谢寿才版概率统计第四章习题及其解答

合集下载

概率论与数理统计第四章习题及答案

概率论与数理统计第四章习题及答案

概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的).解:设表示一次抽检的10件产品的次品数为ξP =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)]查二项分布表1-=.因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=⎪⎪⎭⎫ ⎝⎛04××=.P (X =1)=⎪⎪⎭⎫ ⎝⎛14××=, P (X =2)= ⎪⎪⎭⎫⎝⎛24××=.P (X =3)=⎪⎪⎭⎫ ⎝⎛34××=, P (X =4)= ⎪⎪⎭⎫ ⎝⎛44××=. 从而E (X )=np =4×=习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==⎭⎬⎫⎩⎨⎧-=+j j X P jjj ,说明X的数学期望不存在.解: 由于1111133322(1)((1))3j j j j j j j j j P X j j j j ∞∞∞++===-=-==∑∑∑,而级数112j j ∞=∑发散,故级数11133(1)((1))j jj j j P X j j∞++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X-2 0 2 k p求)53(),(),(22+X E X E X E .解 E (X )=(-2)+0+2=由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2+02+22=E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[322+5]=如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3+5=4.135)(3)53(,8.23.04.0)(,2.03.023.004.02)(222222)2(=+=+=⨯+⨯=-=⨯+⨯+⨯-=-X E X E X E X E习题4-4 设随机变量X 的概率密度为⎩⎨⎧≤>=-0,0,0,)(x x e x f x 求XeY X Y 2)2(;2)1(-==的数学期望.解22)(2)0(2)(2)2()()(00=-=+-=+⋅===∞-∞+-∞-+∞-∞-+∞∞-⎰⎰⎰⎰xx xx e dx e xe dx xe dx x dx x xf X E Y E I3131)()()(0303022=-==⋅==∞-∞+-∞+---⎰⎰xx x x X edx e dx e e e E Y E II 习题4-5 设),(Y X 的概率密度为⎩⎨⎧≤≤≤=其它,0,10,12),(2x y y y x f求)(),(),(),(22Y X E XY E Y E X E +.解 各数学期望均可按照⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()],([计算。

概率论与数理统计第四章习题解

概率论与数理统计第四章习题解

7.若连续型随机变量ξ的分布密度是:
⎧ax2 + bx + c , (0 < x < 1)
f (x) = ⎨ ⎩
0
, , (x ≤ 0, x ≥ 1)
已知 E(ξ ) =1/2, D(ξ ) =3/20,求系数 a 、 b 、 c .
解:应用密度函数的性质有:
∫1
(ax 2
+
bx
+
c)dx
=
(a
x3
解:(1). E(ξ ) =-2×0.4+0×0.3+2×0.3=-0.2 .
(2). E(ξ 2 ) = 4 × 0.4 + 0 × 0.3 + 4 × 0.3 = 2.8,
则: E(3ξ 2 + 5) = 3E(ξ 2 ) + 5 = 3 × 2.8 + 5 = 13.4 . (3).由(1),(2)解:
D(ξ ) = E(ξ 2 ) − E 2 (ξ ) = 2.8 − (−0.2)2 = 2.76 .
11.设随机变量

,η)
具有概率密度:
f
( x,
y)
=
⎧1 ⎩⎨0
(| y |< x,0 < x < 1) (其它)
,试求:
-5-
E(ξ ) , E(η) .
∫ ∫ ∫ ∫ ∫ 解:
E(ξ )
=
解:由连续型随机变量数学期望的定义式:
∫ ∫ ∫ +∞
1500
E(ξ ) = xf (x)dx =
1
x 2dx − 3000 x(x − 3000) dx
−∞
0 15002
1500 15002

概率统计第四章练习题答案

概率统计第四章练习题答案

第四章练习一答案一、1、11 2、0 3、15,60二、1、3221(46)(46) 220.360.4100.312i ii E X x p =+=+=⨯+⨯+⨯=∑注: 计算随机变量函数的数学期望原则上有两种方法:一种是先求出随机变量的概率分布或概率密度,再按数学期望的定义计算;一种是直接带入要点2种所列的公式。

通常用后一种方法较简便.2、设X 表示射击所得的分数,因X 0 15 30 55 100k p 4)4.0( 3114)4.0()6.0(C 2224)4.0()6.0(C )4.0()6.0(334C 4)6.0( 所以E(X)=44.64. 3、⎰⎰⎰+∞∞-=-+==1)2()()(21212dx x x dx x dx x xf X E .4、 由题设知,X 的密度函数为(), 0,0, 0.x e x f x x -⎧>=⎨≤⎩且1)(=X E ,又因为,31)()(0222===-+∞-+∞∞---⎰⎰dx e e dx x f eeE x x xX从而34311)()()(22=+=+=+--X Xe E X E eX E . 5、⎩⎨⎧>≤≤=--其它5,102),()5(y x xe y x f y ,所以⎰⎰⎰⎰+∞∞-+∞--+∞∞-=⋅==42),()()(5)5(1dy xe xy dx dxdy y x f xy XY E y .第四章练习二答案一、 1、8 2、100,0.4 3、25 4、10,3 5、N(4,25) 6、98 二、 1、E(X)=()()⎰⎰⎰-++=-+∞∞-10111)(dx x x dx x x dx x xf0312131213232132132=-++-=⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛+=-x xx x则D(X)=[]⎰⎰⎰+∞∞---++=-102122)1()1()()(dx x x dx x x dx x f x E x614131413143431043143=-+-=⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫⎝⎛+=-x xx x2、)(X E 433)(103===⎰⎰+∞∞-dx x x xdF ,533)()(10422===⎰⎰+∞∞-dx x x dF x X E)(X D =803)]([)(22=-X E X E 3、设⎩⎨⎧=次没投中第次投中第i 0i 1i X ,i=1,2,3, 则i X (i=1,2,3的)分布律分别为1X 0 1 2X 0 1 3X 0 1 p 0.4 0.6 p 0.3 0.7 p 0.1 0.9 显然该运动员三次投篮投中的次数321X X X X ++= 故所求的平均投中的次数为E(X)=0.6+0.7+0.9=2.2三、证明:22222)(2)()2()(c X cE X E c cX X E c X E +-=+-=-2222)()(])([)()(2)]([)(μ-=≥-+=+-+=X E X D c X E X D c X cE X E X D第四章练习三答案一、1、未必有 一定有 2、0.5 3、 4.2 4、cov(,)0X Y = 5、0 6、—1 7、0.1二、1、(1) ⎩⎨⎧<<=,,010,2)(其他地方x x x f X ⎩⎨⎧<<=,,010,3)(2其他地方y y y f YE(X)=2/3, E(Y)=3/4, E(X 2)=1/2, E(Y 2)=3/5, D(X)=1/18, D(Y)=3/80,216),()(1012=⋅==⎰⎰⎰⎰∞∞-∞∞-dy dx xy xy dy dx y x xyp XY E , cov(x,y)=E(XY)-E(X)E(Y)=0, ρ(X,Y)=0。

谢寿才版概率统计第四章习题及其解答

谢寿才版概率统计第四章习题及其解答

谢寿才版概率统计第四章习题及其解答Revised at 2 pm on December 25, 2020.习题四1.设随机变量X 的分布律为-1 0 1 2求p 答案:4.0=p ,1)(=X E ,1)12(=-X E ; 2.设随机变量X 的分布律为-11且已知1.0)(=X E ,9.0)(2=X E ,求1p ,2p ,3p . 【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-=……②,222212313()(1)010.9E X P P P P P =-++=+=……③由①②③联立解得1230.4,0.1,0.5.P P P === 3.设随机变量X 的概率密度为 求)(X E ,)(X D . 【解】1221()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰故 221()()[()].6D XE X E X =-=4.设随机变量X 的概率密度为 求(1)c ;(2))(X E ;(3))(X D . 【解】(1) 由222()d e d 12k x c f x x cx x k+∞+∞--∞===⎰⎰得22c k =. (2) 2220()()d()2e d k x E X xf x x x k x x +∞+∞--∞==⎰⎰(3) 22222221()()d()2e .kxE X x f x x x k x k +∞+∞--∞==⎰⎰故222221π4π()()[()].4D X E X E X k k-=-=-=⎝⎭ 5. 过单位圆上一点P 作任意弦PA ,PA 与直径PB 的夹角θ服从区间⎪⎭⎫⎝⎛-2,2ππ上的均匀分布,求弦PA 的长度的数学期望.解:弦PA 的长为随机变量X ,由任意θ的密度函数为 6.设X 服从柯西分布,其密度函数为 问)(X E 是否存在? 解:因为 所以EX 不存在。

概率论第四章习题解答(全)

概率论第四章习题解答(全)

(0.9)10 (0.9)9 3486 0.3874 0.7361
则需要调整设备的概率
P{Y 1} 1 P{Y } 1 0.7361 0.2639
(3)求一天中调整设备的次数 X 的分布律 由于 X 取值为 0,1,2,3,4。 p 0.2369 ,则 X B (4, 0.2369) 于是
个随机变量,其概率密度为
1 x, 0 x 1500, 15002 1 f ( x) ( x 3000),1500 x 3000, 2 1500 0, 其它
求 E( X ) 解 按连续型随机变量的数学期望的定义有
0 1500
E ( X ) xf ( x)dx xf ( x)dx
X p
2
3
4
9
1 8
5 8
1 8
1 8
所以
1 5 1 1 15 E( X ) 2 3 4 9 。 8 8 8 8 4
(2)因为 Y 的取值为 2,3,4,9 当 Y 2 时,包含的字母为“O”,“N”,故
P{Y 2}
1 C2 1 ; 30 15
当 Y 3 时,包含的 3 个字母的单词共有 5 个,故
P (Ck ) P ( Ak | A1 A2 Ak 1 ) P ( Ak 1 | A1 A2 Ak 2 ) P ( A2 | A1 ) P ( A1 )

P{ X 1} P ( A1 )
1 2
1 1 P{ X 2} P ( A1 A2 ) P ( A2 | A1 ) P ( A1 ) 3 2 1 2 1 1 1 P ( A2 | A1 A2 ) P ( A2 | A1 ) P ( A1 ) , 4 3 2 4 3 一般地,若当 X k 时,盒中共有 k 1 只球,其中只有一只白球,故 P ( X k ) P ( A1 A2 Ak 1 Ak ) P ( Ak | A1 A2 Ak 1 ) P ( Ak 1 | A1 A2 Ak 2 ) P ( A2 | A1 ) P ( A1 ) 1 k 1 k 2 1 2 1 1 1 k 1 k k 1 4 3 2 k k

概率论第四章习题解答

概率论第四章习题解答

X9
EX 9
9
9
8 9
20
2024年8月31日7时4分
P104 练习4.2 题1 SD 1
1,1
f XY
x,
y
1 0
0 x 1, x y x 其它
yx
DZ D2X 1 4DX
EX xf x, ydxdy
0D
y x 1
1 0
x x
xdy
dx
1 2x2dx 2
P113 习题四 一 填空题 7 X与Y相互独立
f
X
x
2x
0
0
x 其它
1,fY
y
x y t
FT t PT t P X Y t fXY x, y dxdy
x yt
1当t 0时:FT t 0dxdy 0
0
x yt
2 当0 t时:FT
t
t
dx
tx 25e5x5 ydy
0
0
1 e5t 5te5t
t,0
x
FT
t
1
e5t
0
5te5t
t0 t0
33
2 EX 2
xi2 pij
i1 j1
20.1 30.3 30.1 2
33
3 EY 2
yi2 pij
12 0.212 0.112 0.1 22 0.1
22 0.132 0.332 0.1 4.8
i1 j1
12 0.2 12 0.1 12 0.1
12 0.1 12 0.1 0.6
2024年8月31日7时4分
P100 练习4.1 题12
2
f XY
x,
y
x

概率论与数理统计》课后习题答案第四章

概率论与数理统计》课后习题答案第四章

习题4.11.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的数学期望.解 可得X 的概率分布为0123~77711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为7771()012310301201204531208E X =⨯+⨯+⨯+⨯==2..某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数X 的数学期望.解 可得X 的概率分布为12~111n X nn n ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为111()121(1)122E X n n n nn n n n =⨯+⨯++⨯++==3.设5次重复独立试验中每次试验的成功率为0.9,若记失败次数为X ,求X 的数学期望。

解 由题意~(5,0.1)X B ,则X 的数学期望为()50.10.5E X =⨯=4.设某地每年因交通事故死亡的人数服从泊松分布.据统计,在一年中因交通事故死亡一人的概率是死亡两人的概率的21,求该地每年因交通事故死亡的平均人数。

解 设该地每年因交通事故死亡的人数为X ,由题意X 服从泊松分布() (0)P λλ>.因1{1}{2}2P X P X === 即121 41!22!ee λλλλλ--=⇒= 于是X 的数学期望为()4E X λ==所以地每年因交通事故死亡的平均人数为4人。

5.设随机变量X 在区间(1,7)上服从均匀分布,求2{()}P X E X <. 解 因X 在区间(1,7)上服从均匀分布,故X 的数学期望为17()42E X +== 于是22{()}{4}1 {22}6P X E X P X P X <=<=<-<<=6.设连续型随机变量X 的概率密度为01() (,0)0 b ax x p x a b ⎧<<=>⎨⎩其它又知()0.75E X =,求,a b 的值解 由密度函数的性质可得()1p x dx +∞-∞=⎰即1111b aax dx b =⇒=+⎰又由()0.75E X =,可得1()0.75b xp x dx x ax dx +∞-∞=⋅=⎰⎰即0.752ab =+ 求解110.752a b a b ⎧=⎪⎪+⎨⎪=⎪+⎩ 可得 3,2a b ==.7.设随机变量X 的概率密度为0<1()2 120 x x p x x x <⎧⎪=-≤<⎨⎪⎩其它求数学期望()E X解12013312201()() (2) ()133E X xp x dxx xdx x x dx x x x +∞-∞==⋅+⋅-=+-=⎰⎰⎰8.设随机变量X 的概率分布为 X -2 -1 0 1 P 0.2 0.3 0.1 0.4 求(1)(21)E X -;(2)2()E X .解 (1) (21)2()1E X E X -=- 其中()20.210.3010.40.3E X =-⨯-⨯++⨯=-则(21)2()12(0.3)1 1.6E X E X -=-=⨯--=-(2)22222()0.2(2)0.3(1)0.100.41 1.5E X =⨯-+⨯-+⨯+⨯=9.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作。

概率论与数理统计(I)第四章答案

概率论与数理统计(I)第四章答案

第四章 大数定律及中心极限定理导 学——极限论在概率研究中的应用本章是承前启后的一章:明晰了“频率与概率的关系”,这是一个遗留问题。

并将《概率论》部分划上了一个句号,这是承前;说它启后,有定理设定:⋯⋯,21,,,n X X X 独立同分布,这一设定在《数理统计》部分一直沿用了下去。

全章由四节组成,§1节特征函数,§2节大数定律,讲了三个定理, §3节随机变量序列的两种收敛性,§4节中心极限定理。

三个定理。

“大数”及“极限”均要求+∞→n ,在实际问题中,n 充分大即可。

§2节主要研究对象为:算术平均值()n X X nX +⋯+=11;§4节的主要研究对象为: nni i X X X +⋯+=∑=11,比n X 1少了。

§2节的学习,不妨先从复习入手。

第二、三章已熟悉了()()⋅⋅D E 及,先推算出21)(,)(σμnX D X E =⋯==⋯=这是核心推导之一,后面学《数理统计》会反复使用,再由契比雪夫不等式及夹逼原理,可推出定理一,其中NX D 2)(σ=中的n1很宝贵。

定理二是由定理一推得的,关键点为:n A X X X n +⋯++=21及X X n n n ni i A ==∑=11,于是可用定理一了。

推导本身是一件很愉快的事。

§2节的三个定理可在比对中学习。

定理一(契)不要求⋯⋯,21,,,n X X X 一定为同分布,(贝)是由定理一(契)的特例。

定理二(马)不要求⋯⋯,21,,,n X X X 独立或同分布。

定理三(辛)不要求)(X D 一定存在,“契”“马”与“辛”的结论均为:μ−→−PX ,即算术平均值依概率收敛于数学期望。

“贝”的结论为:p nn PA −→−,即频率依概率收敛于概率。

这个结论很精致,十分简单了。

翻开§4节,一堆一堆的符号映入眼中,让人头大。

其实,若标准化方法娴熟,这一节并不难。

概率论第4章习题参考解答

概率论第4章习题参考解答

概率论第4章习题参考解答(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--概率论第4章习题参考解答 1. 若每次射击中靶的概率为, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,, 命中3炮的概率为 =⨯⨯==733103.07.0}3{C P ξ至少命中3炮的概率, 为1减去命中不到3炮的概率, 为=⨯⨯-=<-=≥∑=-2010103.07.01}3{1}3{i i i i C P P ξξ因np +p =10×+=不是整数, 因此最可能命中[]=7炮.2. 在一定条件下生产某种产品的废品率为, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,, 则废品数不超过2个的概率为=⨯⨯=≤∑=-20101099.001.0}2{i i i iC P ξ3. 某车间有20部同型号机床, 每部机床开动的概率为, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,, 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此2061.02.08.0}18{}15270{}27015{}270{20182020=⨯⨯==≥=≥=≥=≥∑=-i i i iC P P P P ξξξη4. 从一批废品率为的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不大于的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,, 假设这20个产品中的废品率为η, 则η=ξ/20. 因此∑=-⨯⨯=≤=≤=≤320209.01.0}3{}15.020{}15.0{i i i iC P P P ξξη=5. 生产某种产品的废品率为, 抽取20件产品, 初步检查已发现有2件废品,问这20件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,, 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率 }2{}23{}2|3{≥≥⋂≥=≥≥ξξξξξP P P因事件}3{}2{≥⊃≥ξξ, 因此2}23{≥=≥⋂≥ξξξ因此5312.06083.02852.019.01.0209.019.01.01}{1}2{1}{}2{1}{}2{}{}{}{}2{}3{}2|3{192018222010202202202202203=-=⨯⨯--⨯⨯-==-=-===-===-=====≥≥=≥≥∑∑∑∑∑∑======C i P P i P P i P P i P i P i P P P P i i i i i i ξξξξξξξξξξξξξ6. 抛掷4颗骰子, ξ为出现1点的骰子数目, 求ξ的概率分布, 分布函数, 以及出现1点的骰子数目的最可能值. 解: 因掷一次骰子出现一点的概率为1/6, 则ξ~B (4,1/6), 因此有⎪⎪⎩⎪⎪⎨⎧≥<≤⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<==⎪⎭⎫⎝⎛⨯⨯==∑≤--4140656100)(),4,3,2,1,0(6561}{4444x x C x x F k C k P x k kk k kk kξ或者算出具体的值如下所示:ξ0 1 23 4 P⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=41439992.0329838.0218681.0104823.000)(x x x x x x x F从分布表可以看出最可能值为0, 或者np +p =(4/6)+1/6=5/6小于1且不为整数, 因此最可能值为[5/6]=0. 7. 事件A 在每次试验中出现的概率为, 进行19次独立试验, 求(1)出现次数的平均值和标准差; (2)最可能出现的次数. 解: 设19次试验中事件A 出现次数为ξ, 则ξ~B (19,, 因此 (1)ξ的数学期望为E ξ=np =19×= 方差为Dξ=np (1-p )=19××=标准差为997.199.3===ξσξD(2)因np +p =+=6为整数, 因此最可能值为5和6. 8. 已知随机变量ξ服从二项分布, E ξ=12, D ξ=8, 求p 和n . 解: 由E ξ=np =12 (1) 和D ξ=np (1-p )=8 (2) 由(1)得n =12/p , 代入到(2)得 12(1-p )=8, 解出p =(12-8)/12=1/3= 代回到(1)式得n =12/p =12×3=36 9. 某柜台上有4个售货员, 并预备了两个台秤, 若每个售货员在一小时内平均有15分钟时间使用台秤, 求一天10小时内, 平均有多少时间台秤不够用. 解: 每个时刻构成一n =4的贝努里试验, 且p =15/60=, 因此, 设ξ为每个时刻要用秤的售货员数, 则ξ~B (4, , 当ξ>2时, 台秤不够用. 因此每时刻台秤不够用的概率为=+⨯⨯=>433425.075.025.0)2(C P ξ因此10个小时内平均有×10=个小时台秤不够用.10. 已知试验的成功率为p , 进行4重贝努里试验, 计算在没有全部失败的情况下, 试验成功不止一次的概率. 解: 设ξ为4次试验中的成功数, 则ξ~B (4,p ), 事件"没有全部失败"即事件{ξ>0}, 而事件"试验成功不止一次"即事件{ξ>1}, 因此要求的是条件概率P {ξ>1|ξ>0}, 又因事件{ξ>1}被事件{ξ>0}包含, 因此这两个事件的交仍然是{ξ>1}, 因此434141}0{1}1{}0{1}0{}1{}0|1{q pq q P P P P P P ---===-=-=-=>>=>>ξξξξξξξ其中q =1-p 11. ξ服从参数为2,p 的二项分布, 已知P (ξ≥1)=5/9, 那么成功率为p 的4重贝努里试验中至少有一次成功的概率是多少解: 因ξ~B (2,p ), 则必有9/5)1(1)0(1)1(2=--==-=≥p P P ξξ, 解得3/13/213/219/49/51)1(2=-==-=-=-p p p 则假设η为成功率为1/3的4重贝努里试验的成功次数, η~B (4,1/3), 则802.081161321)1(1)0(1)1(44=-=⎪⎭⎫⎝⎛-=--==-=≥p P P ηη12. 一批产品20个中有5个废品, 任意抽取4个, 求废品数不多于2个的概率 解: 设ξ为抽取4个中的废品数, 则ξ服从超几何分布, 且有==≤∑=-24204155}2{i i i C C C P ξ 13. 如果产品是大批的, 从中抽取的数目不大时, 则废品数的分布可以近似用二项分布公式计算. 试将下例用两个公式计算, 并比较其结果. 产品的废品率为, 从1000个产品中任意抽取3个, 求废品数为1的概率. 解: 设任抽3个中的废品数为ξ, 则ξ服从超几何分布, 废品数为×1000=100 ===3100029001100}1{C C C P ξ 而如果用二项分布近似计算, n =3, p =, ξ~B (3,=⨯⨯≈=2139.01.0}1{C P ξ近似误差为, 是非常准确的.14. 从一副朴克牌(52张)中发出5张, 求其中黑桃张数的概率分布. 解: 设ξ为发出的5张中黑桃的张数, 则ξ服从超几何分布, 则)5,4,3,2,1,0(}{5525135213===--i C C C i P i i ξ则按上式计算出概率分布如下表所示:ξ0 1 2 34 5 P15. 从大批发芽率为的种子中, 任取10粒, 求发芽粒数不小于8粒的概率. 解: 设ξ为10粒种子中发芽的粒数, 则ξ服从超几何分布, 但可以用二项分布近似, 其中p =, n =10, 则∑=-⨯⨯=≥10810102.08.0}8{i i i iC P ξ=16. 一批产品的废品率为, 用普哇松分布公式求800件产品中废品为2件的概率, 以及不超过2件的概率. 解: 设ξ为800件产品中的废品数, 则ξ服从超几何分布, 可以用二项分布近似,则ξ~B (800, , 而因为试验次数很大废品率则很小, 可以用普阿松分布近似, 参数为 λ=np =800×=9526.0!8.0}2{1438.028.0}2{28.08.02=≈≤=≈=∑=--i i e i P e P ξξ17. 某种产品表面上的疵点数服从普哇松分布, 平均一件上有个疵点, 若规定疵点数不超过1个为一等品, 价值10元, 疵点数大于1不多于4为二等品, 价值8元, 4个以上为废品, 求产品为废品的概率以及产品的平均价值. 解: 设ξ为产品表面上的疵点数, 则ξ服从普哇松分布, λ=, 设η为产品的价值, 是ξ的函数. 则产品为废品的概率为0014.0!8.01}4{1}4{48.0=-=≤-=>∑=-i i e i P P ξξ==≤==∑=-108.0!8.0}1{}10{i i e i P P ξη==≤<==∑=-428.0!8.0}41{}8{i i e i P P ξη则产品的平均价值为 Eη = 10×P {η=10}+8×P {η=8}=10×+8×=(元) 18. 一个合订本共100页, 平均每页上有两个印刷错误, 假定每页上印刷错误的数目服从普哇松分布, 计算该合订本中各页的印刷错误都不超过4个的概率. 解: 设ξ为每页上的印刷错误数目, 则ξ服从普哇松分布, λ=2, 则1页印刷错误都不超过4个的概率为 ==≤∑=-402!2}4{i i e i P ξ而100页上的印刷错误都不超过4个的概率为[]=≤100}4{ξP19. 某型号电子管的“寿命”ξ服从指数分布, 如果它的平均寿命E ξ=1000小时, 写出ξ的概率密度, 并计算P (1000<ξ≤1200). 解: 因Eξ=1000=1/λ, 其概率密度为⎪⎩⎪⎨⎧≤>=-0010001)(1000x x ex xϕ 0667.0)12001000(2.111000120010001000=-=-=≤<----e e ee P ξ20. ξ~N (0,1), Φ0(x )是它的分布函数, φ0(x )是它的概率密度, Φ0(0), φ0(0), P (ξ=0)各是什么值 解: 因有 20221)(x ex -=πϕ, ⎰∞--=Φxt dt ex 20221)(π, 因此φ0(x )为偶函数, 由对称性可知Φ0(0)=, 并有πϕ21)0(0=,因ξ为连续型随机变量, 取任何值的概率都为0, 即P (ξ=0)=0.21. 求出19题中的电子管在使用500小时没坏的条件下, 还可以继续使用100小时而不坏的概率解: 要求的概率为P (ξ>600|ξ>500), 因此905.0}500{}600{}500|600{1.010005001000600===>>=>>---e e eP P P ξξξξ22. 若ξ服从具有n 个自由度的χ2-分布, 证明ξ的概率密度为⎪⎪⎩⎪⎪⎨⎧<≥⎪⎭⎫ ⎝⎛Γ=---022)(21212x x e n x x x nn ϕ称此分为为具有n 个自由度的χ-分布 证: 设ξη=, 则因ξ的概率密度函数为⎪⎪⎩⎪⎪⎨⎧≤>⎪⎭⎫ ⎝⎛Γ=--0221)(2122x x e x n x xn nξϕη的分布函数为)0()()()()()(22>=≤=≤=≤=x x F x P x P x P x F ξηξξη对两边求导得)0(22222)(2)(2121222222>⎪⎭⎫ ⎝⎛Γ=⎪⎭⎫ ⎝⎛Γ==-----x en xen xxx x x x n n x n n ξηϕϕ23. ξ~N (0,1), 求P {ξ≥0}, P {|ξ|<3}, P {0<ξ≤5}, P {ξ>3}, P {-1<ξ<3} 解: 根据ξ的对称性质及查表得: P {ξ≥0}=1-Φ0(0)=P {|ξ|<3}=2Φ0(3)-1=2×= P {0<ξ≤5}=Φ0(5)= P {ξ>3}=1-Φ0(3)==P {-1<ξ<3}=Φ0(3)-Φ0(-1)=Φ0(3)+Φ0(1)-1=+= 24. ξ~N (μ,σ2), 为什么说事件"|ξ-μ|<2σ"在一次试验中几乎必然出现解: 因为)1,0(~N σμξ- 19545.0197725.021)2(2}2{}2|{|0≈=-⨯=-Φ=<-=<-σμξσμξP P 因此在一次试验中几乎必然出现.25. ξ~N (10,22), 求P (10<ξ<13), P (ξ>13), P (|ξ-10|<2).解: 因为)1,0(~210N -ξ6826.018413.021)1(2}1210{}2|10{|0.0668193319.01)5.1(1}5.1210{}13{43319.05.093319.0)0()5.1(}5.12100{}1310{0000=-⨯=-Φ=<-=<-=-=Φ-=>-=>=-=Φ-Φ=<-<=<<ξξξξξξP P P P P P26. 若上题中已知P {|ξ-10|<c }=, P {ξ<d }=, 分别求c 和d .解: 因为)1,0(~210N -ξ, 则有 95.01)2(2}2210{}|10{|0=-Φ=<-=<-cc P c P ξξ 解得975.0295.01)2(0=+=Φc , 查表得,96.12=c得c = 再由5.00668.0)210(}210210{}{0<=-Φ=-<-=<d d P d P ξξ知,0210<-d 因此0668.0)210(1)210(00=-Φ-=-Φdd 即9332.00668.01)210(0=-=-Φd, 查表得5.1210=-d, 解得7310=-=d 27. 若ξ~N (μ,σ2), 对于P {μ-kσ<ξ<μ+kσ}=, 或, 或, 分别查表找出相应的k 值. 解: 先求P {μ-kσ<ξ<μ+kσ}=对应的k 值. 因)1,0(~N σμξ-, 因此 90.01)(2}{}{0=-Φ=<-=+<<-k k P k k P σμξσμξσμ即95.0290.01)(0=+=Φk , 查表得k = 同理, 由975.0295.01)(0=+=Φk , 查表得k = 由995.0299.01)(0=+=Φk , 查表得k = 28. 某批产品长度按N (50, 分布, 求产品长度在和之间的概率, 长度小于的概率.解: 设ξ为产品长度, 则ξ~N (50, , 且有)1,0(~25.050N -ξ, 则9545.0197725.021)2(2}225.050{}225.0502{}5.505.49{0=-⨯=-Φ=<-=<-<-=<<ξξξP P P0006871.09993129.01)2.3(1)2.3(}25.0502.4925.050{}2.49{00=-=Φ-=-Φ=-<-=<ξξP P29. ξi ~N (0,1)(i =1,2,3), 并且ξ1,ξ2,ξ3相互独立, ∑==3131i i ξξ,∑=-=312)(i i ξξη,求),cov(,),,cov(1ηξηξξE解: 此题要用到, 两个独立的服从正态分布的随机变量相加后得到的随机变量仍然服从正态分布. 因此, 因为3131,031=⎪⎭⎫ ⎝⎛==∑=i i D D E ξξξ, 则)31,0(~N ξ313131)()cov(2131111==⎪⎭⎫ ⎝⎛==∑=ξξξξξξξE E E i i32313121)cov(2)2()(22222=+⨯-=+-=+-=-ξξξξξξξξξξE E E E i i i i i因此2323)()(312312=⨯=-=⎪⎭⎫ ⎝⎛-=∑∑==i i i i E E E ξξξξη ξξ-i 也服从正态分布, 且有03131)]([),cov(2=-=-=-=-ξξξξξξξξξE E E i i i即ξ与ξξ-i 不相关, 而因为它们服从正态分布, 因此也就是ξ与ξξ-i 相互独立, 则ξ与2)(ξξ-i 也相互独立, 则ξ与η中的加和中的每一项相互独立, 当然也与η相互独立, 因此有0),cov(=ηξ, 因为相互独立的随机变量一定不相关.30. (ξ,η)有联合概率密度22)(21,2122ηξζπ+=+-y x e , 求ζ的概率密度.解: 由联合概率密度看出, ξ与η相互独立服从标准正态分布, 则有 ξ2与η2也相互独立且服从自由度为1的χ2-分布, 即ξ2~χ2(1), η2~χ2(1), 因此ζ=ξ2+η2~χ2(2), 即它的概率密度为 ⎪⎩⎪⎨⎧<>=-00212x x exζϕ 即ζ服从λ=1/2的指数分布.。

概率论与数理统计 第四章 随堂测验_详细答案

概率论与数理统计 第四章 随堂测验_详细答案

第四章 随堂测验答案1.(,),2.4, 1.44,____,_____.X b n p EX DX n p ==== 则答:n =6, p =0.4因为(,)X b n p ,所以EX =np =2.4, DX =npq =np (1-p )=1.44.所以() 1.440.6,2.(1)41DX p p E n p np X -====-从而 2.40.4, 6.0.4EX p n p ==== 2.(),[(1)(2)]1____.,X P E X X λλ-=-= 则答:1,λ=解法同习题课例题1.23.1,()______.X X E X e -+=设服从参数为的指数分布则答:4/3.根据期望的性质可知,22()(),X X E X e EX E e --+=+其中因为X 服从参数为1的指数分布(1λ=),所以,(,)000x x x e f x ->⎧=⎨≤⎩且EX =1,DX =1.另外,根据随机变量函数的期望的定义,可知2223300011().(3)3X x x x x x f x dx e d E e e e e dx e x +∞+∞+∞+∞-------∞====-=⎰⎰⎰ 故221()()1.334X X E X e EX E e --+=+=+=224.,0.5,0,2,X Y EX EY E EY X ====已知的相关系数为2[()]_____.E X Y +=则 答:6.因为2220,,EX EY EX EY ====所以DX=DY=2.又22222[()]22()E X Y E X XY Y EX E XY EY ⎡⎤+=++=++⎣⎦,其中已知222E E Y X ==,而()Cov(,)XY E XY X Y EX E Y EY XE ρ=+=0.5001=⨯=, 于是2[()]21.226E X Y ⨯++=+=2125.,,...,,(),(),n i i X X X E X a D X b ==设随机变量是相互独立的且1,2,...,,i n =1,()_____,()____1_.ni i X X X E D X n ====∑记则 答:a, b 2/n.11222211111;11())1(.n n i i i i n n i i i i X na a n n n b D X nb n n E E X n EX D n X DX ====⎛⎫=== ⎪⎝⎭⨯==⨯⎛⎫=== ⎪⎝⎭∑∑∑∑6.,,,1,1,X Y Z EX EY EZ ===-已知三个随机变量中1,DX DY DZ === 0,0.5,0.5,XY XZ YZ ρρρ===-()_____,()_____.E X Y Z D X Y Z ++=++=则 答:1, 3.()1111E X Y Z E X E Y E Z ++=++=+-=[][][]()()()2Cov(,)2Cov(,)2Cov(X,Z)Cov(Y,Z)2Cov(X,Y)+2Cov(X,Z)+2Cov(Y,Z)111201120.5112(0.5)12321.XZ YZ D X Y Z D X Y Z D X Y DZ X Y Z DX DY X Y DZ DX DY DZ DX DY DZ ρρρ++=++=++++=+++++=+++=+=+++⨯⨯⨯+⨯⨯⨯+⨯-⨯⨯=++7.(),[,,,]E XY EXEY C G H I =选择题:若则(可多选)(A)(),(B)()(C)(),(D),(E),,(F),(G),(H)0,(I)Cov(,)0.XY D XY DXDY D X Y DX DY D X Y DX DY X Y X Y X Y X Y X Y ρ=-=-+=+==独立不独立相关,不相关,。

概率统计第4章

概率统计第4章

10
E(Y ) = E(g(X )) =

40

ò
g(x ) f (x )dx =
ò
0
(10 - x ) dx 60
10
60 (70 - x ) (40 - x ) dx + ò dx = 15 40 60 60
14
2011-2012学年第2学期
定理 设二元函数 g 分区连续,且 Z = g(X,Y ), 则 1)若 (X,Y )离散并有联合分布律
x
2011-2012学年第2学期
§4.1.3 数学期望的性质 设以下所涉及的随机变量的数学期望均存在. 性质1 若对任意常数 a, b, c, 有 线性性质
E(aX + bY + c ) = a E(X ) + b E(Y ) + c
提醒 书上性质1, 2, 3均是以上性质1的特殊情形.
E(c ) = c E(aX ) = a E(X ) E(X + Y ) = E(X ) + E(Y ) E(X + c ) = E(X ) + c
E(Z ) = E(g (X,Y )) = y 30 y =x = D2
ò


ò


f (x, y )g (x, y )dxdy
òò òò
D2
D1
0.1y ´ 1 200 dxdy +
10
D1
10 20
x
é 0.1x + 0.05(y - x )ù 1 dxdy êë úû 200
o
= 1.7083(万元)
Z = g (X,Y ) = max{X ,Y }

《概率论与数理统计》习题及答案第四章

《概率论与数理统计》习题及答案第四章

《概率论与数理统计》习题及答案第 四 章1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的分布列.解(,)X Y 的分布列为其中(1,1)(1)(1|1)0P X Y P X P Y X =======余者类推。

2.将一枚硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。

解一枚硬币连掷三次相当于三重贝努里试验,故1~(3,).2X B 331()(),0,1,2,32k P X k C k ===,于是(,)X Y 的分布列和边缘分布为01013818i p ⋅其中(0,1)(0)(1|0)0P X Y P X P Y X =======,13313(1,1)(1)(1|1)()128P X Y P X P Y X C =======⨯=,余者类推。

3.设(,)X Y 的概率密度为又(1){(,)|1,3}D x y x y =<<;(2){(,)|3}D x y x y =+<。

求{(,)}P X Y D ∈ 解(1)1321{(,)}(6)8P x y D x y dxdxy ∈=--⎰=321(6)8x x y dxdy --- =)落在圆222()x y r r R +≤<内的概率. 解(1)22223201(R x y R CR dxdy C R C r drd ππθ+≤==-⎰⎰⎰⎰333233R R C R C πππ⎡⎤=-=⎢⎥⎣⎦, ∴33C R π=.(2)设222{(,)|}D x y x y r =+≤,所求概率为322323232133r r r Rr R R R πππ⎡⎤⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎣⎦. 5.已知随机变量X 和Y 的联合概率密度为 求X 和Y 的联合分布函数.解1设(,)X Y 的分布函数为(,)F x y ,则解2由联合密度可见,,X Y 独立,边缘密度分别为 边缘分布函数分别为(),()X Y F x F y ,则 设(,)X Y 的分布函数为(,)F x y ,则6.设二维随机变量(,)X Y 在区域:0D x <<求边缘概率密度。

概率论与数理统计答案第四章

概率论与数理统计答案第四章

概率论与数理统计答案第四章第四章 大数定律与中心极限定理4.1 设)(x D 为退化分布:⎩⎨⎧≤>=0001)(x x x D讨论下列分布函数列的极限是否仍是分布函数?,2,1},01({)3()};1({)2()};({)1(=-++n n x D n x D n x D 其中解:(1)(2)不是;(3)是。

4.2 设分布函数)(x F n 如下定义:⎪⎩⎪⎨⎧>≤<-+-≤=nx nx n n nx n x x F n 120)(问)(lim )(x F x F n n ∞→=是分布函数吗?解:不是。

4.3设分布函数列)}({x F n 弱收敛于分布函数)(x F ,且)(x F 为连续函数,则)}({x F n 在),(∞-∞上一致收敛于)(x F 。

证:对任意的0>ε,取M 充分大,使有M x x F M x x F -≤∀<≥∀<-,)(;,)(1εε对上述取定的M ,因为)(x F 在],[M M -上一致连续,故可取它的k 分点:Mx x x M x k k =<<<<-=-121 ,使有ki x F x F i i <≤<-+1,)()(1ε,再令∞=-∞=+10,k x x ,则有10,)()(1+<≤<-+k i x F x F i i ε (1)这时存在N ,使得当N n >时有10,|)()(|+≤≤<-k i x F x F i i n ε (2)成立,对任意的),(∞-∞∈x ,必存在某个)0(k i i ≤≤,使得),(1+∈i i x x x ,由(2)知当N n >时有ε+<≤++)()()(11i i n n x F x F x F (3)ε->≥)()()(i i n n x F x F x F (4)由(1),(3),(4)可得εεε2)()()()()()(11<+-≤+-<-++i i i n x F x F x F x F x F x F , εεε2)()()()()()(1->--≥-->-+i i i n x F x F x F x F x F x F ,即有ε2)()(<-x F x F n 成立,结论得证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题四1.设随机变量X 的分布律为X-1 0 1 2k p0.10.20.3p求p ,)(X E ,)12(-X E .答案:4.0=p ,1)(=X E ,1)12(=-X E ; 2.设随机变量X 的分布律为X -1 0 1p1p 2p 3p且已知1.0)(=X E ,9.0)(2=X E ,求1p ,2p ,3p .【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-=……②,222212313()(1)010.9E X P P P P P =-++=+=……③由①②③联立解得1230.4,0.1,0.5.P P P === 3.设随机变量X 的概率密度为=)(x f⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其它x x x x求)(X E ,)(X D . 【解】1221()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ 故 221()()[()].6D XE X E X =-= 4.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(22x x cx x f xk求(1)c ;(2))(X E ;(3))(X D .【解】(1) 由222()d e d 12k x cf x x cx x k+∞+∞--∞===⎰⎰得22c k =. (2) 2220()()d()2e d k x E X xf x x x k x x +∞+∞--∞==⎰⎰22220π2ed .2k x kx x k+∞-==⎰(3) 22222221()()d()2e.k x E X x f x x x k x k +∞+∞--∞==⎰⎰故 222221π4π()()[()].24D X E X E X k k k⎛-=-=-= ⎝⎭ 5. 过单位圆上一点P 作任意弦PA ,PA 与直径PB 的夹角θ服从区间⎪⎭⎫⎝⎛-2,2ππ上的均匀分布,求弦PA 的长度的数学期望.解:弦PA 的长为随机变量X ,由任意θ的密度函数为πθπθθθθπθππθππ41cos 2)cos 2(cos 2cos ,022,1)(22======⎪⎩⎪⎨⎧≤≤-=⎰-d E EX PB X PA p 故其他6.设X 服从柯西分布,其密度函数为+∞<<-∞+=x x x f ,)1(1)(2π问)(X E 是否存在? 解:因为∞=+⎰+∞∞-dx xx2111π 所以EX 不存在。

7.一汽车需要通过三个设置红绿灯路口的一段路,每个路口出现什么信号灯是相互独立的,且红绿两种信号显示时间相同,以X 表示该汽车首次遇到红灯前已经通过路口的个数,求⎪⎭⎫⎝⎛+X E 11. 答案:96678.设随机变量X 服从区间⎪⎭⎫⎝⎛-21,21上的均匀分布,求)sin(X Y π=的数学期望与方差.解:⎰-==2121,0sin xdx EY π⎰-===2121222/1sin xdx EY DY π。

9.一工厂生产某种设备的寿命X (以年计)服从指数分布,其概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 41)(4x x xf x为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和200元 /41/411{100}{1}e d e 4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e .P Y P X -=-=<=-故1/41/41/4()100e(200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元).10.设随机变量Z Y X ,,相互独立,且,5)(=X E ,11)(=Y E ,8)(=Z E 求下列随机变量的数学期望. (1)132-+=Y X U ;(2)X YZ V 4-=. 【解】(1) 42)(=U E ;(2) 68)(=V E 11.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<=.,0,10,),(其它x y k y x f 试确定常数k ,并求)(XY E . 【解】因1001(,)d d d d 1,2xf x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k=210()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.12.设Y X ,是两个相互独立的随机变量,其概率密度分别为=)(x f X ⎩⎨⎧≤≤;,0,10,2其它x x =)(y f Y ⎩⎨⎧>--.,0,5,)5(其它y e y求)(XY E .【解】先求X 与Y 的均值12()2d ,3E X x x x ==⎰ 5(5)5()e d 5e d e d 51 6.z y y z z E Y y yz z z +∞+∞+∞=-----=+=+=⎰⎰⎰令由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=13.袋中装有12个灯泡,其中9个好灯泡,3个坏了的灯泡.电工在更换某个灯泡时,从袋中一个一个地 取出(取出后不放回),设在取出好灯泡之前已取出的灯泡数为随机变量X ,求)(X E 和)(X D . 【解】其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=于是,得到X 的概率分布表如下:由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=14.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=.,0,π0,2cos 21)(其它x x x f 对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望. 【解】令 π1,,3(1,2,3,4)π0,3i X Y i ⎧>⎪⎪==⎨⎪≤⎪⎩X .则41~(4,)i i Y Y B p ==∑.因为ππ{}1{}33p P X P X =>=-≤及π/30π11{}cos d 3222x P X x ≤==⎰,所以111(),(),()42,242i i E Y D Y E Y ===⨯=2211()41()()22D YE Y EY =⨯⨯==-,从而222()()[()]12 5.E Y D Y E Y =+=+=15.设随机变量X 的数学期望)(X E 存在,对于任意x ,求函数])[()(2x X E x f -=的最小值,并说明其意义.解:222)(2)(])[()(x X xE X E x X E x f +-=-=)(22)(X E x dx x df -=, 当0)(22)(=-=X E x dxx df 时,有唯一驻点)(X E x =,又02)(22>=dx x f d ,所以在)(X E x =时,取极小值,也是最小值: DX X E X E X E f =-=]))([()]([2这说明随机变量对其数学期望的偏离程度,比它对其他任意数偏离程度都小,最小值为其方差。

16.设随机变量U 服从区间[2,2]-上的均匀分布,随机变量X =⎩⎨⎧->-≤-,U ,U 1,11,1若若 Y =⎩⎨⎧>≤-.1,11,1U ,U 若若 试求)(Y X D +.【解】因22()[()][()]D X Y E X Y E X Y +=+-+,而X+Y 及(X+Y )2的概率分布相应为202~111424X Y -⎡⎤⎢⎥+⎢⎥⎣⎦, 24()~1122X Y ⎡⎤⎢⎥+⎢⎥⎣⎦. 从而11()(2)20,44E X Y +=-⨯+⨯= 211[()]042,22E X Y +=⨯+⨯=所以22()[()][()] 2.D X Y E X Y E X Y +=+-+=17.对随机变量X 和Y ,已知1),cov(,3)(,2)(===Y X Y D X D ,求)34,123(-++-Y X Y X Cov . 【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=-18.设二维随机变量),(Y X 在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求),cov(Y X及相关系数. 【解】如图,S D =12,故(X ,Y )的概率密度为2,(,),(,)0,x y D f x y ∈⎧=⎨⎩其他.()(,)d d DE X xf x y x y =⎰⎰11001d 2d 3xx x y -==⎰⎰22()(,)d d DE X x f x y x y =⎰⎰112001d 2d 6xx x y -==⎰⎰从而222111()()[()].6318D XE X E X ⎛⎫=-=-= ⎪⎝⎭同理11(),().318E Y D Y == 而 1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-. 从而 1Cov(,)1362()()111818XY X Y D X D Y ρ-===-⨯19.设随机变量X 的概率密度为+∞<<-∞=-x e x f x ,21)(||.(1) 求)(X E 及)(X D ;(2) 求),cov(X X ,并问X 与X 是否不相关? (3) 问X 与X 是否相互独立,为什么? 【解】(1)||1()e d 0.2x E X xx +∞--∞==⎰2||201()(0)e d 0e d 2.2x x D X x x x x +∞+∞---∞=-==⎰⎰(2) Cov(,|)(||)()(||)(||)X X E X X E X E X E X X =-= ||1||e d 0,2x x x x +∞--∞==⎰所以X 与|X|互不相关.(3) 为判断|X|与X 的独立性,需依定义构造适当事件后再作出判断,为此,对定义域∞<x<+∞中的子区间(0,+∞)上给出任意点x 0,则有0000{}{||}{}.x X x X x X x -<<=<⊂<所以000{||}{} 1.P X x P X x <<<<< 故由00000{,||}{||}{||}{}P X x X x P X x P X x P X x <<=<><<得出X 与|X|不相互独立.20.已知随机变量X 和Y 分别服从正态分布)3,1(2N 和)4,1(2N ,且X 与Y 的相关系数5.0=XY ρ,23Y X Z +=. (1) 求)(),(Z D Z E ;(2) 求X 与Z 的相关系数XZ ρ,并判断X 与Z 是否相互独立. 【解】(1) 1().323X Y E Z E ⎛⎫=+=⎪⎝⎭ ()2Cov ,3232XY X Y D Z D D ⎛⎫⎛⎫⎛⎫=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11119162Cov(,),9432X Y =⨯+⨯+⨯⨯ 而1Cov(,)()()3462XY X Y D X D Y ρ⎛⎫==-⨯⨯=- ⎪⎝⎭所以 1()146 3.3D Z =+-⨯= (2) 因()()11Cov(,)Cov ,Cov ,Cov ,3232X Y X Z X X X X Y ⎛⎫=+=+ ⎪⎝⎭ 119()(6)3=0,323D X =+⨯-=-所以 Cov(,)0.)()XZ X Z D Z ρ==由0XZ ρ==,得X 与Z 不相关.又因1~,3,~(1,9)3Z N X N ⎛⎫ ⎪⎝⎭,所以X 与Z 也相互独立. 21.将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数.试求X 和Y 的相关系数XY ρ.【解】由条件知X+Y=n ,则有D (X+Y )=D (n )=0.再由X~B(n,p),Y~B(n,q),且p=q=12, 从而有 ()()4nD X npq D Y === 所以 0()()()2)()XY D X Y D X D Y D Y ρ=+=++2,24XY n nρ=+ 故XY ρ=-1.。

相关文档
最新文档