2018-2019学年湖南省衡阳市 衡东县高湖红桥中学高二数学理下学期期末试题
2018-2019学年高二下学期期末考试数学试题(带答案)
2018-2019学年高二下学期期末考试一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合4{|0}2x A x Z x -=∈≥+,1{|24}4x B x =≤≤,则A B I =() A .{|12}x x -≤≤ B .{1,0,1,2}-C .{2,1,0,1,2}--D .{0,1,2}2.已知i 为虚数单位,若复数11tiz i-=+在复平面内对应的点在第四象限,则t 的取值范围为() A .[1,1]- B .(1,1)- C .(,1)-∞-D .(1,)+∞3.若命题“∃x 0∈R ,使x 20+(a -1)x 0+1<0”是假命题,则实数a 的取值范围为( ) A .1≤a ≤3 B .-1≤a ≤3 C .-3≤a ≤3D .-1≤a ≤14.已知双曲线1C :2212x y -=与双曲线2C :2212x y -=-,给出下列说法,其中错误的是()A.它们的焦距相等B .它们的焦点在同一个圆上C.它们的渐近线方程相同D .它们的离心率相等5.在等比数列{}n a 中,“4a ,12a 是方程2310x x ++=的两根”是“81a =±”的() A .充分不必要条件 B .必要不充分条件 C.充要条件D .既不充分也不必要条件6.已知直线l 过点P (1,0,-1),平行于向量a =(2,1,1),平面α过直线l 与点M (1,2,3),则平面α的法向量不可能是( ) A.(1,-4,2)B.⎝⎛⎭⎫14,-1,12 C.⎝⎛⎭⎫-14,1,-12 D.(0,-1,1)7.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14 B.3-34 C.2-34 D.138.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种 9.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m 等于( )A .5B .6C .7D .8 10.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计6050110由K 2=n ad -bc 2a +bc +d a +c b +d算得,K 2=110×40×30-20×20260×50×60×50≈7.8.附表:P (K 2≥k ) 0.050 0.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”11.焦点为F 的抛物线C :28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当||||MA MF 取得最大值时,直线MA 的方程为() A .2y x =+或2y x =-- B .2y x =+ C.22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当[2,4]x ∈时,224,23,()2,34,x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩()1g x ax =+,对1[2,0]x ∀∈-,2[2,1]x ∃∈-,使得21()()g x f x =,则实数a 的取值范围为()A .11(,)[,)88-∞-+∞UB .11[,0)(0,]48-U C.(0,8]D .11(,][,)48-∞-+∞U二、填空题:本大题共4小题,每小题5分.13.已知(1,)a λ=r ,(2,1)b =r,若向量2a b +r r 与(8,6)c =r 共线,则a r 和b r 方向上的投影为.14.将参数方程⎩⎨⎧x =a2⎝⎛⎭⎫t +1t ,y =b 2⎝⎛⎭⎫t -1t (t 为参数)转化成普通方程为________.15.已知随机变量X 服从正态分布N (0,σ2),且P (-2≤X ≤0)=0.4,则P (X >2)=________. 16.已知球O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A BCD -的外接球,3BC =,23AB =,点E 在线段BD 上,且3BD BE =,过点E 作圆O 的截面,则所得截面圆面积的取值范围是.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知直线l 的参数方程为24,222x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=,直线l 与圆C 交于A ,B 两点.(1)求圆C 的直角坐标方程及弦AB 的长;(2)动点P 在圆C 上(不与A ,B 重合),试求ABP ∆的面积的最大值18.(12分)设函数()1f x x x =+-的最大值为m .(1)求m 的值;(2)若正实数a ,b 满足a b m +=,求2211a b b a +++的最小值.19.(12分)点C 在以AB 为直径的圆O 上,PA 垂直与圆O 所在平面,G 为AOC ∆的垂心. (1)求证:平面OPG ⊥平面PAC ;(2)若22PA AB AC ===,求二面角A OP G --的余弦值.20.(12分)2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?21. (12分)已知椭圆x 2b 2+y 2a 2=1 (a >b >0)的离心率为22,且a 2=2b .(1)求椭圆的方程;(2)是否存在实数m ,使直线l :x -y +m =0与椭圆交于A ,B 两点,且线段AB 的中点在圆 x 2+y 2=5上?若存在,求出m 的值;若不存在,请说明理由.22. (12分)已知函数f(x)=ln(1+x)-x+k2x2(k≥0).(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)的单调区间.参考答案一、选择题1-5:BBBDA 6-10:DBDBC 11-12:AD 二、填空题13.35514:x 2a 2-y 2b 2=1 . 15.0.1 16.[2,4]ππ三、解答题17.解:(1)由4cos ρθ=得24cos ρρθ=,所以2240x y x +-=,所以圆C 的直角坐标方程为22(2)4x y -+=.将直线l 的参数方程代入圆:C 22(2)4x y -+=,并整理得2220t t +=,解得10t =,222t =-.所以直线l 被圆C 截得的弦长为12||22t t -=. (2)直线l 的普通方程为40x y --=.圆C 的参数方程为22cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数),可设曲线C 上的动点(22cos ,2sin )P θθ+,则点P 到直线l 的距离|22cos 2sin 4|2d θθ+--=|2cos()2|4πθ=+-,当cos()14πθ+=-时,d 取最大值,且d 的最大值为22+. 所以122(22)2222ABP S ∆≤⨯⨯+=+, 即ABP ∆的面积的最大值为22+.18.解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1, x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )有最大值1.所以m =1.(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1=13(a 2b +1+b 2a +1)[(b +1)+(a +1)] =13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1]≥13(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1) =13(a +b )2=13.当且仅当a =b =12时取等号. 即a 2b +1+b 2a +1的最小值为13. 19.解:(1)延长OG 交AC 于点M .因为G 为AOC ∆的重心,所以M 为AC 的中点. 因为O 为AB 的中点,所以//OM BC .因为AB 是圆O 的直径,所以BC AC ⊥,所以OM AC ⊥. 因为PA ⊥平面ABC ,OM ⊂平面ABC ,所以PA OM ⊥. 又PA ⊂平面PAC ,AC ⊂平面PAC ,PA AC A =I , 所以OM ⊥平面PAC .即OG ⊥平面PAC ,又OG ⊂平面OPG , 所以平面OPG ⊥平面PAC .(2)以点C 为原点,CB u u u r ,CA u u u r ,AP u u u r方向分别为x ,y ,z 轴正方向建立空间直角坐标系C xyz -,则(0,0,0)C ,(0,1,0)A ,(3,0,0)B ,31(,,0)22O ,(0,1,2)P ,1(0,,0)2M ,则3(,0,0)2OM =-u u u u r ,31(,,2)22OP =-u u u r .平面OPG 即为平面OPM ,设平面OPM 的一个法向量为(,,)n x y z =r ,则30,23120,22n OM x n OP x y z ⎧⋅=-=⎪⎪⎨⎪⋅=-++=⎪⎩r u u u u r r u u u r 令1z =,得(0,4,1)n =-r . 过点C 作CH AB ⊥于点H ,由PA ⊥平面ABC ,易得CH PA ⊥,又PA AB A =I ,所以CH ⊥平面PAB ,即CH u u u r为平面PAO 的一个法向量.在Rt ABC ∆中,由2AB AC =,得30ABC ∠=︒,则60HCB ∠=︒,1322CH CB ==. 所以3cos 4H x CH HCB =∠=,3sin 4H y CH HCB =∠=. 所以33(,,0)44CH =u u u r .设二面角A OP G --的大小为θ,则||cos ||||CH n CH n θ⋅==⋅u u u r r u u ur r 2233|0410|251441739411616⨯-⨯+⨯=+⨯+. 20.解:(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则333101()120C P A C ==,所以两位顾客均享受到免单的概率为1()()14400P P A P A =⋅=.(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0,600,700,1000.333101(0)120C P X C ===,21373107(600)40C C P X C ===, 123731021(700)40C C P X C ===,373107(1000)24C P X C ===, 故X 的分布列为,所以17217()06007001000120404024E X =⨯+⨯+⨯+⨯17646=(元). 若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-,由已知可得3~(3,)10Y B ,故39()31010E Y =⨯=, 所以()(1000200)E Z E Y =-=1000200()820E Y -=(元).因为()()E X E Z <,所以该顾客选择第一种抽奖方案更合算.21.解:(1)由题意得⎩⎪⎨⎪⎧c a =22,a 2=2b ,b 2=a 2-c 2,解得⎩⎨⎧a =2,c =1,b =1,故椭圆的方程为x 2+y22=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0). 联立直线与椭圆的方程得⎩⎪⎨⎪⎧x 2+y 22=1,x -y +m =0,即3x 2+2mx +m 2-2=0,所以Δ=(2m )2-4×3×(m 2-2)>0,即m 2<3, 且x 0=x 1+x 22=-m 3,y 0=x 0+m =2m3, 即M ⎝ ⎛⎭⎪⎫-m 3,2m 3,又因为M 点在圆x 2+y 2=5上,所以⎝ ⎛⎭⎪⎫-m 32+⎝ ⎛⎭⎪⎫2m 32=5,解得m =±3,与m 2<3矛盾.故实数m 不存在.22. 解: (1)当k =2时,f (x )=ln(1+x )-x +x 2, f ′(x )=11+x-1+2x .由于f (1)=ln 2,f ′(1)=32,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -ln 2=32(x -1),即3x -2y +2ln 2-3=0.(2)f ′(x )=x (kx +k -1)1+x,x ∈(-1,+∞).当k =0时,f ′(x )=-x1+x .所以,在区间(-1,0)上,f ′(x )>0; 在区间(0,+∞)上,f ′(x )<0. 故f (x )的单调递增区间是(-1,0), 单调递减区间是(0,+∞).当0<k <1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=0,x 2=1-kk>0.所以,在区间(-1,0)和(1-kk,+∞)上,f ′(x )>0;在区间(0,1-kk)上,f ′(x )<0.故f (x )的单调递增区间是(-1,0)和(1-kk,+∞),单调递减区间是(0,1-kk ).当k =1时,f ′(x )=x 21+x .故f (x )的单调递增区间是(-1,+∞).当k >1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=1-kk∈(-1,0),x 2=0.所以,在区间(-1,1-kk)和(0,+∞)上,f ′(x )>0;在区间(1-kk,0)上,f ′(x )<0.故f (x )的单调递增区间是(-1,1-kk)和(0,+∞),单调递减区间是(1-kk ,0).。
2018-2019湖南省五市十校高二下学期期末联考数学(理)试题 解析版
绝密★启用前湖南省五市十校2018-2019学年高二下学期期末联考数学(理)试题一、单选题1.已知集合{|20},{|M x x N x y =-<==,则M N ⋃=A .{ | -1}x x >B .{|12}x x -≤<C .{ |-12}x x <<D .R【答案】D 【解析】 【分析】先解出集合M 与N ,再利用集合的并集运算得出M N ⋃. 【详解】{}{}202M x x x x =-<=<,{{}{}101N x y x x x x ===+≥=≥-,M N R ∴=,故选:D.【点睛】本题考查集合的并集运算,在计算无限数集时,可利用数轴来强化理解,考查计算能力,属于基础题。
2.已知复数21z i=-,则下列结论正确的是 A .z 的虚部为i B .2z =C .2z 为纯虚数D .1z i =-+【答案】C 【解析】 【分析】先利用复数的除法将复数z 化为一般形式,然后利用复数的基本知识以及四则运算法则来判断各选项的正误。
【详解】()()()()2121211112i i z i i i i ++====+--+,z ∴的虚部为1,z ==()2221122z i i i i =+=++=为纯虚数,1z i =-,故选:C.【点睛】本题考查复数的四则运算、复数的概念、共轭复数等的理解,解题的关键就是将复数化为一般形式,借助相关概念进行理解,考查计算能力,属于基础题。
3.等比数列{}n a 的各项均为正数,且463718a a a a +=,则31323339log log log log a a a a +++⋯+=( )A .12B .10C .9D .32log 5+【答案】C 【解析】 【分析】先利用等比中项的性质计算出5a 的值,再利用对数的运算性质以及等比中项的性质得出结果。
【详解】由等比中项的性质可得246375218a a a a a +==,等比数列{}n a 的各项均为正数,则53a =, 由对数的运算性质得()3132333931289log log log log log a a a a a a a a ++++=()()()()()423192837465355log log a a a a a a a a a a a ⎡⎤=⋅⋅⋅⋅=⋅⎡⎤⎣⎦⎢⎥⎣⎦99353log log 39a ===,故选:C.【点睛】本题考查等比中项和对数运算性质的应用,解题时充分利用这些运算性质,可简化计算,考查计算能力,属于中等题。
2018-2019学年高二数学下学期期末考试试题理(含解析)_22
2018-2019学年高二数学下学期期末考试试题理(含解析)一、选择题(本题包括12小题,每小题5分,共60分.每小题只有一个选项符合题意.请把正确答案填在答题卷的答题栏内.)1.集合,则等于()A. B. C. D.【答案】B【解析】试题分析:集合,,,,故选B.考点:指数函数、对数函数的性质及集合的运算.2.已知复数满足(其中为虚数单位),则的共轭复数()A. B. C. D.【答案】A【解析】【分析】利用等式把复数z计算出来,然后计算z的共轭复数得到答案.【详解】,则.故选A【点睛】本题考查了复数的计算和共轭复数,意在考查学生对于复数的计算能力和共轭复数的概念,属于简单题.3.是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】分别判断充分性和必要性得到答案.【详解】所以(逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.4.函数的图象大致为()A. B. C.D.【答案】C【解析】【分析】将分别代入函数解析式,判断出正负即可得出结果.【详解】当时,;当时,,根据选项,可得C选项符合.故选C【点睛】本题主要考查函数图像的识别,只需用特殊值法验证即可,属于常考题型.5.为了得到函数的图象,可以将函数的图象()A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度【答案】B【解析】试题分析:∵,∴将函数的图象向右平移个单位长度.故选B.考点:函数的图象变换.6.已知随机变量和,其中,且,若的分布列如下表,则的值为()mA. B. C. D.【答案】A【解析】【分析】根据随机变量和的关系得到,概率和为1,联立方程组解得答案.【详解】且,则即解得故答案选A【点睛】本题考查了随机变量的数学期望和概率,根据随机变量和的关系得到是解题的关键.7.过双曲线的右焦点作圆的切线(切点为),交轴于点.若为线段的中点,则双曲线的离心率是()A. B. C. D.【答案】B【解析】分析】在中,为线段的中点,又,得到等腰三角形,利用边的关系得到离心率.【详解】在中,为线段的中点,又,则为等腰直角三角形.故答案选B【点睛】本题考查了双曲线的离心率,属于常考题型.8.的外接圆的圆心为,,,则等于()A. B. C. D.【答案】C【解析】【详解】,选C9.某同学同时掷两颗骰子,得到点数分别为,则椭圆的离心率的概率是( )A. B. C. D.【答案】C【解析】共6种情况10.设,若,则的值为()A. B. C. D.【答案】D【解析】【分析】分别取代入式子,相加计算得到答案.【详解】取得:取得:两式相加得到故答案选D【点睛】本题考查了二项式定理,取特殊值是解题的关键.11.已知函数,若在上有解,则实数的取值范围为()A. B. C. D.【答案】D【解析】首先判断函数单调性为增. ,将函数不等式关系转化为普通的不等式,再把不等式转换为两个函数的大小关系,利用图像得到答案.【详解】在定义域上单调递增,,则由,得,,则当时,存在的图象在的图象上方.,,则需满足.选D.【点睛】本题考查了函数的单调性,解不等式,将不等式关系转化为图像关系等知识,其中当函数单调递增时,是解题的关键.12.两个半径都是的球和球相切,且均与直二面角的两个半平面都相切,另有一个半径为的小球与这二面角的两个半平面也都相切,同时与球和球都外切,则的值为()A. B. C. D.【答案】D【解析】取三个球心点所在的平面,过点、分别作、,垂足分别为点,过点分别作,,分别得出、以及,然后列出有关的方程,即可求出的值.【详解】因为三个球都与直二面角的两个半平面相切,所以与、、共面,如下图所示,过点、分别作、,垂足分别为点,过点分别作,,则,,,,,,所以,,等式两边平方得,化简得,由于,解得,故选D.【点睛】本题主要考查球体的性质,以及球与平面相切的性质、二面角的性质,考查了转化思想与空间想象能力,属于难题.转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将空间问题转化为平面问题是解题的关键.二、填空题(本题4小题,每小题5分,共20分.请把正确答案写在答卷上.)13.已知向量满足,,的夹角为,则__________.【答案】【解析】14.已知某程序框图如图所示,则执行该程序后输出的结果是_____【答案】-1【解析】【分析】计算的值,找出周期,根据余数得到答案.【详解】依次计算得:….周期为32019除以3余数为0,故答案为-1【点睛】本题考查了程序框图的相关知识,计算数据找到周期规律是解题的关键.15.如果不等式的解集为,且,那么实数的取值范围是 ____【答案】【解析】【分析】将不等式两边分别画出图形,根据图像得到答案.【详解】不等式的解集为,且画出图像知:故答案为:【点睛】本题考查了不等式的解法,将不等式关系转化为图像是解题的关键.16.已知是椭圆的左、右焦点,过左焦点的直线与椭圆交于两点,且,,则椭圆的离心率为________【答案】【解析】【分析】连接,设,利用椭圆性质,得到长度,分别在△和中利用余弦定理,得到c的长度,根据离心率的定义计算得到答案.【详解】设,则,,由,得,,在△中,,又在中,,得故离心率【点睛】本题考察了离心率的计算,涉及到椭圆的性质,正余弦定理,综合性强,属于难题.三、解答题(共70分,解答应写出必要的文字说明、证明过程或演算步骤,把解题过程和步骤写在答题卷上.第17-21题为必考题,第22、23题为选考题.)17.已知数列是公差不为的等差数列,,且,,成等比数列.(1)求数列的通项公式;(2)设,求数列前项和.【答案】(1);(2)【解析】【分析】(1)根据等差数列的定义和,,成等比数列代入公式得到方程,解出答案.(2)据(1)把通项公式写出,根据裂项求和方法求得.【详解】解:(1) ,,成等比数列,则或(舍去)所以(2)【点睛】本题考查了公式法求数列通项式,裂项求和方法求,属于基础题.18.在四棱锥中,,是的中点,面面(1)证明:面;(2)若,求二面角的余弦值.【答案】(1)详见解析;(2).【解析】试题分析:(Ⅰ)取PB的中点F,连接AF,EF,由三角形的中位线定理可得四边形ADEF是平行四边形.得到DE∥AF,再由线面平行的判定可得ED∥面PAB;(Ⅱ)法一、取BC的中点M,连接AM,由题意证得A在以BC为直径的圆上,可得AB⊥AC,找出二面角A-PC-D的平面角.求解三角形可得二面角A-PC-D的余弦值.试题解析:(Ⅰ)证明:取PB的中点F,连接AF,EF.∵EF是△PBC的中位线,∴EF∥BC,且EF=.又AD=BC,且AD=,∴AD∥EF且AD=EF,则四边形ADEF是平行四边形.∴DE∥AF,又DE⊄面ABP,AF⊂面ABP,∴ED∥面PAB(Ⅱ)法一、取BC的中点M,连接AM,则AD∥MC且AD=MC,∴四边形ADCM是平行四边形,∴AM=MC=MB,则A在以BC为直径的圆上.∴AB⊥AC,可得.过D作DG⊥AC于G,∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴DG⊥平面PAC,则DG⊥PC.过G作GH⊥PC于H,则PC⊥面GHD,连接DH,则PC⊥DH,∴∠GHD是二面角A﹣PC﹣D的平面角.在△ADC中,,连接AE,.在Rt△GDH中,,∴,即二面角A﹣PC﹣D的余弦值法二、取BC的中点M,连接AM,则AD∥MC,且AD=MC.∴四边形ADCM是平行四边形,∴AM=MC=MB,则A在以BC为直径的圆上,∴AB⊥AC.∵面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴AB⊥面PAC.如图以A为原点,方向分别为x轴正方向,y轴正方向建立空间直角坐标系.可得,.设P(x,0,z),(z>0),依题意有,,解得.则,,.设面PDC的一个法向量为,由,取x0=1,得.为面PAC的一个法向量,且,设二面角A﹣PC﹣D的大小为θ,则有,即二面角A﹣PC﹣D的余弦值.19.某公园设有自行车租车点,租车的收费标准是每小时元(不足一小时的部分按一小时计算).甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为,一小时以上且不超过两小时还车的概率分别为,两人租车时间都不会超过三小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望.【答案】(1);(2)见解析【解析】【分析】(1)两人所付租车费用相同的情况有2,4,6三种,分别算出对应概率,相加得到答案.(2)的可能取值为,分别计算概率,写出分布列计算数学期望.【详解】解:(1)甲、乙两人所付租车费用相同即为元.都付元的概率为,都付元的概率为;都付元的概率为,故所付费用相同的概率为(2)依题意知,的可能取值为,;;,故的分布列为所求数学期望【点睛】本题考查了概率的计算,分布列和数学期望,意在考查学生的计算能力.20.已知函数(1)若在其定义域上是单调增函数,求实数的取值集合;(2)当时,函数在有零点,求的最大值【答案】(1);(2)最大值为【解析】【分析】(1)确定函数定义域,求导,导函数大于等于0恒成立,利用参数分离得到答案.(2)当时,代入函数求导得到函数的单调区间,依次判断每个区间的零点情况,综合得到答案.【详解】解:(1)的定义域为在上恒成立,即即实数的取值集合是(2)时,,即在区间和单调增,在区间上单调减.在最小值为且在上没有零点.要想函数在上有零点,并考虑到在区间上单调且上单减,只须且,易检验当时,且时均有,即函数在上有上有零点.的最大值为【点睛】本题考查了函数单调性,恒成立问题,参数分离法,零点问题,综合性强难度大,需要灵活运用导数各个知识点.21.已知抛物线焦点为抛物线上的两动点,且,过两点分别作抛物线的切线,设其交点为.(1)证明:为定值;(2)设的面积为,写出的表达式,并求的最小值.【答案】(Ⅰ)定值为0;(2)S=,S取得最小值4.【解析】分析:(1)设A(x1,y1),B(x2,y2),M(xo,yo),根据抛物线方程可得焦点坐标和准线方程,设直线方程与抛物线方程联立消去y,根据判别式大于0求得和,根据曲线4y=x2上任意一点斜率为y′=,可得切线AM和BM的方程,联立方程求得交点坐标,求得和,进而可求得的结果为0,进而判断出AB⊥FM.(2)利用(1)的结论,根据的关系式求得k和λ的关系式,进而求得弦长AB,可表示出△AB M面积.最后根据均值不等式求得S的范围,得到最小值.详解:(1)设A(x1,y1),B(x2,y2),M(xo,yo),焦点F(0,1),准线方程为y=﹣1,显然AB斜率存在且过F(0,1)设其直线方程为y=kx+1,联立4y=x2消去y得:x2﹣4kx﹣4=0,判别式△=16(k2+1)>0,x1+x2=4k,x1x2=﹣4.于是曲线4y=x2上任意一点斜率为y′=,则易得切线AM,BM方程分别为y=()x1(x﹣x1)+y1,y=()x2(x﹣x2)+y2,其中4y1=x12,4y2=x22,联立方程易解得交点M坐标,xo==2k,yo==﹣1,即M (,﹣1),从而=(,﹣2),(x2﹣x1,y2﹣y1)=(x1+x2)(x2﹣x1)﹣2(y2﹣y1)=(x22﹣x12)﹣2[(x22﹣x12)]=0,(定值)命题得证.(Ⅱ)由(Ⅰ)知△ABM中,FM⊥AB,因而S=|AB||FM|.∵,∴(﹣x1,1﹣y1)=λ(x2,y2﹣1),即,而4y1=x12,4y2=x22,则x22=,x12=4λ,|FM|=因为|AF|、|BF|分别等于A、B到抛物线准线y=﹣1的距离,所以|AB|=|AF|+|BF|=y1+y2+2=+2=λ++2=.于是S=|AB||FM|=,由≥2知S≥4,且当λ=1时,S取得最小值4.点睛:本题求S的最值,运用了函数的方法,这种技巧在高中数学里是一种常用的技巧.所以本题先求出S=,再求函数的定义域,再利用基本不等式求函数的最值.22.在平面直角坐标系中,曲线过点,其参数方程为(t为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.求曲线的普通方程和曲线的直角坐标方程;已知曲线和曲线交于两点,且,求实数的值.【答案】(1),;(2)或.【解析】【分析】(1)直接消参得到曲线C1的普通方程,利用极坐标和直角坐标互化的公式求曲线C2的直角坐标方程;(2)把曲线C1的标准参数方程代入曲线C2的直角坐标方程利用直线参数方程t 的几何意义解答.【详解】C1的参数方程为消参得普通方程为x-y-a +1=0,C2的极坐标方程为ρcos2θ+4cosθ-ρ=0,两边同乘ρ得ρ2cos2θ+4ρcosθ-ρ2=0,得y2=4x.所以曲线C2的直角坐标方程为y2=4x.(2)曲线C1的参数方程可转化为(t为参数,a∈R),代入曲线C2:y2=4x,得+1-4a=0,由Δ=,得a>0,设A,B对应的参数分别为t1,t2,由|PA|=2|PB|得|t1|=2|t2|,即t1=2t2或t1=-2t2,当t1=2t2时,解得a=;当t1=-2t2时,解得a=,综上,或.【点睛】本题主要考查参数方程、极坐标方程和直角坐标方程的互化,考查直线参数方程t的几何意义解题,意在考查学生对这些知识的理解掌握水平和分析推理能力.23.已知函数,.(1)当时,求不等式的解集;(2)若的解集包含,求实数的取值范围.【答案】(1) .(2) .【解析】【分析】(1)利用分类讨论法解绝对值不等式;(2)等价转化为对任意的,恒成立,即对任意的,恒成立,再解不等式得解.【详解】(1)当时,.①当时,原不等式可化为,化简得,解得,∴;②当时,原不等式可化为,化简得,解得,∴;③当时,原不等式可化为,化简得,解得,∴;综上所述,不等式的解集是;(2)由题意知,对任意的,恒成立,即对任意的,恒成立,∵当时,,∴对任意的,恒成立,∵,,∴,∴,即实数的取值范围为.【点睛】本题主要考查分类讨论法解绝对值不等式,考查绝对值三角不等式的应用和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.2018-2019学年高二数学下学期期末考试试题理(含解析)一、选择题(本题包括12小题,每小题5分,共60分.每小题只有一个选项符合题意.请把正确答案填在答题卷的答题栏内.)1.集合,则等于()A. B. C. D.【答案】B【解析】试题分析:集合,,,,故选B.考点:指数函数、对数函数的性质及集合的运算.2.已知复数满足(其中为虚数单位),则的共轭复数()A. B. C. D.【答案】A【解析】【分析】利用等式把复数z计算出来,然后计算z的共轭复数得到答案.【详解】,则.故选A【点睛】本题考查了复数的计算和共轭复数,意在考查学生对于复数的计算能力和共轭复数的概念,属于简单题.3.是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】分别判断充分性和必要性得到答案.【详解】所以(逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.4.函数的图象大致为()A. B. C.D.【答案】C【解析】【分析】将分别代入函数解析式,判断出正负即可得出结果.【详解】当时,;当时,,根据选项,可得C选项符合.故选C【点睛】本题主要考查函数图像的识别,只需用特殊值法验证即可,属于常考题型.5.为了得到函数的图象,可以将函数的图象()A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度【答案】B【解析】试题分析:∵,∴将函数的图象向右平移个单位长度.故选B.考点:函数的图象变换.6.已知随机变量和,其中,且,若的分布列如下表,则的值为()mA. B. C. D.【答案】A【解析】【分析】根据随机变量和的关系得到,概率和为1,联立方程组解得答案.【详解】且,则即解得故答案选A【点睛】本题考查了随机变量的数学期望和概率,根据随机变量和的关系得到是解题的关键.7.过双曲线的右焦点作圆的切线(切点为),交轴于点.若为线段的中点,则双曲线的离心率是()A. B. C. D.【答案】B【解析】分析】在中,为线段的中点,又,得到等腰三角形,利用边的关系得到离心率.【详解】在中,为线段的中点,又,则为等腰直角三角形.故答案选B【点睛】本题考查了双曲线的离心率,属于常考题型.8.的外接圆的圆心为,,,则等于()A. B. C. D.【答案】C【解析】【详解】,选C9.某同学同时掷两颗骰子,得到点数分别为,则椭圆的离心率的概率是( )A. B. C. D.【答案】C【解析】共6种情况10.设,若,则的值为()A. B. C. D.【答案】D【解析】【分析】分别取代入式子,相加计算得到答案.【详解】取得:取得:两式相加得到故答案选D【点睛】本题考查了二项式定理,取特殊值是解题的关键.11.已知函数,若在上有解,则实数的取值范围为()A. B. C. D.【答案】D【解析】【分析】首先判断函数单调性为增. ,将函数不等式关系转化为普通的不等式,再把不等式转换为两个函数的大小关系,利用图像得到答案.【详解】在定义域上单调递增,,则由,得,,则当时,存在的图象在的图象上方.,,则需满足.选D.【点睛】本题考查了函数的单调性,解不等式,将不等式关系转化为图像关系等知识,其中当函数单调递增时,是解题的关键.12.两个半径都是的球和球相切,且均与直二面角的两个半平面都相切,另有一个半径为的小球与这二面角的两个半平面也都相切,同时与球和球都外切,则的值为()A. B. C. D.【答案】D【解析】【分析】取三个球心点所在的平面,过点、分别作、,垂足分别为点,过点分别作,,分别得出、以及,然后列出有关的方程,即可求出的值.【详解】因为三个球都与直二面角的两个半平面相切,所以与、、共面,如下图所示,过点、分别作、,垂足分别为点,过点分别作,,则,,,,,,所以,,等式两边平方得,化简得,由于,解得,故选D.【点睛】本题主要考查球体的性质,以及球与平面相切的性质、二面角的性质,考查了转化思想与空间想象能力,属于难题.转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将空间问题转化为平面问题是解题的关键.二、填空题(本题4小题,每小题5分,共20分.请把正确答案写在答卷上.)13.已知向量满足,,的夹角为,则__________.【答案】【解析】14.已知某程序框图如图所示,则执行该程序后输出的结果是_____【答案】-1【解析】【分析】计算的值,找出周期,根据余数得到答案.【详解】依次计算得:….周期为32019除以3余数为0,故答案为-1【点睛】本题考查了程序框图的相关知识,计算数据找到周期规律是解题的关键.15.如果不等式的解集为,且,那么实数的取值范围是 ____【答案】【解析】【分析】将不等式两边分别画出图形,根据图像得到答案.【详解】不等式的解集为,且画出图像知:故答案为:【点睛】本题考查了不等式的解法,将不等式关系转化为图像是解题的关键.16.已知是椭圆的左、右焦点,过左焦点的直线与椭圆交于两点,且,,则椭圆的离心率为________【答案】【解析】【分析】连接,设,利用椭圆性质,得到长度,分别在△和中利用余弦定理,得到c的长度,根据离心率的定义计算得到答案.【详解】设,则,,由,得,,在△中,,又在中,,得故离心率【点睛】本题考察了离心率的计算,涉及到椭圆的性质,正余弦定理,综合性强,属于难题.三、解答题(共70分,解答应写出必要的文字说明、证明过程或演算步骤,把解题过程和步骤写在答题卷上.第17-21题为必考题,第22、23题为选考题.)17.已知数列是公差不为的等差数列,,且,,成等比数列.(1)求数列的通项公式;(2)设,求数列前项和.【答案】(1);(2)【解析】【分析】(1)根据等差数列的定义和,,成等比数列代入公式得到方程,解出答案. (2)据(1)把通项公式写出,根据裂项求和方法求得.【详解】解:(1) ,,成等比数列,则或(舍去)所以(2)【点睛】本题考查了公式法求数列通项式,裂项求和方法求,属于基础题.18.在四棱锥中,,是的中点,面面(1)证明:面;(2)若,求二面角的余弦值.【答案】(1)详见解析;(2).【解析】试题分析:(Ⅰ)取PB的中点F,连接AF,EF,由三角形的中位线定理可得四边形ADEF是平行四边形.得到DE∥AF,再由线面平行的判定可得ED∥面PAB;(Ⅱ)法一、取BC的中点M,连接AM,由题意证得A在以BC为直径的圆上,可得AB⊥AC,找出二面角A-PC-D的平面角.求解三角形可得二面角A-PC-D的余弦值.试题解析:(Ⅰ)证明:取PB的中点F,连接AF,EF.∵EF是△PBC的中位线,∴EF∥BC,且EF=.又AD=BC,且AD=,∴AD∥EF且AD=EF,则四边形ADEF是平行四边形.∴DE∥AF,又DE⊄面ABP,AF⊂面ABP,∴ED∥面PAB(Ⅱ)法一、取BC的中点M,连接AM,则AD∥MC且AD=MC,∴四边形ADCM是平行四边形,∴AM=MC=MB,则A在以BC为直径的圆上.∴AB⊥AC,可得.过D作DG⊥AC于G,∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴DG⊥平面PAC,则DG⊥PC.过G作GH⊥PC于H,则PC⊥面GHD,连接DH,则PC⊥DH,∴∠GHD是二面角A﹣PC﹣D的平面角.在△ADC中,,连接AE,.在Rt△GDH中,,∴,即二面角A﹣PC﹣D的余弦值法二、取BC的中点M,连接AM,则AD∥MC,且AD=MC.∴四边形ADCM是平行四边形,∴AM=MC=MB,则A在以BC为直径的圆上,∴AB⊥AC.∵面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴AB⊥面PAC.如图以A为原点,方向分别为x轴正方向,y轴正方向建立空间直角坐标系.可得,.设P(x,0,z),(z>0),依题意有,,解得.则,,.设面PDC的一个法向量为,由,取x0=1,得.为面PAC的一个法向量,且,设二面角A﹣PC﹣D的大小为θ,则有,即二面角A﹣PC﹣D的余弦值.19.某公园设有自行车租车点,租车的收费标准是每小时元(不足一小时的部分按一小时计算).甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为,一小时以上且不超过两小时还车的概率分别为,两人租车时间都不会超过三小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望.【答案】(1);(2)见解析【解析】【分析】(1)两人所付租车费用相同的情况有2,4,6三种,分别算出对应概率,相加得到答案.(2)的可能取值为,分别计算概率,写出分布列计算数学期望.【详解】解:(1)甲、乙两人所付租车费用相同即为元.都付元的概率为,都付元的概率为;都付元的概率为,故所付费用相同的概率为(2)依题意知,的可能取值为,;;,故的分布列为所求数学期望【点睛】本题考查了概率的计算,分布列和数学期望,意在考查学生的计算能力.20.已知函数(1)若在其定义域上是单调增函数,求实数的取值集合;(2)当时,函数在有零点,求的最大值【答案】(1);(2)最大值为【解析】【分析】(1)确定函数定义域,求导,导函数大于等于0恒成立,利用参数分离得到答案.(2)当时,代入函数求导得到函数的单调区间,依次判断每个区间的零点情况,综合得到答案.【详解】解:(1)的定义域为在上恒成立,即即实数的取值集合是(2)时,,即在区间和单调增,在区间上单调减.在最小值为且在上没有零点.要想函数在上有零点,并考虑到在区间上单调且上单减,只须且,易检验当时,且时均有,即函数在上有上有零点.的最大值为【点睛】本题考查了函数单调性,恒成立问题,参数分离法,零点问题,综合性强难度大,需要灵活运用导数各个知识点.21.已知抛物线焦点为抛物线上的两动点,且,过两点分别作抛物线的切线,设其交点为.(1)证明:为定值;(2)设的面积为,写出的表达式,并求的最小值.【答案】(Ⅰ)定值为0;(2)S=,S取得最小值4.【解析】分析:(1)设A(x1,y1),B(x2,y2),M(xo,yo),根据抛物线方程可得焦点坐标和准线方程,设直线方程与抛物线方程联立消去y,根据判别式大于0求得和,根据曲线4y=x2上任意一点斜率为y′=,可得切线AM和BM的方程,联立方程求得交点坐标,求得和,进而可求得的结果为0,进而判断出AB⊥FM.(2)利用(1)的结论,根据的关系式求得k和λ的关系式,进而求得弦长AB,可表示出△ABM面积.最后根据均值不等式求得S的范围,得到最小值.详解:(1)设A(x1,y1),B(x2,y2),M(xo,yo),焦点F(0,1),准线方程为y=﹣1,显然AB斜率存在且过F(0,1)设其直线方程为y=kx+1,联立4y=x2消去y得:x2﹣4kx﹣4=0,判别式△=16(k2+1)>0,x1+x2=4k,x1x2=﹣4.于是曲线4y=x2上任意一点斜率为y′=,则易得切线AM,BM方程分别为y=()x1(x﹣x1)+y1,y=()x2(x﹣x2)+y2,其中4y1=x12,4y2=x22,联立方程易解得交点M坐标,xo==2k,yo==﹣1,即M(,﹣1),从而=(,﹣2),(x2﹣x1,y2﹣y1)=(x1+x2)(x2﹣x1)﹣2(y2﹣y1)=(x22﹣x12)﹣2[(x22﹣x12)]=0,(定值)命题得证.(Ⅱ)由(Ⅰ)知△ABM中,FM⊥AB,因而S=|AB||FM|.∵,∴(﹣x1,1﹣y1)=λ(x2,y2﹣1),即,而4y1=x12,4y2=x22,则x22=,x12=4λ,|FM|=因为|AF|、|BF|分别等于A、B到抛物线准线y=﹣1的距离,所以|AB|=|AF|+|BF|=y1+y2+2=+2=λ++2=.于是S=|AB||FM|=,由≥2知S≥4,且当λ=1时,S取得最小值4.点睛:本题求S的最值,运用了函数的方法,这种技巧在高中数学里是一种常用的技巧.所以本题先求出S=,再求函数的定义域,再利用基本不等式求函数的最值.22.在平面直角坐标系中,曲线过点,其参数方程为(t为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.求曲线的普通方程和曲线的直角坐标方程;已知曲线和曲线交于两点,且,求实数的值.【答案】(1),;(2)或.【解析】【分析】(1)直接消参得到曲线C1的普通方程,利用极坐标和直角坐标互化的公式求曲线C2的直角坐标方程;(2)把曲线C1的标准参数方程代入曲线C2的直角坐标方程利用直线参数方程t的几何意义解答.【详解】C1的参数方程为消参得普通方程为x-y-a+1=0,C2的极坐标方程为ρcos2θ+4cosθ-ρ=0,两边同乘ρ得ρ2cos2θ+4ρcosθ-ρ2=0,得y2=4x.。
2018-2019学年高二数学下学期期末考试试题理
2018-2019学年高二数学下学期期末考试试题理(本试题卷共4页,考试用时120分钟,满分150分。
)注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,班级写在姓名后面。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4},集合M={1,2},N={2,3},则N∪(∁UM)=( ) A.{1,2,3} B.{2,3,4} C.{3} D.{4}2.复数的虚部是()A. 2i B. 2 C. i D.13.已知命题,则为( )A. B.C.D.4.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是( )A.0.16 B.0.24C.0.96 D.0.045.已知p:|x|<2;q:x2-x-2<0,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.阅读如图所示的程序框图,运行相应的程序,输出s的值等于( )A.-10 B.-3C.0 D.-27.设变量x,y满足则目标函数z=2x+3y的最小值为( ) A.22 B.8C.7 D.238.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.45 B.0.75C.0.6 D.0.89.在x(1+x)6的展开式中,含x3项的系数为( )A.30B.20C.15 D.1010. 某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( ) A.1,2,3,4,5,6 B.6,16,26,36,46,56C.1,2,4,8,16,32 D.3,9,13,27,36,5411.曲线y=1-在点(-1,-1)处的切线方程为( ) A.y=2x+1 B.y=2x-1C.y=-2x-3 D.y=-2x-212. 某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( )A.16种B.36种C.42种D.60种二、填空题:(本大题共4小题,每小题5分,共20分.)13.已知圆的极坐标方程为ρ=4cos θ,圆心为C,点P的极坐标为,则|CP|=________.14.已知x,y的取值如下表:从散点图分析,y与x线性相关,且回归方程为=1.46x+,则实数的值为________.已知X~N(0,σ2),且P(-2≤X≤0)=0.4,则P(X>2)等于16.设a>0,b>0.若a+b=1,则+的最小值是三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分10分)已知在直角坐标系xOy中,曲线C 的参数方程为(θ为参数),直线l经过定点P(3,5),倾斜角为.(1)写出直线l的参数方程和曲线C的标准方程;(2)设直线l与曲线C相交于A,B两点,求|PA|·|PB|的值.17.(本小题满分12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B.设甲、乙两组研发新产品是否成功相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和均值.18. (本小题满分12分)“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用.出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天名读书者进行调查,将他们的年龄分成6段:,,,,,后得到如图所示的频率分布直方图.问:(1)估计在40名读书者中年龄分布在的人数;(2)求40名读书者年龄的众数和平均数;(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列及数学期望.20.(本小题满分12分)有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的2×2列联表.已知从全部210人中随机抽取1人为优秀的概率为.(1)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩与班级有关”;(2)从全部210人中有放回地抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望E(ξ).附:K2=,21.(本小题满分12分)已知函数y=ax3+bx2,当x=1时,有极大值3.(1)求a,b的值;(2)求函数的极小值;(3)求函数在[-1,2]的最值.22.(本小题满分12分)已知函数f(x)=x-aln x(a∈R).(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的单调区间.奈曼旗实验中学2018--2019学年度(下)期末考试高二理科数学试卷出题人:秦绪钰(本试题卷共4页,考试用时120分钟,满分150分。
2018-2019学年高二数学下学期期末考试试题理(含解析)_20
2018-2019学年高二数学下学期期末考试试题理(含解析)本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
考生作答时,将答案答在答题卡上,在本试题卷上答题无效。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写(涂)在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号;第Ⅱ卷用黑色墨水签字笔在答题卡书写作答,在试题上作答,答案无效。
3.考试结束,监考教师将答题卡收回。
第I卷(选择题共60分)—、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的代号为A.B.C.D的四个选项中,只有一项是符合题目要求的。
1.己知复数,若为纯虚数,则A. -1B. 1C.D.【答案】B【解析】【分析】根据复数的除法运算和纯虚数的概念求得.【详解】由已知得:,所以解得:故选B.【点睛】本题考查复数的除法运算和纯虚数的概念,属于基础题.2.焦点为且与双曲线有相同的渐近线的双曲线方程是A. B. C. D.【答案】A【解析】【分析】根据题目要求解的双曲线与双曲线有相同的渐近线,且焦点在y轴上可知,设双曲线的方程为,将方程化成标准形式,根据双曲线的性质,求解出的值,即可求出答案。
【详解】由题意知,设双曲线的方程为,化简得。
解得。
所以双曲线的方程为,故答案选A。
【点睛】本题主要考查了共渐近线的双曲线方程求解问题,共渐近线的双曲线系方程与双曲线有相同渐近线的双曲线方程可设为,若,则双曲线的焦点在x轴上,若,则双曲线的焦点在y轴上。
3.设,,若,则的最小值为A. B. 8 C. 9 D. 10【答案】C【解析】分析】根据题意可知,利用“1”的代换,将化为,展开再利用基本不等式,即可求解出答案。
【详解】由题意知,,,且,则当且仅当时,等号成立,的最小值为9,故答案选C。
湖南省衡阳县第四中学2018_2019学年高二数学下学期期末考试试题理(平行班,扫描版)
衡阳县四中2019年上期高二期末考试卷数学(理科)参考答案1. 答案:B 2.答案:B 3.答案:D 4.答案:D5.答案:D 6.答案:B 7.答案:A 8.答案:A9.答案:C 10.答案:A 11.答案:A 12.答案:B二.填空题(本大题共4小题,每小题5分,共20分.)13.答案 1 14.答案:13315.答案:y =-2x -1 16.答案:57三.解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.解:(1)复数z 是实数,230m m -=,则0m =或3m =(2)复数z 是纯虚数,2560m m -+=,但230m m -≠则2m =18.解:f ′(x )=-1x 2e x+1x e x =x -1x 2e x , 由f ′(x )=0,得x =1.因为当x <0时,f ′(x )<0;当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0.所以f (x )的单调递增区间是[1,+∞),单调递减区间是(-∞,0),(0,1].19. 解:(1)将6本书中某两本书合在一起组成5份,借给5人,共有=1 800种借法.(2)将6本书分成三份有3种分法.第一种是一人4本,一人1本,一人1本;第二种是一人3本,一人2本,一人1本;第三种是每人各2本;然后再将分好的三份借给3人,有=540种借法.20.解:F (x )=∫x-1(t 2-4t )d t = ⎪⎪⎪⎝ ⎛⎭⎪⎫13t 3-2t 2x -1=13x 3-2x 2-⎝ ⎛⎭⎪⎫-13-2=13x 3-2x 2+73(x >-1).(1)F ′(x )=⎝ ⎛⎭⎪⎫13x 3-2x 2+73′=x 2-4x ,由F ′(x )>0,即x 2-4x >0,得-1<x <0或x >4;由F ′(x )<0,即x 2-4x <0,得0<x <4,所以F (x )的单调递增区间为(-1,0)和(4,+∞),单调递减区间为(0,4).(2)由(1)知F (x )在[1,4]上递减,在[4,5]上递增.因为F (1)=13-2+73=23,F (4)=13×43-2×42+73=-253,F (5)=13×53-2×52+73=-6,21.解 (1)设T r+1=(ax m )12-r ·(bx n )r =a 12-r ·b r x m (12-r )+ nr 为常数项,则有m (12-r )+nr=0,因为2m+n=0,所以m (12-r )-2mr=0,解得r=4,故可知常数项是第5项.(2)因为第5项又是系数最大的项, 所以因为a>0,b>0,所以由①②可得 22.解:(1)因为a =1,所以f (x )=x 2-4x +2ln x ,所以f ′(x )=2x 2-4x +2x(x >0),f (1)=-3,f ′(1)=0, 所以切线方程为y =-3.(2)f ′(x )=2x 2-2(a +1)x +2a x =2(x -1)(x -a )x(x >0), 令f ′(x )=0得x 1=a ,x 2=1,当0<a <1时,在x ∈(0,a )或x ∈(1,+∞)时,f ′(x )>0,在x ∈(a ,1)时,f ′(x )<0,所以f (x )的单调递增区间为(0,a )和(1,+∞),单调递减区间为(a ,1);当a =1时,f ′(x )=2(x -1)2x≥0,所以f (x )的单调递增区间为(0,+∞); 当a >1时,在x ∈ (0,1)或x ∈(a ,+∞)时,f ′(x )>0,在x ∈(1,a )时,f ′(x )<0,所以f (x )的单调增区间为(0,1)和(a ,+∞),单调递减区间为(1,a ).(3)由(2)可知,f (x )在区间[1,e]上只可能有极小值点,所以f (x )在区间[1,e]上的最大值必在区间端点取到,所以f (1)=1-2(a +1)≤0且f (e)=e 2-2(a +1)e +2a ≤0,解得a ≥e 2-2e 2e -2,所以a的取值范围是⎩⎨⎧⎭⎬⎫a |a ≥e 2-2e 2e -2. 所以F (x )在[1,5]上的最大值为23,最小值为-253.。
湖南省五市十校2018-2019学年高二下学期期末考试数学(理)试题Word版含解析
湖南省五市十校2018-2019学年下学期期末考试高二数学(理)试题一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1. 已知集合,,则等于( )A. B. C. D.【答案】C【解析】【详解】分析:利用一元二次不等式的解法求出中不等式的解集确定出,然后利用交集的定义求解即可. 详解:由中不等式变形得,解得,即,因为,,故选C.点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合. 本题需注意两集合一个是有限集,一个是无限集,按有限集逐一验证为妥.2. 已知复数满足,则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【详解】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,求出的坐标即可得结论.详解:因为,复数的在复平面内对应的点为,位于第一象限,故选A.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3. 宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的分别为12,4,则输出的等于()A. 4B. 5C. 6D. 7【答案】A【解析】【详解】分析:本题给只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可(注意避免计算错误).详解:模拟程序的运行,可得,不满足结束循环的条件,执行循环体,;不满足结束循环的条件,执行循环体,;不满足结束循环的条件,执行循环体,;满足结束循环的条件,退出循环,输出的值为,故选A.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.4. 在等差数列中,是函数的两个零点,则的前10项和等于()A. B. 15 C. 30 D.【答案】B【解析】由题意得是方程的两根,∴,∴.选B.5. 函数f(x)=3sin(2x-)在区间[0,]上的值域为( )A. [,]B. [,3]C. [,]D. [,3]【答案】B【解析】【详解】分析:由,求出的取值范围,从而求出的范围,从而可得的值域.详解:,,,,即在区间上的值域为,故选B.点睛:本题考查了求三角函数在闭区间上的值域问题,意在考查解题时应考虑三角函数的单调性与最值,属于简单题.6. 已知,且,则向量在方向上的投影为()A. B. C. D.【答案】C【解析】【详解】分析:由推导出,从而,由此能求出向量在向量方向上的投影.详解:,且,,,向量在向量方向上的投影为,故选C.点睛:本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).7. 某几何体的三视图如图4所示,则该几何体的体积为( )A. B. C. D.【答案】B【解析】作出立体图形为:故该几何体的体积为:8. 设,则二项式展开式的常数项是()A. 1120B. 140C. -140D. -1120【答案】A【解析】【详解】分析:利用微积分基本定理求得,先求出二项式的展开式的通项公式,令的指数等于,求出的值,即可求得展开式的常数项.详解:由题意,二项式为,设展开式中第项为,,令,解得,代入得展开式中可得常数项为,故选A.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.9. 函数的图像恒过定点,若定点在直线上,则的最小值为()A. 13B. 14C. 16D. 12【答案】D【解析】【详解】分析:利用指数型函数的性质可求得定点,将点的坐标代入,结合题意,利用基本不等式可得结果.详解:时,函数值恒为,函数的图象恒过定点,又点在直线上,,又,(当且仅当时取“=”),所以,的最小值为,故选D.点睛:本题主要考查指数函数的性质,基本不等式求最值,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).10. 抛物线的焦点为 ,过点的直线交抛物线于、两点,点为轴正半轴上任意一点,则()A. B. C. D.【答案】B【解析】【详解】分析:设,则,由利用韦达定理求解即可.详解:设,的焦点,设过点的直线为,,,,,故选B.点睛:本题主要考查平面向量数量积公式、平面向量的运算、直线与抛物线的位置关系,意在考查综合运用所学知识解决问题的能力,考查转化与划归思想以及计算能力,属于中档题.11. 已知圆,若圆心,且圆与轴相切,则圆心与点连线斜率的取值范围是()A. B.C. D.【答案】A【解析】【详解】分析:画出可行域,由可行域结合圆与轴相切,得到且,从而可得结果.详解:画出可行域如图,由圆的标准方程可得圆心,半径为,因为圆与轴相切,所以,直线分别与直线与交于点,所以,圆心与点连线斜率为时,;时,所以圆心与点连线斜率的取值范围是,故选A.点睛:本题主要考查可行域、含参数目标函数最优解,属于中档题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.12. 已知函数,,若方程在时有3个实根,则的取值范围为( )A. B. C. D.【答案】B【解析】【详解】分析:利用参数分离法,构造函数,求函数的导数,研究函数的单调性与极值,利用数形结合进行求解即可.详解:当时,,则不成立,即方程没有零解,①当时,,即,则,设,则,由得,此时函数递增;由得,此时函数递减,故当时,函数取得极小值,当时,,当时,.②当时,,即,则,设,则,由得(舍去)或,此时函数递增;由得,此时函数递减,故当时,函数取得极大值,当时,,当时,,作出函数和图象如图,要使方程在有三个实数,则或,故选B.点睛:已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题 .二、填空题(本大题共4小题,每小题5分,共20分,请将正确答案填写在答题卡上)13. 3名医生和9名护士被分配到3所学校为学生体检,每所学校分配1名医生和3名护士,不同的分配方法共有________种.【答案】10080【解析】【详解】分析:首先为第一个学校安排医生和护士,再为第二个安排医生和护士,为第三个安排医生和护士,根据分步计数乘法原理可得结果.详解:为第一个学校安排医生和护士有种结果;为第二个安排医生和护士种结果;为第三个安排医生和护士种结果,根据分步计数原理可得,故答案为.点睛:本题考查组合式的应用、分步计数乘法原理的应用以及分组与分配问题,属于中档题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.14. 现在“微信抢红包”异常火爆.在某个微信群某次进行的抢红包活动中,若所发红包的总金额9元,被随机分配为元,元,元,元,元,共5份,供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于5元的概率是__________.【答案】【解析】【详解】分析:基本事件总数,再利用列举法求出其中甲、乙二人抢到的金额之和不低于元的情况种数,能求出甲、乙二人抢到的金额之和不低于元的概率.详解:所发红包的总金额为元,被随机分配为元,元,元,元,元,共份,供甲、乙等人抢,每人只能抢一次,基本事件总数,其中甲、乙二人抢到的金额之和不低于元的情况有,种,甲、乙二人抢到的金额之和不低于元的概率,故答案为.点睛:本题考查古典概型概率公式的应用,属于简单题. 在解古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.15. 已知双曲线的两条渐近线分别与抛物线的准线交于A,B两点.O为坐标原点.若△OAB的面积为2,则的值为_______.【答案】【解析】【详解】分析:求出双曲线的两条渐近线方程与抛物线的准线方程,进而求出两点坐标,再由的面积为,列出方程列方程求解即可.详解:双曲线的两条渐近线方程,又抛物线的准线方程是,故两点的横坐标坐标分别是,又的面积为1,,得,故答案为.点睛:本题主要考查双曲线的几何性质以及抛物线的几何性质,属于中档题. 求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系16. 已知△ABC中,角A,B,C成等差数列,且△ABC的面积为2+,则AC边长的最小值是________. 【答案】【解析】【详解】分析:由已知及等差数列的性质可得,结合三角形内角和定理可求的值,利用三角形面积公式可得,利用余弦定理及基本不等式可解得边的最小值.详解:成等差数列,,又,由,得,,因为,,解得,的最小值为,故答案为.点睛:本题主要考查了等差数列的性质、三角形内角和定理、三角形面积公式、余弦定理,基本不等式在解三角形中的应用,考查了计算能力和转化与划归思想,属于中档题.三.解答题:本大题共70分,解答应写出文字说明,证明过程或演算步骤.17. 等比数列的各项均为正数,且,.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2)【解析】【详解】分析:(1)根据,列出关于首项,公比的方程组,解得、的值,即可得数列的通项公式;(2)由(1)可得,结合等比数列求和公式,利用错位相减法求解即可.详解:设数列的公比为.由=得,所以.由条件可知,故.由得,所以.故数列的通项公式为(2)点睛:本题主要考查等比数列的通项公式与求和公式以及错位相减法求数列的前项和,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.18. 如图,在四棱锥中,底面是边长为2的正方形,侧面是等腰直角三角形,且,侧面⊥底面.(1)若分别为棱的中点,求证:∥平面;(2)棱上是否存在一点,使二面角成角,若存在,求出的长;若不存在,请说明理由.【答案】(1)见解析( 2)【解析】【详解】分析:(1)取中点,连结,由三角形中位线定理可得,可证明四边形为平行四边形,可得,由线面平行的判定定理可得结论;(2)取中点,连结、,先证明、、两两垂直. 以为原点,分别以、、正方向为轴、轴、轴正方向建立空间直角坐标系,设,利用向量垂直数量积为零列方程组,求出平面的法向量,平面的法向量为,由空间向量夹角余弦公式列方程可得结果.详解:(1)取中点,连结,∵分别为、中点,∴//,, 又点为中点,∴且,∴四边形为平行四边形,∴∥,又平面,平面,∴∥平面.(2)取中点,连结、,∵是以为直角的等腰直角三角形,又为的中点,∴,又平面⊥平面,由面面垂直的性质定理得⊥平面,又平面,∴⊥,由已知易得:、、两两垂直. 以为原点,分别以、、正方向为x轴、y轴、z轴正方向建立空间直角坐标系如图示,则,设,则:,.设平面ABF的法向量为,则,∴,令,则,∴.又平面的法向量为,由二面角成角得:,∴,解得:,或不合题意,舍去.∴,当棱上的点满足时, 二面角成角.点睛:利用法向量求解空间角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.19. 某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响。
湖南省衡阳市八中2018_2019学年高二数学下学期期期末考试试题理(含解析)
湖南省衡阳市八中2018-2019学年高二数学下学期期期末考试试题理(含解析)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合{}1,2,3,4,5U =,{}2,4A =,{}1,2,3B =,则图中阴影部分所表示的集合是( ).A. {}4B. {}2,4C. {}4,5D. {}1,3,4【答案】A 【解析】【详解】图中阴影部分所表示的集合A 中的元素除去集合B 中的元素构成的集合,故图中阴影部分所表示的集合是A u C B ⋂={}4,故选A.2.已知双曲线C 与椭圆E :221925+=x y 有共同的焦点,它们的离心率之和为145,则双曲线C 的标准方程为( ) A. 221124x y -=B. 221412x y -=C. 221412y x -=D.221124y x -= 【答案】C 【解析】 【分析】由椭圆方程求出双曲线的焦点坐标,及椭圆的离心率,结合题意进一步求出双曲线的离心率,从而得到双曲线的实半轴长,再结合隐含条件求得双曲线的虚半轴长得答案.【详解】由椭圆221925x y +=,得225a =,29b =,则22216c a b =-=,∴双曲线与椭圆的焦点坐标为()10,4F -,()20,4F , ∴椭圆的离心率为45,则双曲线的离心率为144255-=. 设双曲线的实半轴长为m ,则42m=,得2m =,则虚半轴长n =∴双曲线的方程是221412y x -=.故选:C .【点睛】本题考查双曲线方程的求法,考查了椭圆与双曲线的简单性质,是中档题.3.在复平面内,复数11iz =+,则z 对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】 【分析】 化简复数11iz =+,计算z ,再计算对应点的象限. 【详解】复数11-1111+1(1)(1-)2222i z i z i i i i ===-⇒=++ 对应点为:11(,)22故答案选A【点睛】本题考查了复数的计算,共轭复数,复数对应点象限,意在考查学生的计算能力.4.已知点F 为抛物线 C :24y x = 的焦点. 若过点F 的直线 l 交抛物线 C 于A , B 两点, 交该抛物线的准线于点M ,且1MA AF λ=,2MB BF λ=,则12λλ+=( )A. 12-B. 0C. 1D. 2【答案】B 【解析】 【分析】将长度利用相似转换为坐标关系,联立直线和抛物线方程,利用韦达定理求得答案. 【详解】易知:焦点F 坐标为(1,0),设直线方程为:(1)y k x =- 1122(,),(,)A x y B x y22222124(44)01(1)y xk x k x k x x y k x ⎧=⇒-++=⇒=⎨=-⎩ 如图利用AFGANQ ∆∆和FBP FHM ∆∆ 相似得到:111111x MAMA AF AF x λλ+=⇒=-=--, 222211x MB MB BF BF x λλ+=⇒==-12121212121122011(1)(1)x x x x x x x x λλ++-+=-+==---- 【点睛】本题考查了抛物线与直线的关系,相似,意在考查学生的计算能力.5.已知5(1)(1)ax x ++的展开式中2 x 的系数为 5,则a =( )A. 4B. 3C. 2D. -1【答案】D 【解析】 【分析】将化简为:55(1)(1)x ax x +++分别计算2 x 的系数,相加为5解得a .【详解】555(1)(1)(1)(1)ax x x ax x ++=+++5(1)x +中2 x 的系数为:2510C = 5(1)ax x +2 x 的系数为:155aC a =2 x 的系数为:10551a a +=⇒=-故答案选D【点睛】本题考查了二项式定理的计算,分成两种情况简化了计算.6.中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》 中记载的算筹. 古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算, 算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯计数一样,把 各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位、百位、万位数用纵式表示, 十位、千位、十万位用横式表示, 以此类推.例如 8455用算筹表示就是,则以下用算筹表示的四位数正确的为( )A. B.C. D.【答案】C 【解析】 【分析】根据题意直接判断即可.【详解】根据“各位数码的筹式需要纵横相间,个位、百位、万位数用纵式表示,十位、千位、十万位用横式表示”的原则,只有C 符合,故选C. 【点睛】本题主要考查合情推理,属于基础题型.7.将函数sin()()6y x x R π=+∈的图象上所有的点向左平移4π个单位长度,再把图象上各点的横坐标扩大到原来的 2 倍(纵坐标不变),则所得到的图象的解析式为( ) A. 5sin(2)()12y x x R π=+∈ B. 5sin()()212x y x R π=+∈C. sin()()212x y x R π=-∈ D. 5sin()()224x y x R π=+∈ 【答案】B 【解析】试题分析:函数sin()6y x π=+,()x R ∈的图象上所有点向左平移4π个单位长度得si n()46y x ππ=++,再把图象上各点的横坐标扩大到原来的2倍,得5sin()212x y π=+,选B.考点:三角函数图像变换8.函数ln ()xf x x=的图象大致为( ) A. B.C. D.【答案】A 【解析】 【分析】取特殊值排除选项得到答案. 【详解】取ln 22,(2)02x f ==>,排除C 取1ln112,()0222x f ==<,排除BD 故答案选A【点睛】本题考查了函数的图像,通过特殊值排除可以简化计算.9.某锥体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积最小值为( )A.4π B.12C. 1D. 2【答案】B【解析】 【分析】锥体高一定,底面积最小时体积最小,底面图形可以是圆,等腰直角三角形,正方形,等腰直角三角形是面积最小,计算得到答案.【详解】锥体高一定,底面积最小时体积最小,底面图形可以是圆,等腰直角三角形,正方形,等腰直角三角形是面积最小111113322V =⨯⨯⨯⨯=故答案选B【点睛】本题考查了锥体的体积,判断底面是等腰直角三角形是解题的关键.10.已知函数()(ln )xe f x k x x x=--,若()f x 只有一个极值点,则实数k 的取值范围是A. (,)e -+∞B. (,)e -∞C. (,]e -∞D. 1(,]e-∞【答案】C 【解析】 【分析】由2()()(1),(0,)x kx e f x x x x -∈'=-+∞,令()0f x '=,解得1x =或x ek x=,令()xe g x x =,利用导数研究其单调性、极值,得出结论.详解】221(1)()()(1)(1),(0,)x x e x kx e f x k x x x x x--=--=-∈+∞', 令()0f x '=,解得1x =或xek x=,令()x e g x x =,可得2(1)()x e x g x x'-=, 当1x =时,函数()g x 取得极小值,(1)g e =,所以当k e <时,令()0f x '=,解得1x =,此时函数()f x 只有一个极值点, 当k e =时,此时函数()f x 只有一个极值点1,满足题意,当k e >时不满足条件,舍去.综上可得实数k 的取值范围是(,]e -∞,故选C.【点睛】本题主要考查了利用导数研究函数的单调性与极值、方程与不等式的解法、分类讨论思想,属于难题.11.已知高为 H的正三棱锥 P ABC -的每个顶点都在半径为R 的球O 的球面上,若二面角P AB C --的正切值为 4 ,则RH=( ) A.37B.35C.59D.58【答案】D 【解析】 【分析】过P 作PM ⊥平面ABC 于M ,D 为AB 中点,连接,PD CD .证明面角 P AB C --的平面角为PDC ∠,计算得到2HCM =,通过勾股定理计算得到答案. 【详解】如图:正三棱锥 P ABC -,过P 作PM ⊥平面ABC 于M ,D 为AB 中点,连接,PD CD .易知:,M CD O PM ∈∈D 为AB 中点,PD AB CD AB ⇒⊥⊥⇒二面角P AB C --的平面角为PDC ∠ 正切值为442H HDM CM ⇒=⇒=在Rt OMC ∆中,根据勾股定理:2225()()28H R R H R H =-+⇒= 故答案选D【点睛】本题考查了三棱锥的外接球,二面角,意在考查学生的计算能力和空间想象能力.12.已知实数x ,y 满足约束条件5001202x y y x y x ⎧⎪+-≥⎪-≥⎨⎪⎪--≤⎩,若不等式()()2212420a x xy a y -++-≥恒成立,则实数a 的最大值为( )A.73B.53【答案】A 【解析】【详解】绘制不等式组表示的平面区域如图所示,考查目标函数yt x=,由目标函数的几何意义可知,目标函数在点()23C ,处取得最大值max 32y t x ==,在点A 或点B 处取得最小值min 1t =,即312t ⎡⎤∈⎢⎥⎣⎦,.题中的不等式即:()2222224a x y x xy y +≤++,则:22222224421221x xy y t t a x y t ++++≤=++恒成立,原问题转化为求解函数()2242131212t t f t t t ++⎛⎫=≤≤ ⎪+⎝⎭的最小值,整理函数的解析式有:()22211112424221211131224112122t t t f t t t t t ⎛⎫⎪ ⎪⎛⎫ ⎪++- ⎪ ⎪=⨯=⨯+=+ ⎪ ⎪ ⎪++ ⎪⎝⎭-++⎪ ⎪-⎝⎭,令12m t =-,则112m ≤≤,令()34g m m m=+,则()g m 在区间12⎛ ⎝⎭上单调递减,在区间1⎫⎪⎪⎝⎭上单调递增, 且()172124g g ⎛⎫==⎪⎝⎭,,据此可得,当112m t ==,时,函数()g m 取得最大值,则此时函数()f t 取得最小值,最小值为:()2241211712113f ⨯+⨯+==⨯+.综上可得,实数a 的最大值为73.本题选择A 选项.【方法点睛】本题主要考查基本不等式,在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.若等号不成立,则利用对勾函数的单调性解决问题.二、填空题(本大题共 4 小题,每小题 5 分,共 20 分. 把答案填在答题卡中的横线上) 13.已知向量(2,1)a =-,(,1)b λ=,若a b a b +=- ,则λ= ______. 【答案】12【解析】 【分析】由a b a b +=-得到0a b ⋅=,计算得到答案.【详解】已知向量(2,1)a =-,(,1)b λ=,若a b a b +=-2222022a b b a b b a a b b a b a a +=⋅+=⋅+⇒⋅=-⇒+-12102a b λλ⋅=-=⇒=所以答案为:12【点睛】本题考查了向量的计算,将条件转化为0a b ⋅=是解题的关键.14.设3a 0.2=,0.2b 3=,0.3c log 2=,则a ,b ,c 的大小关系用“<”连接为______. 【答案】c a b << 【解析】 【分析】分别判断出1a <,1b >,0c <,从而得到三者大小关系. 【详解】3000.20.21a <=<=,0.20331b =>=,0.30.3log 2log 10c =<=则,,a b c 的大小关系用“<”连接为c a b << 本题正确结果:c a b <<【点睛】本题考查指对数比较大小类的问题,解决此类问题的方法主要有两种:1.构造合适的函数模型,利用单调性判断;2.利用临界值进行区分.15.某细胞集团,每小时有2个死亡,余下的各个分裂成2个,经过8小时后该细胞集团共有772个细胞,则最初有细胞__________个. 【答案】7. 【解析】 【分析】设开始有细胞a 个,利用细胞生长规律计算经过1小时、2小时后的细胞数,找出规律,得到经过8小时后的细胞数898282222a a =----,根据条件列式求解.【详解】设最初有细胞a 个,因为每小时有2个死亡,余下的各个分裂成2个,所以 经过1个小时细胞有1a =2(2)222a a -⋅=-,经过2个小时细胞有21(2)2a a =-⋅=2232[(22)2]2222a a --⋅=--, ······经过8个小时细胞有898282222a a =----,又8772a =,所以89822222772a ----=,8824(21)772a --=,7a =.故答案为7.【点睛】本题考查等比数列求和公式的应用,找出规律、构造数列是解题关键,考查阅读理解能力及建模能力,属于基础题.16.如图所示,在三棱锥 D ABC -中,若AB CB =,AD CD =,E 是AC 的中点,则下列命题中正确的是_______(填序号). ①平面 ABC ⊥平面ABD ; ②平面 ABC ⊥平面BCD ;③平面 ABC ⊥平面BDE ,且平面ACD ⊥平面BDE ; ④平面 ABC ⊥平面ACD ,且平面ACD ⊥平面BDE .【答案】③ 【解析】 【分析】由AB=BC ,AD=CD ,说明对棱垂直,推出平面ABC⊥平面BDE ,且平面ADC⊥平面BDE ,即可得出结论.【详解】因为AB =CB ,且E 是AC 的中点,所以BE⊥AC,同理有DE⊥AC,于是AC ⊥平面BDE . 因为AC 在平面ABC 内,所以平面ABC ⊥平面BDE .又由于AC ⊂平面ACD ,所以平面ACD ⊥平面BDE ,故答案为:③.【点睛】本题考查了平面与平面垂直的判定,考查学生分析解决问题的能力,属于基础题.三、解答题(本大题共 6 小题,共 70 分. 解答应写出文字说明,证明过程或演算步骤) (一)必考题:60 分.17.已知在ABC △中,角 A 、 B 、 C 的对边分别是a 、b 、c ,且22s i n 3c o s ()0A B C ++=.(1)求角 A 的大小;(2)若ABC △的面积,S = 4c =,求 sin sin B C +的值.【答案】(1)3π; (2【解析】 【分析】(1)根据同角三角函数关系得到2(1﹣cos 2A )﹣3cosA=0,解出角A 的余弦值,进而得到角A ;(2)根据三角形的面积公式和余弦定理得到,再结合正弦定理得到最终结果. 【详解】(1)∵在△ABC 中2sin 2A+3cos (B+C )=0,∴2(1﹣cos 2A )﹣3cosA=0,解得cosA=12,或cosA=﹣2(舍去), ∵0<A <π,∴A=3π;(2)∵△ABC 的面积S=12,∴bc=20, 再由c=4可得b=5,故b+c=9,由余弦定理可得:a 2=b 2+c 2﹣2bccosA=(b+c )2﹣3bc=21 ,∴sinB+sinC ()sin sin sin 9b A c A A b c a a a =+=⨯+==∴sinB+sinC . 【点睛】这个题目考查了同角三角函数的化简求值,考查了三角形面积公式和正余弦定理的应用,解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.18.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,60BAD ︒∠=,90APD ︒∠=,且AD PB =.(1)求证:平面PAD ⊥平面ABCD ;(2)若AD PB ⊥,求二面角D PB C --的余弦值.【答案】(1)见解析; (2. 【解析】 【分析】(1)先根据计算得线线线线垂直,再根据线面垂直判定定理以及面面垂直判定定理得结论,(2)建立空间直角坐标系,利用空间向量求二面角. 【详解】(1)证明:取AD 中点O ,连结OP ,OB ,BD , 因为底面ABCD 为菱形,60BAD ∠=,所以AD = AB BD =. 因为O 为AD 的中点,所以OB AD ⊥.在△APD 中,90APD ∠=, O 为AD 的中点,所以12PO AD AO ==.设2AD PB a ==,则OB =,PO OA a ==,因为22222234PO OB a a a PB +=+==,所以OP OB ⊥. 在△APD 中,90APD ∠=,O 为AD 的中点,所以12PO AD AO ==. 在△ BOP 和△ BOA 中,因为PO AO =,PB AD AB ==,BO BO =, 所以△ BOP ≅△ BOA .所以90BOP BOA ∠=∠=.所以OP OB ⊥.因为OP AD O ⋂=,OP ⊂平面PAD ,AD ⊂平面PAD , 所以OB ⊥平面PAD .因为OB ⊂平面ABCD ,所以平面PAD ⊥平面ABCD .(2)因为AD PB ⊥,AD OB ⊥,OB PB B ⋂=,PB ⊂平面POB ,OB ⊂平面POB , 所以AD ⊥平面POB .所以PO AD ⊥.由(1)得PO OB ⊥,AD OB ⊥,所以OA ,OB ,OP 所在的直线两两互相垂直. 以O 为坐标原点,分别以,,OA OB OP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.设2AD =,则()1,0,0A ,()1,0,0D -,()B ,()0,0,1P , 所以()1,0,1PD =--,()1PB =-,()2,0,0BC AD ==-, 设平面PBD 的法向量为()111,,n x y z =,则1111•0,•30,n PD x zn PB y z ⎧=--=⎪⎨=-=⎪⎩ 令11y =,则1x =1z =(n =. 设平面PBC 的法向量为()222,,m x y z =,则222•20,•30,m BC x m PB y z⎧=-=⎪⎨=-=⎪⎩ 令21y =,则20x =,2z (m =. 设二面角DPB C --为θ,由于θ为锐角, 所以cos cos ,m n θ===. 所以二面角D PB C --.【点睛】本题考查线面垂直判定定理、面面垂直判定定理以及利用空间向量求二面角,考查基本分析论证与求解能力,属中档题.19.已知椭圆E :22221(0)x y a b a b +=>>的离心率e =A 和右顶点B的直线与原点O , (1)求椭圆E 的方程;(2)是否存在直线l 经过椭圆左焦点与椭圆E 交于M ,N 两点,使得以线段MN 为直径的圆恰好经过坐标原点O ?若存在,求出直线l 方程;若不存在,请说明理由.【答案】(1)2214x y +=;(2)20x -+=,或20x +-=. 【解析】试题分析:(1)由题意,根据离心率定义得到a 与c 的关系式,再由点,A B 求出直线AB 的方程,根据点到直线距离公式,得到a 与b 的关系式,再结合222a b c =+,从而得出椭圆方程;(2)根据题意,可将直线l 斜率存在与否进行分类讨论,由“线段MN 为直径”,得0OM ON ⋅=,再利用向量数量积的坐标运算,从而解决问题.试题解析:(1)由已知得,2c e a ==因为过椭圆的上顶点A 和右顶点B 的直线与原点的距离为5,所以=,解得2,1,a b c ===故所求椭圆E 的方程:2214x y +=(2)椭圆E左焦点(),①当直线l 斜率不存在时,直线l 与椭圆E交于11,22⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭两点,显然不存在满足条件的直线.………6分②当直线l 斜率存在时,设直线:ly kx =+联立2214y kx x y ⎧=+⎪⎨+=⎪⎩,消y 得,()2222141240k x x k +++-=由于直线l 经过椭圆E 左焦点,所以直线l 必定与椭圆E 有两个交点,0∴∆>恒成立设()()1122,,,M x y N x y则212214x x k +=-+,212212414k x x k -=+若以MN 为直径的圆过O 点,则0OM ON ⋅=,即12120x x y y += (*)而()()()2221212121233y y kx kxk x x x x k =+=+++,代入(*)式得,()()2221212130k x xx x k +++=即()2222212413014k kk k -+⋅=+,解得2411k =,即11k =或11k =-.所以存在11k =或11k =-使得以线段MN 为直径的圆过原点O .故所求的直线方程为20x +=,或20x +-=.20.已知函数()()21ln 12g x a x x b x =++-. (1)若()g x 在点()()1,1g 处的切线方程为8230x y --=,求,a b 的值; (2)若121,,b a x x =+是函数()g x 的两个极值点,试比较4-与()()12g x g x +的大小. 【答案】(1)1,1a b ==-; (2)()()124g x g x +<-. 【解析】【分析】(1)先求得切点的坐标,然后利用切点和斜率列方程组,解方程组求得,a b 的值.(2)将()g x 转化为只含有a 的式子.对函数()g x 求导,利用二次函数零点分布的知识求得a 的取值范围并利用韦达定理写出12,x x 的关系式.化简()()12g x g x +的表达式,并利用构造函数法求得()()128ln212g x g x +<-.用差比较法比较出8ln212-与4-的大小关系.【详解】(1)根据题意可求得切点为51,2⎛⎫⎪⎝⎭,由题意可得,()()'1a g x x b x =++-, ∴()()512'14g g ⎧=⎪⎨⎪=⎩,即15122114b a b ⎧+-=⎪⎨⎪++-=⎩,解得1,1a b ==-.(2)∵1b a =+,∴()21ln 2g x a x x ax =+-,则()'ag x x a x=+-. 根据题意可得20x ax a -+=在()0,∞+上有两个不同的根12,x x .即202400aa a a ⎧>⎪⎪->⎨⎪>⎪⎩,解得4a >,且1212,x x a x x a +==. ∴()()()()()2221212121211ln ln 22g x g x a x x x x a x x a a a a +=++-+=--. 令()21ln (4)2f x x x x x x =-->,则()'ln 11ln f x x x x x =+--=-, 令()ln h x x x =-,则当4x >时,()1'10h x x=-<,∴()h x 在()4,∞+上为减函数,即()()()4ln440,'0h x h f x <=-<<即, ∴()f x 在()4,∞+上为减函数,即()()48ln212f x f <=-, ∴()()128ln212g x g x +<-,又∵()()228ln21248ln288ln218ln ,ln 0e e而---=-=-=<, ∴28ln0e<,即8ln2124-<-, ∴()()124g x g x +<-.【点睛】本小题主要考查利用导数求解有关切线方程的问题,考查利用导数研究函数的极值点问题,难度较大.21.某饮料公司根据市场调查数据分析得到以下结果:如果某款饮料年库存积压率低于千分之一,则该款饮料为畅销产品,可以继续大量生产. 如果年库存积压率高于千分之一,则说明需要调整生产计划. 现公司 2013—2018 年的某款饮料生产,年销售利润及年库存积压相关数据如下表所示:注:=年库存积压件数年库存积压率年生产件数(1)从公司 2013—2018 年的相关数据中任意选取 2 年的数据,求该款饮料这 2 年中至少有 1 年畅销的概率.(2)公司根据上表计算出年销售利润与年生产件数的线性回归方程为9.909.30y x ∧=-.现公司计划 2019 年生产 11 千万件该款饮料,且预计 2019 年可获利 108 千万元. 但销售部 门发现,若用预计的 2019 年的数据与 2013—2018 年中畅销年份的数据重新建立回归方程, 再通过两个线性回归方程计算出来的 2019 年年销售利润误差不超过 4 千万元,该款饮料的 年库存积压率可低于千分之一. 如果你是决策者,你认为 2019 年的生产和销售计划是否需要调整?请说明理由. 【答案】(1)1415;(2)不需要调整. 【解析】 【分析】(1)计算出每年的年度库存积压率,可知13,15,17,18年畅销,14,16年不畅销;列举出所有年份中任取2年的取法共15种,其中2年均为不畅销的取法仅有1种,故根据古典型及对立事件的概率可求得结果;2)数据重组后依据公式计算出新的回归直线方程,并求出2019年的年销售利润预估值;再计算出原回归直线方程的2019年的年销售利润预估值,可知两值相差3.66千万元,由此可得结论 【详解】(1)公司2013-2018年年度存积压率分别为:2.9130001000<, 5.8150001000>,3160001000<,9180001000>,7.5190001000<,81110001000<则该饮品在13,15,17,18年畅销记1A ,2A ,3A ,4A ,14,16年不畅销记为1B ,2B任取2年的取法有:()12,A A ,()13,A A ,()14,A A ,()11,A B ,()12,A B ,()23,A A ,()24,A A ,()21,A B ,()22,A B ,()34,A A ,()31A B ,()32,A B ,()42,A B ,()12,B B ,共15种.其中2年均不畅销的取法是()12,B B ,共1种 ∴该款饮料这年中至少有1年畅销的概率为:11411515P =-= (2)由题意得,2019年数据与2013,2015,2017,2018年数据重组如下表:经计算得8x =,72y = ∵513380i i i x y ==∑,521368i i x ==∑∴51252155i i i ii x y x y b x x∧==-⋅==-∑∑23380587212510.423685812-⨯⨯=≈-⨯7210.42811.36a y b x ∧∧=-⋅=-⨯=-∴10.4211.36y x ∧=-当11x =时,10.421111.36103.26y ∧=⨯-=,此时预估年销售利润为103.26千万元 将11x =代入9.909.30y x ∧=-中得,9.90119.3099.6y ∧=⨯-=,此时预估年销售利润为99.6千万元∵|103.26-99.6|=3.66<4,故认为2019年的生产和销售计划不需要调整.【点睛】本题考查了概率的计算,回归方程,意在考查学生的计算能力和解决问题的能力.(二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分.选修 4-4:坐标系与参数方程 22.在平面直角坐标系 xOy 中,曲线1C:的参数方程是1x y αα⎧=⎪⎨=⎪⎩,(α为参数). 以原点 O 为极点, x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为1ρ=. (1)分别写出1C 的极坐标方程和2C 的直角坐标方程; (2)若射线 l 的极坐标方程(0)3πθρ=≥,且 l 分别交曲线1C 、2 C 于 A ,B 两点,求AB . 【答案】(1)1C :22cos 20ρρθ--=,2C :221x y +=;(2)1.【解析】试题分析:(1)首先写出1C 的直角坐标方程,再根据互化公式写出极坐标方程,和2C 的直角坐标方程,互化公式为cos ,sin ,x y ρθρθρ=== ;(2)根据图象分析出12AB ρρ=- .试题解析:(1)将1C 参数方程化为普通方程为()2213x y -+=,即22220x y x +--=, ∴1C 的极坐标方程为22cos 20ρρθ--=.将2C 极坐标方程化为直角坐标方程为221x y +=.(2)将=3πθ代入1:C 22cos 20ρρθ--=整理得220ρρ--=, 解得12ρ=,即12OA ρ==.∵曲线2C 是圆心在原点,半径为1的圆, ∴射线=3πθ ()0ρ≥与2C 相交,即21ρ=,即21OB ρ==. 故12211AB ρρ=-=-=.选修 4-5:不等式选讲23.已知函数()6f x x x =+-.(1)求不等式()10f x ≤的解集;(2)记()f x 的最小值为 m ,若正实数a , b ,c 满足a b c m ++=,求证:m ≤.【答案】(Ⅰ)[]2,8-;(Ⅱ)见解析.【解析】 试题分析: (Ⅰ)利用绝对值的意义,写出分段函数,即可求不等式f (x )≤10的解集;(Ⅱ)利用绝对值不等式,求出m ,再利用柯西不等式进行证明.试题解析:(Ⅰ) ()26,0,6,06,26, 6.x x f x x x x -+≤⎧⎪=<≤⎨⎪->⎩当0x ≤时,由2610x -+≤,解得20x -≤≤;当06x <≤时,因为610<,所以06x <≤;当6x >时,由2610x -≤,解得68x <≤综上可知,不等式()10f x ≤的解集为[]2,8-.(Ⅱ)由(Ⅰ)知, ()f x 的最小值为6,即6m =.(或者6x x +-≥ ()66x x --=),所以6a b c ++=, 由柯西不等式可得()()123a b c ++++=222⎛⎫++ ⎪⎝⎭222⎛⎫++ ⎪⎝⎭ 2≥6m ≤=.。
2018-2019学年高二(下)期末数学试卷(含答案)
高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.()A. 5B. 5iC. 6D. 6i2.( )B.3.某校有高一学生n名,其中男生数与女生数之比为6:5,为了解学生的视力情况,若样本中男生比女生多12人,则n=()A. 990B. 1320C. 1430D. 15604.(2,k(6,4是()A. (1,8)B. (-16,-2)C. (1,-8)D. (-16,2)5.某几何体的三视图如图所示,则该几何体的体积为()A. 3πB. 4πC. 6πD. 8π6.若函数f(x)a的取值范围为()A. (-5,+∞)B. [-5,+∞)C. (-∞,-5)D. (-∞,-5]7.设x,y z=x+y的最大值与最小值的比值为()A. -1B.C. -28.x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为()A. 2B. 1 D. 49.等比数列{a n}的前n项和为S n,若S10=10,S30=30,则S20=()A. 20B. 10C. 20或-10D. -20或1010.当的数学期望取得最大值时,的数学期望为()A. 211.若实轴长为2的双曲线C:4个不同的点则双曲线C的虚轴长的取值范围为( )12.已知函数f(x)=2x3+ax+a.过点M(-1,0)引曲线C:y=f(x)的两条切线,这两条切线与y轴分别交于A,B两点,若|MA|=|MB|,则f(x)的极大值点为()二、填空题(本大题共4小题,共20.0分)13.(x7的展开式的第3项为______.14.已知tan(α+β)=1,tan(α-β)=5,则tan2β=______.15.287212,也是著名的数学家,他最早利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆C面积则椭圆C的标准方程为______.16.已知高为H R的球O的球面上,若二面4三、解答题(本大题共6小题,共70.0分)17.nn的通项公式.18.2019年春节档有多部优秀电影上映,其中《流浪地球》是比较火的一部.某影评网站统计了100名观众对《流浪地球》的评分情况,得到如表格:(1)根据以上评分情况,试估计观众对《流浪地球》的评价在四星以上(包括四星)的频率;(2)以表中各评价等级对应的频率作为各评价等级对应的概率,假设每个观众的评分结果相互独立.(i)若从全国所有观众中随机选取3名,求恰有2名评价为五星1名评价为一星的概率;(ii)若从全国所有观众中随机选取16名,记评价为五星的人数为X,求X的方差.19.在△ABC中,角A,B,C所对的边分别是a,b,c,已知b sin A cos C+a sin C cos B A.(1)求tan A的值;(2)若b=1,c=2,AD⊥BC,D为垂足,求AD的长.20.已知B(1,2)是抛物线M:y2=2px(p>0)上一点,F为M的焦点.(1,M上的两点,证明:|FA|,|FB|,|FC|依次成等比数列.(2)若直线y=kx-3(k≠0)与M交于P(x1,y1),Q(x2,y2)两点,且y1+y2+y1y2=-4,求线段PQ的垂直平分线在x轴上的截距.21.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PB=PC,E为线段BC的中点,F为线段PA上的一点.(1)证明:平面PAE⊥平面BCP.(2)若PA=AB,二面角A-BD=F求PD与平面BDF所成角的正弦值.22.已知函数f(x)=(x-a)e x(a∈R).(1)讨论f(x)的单调性;(2)当a=2时,F(x)=f(x)-x+ln x,记函数y=F(x1)上的最大值为m,证明:-4<m<-3.答案和解析1.【答案】A【解析】故选:A.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础题.2.【答案】C【解析】【分析】本题考查元素与集合的关系,子集与真子集,并集及其运算,属于基础题.先分别求出集合A与集合B,再判别集合A与B的关系,以及元素和集合之间的关系,以及并集运算得出结果.【解答】解:A={x|x2-4x<5}={x|-1<x<5},B={2}={x|0≤x<4},∴∉A,B,B⊆A,A∪B={x|-1<x<5}.故选C.3.【答案】B【解析】解:某校有高一学生n名,其中男生数与女生数之比为6:5,样本中男生比女生多12人,设男生数为6k,女生数为5k,解得k=12,n=1320.∴n=1320.故选:B.设男生数为6k,女生数为5k,利用分层抽样列出方程组,由此能求出结果.本题考查高一学生数的求法,考查分层抽样等基础知识,考查运算求解能力,是基础题.4.【答案】B【解析】解:∴k=-3;∴(-16,-2)与共线.k=-3考查向量垂直的充要条件,向量坐标的加法和数量积的运算,共线向量基本定理.5.【答案】A【解析】解:由三视图知,几何体是一个简单组合体,左侧是一个半圆柱,底面的半径是1,高为:4,右侧是一个半圆柱,底面半径为1,高是2,∴,故选:A.几何体是一个简单组合体,左侧是一个半圆柱,底面的半径是1,高为:4,右侧是一个半圆柱,底面半径为1,高是2,根据体积公式得到结果.本题考查由三视图求几何体的体积,考查由三视图还原直观图,本题是一个基础题,题目的运算量比较小,若出现是一个送分题目.6.【答案】B【解析】解:函数f(x)x≤1时,函数是增函数,x>1时,函数是减函数,由题意可得:f(1)=a+4≥,解得a≥-5.故选:B.利用分段函数的表达式,以及函数的单调性求解最值即可.本题考查分段函数的应用,函数的单调性以及函数的最值的求法,考查计算能力.7.【答案】C【解析】解:作出不等式组对应的平面区域如图:A(2,5),B-2)由z=-x+y,得y=x+z表示,斜率为1纵截距为Z的一组平行直线,平移直线y=x+z,当直线y=x+z经过点A时,直线y=x+z的截距最大,此时z最大值为7,经过B时则z=x+y的最大值与最小值的比值为:.故选:C.作出不等式对应的平面区域,利用z的几何意义,利用直线平移法进行求解即可.本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.【解析】解:由题意,对任意的∈R,都有f(x1)≤f(x)≤f(x2)成立,∴f(x1)=f(x)min=-3,f(x2)=f(x)max=3.∴|x1-x2|min∵T=4.∴|x1-x2|min=.故选:A.本题由题意可得f(x1)=f(x)min,f(x2)=f(x)max,然后根据余弦函数的最大最小值及周期性可知|x1-x2|min本题主要考查余弦函数的周期性及最大最小的取值问题,本题属中档题.9.【答案】A【解析】解:由等比数列的性质可得:S10,S20-S10,S30-S20成等比数列,(30-S20),解得S20=20,或S20=-10,∵S20-S10=q10S10>0,∴S20>0,∴S20=20,故选:A.由等比数列的性质可得:S10,S20-S10,S30-S20成等比数列,列式求解.本题考查了等比数列的通项公式和前n项和及其性质,考查了推理能力与计算能力,属于中档题.10.【答案】D【解析】解:∴EX取得最大值.此时故选:D.利用数学期望结合二次函数的性质求解期望的最值,然后求解Y的数学期望.本题考查数学期望以及分布列的求法,考查计算能力.11.【答案】C【解析】【分析】本题考查了双曲线的性质,动点的轨迹问题,考查了转化思想,属于中档题.设P i(x,y)⇒x2+y2(x2。
2018-2019学年湖南省衡阳市衡阳县第四中学高二(平行班)下学期期末数学(理)试题(解析版)
2018-2019学年湖南省衡阳市衡阳县第四中学高二(平行班)下学期期末数学(理)试题一、单选题1.已知i 为虚数单位,复数21iz =-+,则复数z 的虚部为 A .1 B .1-C .i -D .i【答案】B【解析】由题意得22(1)11(1)(1)i z i i i i --===---+-+--, 所以复数z 的虚部为1-.选B .2.下列三句话按“三段论”模式排列顺序正确的是( )①cos ()y x x R =∈是周期函数;②三角函数是周期函数;③cos ()y x x R =∈是三角函数 A .②③① B .②①③C .①②③D .③②①【答案】A【解析】根据“三段论”的排列模式:“大前提”→“小前提”→“结论”,分析即可得到正确的顺序. 【详解】根据“三段论”的排列模式:“大前提”→“小前提”→“结论”,可知: ①cos ()y x x R =∈是周期函数是“结论”; ②三角函数是周期函数是“大前提”; ③cos ()y x x R =∈是三角函数是“小前提”; 故“三段论”模式排列顺序为②③①. 故选:A 【点睛】本题考查了演绎推理的模式,需理解演绎推理的概念,属于基础题.3.一辆汽车按规律s =at 2+1做直线运动,若汽车在t =2时的瞬时速度为12,则a =( ) A .12B .13C .2D .3【答案】D【解析】如果物体按s=s (t )的规律运动,那么物体在时刻t 的瞬时速度()v t s ='(t ),由此可得出答案. 【详解】由s =at 2+1得v (t )=s ′=2at , 故v (2)=12,所以2a ·2=12,得a =3. 【点睛】本题主要考察导数的物理意义.属于基础题4..已知{}n b 为等比数列,52b =,则91292b b b L ⋅=.若{}n a 为等差数列,52a =,则{}n a 的类似结论为( ) A .912392a a a a =L B .912392a a a a ++++=LC .123929a a a a L =⨯D .123929a a a a ++++=⨯L【答案】D【解析】根据等差数列中等差中项性质推导可得. 【详解】由等差数列性质,有19a a +=28a a +=…=25a .易知选项D 正确. 【点睛】等差中项和等比中项的性质是出题的热点,经常与其它知识点综合出题. 5.在复平面内,复数21iz i=+ (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D【解析】分析:首先求得复数z ,然后求解其共轭复数即可. 详解:由复数的运算法则有:()()()()2121211112i i i i i z i i i i --====+++-, 则1z i =-,其对应的点()1,1-位于第四象限. 本题选择D 选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.6.2只猫把5只老鼠捉光,不同的捉法有( )种. A .25 B .52C .25CD .25A【答案】B【解析】分析:利用乘法分步计数原理解决即可.详解:由于每只猫捉老鼠的数目不限,因此每一只老鼠都可能被这2只猫中其中一只捉住,由分步乘法计数原理,得共有不同的捉法有52种. 故选:B.点睛:(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.7.函数()sin cos f x x x =+在点(0,(0))f 处的切线方程为( ) A .10x y -+= B .10x y --=C .10x y +-=D .10x y ++=【答案】A【解析】先求出f '(x ),再利用导数求出在x =0处的导函数值,再结合导数的几何意义即可求出切线的斜率即可. 【详解】∵f (x )=sinx+cosx ,∴f '(x )=cosx ﹣sinx ,∴f '(0)=1, 所以函数f (x )在点(0,f (0))处的切线斜率为1;又f (0)=1,∴函数f (x )=sinx+cosx 在点(0,f (0))处的切线方程为:y ﹣1=x ﹣0.即x ﹣y+1=0. 故选A . 【点睛】本题考查利用导数求曲线上在某点切线方程的斜率,考查直线的斜率、导数的几何意义等基础知识,属于基础题.8.函数f (x )=x 2-ln 2x 的单调递减区间是( )A .(0,2B .[)2+∞ C .(,2-∞-,(0,2D .[2-,(0,2【答案】A【解析】先求出f (x )的导数f ′(x ),令f ′(x ) ≤0即可解出答案(注意定义域) 【详解】由题意知,函数f (x )定义域为x >0,因为f ′(x )=2x -1x =221x x -,由f ′(x )≤0得20210x x >⎧⎨-≤⎩解得0<x . 【点睛】本题主要考察利用导数解决函数单调性的问题.属于基础题9.从不同品牌的4台“快译通”和不同品牌的5台录音机中任意抽取3台,其中至少有“快译通”和录音机各1台,则不同的取法共有( ) A .140种 B .84种 C .70种 D .35种【答案】C【解析】分析:从中任意取出三台,其中至少要有“快译通”和录音机各1台,有两种方法,一是2台和1台;二是1台和2台,分别求出取出的方法,即可求出所有的方法数. 详解:由题意知本题是一个计数原理的应用,从中任意取出三台,其中至少要有“快译通”和录音机各1台,快译通2台和录音机1台,取法有214530C C =种; 快译通1台和录音机2台,取法有124540C C =种,根据分类计数原理知共有304070+=种. 故选:C.点睛:本题考查计数原理的应用,考查分类和分步的综合应用,本题解题的关键是看出符合条件的事件包含两种情况,是一个中档题目.10.设x =-2与x =4是函数f (x )=x 3+ax 2+bx 的两个极值点,则常数a -b 的值为( ) A .21 B .-21 C .27 D .-27【答案】A【解析】求出导数f ′(x ).利用x =-2与x =4是函数f (x ) 两个极值点即为f ′(x )=0的两个根.即可求出a 、b . 【详解】由题意知,-2,4是函数f ′(x )=0的两个根,f ′(x )=3x 2+2ax +b ,所以2243243a b ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩⇒324a b =-⎧⎨=-⎩ 所以a -b =-3+24=21. 故选A 【点睛】f ′(x )=0的解不一定为函数f (x )的极值点.(需判断此解两边导数值的符号) 函数f (x )的极值点一定是f ′(x )=0的解.11.设函数f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是( )A .B .C .D .【答案】A【解析】根据原函数的单调性,判断导数的正负,由此确定正确选项. 【详解】根据()f x 的图像可知,函数从左到右,单调区间是:增、减、增、减,也即导数从左到右,是:正、负、正、负.结合选项可知,只有A 选项符合,故本题选A. 【点睛】本小题主要考查导数与单调性的关系,考查数形结合的思想方法,属于基础题. 12.若不等式2xln x≥-x 2+ax -3对x ∈(0,+∞)恒成立,则实数a 的取值范围是( ) A .(-∞,0) B .(-∞,4]C .(0,+∞)D .[4,+∞)【答案】B【解析】分析:由已知条件推导出,令,利用导数形式求出时,取得最小值4,由此能求出实数的取值范围.【详解】 详解:由题意对上恒成立,所以在上恒成立,设,则,由,得,当时,,当时,, 所以时,,所以,即实数的取值范围是.点睛:利用导数研究不等式恒成立或解不等式问题,通常首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.二、填空题13.若9()a x x-的展开式中3x 的系数是84-,则a = .【答案】1【解析】先求出二项式9()a x x-的展开式的通项公式,令x 的指数等于4,求出r 的值,即可求得展开式中3x 的项的系数,再根据3x 的系数是84-列方程求解即可. 【详解】9()a x x -展开式的的通项为()992199rr r r r rr a T C x C x a x --+⎛⎫=-=- ⎪⎝⎭, 令9233r r -=⇒=,9()a x x-的展开式中3x 的系数为()339841C a a -=-⇒=,故答案为1. 【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.14.由抛物线y =12x 2,直线x =1,x =3和x 轴所围成的图形的面积是______. 【答案】133【解析】由题意,作出图形,确定定积分,即可求解所围成的图形的面积. 【详解】解析:如图所示,S =x 2dx =1=(33-13)=.【点睛】本题主要考查了定积分的应用,其中根据题设条件,作出图形,确定定积分求解是解答的关键,着重考查了推理与运算能力,以及数形结合思想的应用,属于基础题. 15.已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是__________. 【答案】21y x =--【解析】试题分析:当0x >时,0x -<,则()ln 3f x x x -=-.又因为()f x 为偶函数,所以()()ln 3f x f x x x =-=-,所以1()3f x x=-',则切线斜率为(1)2f '=-,所以切线方程为32(1)y x +=--,即21y x =--. 【考点】函数的奇偶性与解析式,导数的几何意义.【知识拓展】本题题型可归纳为“已知当0x >时,函数()y f x =,则当0x <时,求函数的解析式”.有如下结论:若函数()f x 为偶函数,则当0x <时,函数的解析式为()y f x =-;若()f x 为奇函数,则函数的解析式为()y f x =--.16.已知32()3f x x x a =++(a 为常数),在[33]-,上有最小值3,那么在[33]-,上()f x 的最大值是 【答案】57【解析】试题分析:()()322()33632f x x x a f x x x x x =++∴=+=+'单调增区间为[][]3,2,0,3--减区间为[]2,0-,最大值为()32727357f =++=【考点】函数导数与最值三、解答题17.已知复数()()22563z m m m m i =-++-,其中i 为虚数单位.(1)若复数z 是实数,求实数m 的值; (2)若复数z 是纯虚数,求实数m 的值. 【答案】(1)0m =或3m =;(2)2m =.【解析】(1)由实数定义可知虚部为零,由此构造方程求得结果; (2)由纯虚数定义可知实部为零且虚部不为零,由此构造方程求得结果. 【详解】(1)令230m m -=,解得:0m =或3m = ∴当0m =或3m =时,复数z 是实数(2)令2560m m -+=,解得:2m =或3m = 又230m m -?,即:0m ≠且3m ≠ 2m ∴=∴当2m =时,复数z 是纯虚数【点睛】本题考查根据复数的类型求解参数值的问题,关键是熟练掌握实数和纯虚数的定义;易错点是在复数为纯虚数时,忽略0b ≠的要求,造成求解错误.18.设函数f (x )=x e x,求函数f (x )的单调区间.【答案】单调递增区间是[1,+∞),单调递减区间是(-∞,0),(0,1]【解析】先求出f (x )的导数f ′(x ),令f ′(x ) =0,得出零点.讨论零点两侧导数正负即可解出答案(注意定义域) 【详解】解:f ′(x )=-e x +e x =e x ,由f ′(x )=0,得x =1. 因为当x <0时,f ′(x )<0; 当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0.所以f (x )的单调递增区间是[1,+∞),单调递减区间是(-∞,0),(0,1]. 【点睛】本题主要考察利用导数求函数单调区间,属于基础题.19.有6本不同的书:(1)全部借给5人,每人至少1本,共有多少种不同的借法?(2)全部借给3人,每人至少1本,共有多少种不同的借法? 【答案】(1)1800;(2)540【解析】分析:(1)将6本书中某两本书合在一起组成5份,借给5人,即可得到答案; (2)将6本书分成三份有3种分法,第一种是一人4本,一人1本,一人1本;第二种是一人3本,一人2本,一人1本;第三种是每人各2本;然后再将分好的三份借给3人即可.详解:(1)将6本书中某两本书合在一起组成5份,借给5人,共有2565C A =1800种借法. (2)将6本书分成三份有3种分法.第一种是一人4本,一人1本,一人1本;第二种是一人3本,一人2本,一人1本;第三种是每人各2本;然后再将分好的三份借给3人,有4112223236216426332323C C C C C C C C ?A A A ⎛⎫++ ⎪⎝⎭=540种借法. 点睛:分组分配问题是排列、组合问题的综合运用,解决这类问题的一个基本指导思想就是先分组后分配.关于分组问题,有整体均分、部分均分和不等分组三种,无论分成几组,都应注意只要有一些组中元素的个数相等,就存在均分现象. 20.已知F (x )=()14xt t dt --⎰,x ∈(-1,+∞).(1)求F (x )的单调区间;(2)求函数F (x )在[1,5]上的最值.【答案】(1)单调递增区间为(-1,0)和(4,+∞),单调递减区间为(0,4);(2)最大值为23,最小值为325-. 【解析】(1)由微积分基本定理可得出F (x )的表达式,进而求出其导数F ′(x ),令F ′(x )>0,F ′(x )<0解次不等式即可得出F (x )的单调增区间和单调减区间. (2)由(1)可得F (x )在[1,5]上的单调性,即可得出其最值. 【详解】 解:(1)F ′(x )=′=x 2-4x ,由F ′(x )>0,即x 2-4x >0,得-1<x <0或x >4;由F ′(x )<0,即x 2-4x <0,得0<x <4,所以F (x )的单调递增区间为(-1,0)和(4,+∞),单调递减区间为(0,4).(2)由(1)知F (x )在[1,4]上递减,在[4,5]上递增. 因为F (1)=-2+=,F (4)=×43-2×42+=-,F (5)=×53-2×52+=-6, 所以F (x )在[1,5]上的最大值为,最小值为-.【点睛】本题考察微积分定理以及利用导数解决函数单调性和闭区间上的最值的问题.属于中档题.21.在二项式(ax m +bx n )12(a >0,b >0,m 、n≠0)中有2m+n=0,如果它的展开式里最大系数项恰是常数项. (1)求此常数项是第几项; (2)求的范围.【答案】(1)5;(2)≤≤.【解析】分析:(1)求出通项()1212112m r nrr r r r T C a b x-+-+=,由()120m r nr -+=以及20,0,0m n m n +=≠≠,即可求出答案;(2)由只有常数项为最大项且0,0a b >>,可得48439312124845751212C a b C a b ,C a b C a b ,⎧≥⎨≥⎩①②,即可得到答案.详解:(1)设T r+1=r12C ?(ax m )12-r ·(bx n )r =r12C ?a 12-r ·b r x m(12-r)+nr 为常数项, 则有m(12-r)+nr=0,因为2m+n=0, 所以m(12-r)-2mr=0,解得r=4, 故可知常数项是第5项.(2)因为第5项又是系数最大的项,所以48439312124845751212C a b C a b ,C a b C a b ,⎧≥⎨≥⎩①②因为a>0,b>0, 所以由①②可得8a 9.5b 4≤≤点睛:本题主要考查二项式定理,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.22.已知函数2()2(1)2ln (0)f x x a x a x a =-++>(1)当1a =时,求曲线()y f x =在点(1, (1))f 处的切线方程;(2)求()f x 的单调区间;(3)若()0f x …在区间[1,e]上恒成立,求实数a 的取值范围.【答案】(1)切线方程为3y =-.(2)当01a <<时,()f x 的单调增区间是(0,)a 和(1,)+∞,单调减区间是(,1)a ; 当1a =时,()f x 的单调增区间是(0,)+∞;当1a >时,()f x 的单调增区间是(0,1)和(,)a +∞,单调减区间是(1,)a .(3)2e 2e 2e 2a -≥-. 【解析】试题分析:(1)求出a=1时的导数即此时切线的斜率,然后由点斜式求出切线方程即可;(2)对于含参数的单调性问题的关键时如何分类讨论,常以导数等于零时的根与区间端点的位置关系作为分类的标准,然后分别求每一种情况时的单调性;(3)恒成立问题常转化为最值计算问题,结合本题实际并由第二问可知,函数在区间[1,e]上只可能有极小值点,所以只需令区间端点对应的函数值小于等于零求解即可. 试题解析:(1)∵a =1,∴f (x )=x 2-4x +2lnx ,∴f ′(x )=(x>0),f (1)=-3,f ′(1)=0,所以切线方程为y =-3. (2)f ′(x )=(x>0), 令f ′(x )=0得x 1=a ,x 2=1,当0<a<1时,在x ∈(0,a )或x ∈(1,+∞)时,f ′(x )>0,在x ∈(a ,1)时,f ′(x )<0,∴f (x )的单调递增区间为(0,a )和(1,+∞),单调递减区间为(a ,1);当a =1时,f ′(x )=≥0,∴f (x )的单调增区间为(0,+∞);当a>1时,在x ∈(0,1)或x ∈(a ,+∞)时,f ′(x )>0,在x ∈(1,a )时,f ′(x )<0,∴f (x )的单调增区间为(0,1)和(a ,+∞),单调递减区间为(1,a ).(3)由(2)可知,f (x )在区间[1,e]上只可能有极小值点,∴f (x )在区间[1,e]上的最大值必在区间端点取到,∴f (1)=1-2(a +1)≤0且f (e )=e 2-2(a +1)e+2a≤0,解得a≥.【考点】•导数法求切线方程;‚求含参数的函数的单调性问题;ƒ恒成立问题求参数范围.【方法点睛】恒成立问题求参数范围常常将参数移到一边转化为函数最值问题即恒成立,即等价于.该解法的优点是不用讨论,但是当参数不易移到一边,或移到一边后另一边的函数值域不易求时,就不要移,而是将不等式的一边化为零即,由于此时函数含有参数,所以应讨论并求最值,从而求解.。
2018-2019学年高二数学下学期期末考试试题理(含解析)_7
2018-2019学年高二数学下学期期末考试试题理(含解析)本试题共4页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1.答题前,考生先将自己的姓名、考号填写在答题卡与试卷上,并将考号条形码贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3.非选择题用0.5毫米黑色墨水签字笔将答案直接答在答题卡上对应的答题区城内。
答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。
考试结束后,只交答题卡。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数的共扼复数为()A. B. C. D.【答案】A【解析】【分析】先根据虚数单位的性质化简复数z,然后再求它的共轭复数.【详解】,.故选A.【点睛】本题主要考查复数的运算及共轭复数,侧重考查数学运算的核心素养.2.某篮球运动员每次投篮未投中的概率为0.3,投中2分球的概率为0.4,投中3分球的概率为0.3,则该运动员投篮一次得分的数学期望为()A. 1.5B. 1.6C. 1.7D. 1.8【答案】C【解析】【分析】直接利用期望的公式求解.【详解】由已知得.故选:C【点睛】本题主要考查离散型随机变量的期望的计算,意在考查学生对该知识的理解掌握水平.3.如图所示,阴影部分的面积为()A. B.C. D.【答案】D【解析】【分析】利用定积分的几何意义写出阴影部分的面积的表达式得解.【详解】由定积分的几何意义及数形结合可知阴影部分的面积为.故选:D【点睛】本题主要考查定积分的几何意义,意在考查学生对该知识的理解掌握水平和数形结合分析能力.4.下列曲线中,在处切线的倾斜角为的是()A. B.C. D.【答案】D【解析】【详解】在x=1处切线的倾斜角为,即有切线的斜率为tan=−1.对于A,的导数为,可得在x=1处切线的斜率为5;对于B,y=xlnx的导数为y′=1+lnx,可得在x=1处切线的斜率为1;对于C,的导数为,可得在x=1处切线的斜率为;对于D,y=x3−2x2的导数为y′=3x2−4x,可得在x=1处切线的斜率为3−4=−1.本题选择D选项.5.将A,B,C,D,E,F这6个宇母随机排成一排组成一个信息码,则所得信息码恰好满足A,B,C三个字母连在一起,且B在A与C之间的概率为()A. B. C. D.【答案】C【解析】【分析】将A,B,C三个字捆在一起,利用捆绑法得到答案.【详解】由捆绑法可得所求概率为.故答案为C【点睛】本题考查了概率的计算,利用捆绑法可以简化运算.6.某电视台的夏日水上闯关节目中的前四关的过关率分别为,,,,只有通过前一关才能进入下一关,其中,第三关有两次闯关机会,且通过每关相互独立.一选手参加该节目,则该选手能进入第四关的概率为()A. B. C. D.【答案】D【解析】分析】分两种情况讨论得到该选手能进入第四关的概率.【详解】第一种情况:该选手通过前三关,进入第四关,所以,第二种情况:该选手通过前两关,第三关没有通过,再来一次通过,进入第四关,所以.所以该选手能进入第四关的概率为.故选:D【点睛】本题主要考查独立事件的概率和互斥事件的概率和公式,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.的计算结果精确到个位的近似值为()A. 106B. 107C. 108D. 109【答案】B【解析】【分析】由题得,再利用二项式定理求解即可.【详解】∵,∴.故选:B【点睛】本题主要考查利用二项式定理求近似值,意在考查学生对该知识的理解掌握水平和分析推理能力.8.若,则,.设一批白炽灯的寿命(单位:小时)服从均值为1000,方差为400的正态分布,随机从这批白炽灯中选取一只,则()A. 这只白炽灯的寿命在980小时到1040小时之间的概率为0.8186B. 这只白炽灯的寿命在600小时到1800小时之间的概率为0.8186C. 这只白炽灯的寿命在980小时到1040小时之间的概率为0.9545D. 这只白炽灯的寿命在600小时到1800小时之间的概率为0.9545【答案】A【解析】【分析】先求出,,再求出和,即得这只白炽灯的寿命在980小时到1040小时之间的概率.【详解】∵,,∴,,所以,,∴.故选:A【点睛】本题主要考查正态分布的图像和性质,考查指定区间的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.函数的最小值为()A. -1B.C.D. 0【答案】B【解析】【分析】利用换元法,令,可得函数,求导研究其最小值。
2018-2019学年高二数学下学期期末考试试题理(含解析)_11
2018-2019学年高二数学下学期期末考试试题理(含解析)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列中,,则()A. 20B. 30C. 40D. 50【答案】A【解析】等差数列中,,,.故选:A.2.已知中,,则满足此条件的三角形的个数是 ( )A. 0B. 1C. 2D. 无数个【答案】C【解析】由正弦定理得即即,所以符合条件的A有两个,故三角形有2个故选C点睛:此题考查学生灵活运用正弦定理化简求值,掌握正弦函数的图象与性质,会根据三角函数值求对应的角.3.函数,如果,且,则()A. B. C. D. 1【答案】C【解析】根据图象可知,,所以,所以,所以,因为图象经过,所以代入解析式可得,解得,所以。
因为,所以这个区间内函数的对称轴为,又,所以,所以。
故本题正确答案为C。
点睛:本题主要考查的正弦型三角函数的图像和性质,根据三角函数的“五个关键点”可以从图像中得到,,求得函数的解析式,由,可知即得结果.4.数列中,,(),那么()A. 1B. -2C. 3D. -3【答案】A【解析】∵,∴,即,∴,∴,∴是以6为周期的周期数列.∵2019=336×6+3,∴.故选B.5.将函数图象上的点向右平移个单位长度得到点,若位于函数的图象上,则()A. ,的最小值为B. ,的最小值为C. ,的最小值为D. ,的最小值为【答案】A【解析】由题意得由题意得所以,因此当时,的最小值为,选A.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.6.在边长为1的正中,,是边的两个三等分点(靠近于点),等于()A. B. C. D.【答案】C【解析】试题分析:如图,,是边的两个三等分点,故选C.考点:平面向量数量积的运算7.若等差数列的前项和满足,,则()A. B. 0 C. 1 D. 3【答案】B【解析】根据等差数列的性质仍成等差数列,则,则,,选B.8.如图,一货轮航行到处,测得灯塔在货轮的北偏东,与灯塔相距,随后货轮按北偏西的方向航行后,又测得灯塔在货轮的东北方向,则货轮的速度为()A. B.C. D.【答案】B【解析】由题意可知:,与正东方向的夹角为,与正东方向的夹角为,,中利用正弦定理可得货轮的速度故选9.若均为单位向量,且,则的最小值为()A. B. 1 C. D.【答案】A【解析】则当与同向时最大,最小,此时=,所以=-1,所以的最小值为,故选A点睛:本题考查平面向量数量积的性质及其运算律,考查向量模的求解,考查学生分析问题解决问题的能力,求出,表示出,由表达式可判断当与同向时,最小.10.已知向量,满足,,则向量在向量方向上的投影为()A. 0B. 1C. 2D.【答案】D【解析】试题分析:在方向上的投影为,故选D.考点:向量的投影.11.如图,在中,.是的外心,于,于,于,则等于()A. B.C. D.【答案】D【解析】由正弦定理有 ,三角形外接圆半径,所以,在中, ,同理,所以 ,选D.12.若函数在上单调递增,则实数的取值范围为()A. B. C. D.【答案】D【解析】因为,由题设可得在上恒成立,令,则,又,且,故,所以问题转化为不等式在上恒成立,即不等式在上恒成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年湖南省衡阳市衡东县高湖红桥中学高二
数学理下学期期末试题
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的
1. 已知集合()
A. B. C.
D.
参考答案:
D
2. 设集合, ( ) A. B. C. D.
参考答案:
B
3. 已知定点,点P为抛物线上一动点,点P到直线的距离为
,则|PA|+d的最小值为()
A.4 B. C.6 D.
参考答案:
B
4. 已知与之间的一组数据如下表所示,则与的线性回归方程必经过点()
A. B. C. D.
参考答案:
B
5. 抛物线y=﹣x2的准线方程是()
A.B.y=2 C.D.y=﹣2
参考答案:
B
【考点】抛物线的简单性质.
【分析】先把抛物线转换为标准方程x2=﹣8y,然后再求其准线方程.
【解答】解:∵,
∴x2=﹣8y,
∴其准线方程是y=2.
故选B.
6. 已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的表面积为( )
A.B.C.2πD.4π
参考答案:
D
【考点】球的体积和表面积.
【专题】计算题;数形结合;空间位置关系与距离;立体几何;球.
【分析】画出图形,正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出
PO1,OO1,解出球的半径,求出球的表面积即可.
【解答】解:正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,
记为O,PO=AO=R,PO1=1,OO1=R﹣1,或OO1=1﹣R(此时O在PO1的延长线上),
在Rt△AO1O中,R2=1+(R﹣1)2得R=1,∴球的表面积S=4πR2=4π.
故选:D.
【点评】本题考查了球的表面积,球的内接体问题,考查计算能力,是基础题.
7. 函数y=xcosx+sinx的图象大致为()
A.B.
C.D.
参考答案:
D
【考点】函数的图象.
【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.
【解答】解:由于函数y=xcosx+sinx为奇函数,
故它的图象关于原点对称,所以排除选项B,
由当x=时,y=1>0,
当x=π时,y=π×cosπ+sinπ=﹣π<0.
由此可排除选项A和选项C.
故正确的选项为D.
故选:D.
8. 已知两条不同直线、,两个不同平面、,给出下列命题:
①若垂直于内的两条相交直线,则⊥;
②若∥,则平行于内的所有直线;
③若,且⊥,则⊥;
④若,,则⊥;
⑤若,且∥,则∥;
参考答案:
①④;
略
9. 函数的定义域为,对任意则的解集为()
A. (-1,1)
B. (-∞,1)
C. (1,+∞)
D. (-∞,+∞)
参考答案:
C
分析】
令,求得,得到函数为上的单调递增函数,
又由,得出则不等式的解集,即为,即可求解.
【详解】由题意,令,则,
因为,所以,即函数为上的单调递增函数,
又由,则,
则不等式的解集,即为,解得,
所以不等式的解集为.
【点睛】本题主要考查了导数的应用,其中解答中通过构造新函数,利用导数求得新函数的单调性,合理求解是解答的关键,着重考查了构造思想,以及推理与运算能力,属于基
础题.
10. 设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线
x=对称.则下列判断正确的是()
A.p为真B.¬q为假C.p∧q为假D.p∨q为真
参考答案:
C
【考点】复合命题的真假;三角函数的周期性及其求法;余弦函数的对称性.
【分析】由题设条件可先判断出两个命题的真假,再根据复合命题真假的判断规则判断出选项中复合命题的真假即可得出正确选项.
【解答】解:由于函数y=sin2x的最小正周期为π,故命题p是假命题;函数y=cosx的图象关于直线x=kπ对称,k∈Z,故q是假命题.结合复合命题的判断规则知:¬q为真命题,p∧q为假命题,p∨q为是假命题.
故选C.
二、填空题:本大题共7小题,每小题4分,共28分
11. 过点做圆:的切线,切线的方程为_________.
参考答案:
及.
12. 已知,为第四象限角,则.
参考答案:
略
13. 等比数列{an}中,a1=512,公比q=,用πn表示它的n项之积:πn=a1·a2·a3…an,πn取得最大值时n=________.
参考答案:
9或10
略
14. 如图所示,在正方体中,、、、分别为棱,,
,的中点,是的中点,点在四边形及内部运动,则满足
__________时,有平面.
参考答案:
∵,,
∴面平面.
∵点在四边形上及其内部运动,故.
15. 已知点A是抛物线C:x2=2px(p>0)上一点,O为坐标原点,若A,B是以点M(0,10)为圆心,|OA|的长为半径的圆与抛物线C的两个公共点,且△ABO为等边三角形,则p的值是.
参考答案:
【考点】抛物线的简单性质.
【分析】由题意,|MA|=|OA|,可得A的纵坐标为5,利用△ABO为等边三角形,求出A的横坐标,根据点A是抛物线C:x2=2py(p>0)上一点,即可求出p的值.
【解答】解:由题意,|MA|=|OA|,∴A的纵坐标为5,
∵△ABO为等边三角形,
∴A的横坐标为,
∵点A是抛物线C:x2=2py(p>0)上一点,
∴=2p×5
∴p=,
故答案为:
16. 曲线在点处的切线方程为______
参考答案:
略
17. 已知向量,.若,则k= .
参考答案:
2
三、解答题:本大题共5小题,共72分。
解答应写出文字说明,证明过程或演算步骤
18. 已知数列满足对任意的,都有,且
.
(1)求数列的通项公式;
(2)设数列的前项和为,不等式对任意的正整数恒成立,求实数的取值范围.
参考答案:
(1)解:由于
,①则有
.②
②-①,得,
由于,所以
.③
同样有
,
④
③-④,得.所以.由于,即当时都有
,
所以数列是首项为1,公差为1的等差数列.故.
(2)解:由(2)知,则.
所以
.
∵,∴数列单调递增.所以.
要使不等式对任意正整数恒成立,只要.
∵,∴.∴,即.所以,实
略
19. 已知等差数列的首项为,公差为b,且不等式的解集为.
(1)求数列的通项公式及前n项和公式;
(2)求数列的前n项和T n .
参考答案:
解析:(1)∵不等式可转化为,
所给条件表明:的解集为,根据不等式解集的意义可知:方程的两根为、.
利用韦达定理不难得出.
由此知,
(2)令
则
=
20. (本小题满分14分)已知点、,若动点满足
.
(1)求动点的轨迹曲线的方程;
(2)在曲线上求一点,使点到直线:的距离最小.
参考答案:
(1)设点坐标为,
则,,,.
因为,所以,化简得.所以动点的轨迹为………………………6分
(2) 设与椭圆相切并且直线平行的直线的方程为:
由得
故当时,直线与已知直线的距离最小,
并且……………12分
将代入中得
代入中得
即点坐标为.………………14分
21. 已知数列是一个等差数列,且
(Ⅰ)求的通项;
(Ⅱ)求前n项和的最大值.
参考答案:
解:(Ⅰ)设的公差为,由已知条件,,
解出,.
所以.
(Ⅱ)
.
所以时,取到最大值.
略
22. (本题12分)
已知长方形, .以的中点为原点建立如图1所示的平面直角坐标系.
(1)求以为焦点,且过两点的椭圆的标准方程;
(2)过点的直线交(1)中椭圆于两点,使得以弦为直径的圆恰好过原点,求直线的方程.
参考答案:
解:(1)由题意可得点A,B,C的坐标分别为.……1分
设椭圆的标准方程是.
则
……4分
.
椭圆的标准方程是……5分
(2)由题意直线的斜率存在,可设直线的方程为
.
设M,N两点的坐标分别为
联立方程:
消去整理得,
有------7分
若以MN为直径的圆恰好过原点,则,
所以, ------8分
所以,,
即
所以,即-------10分得
所以直线的方程为,或.------12分。