排列组合排列组计算公式

合集下载

高中数学排列组合公式大全_高中数学排列组合重点知识.doc

高中数学排列组合公式大全_高中数学排列组合重点知识.doc

高中数学排列组合公式大全_高中数学排列组合重点知识高中数学排列组合公式大全_高中数学排列组合重点知识高中数学排列组合公式大全1.排列及计算公式从n个不同元素中,任取m(m n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n 个不同元素中取出m(m n)个元素的所有排列的个数,叫做从n 个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2) (n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n (n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m高中数学排列组合公式记忆口诀加法乘法两原理,贯穿始终的法则。

与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。

归纳出排列组合,应用问题须转化。

排 列 组 合 公 式 及 排 列 组 合 算 法

排 列 组 合 公 式 及 排 列 组 合 算 法

排列组合算法基本概念从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。

当m=n时所有的排列情况叫全排列。

P(n,m)=n(n-1).(n-m+1)=n!-(n-m)! 特别的,定义0!=1组合数公式是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。

用符号c(n,m) 表示。

c(n,m)=p(n,m)-m!=n!-((n-m)!*m!)3、计算公式排列算法递归算法#include stdio.hvoid swap(int *a, int *b)void perm(int list[], int k, int m)for(i = 0; i = m; i++)printf("%d ", list[i]);printf("");for(i = k; i = m; i++)swap(list[k], list[i]);perm(list, k + 1, m);swap(list[k], list[i]);int main()int list[] = {1, 2, 3, 4, 5};perm(list, 0, 4);printf("total:%d", n);return 0;template typename Tinline void swap(T* array, unsigned int i, unsigned int j) T t = array[i];array[i] = array[j];array[j] = t;* 递归输出序列的全排列void FullArray(char* array, size_t array_size, unsigned int index)if(index = array_size)for(unsigned int i = 0; i array_size; ++i)cout array[i] ' ';for(unsigned int i = index; i array_size; ++i)swap(array, i, index);FullArray1(array, array_size, index + 1);swap(array, i, index);#include "iostream"using namespace std;void permutation(char* a,int k,int m)if(k == m)span style="white-space:pre"-spanfor(i=0;i=m;i++) span style="white-space:pre"-spancouta[i]; coutendl;for(j=k;j=m;j++)swap(a[j],a[k]);permutation(a,k+1,m);swap(a[j],a[k]);int main(void)char a[] = "abc";couta"所有全排列的结果为:"endl;permutation(a,0,2);system("pause");return 0;}#include "iostream"#include "algorithm"using namespace std;void permutation(char* str,int length)sort(str,str+length);for(int i=0;ilength;i++)coutstr[i];coutendl;}while(next_permutation(str,str+length));int main(void)char str[] = "acb";coutstr"所有全排列的结果为:"endl;permutation(str,3);system("pause");return 0;}--- 求从数组a[1.n]中任选m个元素的所有组合。

排列组合计算公式

排列组合计算公式

列组合公式/排列组合计算公式
(2008-10-08 10:14:14)
转载▼
标签:
分类:泊来文化
排列
组合
公式
教育
前段时间注册岩土工程师考试的时候,考到了排列组合的知识点,偶怎么也组合不出答案来,上网百度了一下,从某位同学的博客里copy以下内容,供大家共同学习,感谢这位同学的奉献!
排列组合公式/排列组合计算公式
公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数
R参与选择的元素个数
!-阶乘,如 9!=9*8*7*6*5*4*3*2*1
从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=r
举例:
Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?
A1:123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)
Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?
A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1。

c11排列组合公式

c11排列组合公式

c11排列组合公式排列组合是组合数学中的一种基础概念,它用于计算从一组对象中选取若干个对象的方式数。

排列组合通常涉及两种情况:排列和组合。

排列是指从一组对象中选取若干个进行有序排列。

假设有n个不同的对象,从中选取r个进行排列,那么排列方式的总数称为排列数,通常用P(n, r)表示。

排列数的计算公式为:P(n, r) = n! / (n - r)!其中,n!表示n的阶乘,即从1乘到n的连乘积。

例如,5! =5 x 4 x 3 x 2 x 1 = 120。

组合是指从一组对象中选取若干个进行无序组合。

与排列不同,组合不考虑对象的顺序。

假设有n个不同的对象,从中选取r个进行组合,那么组合方式的总数称为组合数,通常用C(n, r)表示。

组合数的计算公式为:C(n, r) = n! / (r! x (n - r)!)在排列和组合的计算过程中,需要用到阶乘的概念。

阶乘是一种数学运算,表示从1乘到给定的正整数的连乘积。

阶乘的计算公式为:n! = n x (n - 1) x (n - 2) x ... x 2 x 1排列组合的概念在实际生活中有许多应用。

以下是一些常见的例子:1. 扑克牌的排列:一副扑克牌有52张,从中选取5张进行排列,计算排列数P(52, 5)。

根据计算公式,可以得到:P(52, 5) = 52! / (52 - 5)! = 52! / 47! = 311,875,200。

即一副扑克牌可以组成311,875,200种不同的5张牌的排列方式。

2. 奖项的组合:某彩票活动有10个人参与,从中选取3个人进行抽奖,计算组合数C(10, 3)。

根据计算公式,可以得到:C(10, 3) = 10! / (3! x (10 - 3)!) = 10! / (3! x 7!) = 120。

即在10个参与者中,可以组合出120种不同的3人获奖的组合方式。

3. 数字密码的排列:某数字密码需要由4位数字组成,每位数字是0-9之间的任意一个数。

排列组合的数学公式

排列组合的数学公式

排列组合的数学公式排列组合的数学公式1. 排列及计算公式从n 个不同元素中,任取m(m≤n) 个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m 个宝鸡博瀚教育元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m) 表示.p(n,m)=n(n-1)(n- 2) ...... (n -m+1)= n!/(n-m)!( 规定0!=1).2. 组合及计算公式从n 个不同元素中,任取m(m≤n) 个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n) 个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3. 其他排列与组合公式从n 个元素中取出r 个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n 个元素被分成k 类,每类的个数分别是n1,n2,...nk 这n 个元素的全排列数为n!/(n1!*n2!*...*nk!).k 类元素, 每类的个数无限, 从中取出m 个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)(n-m+1);Pnm=n!/(n-m)!(注:是阶乘符号);Pnn(两个n 分别为上标和下标) =n!;0!=1;Pn1(n 为下标1 为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标) =1 ;Cn1(n 为下标 1 为上标)=n;Cnm=Cnn-m 排列组合的数学解题技巧1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

排列组合的运算法则

排列组合的运算法则

排列组合的运算法则
排列组合的运算法则是指通过计算排列或组合的计算公式和规则来求解问题。

其中,排列是指从一组元素中,选取出若干个元素按照一定的顺序排列,而组合是指从一组元素中,选取出若干个元素不考虑顺序。

以下是常见的排列组合运算法则:
1. 排列:
- 有放回排列:如果元素可重复使用,且每个元素在每个位
置上都有可能出现,那么排列数为元素个数的指数幂,即An
= n^r。

- 无放回排列:如果元素不可重复使用,那么排列数为元素
个数的阶乘除以剩余位置数的阶乘,即An = n!/(n-r)!。

2. 组合:
- 有放回组合:如果元素可重复使用,且不考虑元素的顺序,那么组合数为元素个数的组合数,即C(n+r-1, r)。

- 无放回组合:如果元素不可重复使用,且不考虑元素的顺序,那么组合数为元素个数的阶乘除以选取的元素的阶乘乘以剩余位置的阶乘,即C(n, r) = n!/r!(n-r)!。

通过排列组合的运算法则,可以求解各种问题,如排列组合问题、概率问题、形成小组等问题。

排列组合公式公式解释

排列组合公式公式解释

排列组合是数学中的一个重要概念,用于计算不同元素的组合方式。

它在组合数学、概率论、统计学等领域中经常被应用。

本文将详细介绍排列组合的概念以及相关公式,并给出一些实际应用的例子。

1. 排列的概念及公式排列是指从n个元素中选取r个元素进行排序的方式。

这个过程中,每个元素只能使用一次,并且顺序不同即为不同的排列。

排列通常用P(n, r)表示,计算公式如下:P(n, r) = n! / (n-r)!其中,n!表示n的阶乘,即n! = n * (n-1) * … * 2 * 1。

n的阶乘表示从n个元素中选取所有元素进行排列的总数,而(n-r)!表示剩余元素的阶乘,即可以从n个元素中选取r个元素进行排列的总数。

排列的计算公式可以帮助我们高效地计算大量元素的排列情况。

例如,从10个数中选取3个数进行排列,即P(10, 3),可以通过计算10! / 7!得到结果。

2. 组合的概念及公式组合是指从n个元素中选取r个元素进行组合的方式。

与排列不同,组合不考虑选取元素的顺序,因此不同顺序的元素组合被视为同一种组合方式。

组合通常用C(n, r)表示,计算公式如下:C(n, r) = n! / (r! * (n-r)!)其中,n!仍表示n的阶乘,r!表示r的阶乘,(n-r)!表示剩余元素的阶乘。

组合的计算公式可以帮助我们统计不同元素组合的数量。

例如,从10个数中选取3个数进行组合,即C(10, 3),可以通过计算10! / (3! * 7!)得到结果。

3. 排列组合的应用排列组合在实际问题中有广泛的应用。

以下是一些例子:3.1. 抽奖问题假设有10个人参加抽奖,每个人的抽奖号码是从1到10之间的整数。

如果我们想要知道抽取出来的3个人的号码的所有可能情况,可以使用组合的方法计算。

结果为C(10, 3) = 120。

3.2. 选课问题假设有10门课程可以选择,每个人可以选择其中的5门进行学习。

如果我们关心的是不同学生选择不同课程的情况,可以使用排列的方法计算。

排列组合计算

排列组合计算

排列组合计算1. 介绍排列组合是组合数学中的重要概念,用于计算从一组元素中选择若干个元素的方式的数量。

在计算中,排列用来确定元素的顺序,而组合则不考虑元素的顺序。

本文档将介绍排列和组合的概念以及它们的计算方法。

2. 排列排列是从给定的元素中选择一定数量的元素并按一定顺序排列的方式的数量。

2.1 排列公式设有n个元素,选取r个元素进行排列,排列的数量记作P(n, r)。

排列的计算公式如下:P(n, r) = n! / (n - r)!其中,! 表示阶乘运算,即将所有小于等于n的正整数相乘。

2.2 示例假设有10个人,要从中选择3个人进行排列,计算P(10, 3)。

根据排列公式,P(10, 3) = 10! / (10 - 3)! = 10! / 7! = 10 * 9 * 8 = 720。

因此,从10个人中选择3个人进行排列的方式有720种。

3. 组合组合是从给定的元素中选择一定数量的元素的方式的数量,不考虑元素的顺序。

3.1 组合公式设有n个元素,选取r个元素进行组合,组合的数量记作C(n, r)。

组合的计算公式如下:C(n, r) = n! / (r! * (n - r)!)3.2 示例假设有6个人,要从中选择4个人进行组合,计算C(6, 4)。

根据组合公式,C(6, 4) = 6! / (4! * (6 - 4)!) = 6! / (4! * 2!) = 15。

因此,从6个人中选择4个人进行组合的方式有15种。

4. 应用场景排列组合的计算在很多领域都有着广泛的应用,尤其在概率和统计学中经常使用。

4.1 生肖排列中国传统的十二生肖有鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种,要从中选择3种生肖进行排列,计算P(12, 3)。

根据排列公式,P(12, 3) = 12! / (12 - 3)! = 12! / 9! = 12 * 11 * 10 = 1,320。

因此,从12种生肖中选择3种进行排列的方式有1,320种。

排列组合计算公式例题

排列组合计算公式例题

排列组合计算公式例题
排列组合计算公式如下:
1、从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示。

2、从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。

用符号C(n,m)表示。

排列就是指从给定个数的元素中取出指定个数的元素进行排序。

组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。

排列组合与古典概率论关系密切。

例题
一.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.
先排末位共有C31
然后排首位共有C41
最后排其它位置共有A43
由分步计数原理得C31*C41*A43=288。

排列组合计算公式

排列组合计算公式

.
1.排列及计算公式
从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).
2.组合及计算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号
c(n,m) 表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);
3.其他排列与组合公式
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.
n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为
n!/(n1!*n2!*...*nk!).
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).
排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
.。

排列组合解法公式

排列组合解法公式

排列组合解法公式排列组合在数学中可是个很有趣的部分呢!它能帮我们解决好多生活中的问题。

先来说说排列的公式吧。

排列呢,就是从 n 个不同元素中,取出 m 个元素按照一定的顺序排成一列。

这时候的排列数记作 A(n, m) ,它的计算公式就是 A(n, m) = n! / (n - m)! 。

比如说,从 5 个不同的水果里选3 个排成一排,那就是 A(5, 3) = 5! / (5 - 3)! = 60 种排法。

再讲讲组合的公式。

组合就是从 n 个不同元素中,取出 m 个元素组成一组,不考虑顺序。

组合数记作 C(n, m) ,计算公式是 C(n, m) = n! / [m!×(n - m)!] 。

还是拿水果举例,从 5 个不同的水果里选 3 个组成一组,不考虑顺序,那就是 C(5, 3) = 5! / [3!×(5 - 3)!] = 10 种组合。

我还记得之前给学生们讲这部分知识的时候,发生了一件有趣的事儿。

那是一个阳光明媚的上午,我在黑板上写下了一道排列组合的题目:在一个班级里有 10 个同学,要选出 4 个同学去参加比赛,有多少种选法?我让同学们先自己思考,然后讨论。

一开始,大家都有点懵,各种答案都有。

有的同学直接用 10 乘以 4 ,有的同学乱写一通。

我看着他们抓耳挠腮的样子,心里偷笑,但也知道这对于他们来说确实是个有点难的知识点。

我开始慢慢引导他们,“同学们,咱们先想想,如果要考虑选出的同学的顺序,那就是排列问题;如果不考虑顺序,那就是组合问题。

那这道题,我们需不需要考虑选出同学的顺序呢?”同学们开始七嘴八舌地讨论起来。

有的说要,有的说不要。

最后,我们一起分析得出,这里不需要考虑顺序,是组合问题。

于是,我们按照组合的公式 C(10, 4) = 10! / [4!×(10 - 4)!] 一起计算,算出结果是 210 种选法。

这时候,同学们恍然大悟,脸上露出了开心的笑容。

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式

<<排列组合公式/排列组合计算公式>>公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数“!”-阶乘,如 9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有( )A.60个B.48个C.36个D.24个解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种解:抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式?解:甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C38×C15×C24×C22=×1=1680(种).(四)二项式定理、二项展开式的性质说明二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6在(x-)10的展开式中,x6的系数是( )A.-27C610B.27C410C.-9C610D.9C410解设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7 (x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0.(五)综合例题赏析例8若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为( )A.1B.-1C.0 D .2解:A.例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种C.18种D.24种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。

排列组合公式

排列组合公式

排列组合公式
排列A(和顺序有关)
组合C(和顺序无关)
1、排列及计算公式
从n个不同元素中,任取m(m≤n)个元素按照一定顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。

用符号A(n,m)或A m
n
A(n,m)=A m
n =
!
m
-n
!n


(规定0!=1)
2、组合及计算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。

用符号C(n,m)或C m
n
C(n,m)=C m
n =
!m
)
m
,n(
A=
!m
)
m
-n(
!n


=
()
[]()!m-n
!
m
-n
-n
!n

= C(n,n-m)。

排列组合常用公式

排列组合常用公式

排列组合常用公式排列和组合是数学中常用的两个概念,用于计算对象的不同排序和选择方式。

在组合数学和概率论中,排列和组合公式是非常重要的工具。

本文将介绍常用的排列和组合公式,帮助我们更好地理解和应用这些概念。

排列公式排列是指从给定元素中选择一组有序的元素的方式。

在排列中,元素的顺序是重要的。

以下是常用的排列公式:1.全排列公式:当从n个不同元素中选择r个进行排列时,全排列的总数可以表示为P(n, r)。

全排列的计算方式为:P(n, r) = n! / (n - r)!其中,n! 表示n的阶乘,即n! = n * (n-1) * (n-2) * … * 2 * 1。

2.循环排列公式:当从n个不同元素中选择r个进行循环排列时,循环排列的总数可以表示为P(n, r) / r。

循环排列的计算方式与全排列类似,只是需要除以r,因为循环排列相同的元素被认为是相同的。

循环排列数 = P(n, r) / r组合公式组合是指从给定元素中选择一组无序的元素的方式。

在组合中,元素的顺序是不重要的。

以下是常用的组合公式:1.组合公式:当从n个不同元素中选择r个进行组合时,组合的总数可以表示为C(n, r)。

组合的计算方式为:C(n, r) = n! / (r! * (n - r)!)其中,n! 表示n的阶乘,r! 表示r的阶乘,(n-r)! 表示(n-r)的阶乘。

2.二项式定理:二项式定理是组合公式的一个重要推论。

当计算表达式(x + y)^n 的展开式时,其中x和y为变量,n为非负整数,展开式中每一项的系数可以表示为C(n, k)。

展开式的计算方式为:(x + y)^n = C(n, 0) * x^n * y^0 + C(n, 1) * x^(n-1) * y^1 + ... + C(n, n) * x^0 * y^n其中,C(n, k) 表示从n个元素中选择k个进行组合的总数。

示例下面通过几个示例展示如何应用排列和组合公式:1.例1:有8个人排成一队,请问一共有多少种不同的队形可以排列?解:我们可以将问题转化为计算全排列的问题。

排 列 组 合 公 式 及 排 列 组 合 算 法

排 列 组 合 公 式 及 排 列 组 合 算 法

各种排列组合奇怪的数的公式和推导(伪)前言啊复习初赛看到排列组合那块,找个推导都难!真是的!一、排列(在乎顺序)全排列:P(n,n)=n!n个人都排队。

第一个位置可以选n个,第二位置可以选n-1个,以此类推得: P(n,n)=n*(n-1)*…*3*2*1= n!部分排列:P(n,m)=n!-(n-m)!n个人,选m个出来排队,第一个位置可以选n个,…,最后一个可以选n-m+1个,以此类推得:P(n,m)=n*(n-1)*.*(n-m+1)=n!-(n-m)!。

二、组合(不在乎顺序)n个人,选m个人出来。

因为不在乎顺序,所以按排列算的话,每个组合被选到之后还要排列,是被算了m!遍的。

即C(n,m)*m!=P(n,m)故而得:C(n,m)=n!-(m!*(n-m)!)有两条性质:1、C(n,m)=C(n,n-m)。

就是说从n个里面选m个跟从n个里面选n-m 个出来不选它是一样的。

2、C(n,m)=C(n-1,m)+C(n-1,m-1)。

递推式.从n个里面选m个出来的方案=从n-1个里面选m个的方案(即不选第n 个) + 从n-1个里面选m-1个的方案(即选第n个)三、圆排列圆排:Q(n,n)=(n-1)!n个人坐成一圈有多少种坐法。

想想坐成一圈后,分别以每个位置为头断开,可以排成一个序列,就是将n个人全排列中的一种。

这样可以得到n个序列,但是在圆排中是视为同一种坐法的。

所以:Q(n,n)*n=P(n,n),即Q(n,n)=P(n,n)-n=n!-n=(n-1)!部分圆排:Q(n,m)=P(n,m)-m=n!-(m*(n-m)!)推导类似四、重复排列(有限个):n!-(a1!*a2!*…*ak!)k种不一样的球,每种球的个数分别是a1,a2.ak,设n=a1+a2+…+ak,求这n个球的全排列数。

把每种球重复的除掉就好了。

假如第一种球有a1个,那么看成都是不一样的话就有a1!种排列方法,然而它们都是一样的,就是说重复了a1!次。

排列组合问题公式

排列组合问题公式

排列组合是数学中常见的一个概念,用于计算一组事物的不同选择和排列方式的总数。

在很多实际问题中,我们经常需要计算排列组合的个数,比如在概率论、统计学、计算机科学等领域中。

在排列组合中,我们常常遇到两个主要的概念,分别是排列和组合。

一、排列排列是指从一组事物中按照一定的顺序选取若干个事物进行排列,这些事物通常具有明确的先后次序。

如果从n个不同的事物中选取m个进行排列,这种排列的数目记为P(n, m)或者nPm。

排列的计算公式如下:P(n, m) = n! / (n - m)!其中,n!表示n的阶乘,即n! = n * (n - 1) * (n - 2) * … * 3 * 2 * 1。

排列的应用非常广泛,比如在密码学中,可以用来计算密码的位数和种类组合方式,从而确定密码的破解难度;在概率统计中,可以用来计算事件的发生概率等。

二、组合组合是指从一组事物中选取若干个事物进行组合,这些事物之间通常没有明确的先后次序。

如果从n个不同的事物中选取m个进行组合,这种组合的数目记为C(n, m)或者nCm。

组合的计算公式如下:C(n, m) = n! / (m! * (n - m)!)组合数目的计算方法比排列简单一些,因为组合只考虑选取事物的组合方式,而不考虑它们的排列顺序。

组合的应用也非常广泛,比如在概率统计中的二项分布、组合数学、图论、社会科学等领域都有它的身影。

三、排列组合的应用举例 1. 在一场比赛中,有8个选手参加,如果要计算前3名的组合方式,可以通过排列的方式计算,即P(8, 3) = 8! / (8 - 3)! = 8! / 5! = (8 * 7 * 6) / (3 * 2 * 1) = 8 * 7 * 6 = 336。

2.在一个班级中,有10个男生和12个女生,如果要从中选出5个人组成一个小组,可以通过组合的方式计算,即C(22, 5) = 22! / (5! * (22 - 5)!) = 22! / (5! * 17!) = (22 * 21 * 20 * 19 * 18) / (5 * 4 * 3 * 2 * 1) = 22 * 21 * 20 * 19 *18 / 5 * 4 * 3 * 2 * 1 = 33649。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合排列组计算公式————————————————————————————————作者:————————————————————————————————日期:排列组合公式/排列组合计算公式排列P------和顺序有关组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合" 1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1 设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解:5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2 由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有( )A.60个B.48个C.36个 D.24个解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3 将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4 从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种 D.35种解:抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式?解:甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C38×C15×C24×C22=×1=1680(种).(四)二项式定理、二项展开式的性质说明二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6 在(x-)10的展开式中,x6的系数是( )A.-27C610B.27C410C.-9C610D.9C410解设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7 (x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0.(五)综合例题赏析例8 若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为( )A.1B.-1C.0D.2解:A.例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种 C.18种 D.24种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。

相关文档
最新文档