAB 神经网络工具箱中BP 网络误差性能函数默认值为均方误差MSE,以二层BP 网络为例,只有一个输入样本时,有2()()E K E e k ⎡⎤=⎣⎦21S≈22221()S i i i t a k =⎡⎤-⎣⎦∑ 222212,1()()()()s ii j i i j a k f w k a k b k =⎧⎫⎪⎪⎡⎤=-⎨⎬⎣⎦⎪⎪⎩⎭∑21221112,,11()(()())()s s i j i j i i i j j f w k f iw k p ib k b k ==⎧⎫⎡⎤⎛⎫⎪⎪=++⎢⎥ ⎪⎨⎬⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭∑∑若有n 个输入样本2()()E K E e k ⎡⎤=⎣⎦21nS ≈22221()S ii i ta k =⎡⎤-⎣⎦∑根据公式和各层的传输函数,可以求出第k 次迭代总误差曲面的梯度()g k =()()E k x k ∂∂,分别代入式子便可以逐次修正其权值和阀值,并是总的误差向减小的方向变化,直到达到所需要的误差性能为止. 1.4 BP 算法的改进BP 算法理论具有依据可靠、推导过程严谨、精度较高、通用性较好等优点,但标准BP 算法存在以下缺点:收敛速度缓慢;容易陷入局部极小值;难以确定隐层数和隐层节点个数.在实际应用中,BP 算法很难胜任,因此出现了很多改进算.利用动量法改进BP 算法标准BP 算法实质上是一种简单的最速下降静态寻优方法,在修正W(K)时,只按照第K 步的负梯度方向进行修正,而没有考虑到以前积累的经验,即以前时刻的梯度方向,从而常常使学习过程发生振荡,收敛缓慢.动量法权值调整算法的具体做法是:将上一次权值调整量的一部分迭加到按本次误差计算所得的权值调整量上,作为本次的实际权值调整量,即:其中:α为动量系数,通常0<α<0.9;η—学习率,范围在0.001~10之间.这种方法所加的动量因子实际上相当于阻尼项,它减小了学习过程中的振荡趋势,从而改善了收敛性.动量法降低了网络对于误差曲面局部细节的敏感性,有效的抑制了网络陷入局部极小.自适应调整学习速率标准BP算法收敛速度缓慢的一个重要原因是学习率选择不当,学习率选得太小,收敛太慢;学习率选得太大,则有可能修正过头,导致振荡甚至发散.可采用图所示的自适应方法调整学习率.调整的基本指导思想是:在学习收敛的情况下,增大η,以缩短学习时间;当η偏大致使不能收敛时,要及时减小η,直到收敛为止.动量-自适应学习速率调整算法采用动量法时,BP算法可以找到更优的解;采用自适应学习速率法时,BP算法可以缩短训练时间.将以上两种方法结合起来,就得到动量-自适应学习速率调整算法.1. L-M学习规则L-M(Levenberg-Marquardt)算法比前述几种使用梯度下降法的BP算法要快得多,但对于复杂问题,这种方法需要相当大的存储空间L-M(Levenberg-Marquardt)优化方法的权值调整率选为:其中:e —误差向量;J —网络误差对权值导数的雅可比(Jacobian )矩阵;μ—标量,当μ很大时上式接近于梯度法,当μ很小时上式变成了Gauss-Newton 法,在这种方法中,μ也是自适应调整的. 1.5 BP 神经网络的设计 网络的层数输入层节点数取决于输入向量的维数.应用神经网络解决实际问题时,首先应从问题中提炼出一个抽象模型,形成输入空间和输出空间.因此,数据的表达方式会影响输入向量的维数大小.例如,如果输入的是64*64的图像,则输入的向量应为图像中所有的像素形成的4096维向量.如果待解决的问题是二元函数拟合,则输入向量应为二维向量.理论上已证明:具有偏差和至少一个S 型隐含层加上一个线性输出层的网络,能够逼近任何有理数.增加层数可以更进一步的降低误差,提高精度,但同时也使网络复杂化,从而增加了网络权值的训练时间.而误差精度的提高实际上也可以通过增加神经元数目来获得,其训练效果也比增加层数更容易观察和调整.所以一般情况下,应优先考虑增加隐含层中的神经元数. 隐含层的神经元数网络训练精度的提高,可以通过采用一个隐含层,而增加神经元数了的方法来获得.这在结构实现上,要比增加隐含层数要简单得多.那么究竟选取多少隐含层节点才合适?这在理论上并没有一个明确的规定.在具体设计时,比较实际的做法是通过对不同神经元数进行训练对比,然后适当地加上一点余量.1)0niMi C k =>∑,k 为样本数,M 为隐含层神经元个数,n 为输入层神经元个数.如i>M,规定C i M =0.2)和n 分别是输出层和输入层的神经元数,a 是[0.10]之间的常量.3)M=2log n ,n 为输入层神经元个数.初始权值的选取由于系统是非线性的,初始值对于学习是否达到局部最小、是否能够收敛及训练时间的长短关系很大.如果初始值太大,使得加权后的输入和n落在了S型激活函数的饱和区,从而导致其导数f (n)非常小,从而使得调节过程几乎停顿下来.所以一般总是希望经过初始加权后的每个神经元的输出值都接近于零,这样可以保证每个神经元的权值都能够在它们的S型激活函数变化最大之处进行调节.所以,一般取初始权值在(-1,1)之间的随机数.学习速率学习速率决定每一次循环训练中所产生的权值变化量.大的学习速率可能导致系统的不稳定;但小的学习速率导致较长的训练时间,可能收敛很慢,不过能保证网络的误差值不跳出误差表面的低谷而最终趋于最小误差值.所以在一般情况下,倾向于选取较小的学习速率以保证系统的稳定性.学习速率的选取范围在0.01-0.8之间.1.6BP神经网络局限性需要参数多且参数选择没有有效的方法对于一些复杂问题 ,BP 算法可能要进行几小时甚至更长的时间训练,这主要是由于学习速率太小所造成的.标准BP 网络学习过程缓慢,易出现平台,这与学习参数率l r的选取有很大关系.当l r较时,权值修改量大,学习速率也快,但可能产生振荡;当l r较小时,虽然学习比较平稳,但速度十分缓慢.容易陷入局部最优BP网络易陷入局部最小, 使 BP网络不能以高精度逼近实际系统.目前对于这一问题的解决有加入动量项以及其它一些方法.BP 算法本质上是以误差平方和为目标函数 , 用梯度法求其最小值的算法.于是除非误差平方和函数是正定的, 否则必然产生局部极小点, 当局部极小点产生时 , BP算法所求的就不是解.1.6.3 样本依赖性这主要表现在网络出现的麻痹现象上.在网络的训练过程中,如其权值调的过大,可能使得所有的或大部分神经元的加权值偏大,这使得激活函数的输入工作在S型转移函数的饱和区,从而导致其导函数非常小,使得对网络权值的调节过程几乎停顿下来.通常为避免这种现象的发生,一是选取较小的初始权值,二是采用较小的学习速率,但又要增加时间训练.初始权敏感对于一些复杂的问题,BP算法可能要进行几个小时甚至更长时间的训练.这主要是由于学习速率太小造成的.可采用变化的学习速率或自适应的学习速率来加以改进.2.BP神经网络应用2.1 手算实现二值逻辑—异或这个例子中,采用手算实现基于BP网络的异或逻辑.训练时采用批量训练的方法,训练算法使用带动量因子的最速下降法.在MATLAB中新建脚本文件main_xor.m,输入代码如下:%脚本%批量训练方式.BP网络实现异或逻辑%%清理clear allclcrand('seed',2)eb = 0.01; %误差容限eta = 0.6; %学习率mc = 0.8; %动量因子maxiter = 1000; %最大迭代次数%% 初始化网络nSampNum = 4;nSampDim = 2;nHidden = 3;nOut = 1;w = 2*(rand(nHidden,nSampDim)-1/2);b = 2*(rand(nHidden,1)-1/2);wex = [w,b];W = 2*(rand(nOut,nHidden)-1/2);B = 2*(rand(nOut,1)-1/2);WEX = [W,B];%%数据SampIn=[0,0,1,1;...0,1,0,1;…1,1,1,1];expected = [0,1,1,0];%%训练iteration = 0;errRec = [];outRec =[];for i = 1:maxiter% 工作信号正向传播hp = wex*SampIn;tau = logsig(hp);tauex = [tau',1*ones(nSampNum,1)]';HM = WEX*tauex;out = logsig(HM);outRec = [outRec,out'];err = expected - out;sse = sumsqr(err);errRec = [errRec,sse];fprintf('第%d 次迭代,误差:%f \n',i,sse);% 判断是否收敛iteration = iteration + 1;if sse <= ebbreak;end% 误差信号反向传播% DELTA 和delta 为局部梯度DELTA = err.*dlogsig(HM,out);delta = W' * DELTA.*dlogsig(hp,tau);dWEX = DELTA*tauex';dwex = delta*SampIn';% 更新权值if i == 1WEX = WEX + eta*dWEX;wex = wex + eta*dwex;elseWEX = WEX + (1-mc)*eta*dWEX + mc*dWEXold;wex = wex + (1-mc)*eta*dwex+mc*dwexold;enddWEXold = dWEX;dwexold = dwex;W = WEX(:,1:nHidden);end%%显示figure(1)grid[nRow,nCol]=size(errRec);semilogy(1:nCol,errRec,'LineWidth',1.5);title('误差曲线');xlabel('迭代次数');x=-0.2:.05:1.2;[xx,yy] = meshgrid(x);for i=1:length(xx)for j=1:length(yy)xi=[xx(i,j),yy(i,j),1];hp = wex*xi';tau = logsig(hp);tauex = [tau',1]';HM = WEX*tauex;out = logsig(HM);z (i,j) =out;endendfigure(2)mesh(x,x,z);figure(3)plot([0,1],[0,1],'*','LineWidth',2);hold onplot([0,1],[1,0],'O','LineWidth',2);[c,h]=contour(x,x,z,0.5,'b');clabel(c,h);legend('0','1','分类面');title('分类面')2.2 误差下降曲线如下图所示:Finger 1010*******400500600700800900100010-210-110误差曲线迭代次数网格上的点在BP 网络映射下的输出如下图:Finger 2异或本质上是一个分类问题,,分类面如图:Finger 3分类面-0.200.20.40.60.81 1.2本文介绍了神经网络的研究背景和现状,分析了目前神经网络研究中存在的问题.然后描述了BP神经网络算法的实现以及BP神经网络的工作原理,给出了BP网络的局限性.本文虽然总结分析了BP神经网络算法的实现,给出了实例分析,但是还有很多的不足.所总结的BP神经网络和目前研究的现状都还不够全面,经过程序调试的图形有可能都还存在很多细节上的问题,而图形曲线所实现效果都还不够好,以及结果分析不够全面、正确、缺乏科学性等,这些都还是需加强提高的.近几年的不断发展,神经网络更是取得了非常广泛的应用,和令人瞩目的发展.在很多方面都发挥了其独特的作用,特别是在人工智能、自动控制、计算机科学、信息处理、机器人、模式识别等众多方面的应用实例,给人们带来了很多应用上到思考,和解决方法的研究.但是神经网络的研究最近几年还没有达到非常热门的阶段,这还需有很多热爱神经网络和研究神经网络人员的不断研究和创新,在科技高度发达的现在,我们有理由期待,也有理由相信.我想在不久的将来神经网络会应用到更多更广的方面,人们的生活会更加便捷.学年论文成绩评定表。

数学建模论文(精选4篇)

数学建模论文(精选4篇)

数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。

BP神经网络-本科生毕业设计论文-小论文

BP神经网络-本科生毕业设计论文-小论文

基于智能计算的水质预测预警系统的设计与实现温子铭1,刘双印1(1.广东海洋大学信息学院,广东湛江524088)摘要:及时准确地掌握水质变化趋势是确保水产品健康养殖的关键,为此,本设计采用智能计算与现代Web开发技术有机结合,以软件工程为指导,按照面向对象程序设计的方法,构建5种基于智能计算的水质预测预警模型;采用J2EE为开发工具设计实现了B/S架构的水质预测预警系统。

该系统主要有水质数据管理、水质数据趋势展示、水质指标溶解氧浓度预测、水质预警管理等功能模块组成,用户界面友好,水质预测精度较高,能够满足水产养殖水质管理的需要。

该系统的研制为提前掌握水质未来发展趋势、水污染预警提供基础数据和手段,为应对突发水质事件、水质调节、水产养殖生产管理与规划提供科学的决策依据,有一定的实用价值。

关键词:水产养殖;水质趋势;J2EE;水质预测预警系统;智能计算;Design and Implementation of Water Quality Predicting and Early Warning SystemBase on Smart ComputingWen Ziming, Liu Shuangyin(1. Information Institute of Guangdong Ocean University, Zhanjiang,GuangDong 524088) Abstract:Have a good command of water quality trends in time and accurately is the key to assure health growth of the aquatic products. Therefore, this design is combined with intelligent computing and modern web development technology, on the guidance of software engineer, and also established five kinds of water quality predicting and early warning models based on intelligent technology according to the measure of Object-Oriented Programming; We adopted J2EE as development tool to achieve the water quality predicting and early warning system based on B/S framework. This system mainly included water quality data management module, water quality data trend module, dissolved oxygen prediction module and water quality early warning module. It’s useful for users and can meet the needs of aquatic water quality management. The establishment of this system provide the basic data and methods to handling the future water quality trend and water pollution early warning. And also provide the scientific decision for dealing with the water pollution events, water quality adjustment, aquaculture management and plans. It has practical value.Key words: Aquaculture, water quality trend, J2EE, water quality predicting and early warning system, intelligent computing.1引言我国是水产养殖大国,也是世界上唯一一个养殖产量超过捕捞产量的国家, 水产养殖为解决食品供给、粮食安全、改善民生,增加农民收入等方面发挥了重要作用。

数学建模mathorcup获奖论文

数学建模mathorcup获奖论文

数学建模mathorcup-获奖论文————————————————————————————————作者:————————————————————————————————日期:评委一评分,签名及备注队号:评委三评分,签名及备注20025评委四评分,签名及备注评委二评分,签名及备注选题:B题目:基于层次分析法与BP神经网络对书籍推荐的研究摘要随着信息技术和互联网的发展,关于各类信息的评价、推荐越来越被广泛关注。

本文根据一个著名网上书店的用户行为信息,分析影响用户评分的因素来建立用户对书籍的评分体系模型,进而对用户进行书籍推荐。

对于问题一,首先对原始数据筛选处理,得到用户对书籍的评价为5分的数据;考虑到不同因素对书籍评分的影响,然后再对标签、社交好友、书籍浏览量三组数据分别进行双变量相关分析,得到用户对书籍的评分分数与标签数量、用户好友数量、书籍的历史浏览量成正相关的关系,对用户对书籍评分影响程度分别为历史浏览量>用户好友人数>书籍标签数量。

对于问题二,本文分别通过建立层次分析模型和BP神经网络模型对评分进行预测。

首先将三个影响评分的因素:书籍的书签数量、历史浏览量、用户的好友数量作为评分指标,建立层次评价指标体系。

然后,通过建立层次分析模型,得到标签数量、历史浏览量、用户好友数量三个指标的权重:0.0813,0.6837,0.2349,进而确定用户对书籍的评分公式,再将问题中的36组数据分别进行分析,并运用评分公式得到用户对每个书籍的评分。

接下来构建BP神经网络模型,先对原始数据进行筛选得到99组数据;把不同用户对书籍的标签数量、用户好友数量、书籍浏览量和对应的书籍评分作为输入量,将其他用户对书籍的评分作为输出量。

选取80组数据训练该神经网络,剩余19组数据检验模型,误差在5.3%之内,最后利用该训练好的网络预测用户对书籍评分。

通过两种模型的对比得出更为精确的结果。

对于问题三,本文考虑到对书籍的好评频率越高,用户对书籍的喜爱程度越高,通过对原始数据筛选得到用户未看过书的ID,选取前三本评分为五分频率最高的书籍,即为推荐给该用户的三本书籍ID,然后循环五次进行分析最终得到问题所要求的五个用户的推荐书籍ID。

数学建模论文模板(10篇)

数学建模论文模板(10篇)

数学建模论文模板(10篇)创新是知识经济的灵魂,创新能力培养是本科教育的根本目的之一、大学数学作为本科基础教学课程,在培养学生创新思维和创新能力方面具有举足轻重的作用,而数学建模能力的培养正是实现这一目的的最好途径。

2.数学教学中渗透数学建模思想是大学数学教学的必然要求。

目前,高校中高等数学教学普遍存在内容多、课时少的问题,教师在教学中往往只注重理论知识的教学,忽视了知识的应用;只注重数学学科本身知识的讲解,不注重学科之间的结合,这样使学生体会不到数学的真正用处。

为了克服这一教学中的不足,应将数学建模思想融入大学数学教学中去,使学生具备扎实的数学理论基本功和数学技能的同时,更具备运用数学思想解决实际问题的创新能力和应用能力。

3.数学建模有助于提高学生的多方面能力数学建模是将数学知识应用到实际问题中的一种创造性实践活动,它能增强学生将数学理论应用到实际问题中的社会实践意识。

数学建模具有思维的灵活性和结论的不确定性,在解决实际问题时可以从不同的角度,采用不同的数学方法建立数学模型,因此,可以激发学生的想象力、观察力和创造力。

另外,在建模时往往需要查阅相关文献资料,从中吸取有用的信息用于建模,这无形之中拓宽了学生的知识面,培养了学生的科研能力。

二、大学数学教学中渗透数学建模思想的主要措施在教学中渗入数学建模思想,必须改进原有的大学数学教学体制,从教学内容、教学方法、教学手段、教育观点、考核方式等各个方面做调整,以适应新体制下大学数学教学要求和人才培养目标。

1.从教学内容上改进以促进数学建模思想的普及和深入。

科学合理地修订教学大纲和调整教学内容,适当增加数学建模以及数学实验的教学环节势在必行。

为了让学生了解数学和数学建模的思想和理念,我校主要从课堂上和课外两方面采取了一些措施,并取得了一定的成效。

(1)在不改变现行课程主体结构下,教师从概念引入、定理证明、例题编排、课后练习各个教学环节都融入数学建模的思想和方法,这需要教师挖掘数学课程中能通过构建数学模型来解决的数学问题,合理地将数学建模的思想方法穿去,从而展示数学思想的形成过程。

全国数学建模优秀获奖论文[1]肾炎问题

全国数学建模优秀获奖论文[1]肾炎问题

2007053A肾炎问题模型摘要在充分理解题意的基础上,我们提出了合理的假设。

通过对问题的深入分析,我们将本题归结为预测问题,建立了BP神经网络模型。

通过对的诊断问题,应用神经网络与模糊数学的理论,给出了肾炎的量化诊断方案.首先,建立了BP神经网络模型,使用60组数据的1-25和31-55组作为训练样本,用余下的10组数据对网络性能进行检测.进一步考虑到神经网络与模糊数学各自的特点,将二者有机结合构造了神经模糊系统,并用以上的6个特征对系统进行训练.本文构造的模型具有良好的稳定性,对于模式识别问题具有很强的实用价值,其次本文提出了神经网络和模糊数学深层次结合的方向.接着我们结合现实生活,并对我们的论文进行了优缺点评价。

最后在附录中列出了运算数据和主要程序的代码问题的重述就诊人员可以通过元素分析可以确定其为肾炎或健康.有表1可以知道肾炎病人和健康人之间的元素差异,并建立相关模型进行预测。

另外,要对其结果通过表2进行检验。

为了更好的节约时间,把问题合理的简单化,并按上述步骤建模求解。

最后,就是对模型的评价和对比。

二、符号说明与问题假设2.1 问题假设1.是否患肾炎仅由该七种元素的含量决定。

2.所给的60组病例具有广泛的代表性.3.60组诊断所反映的元素分布符合病例的自然分布.2.2 符号说明a——输入的训练样本的矩阵;n——输入的训练样本数量;k——输入的训练样本的输出结果;f——输入的待测样本;X——输入的待测样本的输出结果;(其他符号在文中均附有说明)。

三、问题分析3.1 问题分析和建模思路考虑问题的题设和要求,我们要解决的是诊断人员的诊断预测问题。

首先,我们要利用已知的信息及其假设,建立BP神经网络模型。

然后通过对已知数据的训练,并通过检验来预测第二组数据。

其次,由前面可得问题的主要指标,来改进模型和预测。

最后,进行模型的对比,模型的评价。

3.2 思路流程图下面的思路流程图是我们文章结构的一个缩影,它完整而形象的反映了我们文章的建模思路四、模型的建立和求解4.1 模型I :人工神经网络(ANN)模型⒈算法简述人工神经网络模拟了生物神经网络的一系列运行机理,它能够像人脑一样处理大量数据,并且输出一个想要的结果。

bp神经网络参考文献(推荐96个)

bp神经网络参考文献(推荐96个)

BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络。

以下是整理好的关于bp神经网络参考文献96个,希望对您有所帮助。

bp神经网络参考文献一: [1]唐睿旋,晏鄂川,唐薇. 基于粗糙集和BP神经网络的滑坡易发性评价[J]. 煤田地质与勘探,2017,45(06):129-138. [2]郑贵洲,乐校冬,王红平,花卫华. 基于WorldView-02高分影像的BP和RBF神经网络遥感水深反演[J]. 地球科学,2017,42(12):2345-2353. [3]朱聪聪,朱国维,张庆朝. BP神经网络在高密度电法反演中的改进与应用[J]. 煤炭技术,2017,36(12):90-92. [4]孙家文,黄杰,于永海,尹晶,王浩然. BP神经网络平衡岬湾岸线形态模型及其应用研究[J]. 海洋环境科学,2018,37(01):143-150. [5]李嘉康,李其杰,赵颖,廖洪林. 基于CEEMD-BP神经网络的海温异常预测研究[J]. 数学的实践与认识,2017,47(24):163-171. [6]冯鑫伟,黄领梅,沈冰. BP神经网络组合模型在次洪量预测中的应用[J]. 水土保持通报,2017,37(06):173-177. [7]周德红,冯豪,程乐棋,李文. 遗传算法优化的BP神经网络在地震死亡人数评估中的应用[J]. 安全与环境学报,2017,17(06):2267-2272. [8]王力,周志杰,赵福均. 基于BP神经网络和证据理论的超声检测缺陷识别[J]. 电光与控制,2018,25(01):65-69. [9]王小飞,汪建光,袁于评. BP神经网络在遥感影像波段拟合中的应用[J]. 现代测绘,2018,41(01):44-46. [10]林志东,陈兴伟,张仓荣. 基于灰色关联与BP神经网络的台风非台风暴雨洪水分类模拟[J]. 山地学报,2017,35(06):882-889. [11]宋建国,李赋真,徐维秀,李哲. 改进的神经网络级联相关算法及其在初至拾取中的应用[J]. 石油地球物理勘探,2018,53(01):8-16+4. [12]褚继花. 遗传算法优化BP神经网络水文预报过程模型研究[J]. 水利规划与设计,2018(01):65-66+118. [13]李强,杨天邦,涂公平. GA-BP神经网络模型应用于岩芯扫描仪测定海洋沉积物中多种组分的半定量分析[J]. 分析仪器,2018(01):75-79. [14]曹文洁,肖长来,梁秀娟,韩良跃,胡冰. RBF神经网络在地下水动态预测中的应用[J]. 水利水电技术,2018,49(02):43-48. [15]黄海燕,王叶鹏. 边坡稳定因素的BP网络分析[J]. 安徽建筑,2018,24(01):285-286. [16]王春香,张勇,梁亮,王岩辉. 基于GA-BP神经网络的三维点云孔洞修补研究[J]. 制造技术与机床,2018(03):76-79. [17]孙菊秋,刘向楠. 人工神经网络模型在地下水水位预测中的应用[J]. 陕西水利,2018(02):189-190. [18]潘微,邢建勇,万莉颖. 一种基于BP神经网络方法的HY-2A散射计反演风场偏差订正方案[J]. 海洋预报,2018,35(02):8-18. [19]王鹤,刘梦琳,席振铢,彭星亮,何航. 基于遗传神经网络的大地电磁反演[J]. 地球物理学报,2018,61(04):1563-1575. [20]蔡润,武震,云欢,郭鹏. 基于BP和SOM神经网络相结合的地震预测研究[J]. 四川大学学报(自然科学版),2018,55(02):307-315. [21]侯奇,刘静,管骁. 基于神经网络的微生物生长预测模型[J]. 食品与机械,2018,34(02):120-123. [22]张志勰,虞旦. BP和RBF神经网络在函数逼近上的对比与研究[J]. 工业控制计算机,2018,31(05):119-120. [23]赵学伟,王萍,李新举,刘宁. 基于BP神经网络GPR反演滨海盐渍土含盐量模型构建[J]. 山东农业科学,2018,50(05):152-155. [24]丁书敏,范宏. 基于优化BP神经网络的P2P投资组合定量分析[J]. 中国集体经济,2018(20):95-97. [25]曲娜,杨万昌,刘臻. 基于BP神经网络的分层越浪式波能发电装置越浪量估算研究[J]. 中国水运(下半月),2018,18(07):71-72. bp神经网络参考文献二: [26]刘振华,范宏运,朱宇泽,柳尚. 基于BP神经网络的溶洞规模预测及应用[J]. 中国岩溶,2018,37(01):139-145. [27]李敬明,倪志伟,朱旭辉,许莹. 基于佳点萤火虫算法与BP神经网络并行集成学习的旱情预测模型[J]. 系统工程理论与实践,2018,38(05):1343-1353. [28]赵亚飞,韦广梅. 基于BP神经网络的有限元应力修匀的研究[J]. 计算机工程与应用,2018,54(13):67-72. [29]熊建宁. 基于BP神经网络算法下的边坡安全预测[J]. 江西水利科技,2018,44(03):176-179. [30]郑威,杨英,惠力,鲁成杰,赵彬,杨立. 基于BP神经网络模型的ADCP倾斜条件下的修正算法研究[J]. 山东科学,2018,31(03):1-7. [31]戴妙林,屈佳乐,刘晓青,李强伟,马永志. 基于GA-BP算法的岩质边坡稳定性和加固效应预测模型及其应用研究[J]. 水利水电技术,2018,49(05):165-171. [32]张丽娟,张文勇. 基于Heston模型和遗传算法优化的混合神经网络期权定价研究[J]. 管理工程学报,2018,32(03):142-149. [33]王珲玮,徐彦,张非非. 基于遗传算法优化BP神经网络的弹体结构载荷识别[J]. 工业控制计算机,2018,31(06):74-76. [34]陈阳,胡伍生,严宇翔,龙凤阳,张良. 基于神经网络模型误差补偿技术的对流层延迟模型研究[J]. 大地测量与地球动力学,2018,38(06):577-580+586. [35]姜宝良,李林晓,李腾超. 基于BP神经网络的新乡百泉逐月泉水流量动态分析[J]. 矿产勘查,2018,9(03):516-521. [36]单鹏,冒晓莉,张加宏,马涛,陈永. 基于PSO-BP神经网络的探空湿度太阳辐射误差修正[J]. 科学技术与工程,2018,18(19):1-8. [37]李志新,赖志琴. 年径流变化的BP神经网络预报模型研究[J]. 水电能源科学,2018,36(07):10-12. [38]肖恭伟,欧吉坤,刘国林,张红星. 基于改进的BP神经网络构建区域精密对流层延迟模型[J]. 地球物理学报,2018,61(08):3139-3148. [39]地力夏提·艾木热拉,丁建丽,穆艾塔尔·赛地,米热古力·艾尼瓦尔,邹杰. 基于T-S 模糊神经网络模型的干旱区土壤盐分预测研究[J]. 西南农业学报,2018,31(07):1418-1424. [40]赖金燕,黄建儒. 水文时间序列的小波神经网络工具箱预测[J]. 科技视界,2018(16):164-165+167. [41]王占武. 神经网络在边坡监测中的应用研究[J]. 计算机产品与流通,2018(04):44+111. [42]范晓东,邱波,刘园园,魏诗雅,段福庆. 一种基于遗传优化的BP神经网络的测光红移估计算法[J]. 光谱学与光谱分析,2018,38(08):2374-2378. [43]邓才林,周芳翊,丁健. BP神经网络在县域GPS高程拟合中的应用[J]. 工程勘察,2018,46(08):51-56. [44]杜言霞,于子敏,温继昌,舒毅,吴勇凯,谢启杰. 基于神经网络技术的天气雷达超折射回波识别[J]. 气象科技,2018,46(04):644-650. [45]卢志宏,刘辛瑶,常书娟,杨胜利,赵薇薇,杨勇,刘爱军. 基于BP神经网络的草原矿区表层土壤N/P高光谱反演模型[J]. 草业科学,2018,35(09):2127-2136. [46]刘强,冯忠伦,刘红利,王维,林洪孝,王刚. 结合RVA法建立天然径流量还原计算的BP神经网络模型[J]. 中国农村水利水电,2018(10):54-59. [47]陈有利,朱宪春,胡波,顾小丽. 基于BP神经网络的宁波市台风灾情预估模型研究[J]. 大气科学学报,2018,41(05):668-675. [48]刘毅聪,刘祚秋. 基于人工神经网络及优化方法的岩体力学参数反分析法综述[J]. 广东土木与建筑,2018,25(09):31-35. [49]林焰,杨建辉. 考虑投资者情绪的GARCH-改进神经网络期权定价模型[J]. 系统管理学报,2018,27(05):863-871+880. [50]朱智慧,曹庆,徐杰. 神经网络方法在上海沿海海浪预报中的应用[J]. 海洋预报,2018,35(05):25-33. bp神经网络参考文献三: [51]张彬. 融合遗传算法和BP神经网络对基坑地表沉降预测的应用研究[J]. 北京测绘,2018,32(10):1152-1155. [52]陈文雄,朱咏,陈学林. 基于LM-BP神经网络的黑河龙电渠流量推测研究[J]. 地下水,2018,40(05):115-117+130. [53]张春露,白艳萍. ARIMA时间序列模型和BP神经网络组合预测在铁路客座率中的应用[J]. 数学的实践与认识,2018,48(21):105-113. [54]王帅,黄海鸿,韩刚,刘志峰. 基于PCA与GA-BP神经网络的磁记忆信号定量评价[J]. 电子测量与仪器学报,2018,32(10):190-196. [55]汪子豪,秦其明,孙元亨,张添源,任华忠. 基于BP神经网络的地表温度空间降尺度方法[J]. 遥感技术与应用,2018,33(05):793-802. [56]冯姣姣,王维真,李净,刘雯雯. 基于BP神经网络的华东地区太阳辐射模拟及时空变化分析[J]. 遥感技术与应用,2018,33(05):881-889+955. [57]王国盛,拾兵,何昆,刘帆,徐丽. 基于GA-BP神经网络的孤立波爬高预测[J]. 中国海洋大学学报(自然科学版),2018,48(S2):165-170. [58]王杰,徐锡杰,解斐斐. 基于PSO算法的BP神经网络对植被叶片氮素含量的预测[J]. 北京测绘,2018,32(11):1289-1292. [59]孔凡涛,蔡盼盼,张解成,蒋鑫. BP神经网络在大地电磁反演中的应用[J]. 科技创新与应用,2018(32):19-21. [60]陈笑,王发信,戚王月,周婷. 基于遗传算法的BP神经网络模型在地下水埋深预测中的应用——以蒙城县为例[J]. 水利水电技术,2018,49(04):1-7. [61]陈记臣,查悉妮,卓文珊,周月英,姚寒梅,张泳华,刘祖发. 基于AdaBoost算法和BP神经网络的咸潮模拟研究[J]. 人民珠江,2017,38(01):5-10. [62]王建金,石朋,瞿思敏,肖紫薇,戴韵秋,陈颖冰,陈星宇. 与马斯京根汇流模型耦合的BP神经网络修正算法[J]. 中国农村水利水电,2017(01):113-117. [63]钟仕林. 基于BP神经网络的管道投资风险评价模型研究[J]. 山西建筑,2017,43(02):251-252. [64]钱建国,刘淑亮. BP神经网络在GPS高程拟合中的应用探讨[J]. 测绘与空间地理信息,2017,40(01):18-20. [65]卢志宏,武晓东,柴享贤,杨素文,李燕妮,叶丽娜. 应用BP神经网络对荒漠啮齿动物种群数量的预测研究[J]. 动物学杂志,2017,52(02):227-234. [66]曹斌,邱振戈,朱述龙,曹彬才. BP神经网络遥感水深反演算法的改进[J]. 测绘通报,2017(02):40-44. [67]易金鑫,胡晓冬,姚建华,黄利安,Kovalenko Volodymyr. 基于改进BP神经网络算法的激光相变硬化层深度的研究[J]. 应用激光,2017,37(01):72-78. [68]杨淑华,刘洁莉,梁进秋,杨春仓,秦雅娟,徐鑫,李腊平,张玉芳. 基于BP神经网络的马铃薯气候产量预报模型[J]. 农学学报,2017,7(04):29-33. [69]孙雪,张琳. BP神经网络在基坑变形预测中的应用及改进[J]. 勘察科学技术,2017(01):47-51. [70]李永梅,张立根,海云端,董越. 基于BP神经网络的宁夏耕地资源动态变化及预测[J]. 湖南农业科学,2017(01):81-85. [71]王晓颖. 改进BP神经网络模型的地基变形预测[J]. 测绘与空间地理信息,2017,40(03):215-217. [72]雷凯栋,张淑娟. 精准扶贫指标——农机总动力基于BP神经网络SAS分析预测[J]. 农产品加工,2017(06):74-76. [73]赵涛,于师建. 基于GA-BP神经网络算法的高密度电法非线性反演[J]. 煤田地质与勘探,2017,45(02):147-151. [74]马凯,梁敏. 基于BP神经网络高光谱图像分类研究[J]. 测绘与空间地理信息,2017,40(05):118-121. [75]黎玥君,郭品文. 基于BP神经网络的浙北夏季降尺度降水预报方法的应用[J]. 大气科学学报,2017,40(03):425-432. bp神经网络参考文献四 : [76]王存友,黄张裕,汪闩林,欧阳经富. BP神经网络与多项式拟合在沉降监测中的应用[J]. 地理空间信息,2017,15(06):107-108+113+6. [77]李玉能,马建军,池恩安,陈永麟. 基于BP神经网络的高含水岩石爆破震动参数预报[J]. 爆破,2017,34(02):68-73. [78]严禛,伍星蓉. 基于BFO-BP神经网络的储层预测研究[J]. 能源与环保,2017,39(07):210-213. [79]吕晶,谢润成,周文,刘毅,尹帅,张冲. LM-BP神经网络在泥页岩地层横波波速拟合中的应用[J]. 中国石油大学学报(自然科学版),2017,41(03):75-83. [80]晏红波,杨庆,任超,毕旋旋. 基于EEMD的BP神经网络边坡预测研究[J]. 水力发电,2017,43(07):37-40. [81]刘立君,姜亚青,王晓鹏,姚纪荣. 激光熔凝参数BP神经网络的反求[J]. 哈尔滨理工大学学报,2017,22(03):112-116. [82]赵鹤,李向群,孙昊. 基于BP神经网络算法的高层建筑物地基沉降预测分析[J]. 长春师范大学学报,2017,36(04):31-33. [83]王竹. 半分布式耦合BP神经网络洪水预报模型研究[J]. 中国农村水利水电,2017(08):96-102. [84]李嘉康,赵颖,廖洪林,李其杰. 基于改进EMD算法和BP神经网络的SST预测研究[J]. 气候与环境研究,2017,22(05):587-600. [85]郑威,杨英,赵彬,惠力,鲁成杰,杨书凯. 基于BP神经网络模型研究背景流对于ADCP波浪估计的影响[J]. 气象水文海洋仪器,2017,34(03):1-6. [86]李月,徐守余. BP神经网络在砂体连通性评价中的应用[J]. 甘肃科学学报,2017,29(04):16-21. [87]王楠,唐永刚,何康. BP神经网络在摩擦学领域的应用现状[J]. 济宁学院学报,2017,38(05):15-22. [88]单红喜. 基于BP神经网络的深基坑沉降预测[J]. 山西建筑,2017,43(28):78-79. [89]郑贵强,吕大炜,李小明,朱雪征. 基于BP神经网络方法模拟深煤层物性临界深度[J]. 煤炭技术,2017,36(10):11-13. [90]龚巧灵,官冬杰. 基于BP神经网络的三峡库区重庆段水资源安全评价[J]. 水土保持研究,2017,24(06):292-299. [91]王旭,温泉,陈龙飞,张豪杰,王芳,刘玉芳. DBR光纤激光拍频检测结合BP神经网络的温度传感解调技术[J]. 光学与光电技术,2017,15(05):6-9. [92]高宁,吴秋堂,王静燕. 基于LM-BP神经网络的高层建筑物沉降变形预测[J]. 河南城建学院学报,2017,26(04):7-12. [93]冯非凡,武雪玲,牛瑞卿,许石罗,于宪煜. 粒子群优化BP神经网络的滑坡敏感性评价[J]. 测绘科学,2017,42(10):170-175. [94]林宇锋,邓洪敏,史兴宇. 基于新的改进粒子群算法的BP神经网络在拟合非线性函数中的应用[J]. 计算机科学,2017,44(S2):51-54. [95]李建飞. 基于全极化SAR数据的BP神经网络分类研究[J]. 科学技术创新,2017(32):161-162. [96]谭延嗣. BP神经网络应用于地质灾害预测的研究[J]. 江西建材,2017(24):229+233.。

2004年A题全国数学建模优秀论文4

2004年A题全国数学建模优秀论文4

复结果比重较大,则认为该训练得到的权值是该输入和输出的良好隐
射。
因此此类算法可以运用:
1 空间场能量分布,边坡应力分析等。
byage = 0.2027 0.3323 0.4650
感谢您对中国数学建模网一如既往的支持和厚爱
欢迎光临中国数学建模网-
100
orrr
10-2
E
quaed r S-
10-4
mu
S
10-6 0
5
4
aet 3
Rg
Leannri
2
1
0 0
Training for 55 Epochs
图 四 流量相关分析 根据题目说明的,出行均采取最短路径,因此上图中的相关的连线(可 行道路),对于每一个迷你超市来说,并不是所有的都分配到。在计 算相关流量时,亦定义:
ζ =M×N k
其中:ζ 为第 k 超市分配到的百分总和比,M 为三个主场管某场管 k
的总人数,N 为调查观众(购物主体)的出行和用餐的需求方式和购 物欲望情况百分率分布。此题先把所有连接进行表格描述,然后通过 人工选择确定归属。其中: a=4; b=6; c=10; c1=a*(bb(1)+bb(4))+c*bb(1); c2=a*(bb(1)+bb(4)+bb(3))+b*bb(1)+c*bb(1); c3=1*(a*(bb(2)+bb(5)+bb(6)+bb(7)+bb(8)+bb(9))+c*bb(1)); c4=1*(a*(bb(2)+bb(4)+bb(5)+bb(6)+bb(7)+bb(8)+bb(9))+c*bb(1)); 其中a,b,c(注:a, c因为程序关系,位置与实际数据不对应) 为场管总容纳人数,bb(i) 为购物主体的兴趣分布,每一项的右项为人

人工神经网络的数学模型建立及成矿预测BP网络的实现

人工神经网络的数学模型建立及成矿预测BP网络的实现

人工神经网络的数学模型建立及成矿预测BP网络的实现一、本文概述本文旨在探讨人工神经网络的数学模型建立及其在成矿预测中的应用,特别是使用反向传播(Backpropagation,简称BP)网络的具体实现。

我们将对人工神经网络的基本原理和数学模型进行概述,包括其结构、学习机制以及优化算法。

然后,我们将深入研究BP网络的设计和实现过程,包括网络层数、节点数、激活函数、学习率等关键参数的选择和优化。

在理解了BP网络的基本原理和实现方法后,我们将进一步探讨其在成矿预测中的应用。

成矿预测是一个复杂的地质问题,涉及到众多的影响因素和不确定性。

BP网络作为一种强大的非线性映射工具,能够有效地处理这类问题。

我们将详细介绍如何根据地质数据的特点,设计合适的BP网络模型,并通过实例验证其预测效果。

我们将对BP网络在成矿预测中的优势和局限性进行讨论,并展望未来的研究方向。

通过本文的研究,我们希望能够为地质领域的决策和预测提供一种新的、有效的工具和方法。

二、人工神经网络的数学模型建立人工神经网络(ANN)是一种模拟人脑神经元网络结构的计算模型,它通过学习大量的输入输出样本数据,自动调整网络权重和阈值,从而实现对新数据的分类、识别或预测。

在建立ANN的数学模型时,我们首先需要明确网络的拓扑结构、激活函数、学习算法等关键要素。

拓扑结构决定了神经网络的层次和连接方式。

在成矿预测中,我们通常采用前馈神经网络(Feedforward Neural Network),也称为多层感知器(MLP)。

这种网络结构包括输入层、隐藏层和输出层,每一层的神经元与下一层的神经元全连接,但同一层内的神经元之间不连接。

输入层负责接收原始数据,隐藏层负责提取数据的特征,输出层负责给出预测结果。

激活函数决定了神经元如何对输入信号进行非线性变换。

常用的激活函数包括Sigmoid函数、Tanh函数和ReLU函数等。

在成矿预测中,由于数据的复杂性和非线性特征,我们通常选择ReLU函数作为隐藏层的激活函数,因为它在负值区域为零,可以有效缓解梯度消失问题。

数学建模论文格式参考模板

数学建模论文格式参考模板

题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号宋体)摘要所要表述内容主要为:钟对什么样的问题,经过分析,采用什么样的方法,得到什么样的结果,(如果是多个模型对同一个问题进行讨论,要有结果比较,把好的放后面。

)摘要是重中之重,必须严格执行!一般是全文结束后再写摘要。

关键词:页码:1(底居中)(目录可选)目录(4号黑体)(以下小4号)一、问题重述…………………………………………………………()二、问题分析…………………………………………………………()三、模型的假设…………………………………………………………()四、定义与符号说明…………………………………………………()五、模型的建立与求解………………………………………………()六、对模型的评价………………………………………………………()七、参考文献……………………………………………………………()八、附录…………………………………………………………………………()一、问题重述(第二页起黑四号)在保持原题主体思想不变下,可以自己组织词句对问题进行描述,主要数据可以直接复制,对所提出的问题部分基本原样复制。

篇幅建议不要超过一页。

大部分文字提炼自原题。

二、问题分析主要是表达对题目的理解,特别是对附件的数据进行必要分析、描述(一般都有数据附件),这是需要提到分析数据的方法、理由。

如果有多个小问题,可以对每个小问题进行分别分析。

(假设有3个问题)(一) 问题1的分析对问题1研究的意义的分析。

问题1属于。

数学问题,对于解决此类问题一般数学方法的分析。

对附件中所给数据特点的分析。

对问题1所要求的结果进行分析。

由于以上原因,我们可以将首先建立一个。

的数学模型I,然后将建立一个。

的模型II,。

对结果分别进行预测,并将结果进行比较.(二) 问题2的分析对问题2研究的意义的分析。

问题2属于。

数学问题,对于解决此类问题一般数学方法的分析。

对附件中所给数据特点的分析。

基于BP神经网络的学生数学能力评价模型设计

基于BP神经网络的学生数学能力评价模型设计

基于BP神经网络的学生数学能力评价模型设计基于BP神经网络的学生数学能力评价模型设计,将隐含层的传递函数设置为tansing,输出层函数设置为purline,样本的选择需具有代表性、随机性,这样才能够在归一预化处理后,对学生的数学学习能力进行评价,帮助教师提高教学质量评价。

1 BP神经网络BP神经网络也称为反向传播网络,包括输出层,隐含层,输入层三部分,同时BP的神经网络具有非线性的特点,能够解决没有规则,多约束条件或数据不完全等问题,适合处理复杂的分类及模式识别等问题。

BP神经网络具有一个或一个以上的信息隐含层,能够将相邻的两层完全连接起来。

要建立学生数学能力评价的BP神经网络模型,就需要建立具有代表性的数据库,以便于进行评价。

就数据库的建立而言,为了提高评价的准确性及标准性,BP神经网络需要建立完善的选取设置体系,在输入层与输出层的设计应多样化,才能够保证测试评价的效果。

对于普通学校来说,样本的选取量应该不低于200人。

对于隐含层神经元的点数,计算时应根据样本的选取量进行调整,基本的模型设计流程是从BP神经网络的构建开始到BP网络训练,以及最后的BP网络预测,其中最重要的是BP网络训练,本文采取的是trainlm算法,从而建立其BP神经网络模型。

2 学生数学学习能力评价对学生进行数学学习能力评价是为了对学生的数学学习能力进行测试,帮助教师掌握学生的学习情况,以便于调整教学方法以及教学进度,让学生能够提高学习能力。

评价的内容是学习思路,学习方法,学习过程及学习效果。

要对这四点进行评价,首先就要确定各内容的评价标准及方式。

以往的评价方式是通过测试及课堂问答,通过学生的测验成绩及回答进行分析,从而判断学生所处的学习状态,教学方法以教学进度安排的合理程度。

利用BP神经网络进行评价的化,就要将各个标准程序化,将原先教师的主观评价变为网络的程序化运行,根据运行的结果对学生的数学学习能力进行判断,这就是利用BP网络对学生数学学习能力评价的理论,实际上要进行实践并不简单,BP神经网络评价的构建是难题的关键点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BP 神经网络算法原理:输入信号i x 通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号k y ,网络训练的每个样本包括输入向量x 和期望输出量d ,网络输出值y 与期望输出值d 之间的偏差,通过调整输入节点与隐层节点的联接强度取值ij w 和隐层节点与输出节点之间的联接强度jk T 以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。

此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。

变量定义:设输入层有n 个神经元,隐含层有p 个神经元,输出层有q 个神经元 输入向量:()12,,,n x x x x =隐含层输入向量:()12,,,p hi hi hi hi = 隐含层输出向量:()12,,,p ho ho ho ho = 输出层输入向量:()12,,,q yi yi yi yi = 输出层输出向量:()12,,,q yo yo yo yo =期望输出向量: ()12,,,q do d d d =输入层与中间层的连接权值: ih w 隐含层与输出层的连接权值: ho w 隐含层各神经元的阈值:h b 输出层各神经元的阈值: o b 样本数据个数: 1,2,k m =激活函数: ()f ⋅误差函数:211(()())2qo o o e d k yo k ==-∑算法步骤:Step1.网络初始化 。

给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e ,给定计算精度值ε和最大学习次数M 。

Step2.随机选取第k 个输入样本()12()(),(),,()n x k x k x k x k =及对应期望输出()12()(),(),,()q d k d k d k d k =oStep3.计算隐含层各神经元的输入()1()()1,2,,nh ih i h i hi k w x k b h p ==-=∑和输出()()(())1,2,,h h ho k f hi k h p ==及输出层各神经元的输入()1()()1,2,po ho h o h yi k w ho k b o q ==-=∑和输出()()(())1,2,,o o yo k f yi k o p ==Step4.利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数()o k δ。

oho o hoyi e e w yi w ∂∂∂=∂∂∂ (())()()pho h o o hh hohow ho k b yi k ho k w w ∂-∂==∂∂∑211((()()))2(()())()(()())f (())()qo o o o o oo oo o o o d k yo k e d k yo k yo k yi yi d k yo k yi k k δ=∂-∂'==--∂∂'=---∑ Step5.利用隐含层到输出层的连接权值、输出层的()o k δ和隐含层的输出计算误差函数对隐含层各神经元的偏导数()h k δ。

()()oo h ho o hoyi e e k ho k w yi w δ∂∂∂==-∂∂∂ 1()()(())()()h ih h ih nih i h h i i ihihhi k e e w hi k w w x k b hi k x k w w =∂∂∂=∂∂∂∂-∂==∂∂∑212121111((()()))()2()()()1((()f(())))()2()()1(((()f(())))()2()()(()())f (())qo o o h h h h qo o o h h h qpo ho h o o h h h h o o o hoo d k yo k ho k e hi k ho k hi k d k yi k ho k ho k hi k d k w ho k b ho k ho k hi k d k yo k yi k w =====∂-∂∂=∂∂∂∂-∂=∂∂∂--∂=∂∂'=--∑∑∑∑1()()(())f (())()qh h qo ho h h o ho k hi k k w hi k k δδ=∂∂'=--∑∑ Step6.利用输出层各神经元的()o k δ和隐含层各神经元的输出来修正连接权值()ho w k 。

1()()()()()ho o h ho N Nho ho o h ew k k ho k w w w k ho k μμδηδ+∂∆=-=∂=+Step7.利用隐含层各神经元的()h k δ和输入层各神经元的输入修正连接权()ih w k 。

1()()()()()()()h ih h i ih h ih N Nih ih h i hi k e e w k k x k w hi k w w w k x k μμδηδ+∂∂∂∆=-=-=∂∂∂=+Step8.计算全局误差。

2111(()())2qm o o k o E d k y k m ===-∑∑ Step9.判断网络误差是否满足要求。

当误差达到预设精度或学习次数大于设定的最大次数,则结束算法。

否则,选取下一个学习样本及对应的期望输出,返回到第三步,进入下一轮学习。

算法流程图:参数确定:确定了网络层数、每层节点数、传递函数、初始权系数、学习算法等也就确定了BP网络。

确定这些选项时有一定的指导原则,但更多的是靠经验和试凑。

1. 样本数据采用BP神经网络方法建模的首要和前提条件是有足够多典型性好和精度高的样本。

而且,为监控训练(学习)过程使之不发生“过拟合”和评价建立的网络模型的性能和泛化能力,必须将收集到的数据随机分成训练样本、检验样本(10%以上)和测试样本(10%以上)3部分。

2.输入/输出变量一般地,BP 网络的输入变量即为待分析系统的内生变量(影响因子或自变量)数,一般根据专业知识确定。

若输入变量较多,一般可通过主成份分析方法压减输入变量,也可根据剔除某一变量引起的系统误差与原系统误差的比值的大小来压减输入变量。

输出变量即为系统待分析的外生变量(系统性能指标或因变量),可以是一个,也可以是多个。

一般将一个具有多个输出的网络模型转化为多个具有一个输出的网络模型效果会更好,训练也更方便。

3.数据的预处理由于BP 神经网络的隐层一般采用Sigmoid 转换函数,为提高训练速度和灵敏性以及有效避开Sigmoid 函数的饱和区,一般要求输入数据的值在0~1之间。

因此,要对输入数据进行预处理。

一般要求对不同变量分别进行预处理,也可以对类似性质的变量进行统一的预处理。

如果输出层节点也采用Sigmoid 转换函数,输出变量也必须作相应的预处理,否则,输出变量也可以不做预处理。

但必须注意的是,预处理的数据训练完成后,网络输出的结果要进行反变换才能得到实际值。

再者,为保证建立的模型具有一定的外推能力,最好使数据预处理后的值在0.2~0.8之间。

标准化:minmax mind d d d d αβ-'=⨯+-4.隐层数一般认为,增加隐层数可以降低网络误差,提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合(overfitting)” 造成网络的性能脆弱,泛化能力(generalization ability)下降。

Hornik 等早已证明:若输入层和输出层采用线性转换函数,隐层采用Sigmoid 转换函数,则含一个隐层的MLP 网络能够以任意精度逼近任何有理函数。

显然,这是一个存在性结论。

在设计BP 网络时可参考这一点,应优先考虑3层BP 网络(即有1个隐层)。

图 三层BP 网络的拓扑结构5.隐层节点数在BP 网络中,若隐层节点数太少,网络可能根本不能训练或网络性能很差;若隐层节点数太多,虽然可使网络的系统误差减小,但一方面使网络训练时间延长,另1 x2 x 1Nx一方面,训练容易陷入局部极小点而得不到最优点,也是训练时出现“过拟合”的内在原因,但是目前理论上还没有一种科学的和普遍的确定方法。

为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。

因此,合理隐层节点数应在综合考虑网络结构复杂程度和误差大小的情况下用节点删除法和扩张法确定。

6.传递函数图BP网络常用的传递函数BP网络的传递函数有多种。

Log-sigmoid型函数的输入值可取任意值,输出值在0和1之间;tan-sigmod型传递函数tansig的输入值可取任意值,输出值在-1到+1之间;线性传递函数purelin的输入与输出值可取任意值。

BP网络通常有一个或多个隐层,该层中的神经元均采用sigmoid型传递函数,输出层的神经元则采用线性传递函数,整个网络的输出可以取任意值。

7.学习率学习率影响系统学习过程的稳定性。

大的学习率可能使网络权值每一次的修正量过大,甚至会导致权值在修正过程中超出某个误差的极小值呈不规则跳跃而不收敛;但过小的学习率导致学习时间过长,不过能保证收敛于某个极小值。

所以,一般倾向选取较小的学习率以保证学习过程的收敛性(稳定性),通常在0.01~0.8之间。

8.网络的初始连接权值BP算法决定了误差函数一般存在(很)多个局部极小点,不同的网络初始权值直接决定了BP算法收敛于哪个局部极小点或是全局极小点。

因此,要求计算程序必须能够自由改变网络初始连接权值。

由于Sigmoid转换函数的特性,一般要求初始权值分布在-0.5~0.5之间比较有效。

10.收敛误差界值Emin在网络训练过程中应根据实际情况预先确定误差界值。

误差界值的选择完全根据网络模型的收敛速度大小和具体样本的学习精度来确定。

当Emin 值选择较小时,学习效果好,但收敛速度慢,训练次数增加。

如果Emin值取得较大时则相反。

网络模型的性能和泛化能力:训练神经网络的首要和根本任务是确保训练好的网络模型对非训练样本具有好的泛化能力(推广性),即有效逼近样本蕴含的内在规律,而不是看网络模型对训练样本的拟合能力。

判断建立的模型是否已有效逼近样本所蕴含的规律, 主要不是看测试样本误差大小的本身,而是要看测试样本的误差是否接近于训练样本和检验样本的误差。

非训练样本误差很接近训练样本误差或比其小,一般可认为建立的网络模型已有效逼近训练样本所蕴含的规律,否则,若相差很多(如几倍、几十倍甚至上千倍)就说明建立的网络模型并没有有效逼近训练样本所蕴含的规律,而只是在这些训练样本点上逼近而已,而建立的网络模型是对训练样本所蕴含规律的错误反映。

算法的特点:1.非线性映照能力。

相关文档
最新文档