充分条件与必要条件
充分条件与必要条件
§1.4 充分条件与必要条件 充分条件与必要条件学习目标 1.理解充分条件、必要条件的概念.2.了解充分条件与判定定理,必要条件与性质定理的关系.3.能通过充分性、必要性解决简单的问题.4.理解充要条件的意义.5.会判断一些简单的充要条件问题.6.能对充要条件进行证明.知识点一 充分条件与必要条件“若p ,则q ”为真命题“若p ,则q ”为假命题推出关系p ⇒q p ⇏q条件关系p 是q 的充分条件q 是p 的必要条件p 不是q 的充分条件 q 不是p 的必要条件定理关系 判定定理给出了相应数学结论成立的充分条件性质定理给出了相应数学结论成立的必要条件思考1 若p 是q 的充分条件,这样的条件p 唯一吗?答案 不唯一.例如“x >1”是“x >0”的充分条件,p 可以是“x >2”“x >3”或“2<x <3”等.思考2 p 是q 的充分条件与q 是p 的必要条件所表示的推出关系是否相同? 答案 相同,都是p ⇒q .思考3 以下五种表述形式:①p ⇒q ;②p 是q 的充分条件;③q 的充分条件是p ;④q 是p 的必要条件;⑤p 的必要条件是q .这五种表述形式等价吗? 答案 等价. 知识点二 充要条件1.如果“若p ,则q ”和它的逆命题“若q ,则p ”均是真命题,即既有p ⇒q ,又有q ⇒p ,就记作p ⇔q ,此时,p 既是q 的充分条件,也是q 的必要条件,我们说p 是q 的充分必要条件,简称为充要条件.2.如果p 是q 的充要条件,那么q 也是p 的充要条件.概括地说,如果p ⇔q ,那么p 与q 互为充要条件.思考4 若p 是q 的充要条件,则命题p 和q 是两个相互等价的命题.这种说法对吗?答案正确.若p是q的充要条件,则p⇔q,即p等价于q,故此说法正确.思考5“p是q的充要条件”与“p的充要条件是q”的区别在哪里?答案(1)p是q的充要条件说明p是条件,q是结论.(2)p的充要条件是q说明q是条件,p是结论.1.若条件p:两个三角形相似,q:两个三角形全等,则p是q的________条件.答案必要解析因为两个三角形全等,所以这两个三角形相似,即q⇒p,所以p是q的必要条件.2.已知A⊆B,则“x∈A”是“x∈B”的________条件.答案充分解析因为A⊆B,所以x∈A⇒x∈B,所以“x∈A”是“x∈B”的充分条件.3.p:|x|=|y|,q:x=y,则p是q的________条件.答案必要解析∵x=y⇒|x|=|y|,即q⇒p,∴p是q的必要条件.4.p:a=0,q:ab=0,则p是q的________条件.答案充分解析因为当a=0时,一定有ab=0成立,即p⇒q,所以p是q的充分条件.5.“(2x-1)x=0”是“x=0”的________条件.答案必要不充分解析设命题p:(2x-1)x=0,命题q:x=0,则命题p:x=0或x=1 2,故p是q的必要不充分条件.6.△ABC是锐角三角形是∠ABC为锐角的________条件.答案充分不必要7.若p是q的充要条件,q是r的充要条件,则p是r的________条件.答案充要解析因为p⇔q,q⇔r,所以p⇔r,所以p是r的充要条件.一、充分条件的判断例1指出下列哪些命题中p是q的充分条件?(1)在△ABC中,p:∠B>∠C,q:AC>AB;(2)已知x∈R,p:x>1,q:x>2.解(1)在△ABC中,由大角对大边知,∠B>∠C⇒AC>AB,所以p是q的充分条件.(2)方法一由x>1⇏x>2,所以p不是q的充分条件.方法二设集合A={x|x>1},B={x|x>2},所以B⊆A,所以p不是q的充分条件.反思感悟充分条件的判断方法(1)判定p是q的充分条件要先分清什么是p,什么是q,即转化成p⇒q问题.(2)除了用定义判断充分条件还可以利用集合间的关系判断,若p构成的集合为A,q构成的集合为B,A⊆B,则p是q的充分条件.跟踪训练1“x>2”是“x2>4”的________条件.答案充分解析x>2⇒x2>4,故x>2是x2>4的充分条件.二、必要条件的判断例2指出下列哪些命题中q是p的必要条件?(1)p:一个四边形是矩形,q:四边形的对角线相等;(2)p:A⊆B,q:A∩B=A;(3)p:a>b,q:ac>bc.解(1)因为矩形的对角线相等,所以q是p的必要条件.(2)因为p⇒q,所以q是p的必要条件.(3)因为p⇏q,所以q不是p的必要条件.反思感悟必要条件的判断方法(1)判断p是q的什么条件,主要判断若p成立时,能否推出q成立,反过来,若q成立时,能否推出p成立;若p⇒q为真,则p是q的充分条件,若q⇒p为真,则p是q的必要条件.(2)也可利用集合的关系判断,如条件甲“x ∈A ”,条件乙“x ∈B ”,若A ⊇B ,则甲是乙的必要条件.跟踪训练2 指出下列哪些命题中q 是p 的必要条件? (1)p :∠A 和∠B 是对顶角,q :∠A =∠B ; (2)p :|x |>2,q :x >2.解 (1)因为对顶角相等,所以p ⇒q ,所以q 是p 的必要条件.(2)因为当|x |>2时,x >2或x <-2,所以p ⇏q , 所以q 不是p 的必要条件. 三、充分条件与必要条件的应用例3 已知p :实数x 满足3a <x <a ,其中a <0;q :实数x 满足-2≤x ≤3.若p 是q 的充分条件,求实数a 的取值范围.解 p :3a <x <a ,即集合A ={x |3a <x <a }.q :-2≤x ≤3,即集合B ={x |-2≤x ≤3}. 因为p ⇒q ,所以A ⊆B , 所以3a ≥-2,a ≤3,a <0⇒-23≤a <0,所以a 的取值范围是-23≤a <0. 延伸探究将本例中条件p 改为“实数x 满足a <x <3a ,其中a >0”,若p 是q 的必要条件,求实数a 的取值范围.解 p :a <x <3a ,即集合A ={x |a <x <3a }. q :-2≤x ≤3,即集合B ={x |-2≤x ≤3}. 因为q ⇒p ,所以B ⊆A , 所以3a >3,a <-2,a >0⇒a ∈∅.反思感悟 充分条件与必要条件的应用技巧(1)应用:可利用充分性与必要性进行相关问题的求解,特别是求参数的值或取值范围问题.(2)求解步骤:先把p ,q 等价转化,利用充分条件、必要条件与集合间的包含关系,建立关于参数的不等式(组)进行求解.跟踪训练3 已知P ={x |a -4<x <a +4},Q ={x |1<x <3},“x ∈P ”是“x ∈Q ”的必要条件,则实数a 的取值范围是________. 答案 -1≤a ≤5解析 因为“x ∈P ”是“x ∈Q ”的必要条件,所以Q ⊆P ,所以a -4≤1,a +4≥3,即a ≤5,a ≥-1,所以-1≤a ≤5. 四、充分、必要、充要条件的判断例4 指出下列各组命题中,p 是q 的什么条件(“充分不必要条件”“必要不充分条件”“充要条件”“既不充分又不必要条件”). (1)p :x =1,q :x -1=x -1; (2)p :-1≤x ≤5,q :x ≥-1且x ≤5; (3)p :x +2≠y ,q :(x +2)2≠y 2; (4)p :a 是自然数;q :a 是正数. 解 (1)当x =1时,x -1=x -1成立;当x -1=x -1时,x =1或x =2. ∴p 是q 的充分不必要条件. (2)∵-1≤x ≤5⇔x ≥-1且x ≤5, ∴p 是q 的充要条件. (3)由q :(x +2)2≠y 2,得x +2≠y ,且x +2≠-y ,又p :x +2≠y , 故p 是q 的必要不充分条件.(4)0是自然数,但0不是正数,故p ⇏q ;又12是正数,但12不是自然数,故q ⇏p . 故p 是q 的既不充分又不必要条件.反思感悟 判断充分条件、必要条件及充要条件的三种方法 (1)定义法:直接判断“若p ,则q ”以及“若q ,则p ”的真假. (2)集合法:即利用集合的包含关系判断.(3)传递法:充分条件和必要条件具有传递性,即由p 1⇒p 2⇒…⇒p n ,可得p 1⇒p n ;充要条件也有传递性.跟踪训练4 指出下列各组命题中,p 是q 的什么条件(“充分不必要条件”“必要不充分条件”“充要条件”“既不充分又不必要条件”).(1)p:x2>0,q:x>0;(2)p:a能被6整除,q:a能被3整除;(3)p:A∩B=A,q:∁U B⊆∁U A.解(1)p:x2>0,则x>0或x<0,q:x>0,故p是q的必要不充分条件.(2)p:a能被6整除,故也能被3和2整除,q:a能被3整除,故p是q的充分不必要条件.(3)∵A∩B=A⇔A⊆B⇔∁U B⊆∁U A,∴p是q的充要条件.五、充要条件的证明例5设a,b,c为△ABC的三边,求证:方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°.证明必要性:设方程x2+2ax+b2=0与x2+2cx-b2=0有公共根x0,则x20+2ax0+b2=0,x20+2cx0-b2=0.两式相减,得x0=b2c-a,将此式代入x20+2ax0+b2=0,可得b2+c2=a2,故∠A=90°.充分性:∵∠A=90°,∴b2=a2-c2.①将①代入方程x2+2ax+b2=0,可得x2+2ax+a2-c2=0,即(x+a-c)(x+a+c)=0.将①代入方程x2+2cx-b2=0,可得x2+2cx+c2-a2=0,即(x+c-a)(x+c+a)=0.故两方程有公共根x=-(a+c).∴方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°.反思感悟充要条件证明的两个思路(1)直接法:证明p是q的充要条件,首先要明确p是条件,q是结论;其次推证p⇒q是证明充分性,推证q⇒p是证明必要性.(2)集合思想:记p:A={x|p(x)},q:B={x|q(x)},若A=B,则p与q互为充要条件.跟踪训练5 求证:一次函数y =kx +b (k ≠0)的图象过原点的充要条件是b =0. 证明 ①充分性:如果b =0,那么y =kx ,当x =0时,y =0,函数图象过原点.②必要性:因为y =kx +b (k ≠0)的图象过原点, 所以当x =0时,y =0,得0=k ·0+b ,所以b =0.综上,一次函数y =kx +b (k ≠0)的图象过原点的充要条件是b =0. 六、充要条件的应用例6 已知p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0),若p 是q 的必要不充分条件,求实数m 的取值范围.解 p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0). 因为p 是q 的必要不充分条件, 所以q 是p 的充分不必要条件,即{x |1-m ≤x ≤1+m } {x |-2≤x ≤10},故有1-m ≥-2,1+m <10或1-m >-2,1+m ≤10, 解得m ≤3. 又m >0,所以实数m 的取值范围为{m |0<m ≤3}. 延伸探究1.若本例中“p 是q 的必要不充分条件”改为“p 是q 的充分不必要条件”,其他条件不变,求实数m 的取值范围.解 p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0). 因为p 是q 的充分不必要条件,设p 代表的集合为A ,q 代表的集合为B , 所以A B .所以 1-m ≤-2,1+m >10或1-m <-2,1+m ≥10.解不等式组得m >9或m ≥9, 所以m ≥9,即实数m 的取值范围是m ≥9.反思感悟 应用充分不必要、必要不充分及充要条件求参数值(范围)的一般步骤 (1)根据已知将充分不必要条件、必要不充分条件或充要条件转化为集合间的关系.(2)根据集合间的关系构建关于参数的方程(组)或不等式(组)求解.跟踪训练6已知当a<0时,设p:3a<x<a,q:x<-4或x≥-2.若p是q的充分不必要条件,求实数a的取值范围.解设A={x|3a<x<a,a<0},B={x|x<-4或x≥-2}.因为p是q的充分不必要条件,所以A B,∴a≤-4或3a≥-2,即a≤-4或a≥-2 3.又∵a<0,∴a≤-4或-23≤a<0,即实数a的取值范围为a≤-4或-23≤a<0.1.“四边形的四条边相等”是“四边形是正方形”的()A.充分条件C.既是充分条件又是必要条件B.必要条件D.既不是充分条件也不是必要条件2.使x>3成立的一个充分条件是()A.x>4 B.x>0 C.x>2 D.x<2 3.“x>0”是“x≠0”的()A.充分不必要条件C.充要条件B.必要不充分条件D.既不充分又不必要条件4.“a<b”是“a b<1”的()A.必要不充分条件C.充要条件B.充分不必要条件D.既不充分又不必要条件5.已知命题p:a是末位是0的整数,q:a能被5整除,则p是q的________条件;q 是p的________条件.(用“充分”“必要”填空)6.若“x>1”是“x>a”的充分条件,则a的取值范围是________.7.已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的________条件.8.函数y=x2+mx+1的图象关于直线x=1对称的充要条件是________.【答案与解析】 1、答案 B解析 因为正方形的四条边相等,但四条边相等的四边形不一定是正方形,所以“四边形的四条边相等”是“四边形是正方形”的必要条件. 2、答案 A解析 只有x >4⇒x >3,其他选项均不可推出x >3. 3、答案 A解析 由“x >0”⇒“x ≠0”,反之不一定成立. 因此“x >0”是“x ≠0”的充分不必要条件. 4、答案 D 解析 暂无 5、答案 充分 必要解析 因为p ⇒q ,所以p 是q 的充分条件,q 是p 的必要条件. 6、答案 a ≤1解析 因为x >1⇒x >a ,所以a ≤1. 7、答案 充要解析 因为a >0,b >0,所以a +b >0,ab >0, 所以充分性成立;因为ab >0,所以a 与b 同号,又a +b >0,所以a >0且b >0,所以必要性成立. 故“a >0且b >0”是“a +b >0且ab >0”的充要条件. 8、答案 m =-2解析 函数y =x 2+mx +1的图象关于直线x =1对称, 则-m2=1,即m =-2; 反之,若m =-2,则y =x 2-2x +1的图象关于直线x =1对称.1.知识清单:(1)充分条件、必要条件的概念. (2)充要条件概念的理解.(3)充分条件与判定定理,必要条件与性质定理的关系.(4)充分条件、必要条件的判断.(5)充分条件与必要条件的应用.(6)充要条件的证明.(7)充要条件的应用.2.方法归纳:等价转化.3.常见误区:充分条件、必要条件不唯一;求参数范围能否取到端点值;条件和结论辨别不清.。
充分条件与必要条件
02 必要条件
定义
必要条件是指某事件发生所必须具备的条件,缺少这个条件 ,事件将不会发生。
必要条件是事件发生的必要不充分条件,即只有满足这个条 件,事件才可能发生,但不一定必然发生。
举例
例如,如果下雨(A),那么地面会 湿(B)。在这里,下雨是地面湿润的 充分条件。
又如,如果一个人努力工作(A),那 么他可能会获得晋升(B)。努力工作 是获得晋升的充分条件。
逻辑推理
在逻辑推理中,充分条件用于构建推理关系,帮助我们理解事件之间的因果关系。
通过充分条件,我们可以预测某一事件或条件出现时,另一事件或结果发生的可能 性。
需要注意的是,必要条件不一定是唯一的条件,可能有多个必要条件共同促成某事件的发生。同时, 在某些情况下,必要条件也可能存在例外情况,即某些条件下,事件的发生可以不满足必要条件。因 此,在逻辑推理中需要综合考虑各种因素,谨慎分析。
03 充分条件与必要条件的区 别与联系
区别
充分条件
如果一个条件A存在,那么另一个 条件B一定存在。在这种情况下, 我们说A是B的充分条件。
在决策制定中,必要条件的运用可以帮助我们更好地确定决策的限制和边界。例如,在制定企业战略时,需要考虑市 场需求、资源、技术等必要条件,以确保战略的可行性和有效性。
总结
在决策制定中,充分条件与必要条件的运用可以帮助我们更好地评估各种方案和可能性,制定出更加科 学、合理的决策。
05 充分必要条件的哲学思考
总结
在科学研究中,充分条件与必要条件的运用可以帮助我们更好地揭示事物的本质和规律, 推动科学的进中,充分条件的运用可以帮助我们更好地评估各种方案和可能性。例如,在制定营销策略时,如果某个产 品具有市场需求大、竞争者少等充分条件,那么它可能是一个很好的选择。
充分条件与必要条件
第六节 充分条件与必要条件一、基础知识(一)充分条件、必要条件和充要条件1.充分条件:如果A 成立那么B 成立,则条件A 是B 成立的充分条件。
2.必要条件:如果A 成立那么B 成立,这时B 是A 的必然结果,则条件B 是A 成立的必要条件。
B A ⇒3.充要条件:如果A 既是B 成立的充分条件,又是B 成立的必要条件,则A 是B 成立的充要条件;同时B 也是A 成立的充要条件。
(二)充要条件的判断1若B A ⇒成立则A 是B 成立的充分条件,B 是A 成立的必要条件。
2.若B A ⇒且B A ,则A 是B 成立的充分且不必要条件,B 是A 成立必要且非充分条件。
3.若B A ⇔成立则A 、B 互为充要条件。
证明A 是B 的充要条件,分两步:(1)充分性:把A 当作已知条件,结合命题的前提条件推出B ;(2)必要性:把B 当作已知条件,结合命题的前提条件推出A 。
(三)反证法运用的两个难点:1)何时使用反证法 2)如何得到矛盾。
二、范例选讲例1.(04重庆)一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是( C )(A )0a < (B )0a > (C )1a <- (D )1a > 练习1设f(x)=x 2-4x(x ∈R),则f(x)>0的一个必要而不充分条件是( C )A 、x<0B 、x<0或x>4C 、│x-1│>1D 、│x-2│>3例2.填空题;______)1(条件的是则若p q q p ⌝⌝⇒;______00,_______00)2(条件的是条件的是≥≥>>ba ab b a ab (3)若A 是B 的充分条件,B 是C 的充要条件,D 是C 的必要条件,则A 是D 的 条件. 答案:(1)充分条件 (2)充要、必要不充分 (3)A => B <=> C => D 故填充分。
充分条件和必要条件教学ppt课件
利用集合论的方法,判断非A和非B 两个集合之间的关系,如果非A是非 B的子集,则非A是必要条件。
充分条件与必要条件的综合应用
判定实例
通过具体实例的判定,加 深对充分条件和必要条件 的理解。
判定步骤
介绍判定充分条件和必要 条件的步骤和方法。
应用场景
介绍充分条件和必要条件 在日常生活、科学研究等 方面的应用场景。
04
充分条件与必要条件的推 理关系
充分条件推理关系的应用
定义
如果一个条件A能够推理得到结 论B,那么称A是B的充分条件。
示例
如果天下雨,那么地会湿。这里 “下雨”是“地湿”的充分条件
。
应用
在日常生活中,充分条件的推理 关系非常常见,比如:如果按下 开关,那么灯会亮;如果发烧,
那么可能是流感。
必要条件推理关系的应用
03
充分条件与必要条件的应 用场景
法律逻辑中的充分条件和必要条件
法律逻辑中的充分条件
在法律逻辑中,充分条件通常指的是能够充分证明某一事实或证据的条款或条 件。如果某一事实或证据是另一个事实或证据的充分条件,那么只要这个事实 或证据成立,另一个事实或证据也就必然成立。
法律逻辑中的必要条件
在法律逻辑中,必要条件通常指的是某一事实或证据必须满足的不可缺少的条 件。如果缺少这个条件,那么另一个事实或证据就无法成立。
经济案例中的充分条件和必要条件
经济案例1
在国际贸易中,出口商品符合进口国的技术 标准是充分条件,而进口国颁发进口许可证 则是必要条件。如果出口商品不符合进口国 的技术标准,则无法获得进口许可证。
经济案例2
在投资决策中,投资项目的盈利前景是充分 条件,而投资者的资金实力则是必要条件。 如果投资项目的盈利前景不佳,则投资者可 能会放弃该项目。
充分条件和必要条件(含区分和例题)
充分条件和必要条件解释:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件(简称:充要条件)。
简单地说,满足A,必然B;不满足A,必然不B,则A是B的充分必要条件。
(A可以推导出B,且B也可以推导出A)例如: 1. A=“三角形等边”;B=“三角形等角”。
2. A=“某人触犯了刑律”;B=“应当依照刑法对他处以刑罚”。
3. A=“付了足够的钱”;B=“能买到商店里的东西”。
例子中A都是B的充分必要条件:其一、A必然导致B;其二,A是B发生必需的。
区分:假设A是条件,B是结论由A可以推出B~由B可以推出A~~则A是B的充要条件(充分且必要条件)由A可以推出B~由B不可以推出A~~则A是B的充分不必要条件由A不可以推出B~由B可以推出A~~则A是B的必要不充分条件由A不可以推出B~由B不可以推出A~~则A是B的不充分不必要条件简单一点就是:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件如果能由结论推出条件,但由条件推不出结论。
此条件为必要条件如果既能由结论推出条件,又能有条件推出结论。
此条件为充要条件例子:1.充分条件:由条件a推出条件b,但是条件b并不一定能推出条件a,天下雨了,地面一定湿,但是地面湿不一定是下雨造成的。
2.必要条件:由后一个条件推出前一个条件,但是前一个条件并一定能推出后一个条件。
我们把前面一个例子倒过来:地面湿了,天下雨了。
我这里在简单说下哲学上的充分条件和必要条件1. 充分条件是指根据提供的现有条件可以直接判断事物的运行发展结果。
充分条件是事物运行发展的必然性条件,体现必然性的哲学内涵。
如父亲和儿子的关系属于亲情关系吗答必然属于。
2. 必要性条件。
事物的运行发展有其规律性,必要性条件是指一些外在或内在的条件符合该事物的运行规律的要求,但不能推动事物规律的最终运行。
如亲情关系和父子关系,亲情关系符合父子关系的一种现象表达,但不能推倒出亲情关系属于父子关系。
充分条件与必要条件
1、充分不必要条件:p⇒q,q⇏p
2、必要不充分条件:p⇏q,q⇒p
3、既不充分也不必要条件:p⇏q,q⇏p
4、充要条件:p⇒q且q⇒p,即p⇎q
“P是q的充分不必要条件”与“p的一个充分不要条件是q”都
表示“p⇒q”吗?
例1:设p:|4x-1|≤1;q:a≤x≤a+1.若q是p的必要不充分条件,求实
若命题P表示的集合A,命题q表示的集合B,则:
①p⇒q,相当于A⊆B
或
B A
A,B
②q⇒p,相当于B⊆A
③ A⊊B
⑤A=B
B A
A,B
A B
或
A,B
④B⊊A
A B
例3:已知p是q的必要不充分条件,p是s的充分不必要条件,则q是s
的( )
A、充分不必要条件
B、必要不充分条件
p⇒s,s⇏p
C、充要条件
D、既不充分也不必要条件
q⇒p,p⇏q
答案:A
传递:
①若p是q的充分条件,q是s的充分条件,即p⇒ q,q⇒ s,则p⇒ s,即p是s的
充分条件;
②若p是q的必要条件,q是s的必要条件,即q⇒p,s⇒q,则s⇒ p,即p是s的
必要条件;
③若p是q的充要条件,q是s的充要条件,即p⇔q,q⇔s,则p⇔s,即p是s的
第一章 集合
充分条件与必要条件
判断下列命题是真命题还是假命题:
1、如果x是有理数,那么x是实数;
真
2、如果对任意x∈R,有x+1≤0;
假
3、至少有一个集合A,满足A⊊{1,2,3};
真
4、有些实数的绝对值是正数;
假
充分条件和必要条件(含区分和例题)
充分条件和必要条件解释:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件(简称:充要条件)。
简单地说,满足A,必然B;不满足A,必然不B,则A是B的充分必要条件。
(A可以推导出B,且B也可以推导出A)例如:1。
A=“三角形等边”;B=“三角形等角”。
2。
A=“某人触犯了刑律";B=“应当依照刑法对他处以刑罚”. 3。
A=“付了足够的钱”;B=“能买到商店里的东西”. 例子中A都是B的充分必要条件:其一、A必然导致B;其二,A是B发生必需的。
区分:假设A是条件,B是结论由A可以推出B~由B可以推出A~~则A是B的充要条件(充分且必要条件)由A可以推出B~由B不可以推出A~~则A是B的充分不必要条件由A不可以推出B~由B可以推出A~~则A是B的必要不充分条件由A不可以推出B~由B不可以推出A~~则A是B的不充分不必要条件简单一点就是:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件如果能由结论推出条件,但由条件推不出结论。
此条件为必要条件如果既能由结论推出条件,又能有条件推出结论。
此条件为充要条件例子:1。
充分条件:由条件a推出条件b,但是条件b并不一定能推出条件a,天下雨了,地面一定湿,但是地面湿不一定是下雨造成的。
2。
必要条件:由后一个条件推出前一个条件,但是前一个条件并一定能推出后一个条件.我们把前面一个例子倒过来:地面湿了,天下雨了.我这里在简单说下哲学上的充分条件和必要条件1. 充分条件是指根据提供的现有条件可以直接判断事物的运行发展结果.充分条件是事物运行发展的必然性条件,体现必然性的哲学内涵.如父亲和儿子的关系属于亲情关系吗?答必然属于。
2. 必要性条件。
事物的运行发展有其规律性,必要性条件是指一些外在或内在的条件符合该事物的运行规律的要求,但不能推动事物规律的最终运行。
如亲情关系和父子关系,亲情关系符合父子关系的一种现象表达,但不能推倒出亲情关系属于父子关系.集合表示:设A、B是两个集合,A是B的充分条件,即满足A的必然满足B,表示为A包含于B;A是B的必要条件,即满足B的必然满足A,表示为A包含B,或B包含于A;A是B的充分不必要条件,即A是B的真子集,表示为A真包含于B;A是B的必要不充分条件,即B是A的真子集,表示为A真包含B,或者B真包含于A; A是B的充分必要条件,即A、B等价,表示为A=B。
充分条件和必要条件(含区分和例题)
充分条件和必要条件解释:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件(简称:充要条件)。
简单地说,满足A,必然B;不满足A,必然不B,则A是B的充分必要条件。
(A可以推导出B,且B也可以推导出A)例如: 1. A=“三角形等边”;B=“三角形等角”。
2. A=“某人触犯了刑律”;B=“应当依照刑法对他处以刑罚”。
3. A=“付了足够的钱”;B=“能买到商店里的东西”。
例子中A都是B的充分必要条件:其一、A必然导致B;其二,A是B发生必需的。
区分:假设A是条件,B是结论由A可以推出B~由B可以推出A~~则A是B的充要条件(充分且必要条件)由A可以推出B~由B不可以推出A~~则A是B的充分不必要条件由A不可以推出B~由B可以推出A~~则A是B的必要不充分条件由A不可以推出B~由B不可以推出A~~则A是B的不充分不必要条件简单一点就是:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件如果能由结论推出条件,但由条件推不出结论。
此条件为必要条件如果既能由结论推出条件,又能有条件推出结论。
此条件为充要条件例子:1.充分条件:由条件a推出条件b,但是条件b并不一定能推出条件a,天下雨了,地面一定湿,但是地面湿不一定是下雨造成的。
2.必要条件:由后一个条件推出前一个条件,但是前一个条件并一定能推出后一个条件。
我们把前面一个例子倒过来:地面湿了,天下雨了。
我这里在简单说下哲学上的充分条件和必要条件1. 充分条件是指根据提供的现有条件可以直接判断事物的运行发展结果。
充分条件是事物运行发展的必然性条件,体现必然性的哲学内涵。
如父亲和儿子的关系属于亲情关系吗?答必然属于。
2. 必要性条件。
事物的运行发展有其规律性,必要性条件是指一些外在或内在的条件符合该事物的运行规律的要求,但不能推动事物规律的最终运行。
如亲情关系和父子关系,亲情关系符合父子关系的一种现象表达,但不能推倒出亲情关系属于父子关系。
充分条件与必要条件
充分条件与必要条件
充分条件与必要条件知识点包括充分条件与必要条件、命题、四种命题及其相互关系等部分,有关充分条件与必要条件的详情如下:
充分条件与必要条件
(1)一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可以推出q,记作p→q,并且说p是q的充分条件(sufficient condition),q是p的必要条件(necessary condition).
如果“若p,则q”为假命题,那么由条件p不能推出结论q,记作p→q.此时,我们就说p不是q的充分条件,q不是p的必要条件.
(2)一般地,数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件.数学中的每一条性质定理都给出了相应数学结论成立的一个必要条件.
命题
用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.
四种命题及其相互关系
(1)四种命题间的相互关系
(2)四种命题的真假关系
①两个命题互为逆否命题,它们具有相同的真假性.
②两个命题为互逆命题或互否命题时,它们的真假性没有关系.。
充分条件、必要条件
一、充分条件、必要条件、充要条件的定义
1.若p 则q 为真,q p ⇒;若p 则q 为假,q p ⇒
条件 结论
2.定义
(1)若q p ⇒,则p 是q 的充分条件
(2)若p q ⇒,则p 是q 的必要条件
(3)若q p ⇒且p q ⇒,则q 是p 的充要条件
二、充分条件、必要条件的判断方法
(1)定义法:直接利用定义进行判断断
步骤: ①分清条件、结论
②
技巧:①可先化简命题再进行判断;②否定一个命题只需举出一个反例即可。
(2)集合法:集合A ,B 分别是使命题p ,q 为真命题的对象所组成的集合.
⎩
⎨⎧⇒⇒p q q p 充分不必要条件 A B 必要不充分条件
充要条件
既不充分也不必要条件
三、充分条件与必要条件的应用
例:已知p :,q :{x |x 2-2x +1-m 2≤0,m >0},若p 是q 的充分不
必要条件,求实数m的取值范围.
令A=,
……………………………………………………2分
B={x|x2-2x+1-m2≤0,m>0}
={x|[x-(1-m)]·[x-(1+m)]≤0,m>0},
∴B={x|1-m≤x≤1+m,m>0}.………………4分
∵p是q的充分不必要条件,
∴A B.……………………………………………6分
四、证明充要条件
步骤:①分清条件、结论;
②证明充分性:条件⇒结论;
③证明必要性:结论⇒条件;
④下结论。
技巧:证明充要条件,即证明命题的原命题和逆命题都成立.证明充要性时一定要注意分类讨论,要搞清它的叙述格式,避免在论证时将充分性错当必要性证,而又将必要性错当充分性证.。
充分条件与必要条件知识点
充分条件与必要条件知识点充分条件与必要条件是高中数学的重要概念,因其抽象而成为学生难于理解的内容,下面是高一数学充分条件与必要条件的知识点.(一)充分条件、必要条件和充要条件1.充分条件:如果A成立,那么B成立,即AnB,则条件A是B成立的充分条件;2.必要条件:如果A成立,那么B成立,即AnB,这时B是A的必然结果,则条件B是A成立的必要条件;3.充要条件:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件,简称充要条件.简单地说,满足A,必然B;不满足A,必然不B,则A 是B的充分必要条件;反之,如果有事物情况B,则必然有事物情况A;如果没有事物情况B,则必然没有事物情况A,B就是A的充分必要条件,简称充要条件.简单地说,满足B,必然A;不满足B,必然不A,则B是A的充分必要条件.即A可以推导出B,且B也可以推导出A.或者说,如果A既是B成立的充分条件,又是B成立的必要条件,即AoB,则A是B成立的充要条件;同时B也是A成立的充要条件.(二)充分条件、必要条件与充要条件的判断命题“若…,则…”,其条件与结论之间的逻辑关系如下,其中符号“n”叫做推出,符号“会”叫做推不出或叫做不能推出,符号“o”叫做互相推出.1.若AnB且B弃A成立,则A是B成立的充分条件,B是A成立的必要条件;2.若AnB且B=^>Λ成立,则A是B成立的充分且不必要条件,B是A成立必要且非充分条件;3.若A=母B且BnA成立,则B是A成立的充分条件,A是B成立的必要条件;4.若A=B且B=A成立,即A=B成立,则A、B互为充要条件.证明A是B的充要条件,分两步:①充分性:把A当作已知条件,结合命题的前提条件推出B;②必要性:把B当作己知条件,结合命题的前提条件推出A.5.若A弃B且B=M>A成立,则A是B的既不充分也不必要条件.6.若B=e>A且A=e>B成立,则B是A的既不充分也不必要条件.即:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件;能由结论推出条件,但由条件推不出结论;此条件为必要条件;既能由结论推出条件,又能有条件推出结论,此条件为充要条件;由条件推不出结论,由结论推不出这个条件,这个条件就是即不充分也不必要条件;充分条件、必要条件的常用判断法L定义法:判断B是A的条件,实际上就是判断BnA或者AnB是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可.2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断.3集合法在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:若AGB,则P是q的充分条件,q是P的必要条件;若A3B,则P是q的必要条件,q是P的充分条件;i A=B,则P是q的充要条件;若A不包含于B,且B不包含于A,则P是q的既不充分也不必要条件.从集合与集合间的关系看,若p:χ∈Λ,q:x∈B.①若AqB,则P是q的充分条件,q是P的必要条件;②若A是B的真子集,则P是q的充分不必要条件;③若A=B,则p、q互为充要条件;④若A 不是B的子集且B不是A的子集,则P是q的既不充分也不必要条件.4.充分必要条件的常见集合表示:设A、B是两个集合.①如果A是B的充分条件,那么满足A的必然满足B,表示为AqB;②如果A是B的必要条件,那么满足B的必然满足A,表示为B G A,或A33;③如果A是B的充分不必要条件,那么A是B的真子集;④如果A是B的必要不充分条件,那么B是A的真子集;⑤如果A是B的充分必要条件,那么A、B等价,表示为A=B.5.充分条件与必要条件的判断通常有四种结论:充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件.判断方法通常按以下步骤进行:①确定哪是条件,哪是结论;②尝试用条件推结论,③再尝试用结论推条件,④最后判断条件是结论的什么条件.充分条件与必要条件的内涵.1.充分条件:指根据提供的现有条件可以直接判断事物的运行发展结果.充分条件是事物运行发展的必然性条件,体现必然性的内涵.如母亲与女儿的关系属于亲情关系吗?答案是必然属于.2.必要性条件:事物的运行发展有其规律性,必要性条件是指一些外在或内在的条件符合该事物的运行规律的要求,但不能推动事物规律的最终运行.如亲情关系与母女关系,亲情关系符合母女关系的一种现象表达,但不能推出亲情关系属于母女关系.题型解释充分条件与必要条件相关知识例1:(I)A"三角形三条边相等”;B二“三角形三个角相等”;(2)A“某人触犯了刑律”;B二”应当依照刑法对他处以刑罚”;(3)A“付了足够的钱";B二“能买到商店里的东西”.解:A都是B的充分必要条件:其一,A必然导致B;其二,A是B发生必需的.例2:(I)A.天下雨了,B.地面一定湿;(2)A.地面一定湿,B.天下雨了解:天下雨地面一定湿,但是地面湿不一定是下雨造成的,即A=B且B=e>A成立,所以A是B充分条件;(2)天下雨地面一定湿,但是地面湿不一定是下雨造成的,即A=B>B且BnA成立,以B是A必要条件;例3:已知P:xi,X2是方程x>5χ-6=O的两根,Q:X I+X2=-5,则P是Q的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件解:∙.∙χι,X2是方程X2+5X-6=0的两根,,Xi,X2的值分别为1,-6,1∙X I+X2=1-6=-5,故选A.例4:P是Q的充要条件的是()A.P:3x+2>5,Q:-2x-3>-5B.P:a>2,b<2,Q:a>bC.P:四边形的两条对角线互相垂直平分,Q:四边形是正方形D.Pra≠O,Q:关于X的方程ax=l有唯――解解:对于A,P:3x+2>5=>x>l,Q L2X-3>-5=>X V1,,P推不出Q,Q推不出P,P是Q既不充分也不必要条件;对于B,P:a>2,b<2zz>Q:a>b;但Q推不出P,故P是Q的充分不必要条件;对于C,若“两条对角线互相垂直平分”成立今“四边形是正方形";反之,若“四边形是正方形”成立n“两条对角线互相垂直平分”成立,故P是Q的必要条件;对于D,P:a¥0QQ:关于X的方程ax=l有唯一解,故P是Q的充分必要条件;故选D.例5:若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A 成立的()A.充分条件B.必要条件 C.充要条件D.既不充分也不必要条件解:TA是B的充分条件,,A=B①,YD是C成立的必要条件,,CnD②,C<z>B③,由①③得AnC④,由②④得A=D,,D是A成立的必要条件,故选B.例6:设命题甲为:0<x<5,命题乙为:∣χ-2∣V3,那么甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:解不等式|x-2V3,得TVxV5,「0VxV5,-l<x<5,但TVxV5,0VxV5,二•甲是乙的充分不必要条件,故选A.说明:一般情况下,如果条件甲为x∈A,条件乙为x∈B.当且仅当A=B时•,甲为乙的充要条件.例7:给出下列各组条件:(l)P:ab=O,Q:a2+b2=0;⑵P:xy2O,Q:∣x∣+∣y∣=∣x+y|;(3)P:m>0,Q:方程χ2-x-iTFO有实根;(4)P:IXTl>2,Q:x<-1.其中P是Q的充要条件的有()A.1组B.2组C.3组D.4组解:(DP是Q的必要条件;(2)P是Q充要条件;(3)P是Q的充分条件;(4)P是Q的必要条件,故选A.。
充分条件和必要条件
课题 充分条件和必要条件教学目标 1) 理解充分条件,必要条件和充要条件的意义;2) 会判断充分条件,必要条件和充要条件. 3) 从集合的观点理解充要条件。
4) 会证明简单的充要条件的命题。
重 点 充分条件,必要条件和充要条件的判断.难 点充要条件的理解和充要条件的命题的证明。
【知识点梳理】1、命题“若p 则q ”为真,记作p ⇒q ;“若p 则q ”为假,记作“p ≠ q ”.2、充分与必要条件:①如果已知p ⇒q ,则称p 是q 的充分条件,而q 是p 的必要条件.②如果既有p ⇒q ,又有q ⇒q ,即p ⇔q,则称p 是q 的充要条件.3、充分、必要条件与四种命题的关系:①如果p 是q 的充分条件,则原命题“若p 则q ”以及逆否命题“若 p 则 q ”都是真命题.②如果p 是q 的必要条件,则逆命题“若q 则p ”以及否命题“若 p 则 q ”为真命题. ③如果p 是q 的充要条件,则四种命题均为真命题。
4、充要条件的判断方法:四种“条件”的情况反映了命题的条件与结论之间的因果关系,所以在判断时应该:⑴确定条件是什么,结论是什么;⑵尝试从条件推出结论,从结论推出条件(方法有:直接证法或间接证法,集合思想);⑶确定条件是结论的什么条件.【典型例题分析】例1.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的___________________条件; (2)(4)(1)0x x -+≥是401x x -≥+的___________________条件; (3)αβ=是tan tan αβ=的___________________条件;(4)3x y +≠是1x ≠或2y ≠的___________________条件.分析:从集合观点“小范围⇒大范围”进行理解判断,注意特殊值的使用.解:(1)因为2,2.x y >⎧⎨>⎩结合不等式性质易得4,4.x y xy +>⎧⎨>⎩,反之不成立,若12x =,10y =,有4,4.x y xy +>⎧⎨>⎩,但2,2.x y >⎧⎨>⎩不成立,所以2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的充分不必要条件. (2)因为(4)(1)0x x -+≥的解集为[1,4]-,401x x -≥+的解集为(1,4]-,故(4)(1)0x x -+≥是401x x -≥+的必要不充分条件. (3)当2παβ==时,tan ,tan αβ均不存在;当tan tan αβ=时,取4πα=,54πβ=,但αβ≠,所以αβ=是tan tan αβ=的既不充分也不必要条件.(4)原问题等价其逆否形式,即判断“1x =且2y =是3x y +=的____条件”,故3x y +≠是1x ≠或2y ≠的充分不必要条件.点评:①判断p 是q 的什么条件,实际上是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,若原命题为真,逆命题为假,则p 为q 的充分不必要条件;若原命题为假,逆命题为真,则p 为q 的必要不充分条件;若原命题为真,逆命题为真,则p 为q 的充要条件;若原命题,逆命题均为假,则p 为q 的既不充分也不必要条件.②在判断时注意反例法的应用.③在判断“若p 则q ”的真假困难时,则可以判断它的逆否命题“若⌝q 则⌝p ”的真假.例2.已知p ,q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,则p 是s 的_________条件.分析:将各个命题间的关系用符号连接,易解答.解:故p 是s 的的充要条件.点评:将语言符号化,可以起到简化推理过程的作用.例3.已知20:100x p x x ⎧⎫+≥⎧⎪⎪⎨⎨⎬-≤⎩⎪⎪⎩⎭,:{11,0}q x m x m m -≤≤+>,若p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围.分析:若p ⌝是q ⌝的必要不充分条件等价其逆否形式,即q 是p 的必要不充分条件. 解:由题知:{}:210p P x x =-≤≤,:{11,0}q Q x m x m m =-≤≤+>p ⌝是q ⌝的必要不充分条件,∴q 是p 的必要不充分条件.∴P Q Ø,即12,110,0.m m m -≤-⎧⎪+≥⎨⎪>⎩得9m ≥.故m 的取值范围为9m ≥.p r q ⇐⇒ ⇑s点评:对于充分必要条件的判断,除了直接使用定义及其等价命题进行判断外,还可以根据集合的包含关系来判断条件与结论之间的逻辑关系:若集合P Q ⊆,则P 是Q 的充分条件;若集合P Q ⊇,则P 是Q 的必要条件;若集合P Q =,则P 是Q 的充要条件. 例4.求证:关于x 的方程20ax bx c ++=有一个根为-1的充要条件是0a b c -+=. 分析:充要条件的证明既要证充分性,也要证必要性.证明:必要性:若1x =-是方程20ax bx c ++=的根,求证:0a b c -+=.1x =-是方程20ax bx c ++=的根,∴2(1)(1)0a b c ⋅-+⋅-+=,即0a b c -+=. 充分性:关于x 的方程20ax bx c ++=的系数满足0a b c -+=,求证:方程有一根为-1. 0a b c -+=,∴b a c =+,代入方程得:2()0ax a c x c +++=,得()(1)0ax c x ++=,∴1x =-是方程20ax bx c ++=的一个根.故原命题成立.点评:在代数论证中,充要条件的证明要证两方面:充分性和必要性,缺一不可【小结】1. 理解充分条件,必要条件和充要条件的意义;会判断充分条件,必要条件和充要条件.2. 从集合的观点理解充要条件,有以下一些结论:若集合P Q ⊆,则P 是Q 的充分条件;若集合P Q ⊇,则P 是Q 的必要条件;若集合P Q =,则P 是Q 的充要条件.3. 会证明简单的充要条件的命题,进一步增强逻辑思维能力【课堂练习】【基础达标】1.若p q ⇒,则p 是q 的充分条件.若q p ⇒,则p 是q 的必要条件.若p q ⇔,则p 是q 的充要条件.2.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)已知:2p x >,:2q x ≥,那么p 是q 的_____充分不必要___条件.(2)已知:p 两直线平行,:q 内错角相等,那么p 是q 的____充要_____条件.(3)已知:p 四边形的四条边相等,:q 四边形是正方形,那么p 是q 的__必要不充分 条件.(4)已知:p a b >,22:q ac bc >,那么p 是q 的____必要不充分___条件.3.函数2y ax bx c =++(0)a ≠过原点的充要条件是0c =.4.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件;②“5+a 是无理数”是“a 是无理数”的充要条件; ③“a >b ”是“a 2>b 2”的充分条件; ④“a <5”是“a <3”的必要条件.其中真命题的序号是____②_④___.5.若x R ∈,则1x >的一个必要不充分条件是0x >.【能力提高】6.设集合{2}M x x =>,{3}P x x =<,则“()x M P ∈⋃”是“()x M P ∈⋂”的__________条件.7.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件。
充分条件与必要条件
题型三 充分条件与必要条件的应用 一题多变 已知 p:实数 x 满足 3a<x<a,其中 a<0;q:实数 x 满足-2≤x≤3.若 p 是 q
的充分条件,求实数 a 的取值范围.
[自主解答] p:3a<x<a, 即集合 A={x|3a<x<a}. q:-2≤x≤3,即集合 B={x|-2≤x≤3}. 因为 p⇒q,所以 A⊆B,
[提示] 条件是两个三角形全等,结论是两个三角形面积相等.
必要条件与命题“若 p,则 q”的真假性有什么关系? [提示] 当命题“若 p,则 q”为真命题时,q 是 p 的必要条件.
若 p 是 q 的充分条件,这样的条件 p 唯一吗? [提示] 不唯一.例如“x>1”是“x>0”的充分条件,p 可以是“x>2”“x>3”或“2<x<3”等.
3a>3, 所以a<-2, ⇒a∈∅.
a>0
2.(变条件)将例题中的条件“q:实数 x 满足-2≤x≤3”改为“q:实数 x 满足- 3≤x≤0”,其他条件不变,求实数 a 的取值范围.
解析 p:3a<x<a,其中 a<0,
即集合 A={x|3a<x<a}.
q:-3≤x≤0,即集合 B={x|-3≤x≤0}.
[自主解答] (1)由于 p⇒q,故 p 是 q 的充分条件,q 是 p 的必要条件. (2)由于 q⇒p,故 q 是 p 的充分条件,p 是 q 的必要条件.
[规律方法] 1.判断 p 是 q 的什么条件,主要判断若 p 成立时,能否推出 q 成立,反过来,若 q 成立时,能否推出 p 成立;若 p⇒q 为真,则 p 是 q 的充分条件,若 q⇒p 为真,则 p 是 q 的必要条件. 2.也可利用集合的关系判断,已知条件甲“x∈A”,条件乙“x∈B”.若 A⊇B, 则甲是乙的必要条件.
充分条件与必要条件
充分条件对抗必要条件
充分条件、必要条件定义:
1.充分条件:由条件a推出条件b,但是条件b并不一定能推出条件a,
例如:天下雨了,地面一定湿,但是地面湿不一定是下雨造成的。
2.必要条件:由后一个条件推出前一个条件,但是前一个条件并一定能推出后一个条件。
我们把前面一个例子倒过来:地面湿了,天下雨了。
3.充要条件:两个条件可以相互推导。
例如:条件a他考试得了100分:条件b他每道题都做对了
4.充分不必要条件,在充分条件举例中,地面湿了并不一定能推出天下雨了,所以我们就说,“天下雨是地面湿的充分不必要条件”
5.必要不充分条件,在必要条件中,前一个推不出后一个,后一个能推出前一个,我们可以说“地面湿了是天下雨的必要不充分条件。
”
充分条件,必要条件对学生学习数学的作用有:
一、规范学生的解题过程。
因为每一个解题过程不是写其充要条件就是充分条件
对于条件的使用不是写其必要条件就是写其充要条件。
二、学习这一部分内容规范学生的数学思维,数学思维过程就是一个逻辑推理过
程,而著名的三段论也是一个充分条件的过程。
三、创新能力的培养也离不开充分条件,必要条件的寻找。
四、概念与性质的掌握其实也是其必要条件的表示。
充分条件与必要条件
假设某个条件不是必要的,然后推导 出与已知事实或逻辑相矛盾的结论, 从而证明该条件是必要的。
03
充分条件与必要条件的转化
转化原理与方法
原理
充分条件和必要条件之间存在逻辑关系,当某一条件成为另一条件的充分条件时,另一条件则成为该 条件的必要条件。通过逻辑推理,可以实现充分条件与必要条件的转化。
方法
不充分性
必要条件虽然重要,但它 本身并不足以保证结果的 实现。还需要其他条件的 配合。
逻辑关系
在逻辑上,必要条件与结 果之间存在“只有...才...” 的关系。
必要条件的判断方法
分析法
通过对结果的产生过程进行详细分析 ,找出其中的关键环节和因素,进而 确定必要条件。
反证法
归纳法
从一系列具体事例中归纳出它们的共 性特征,作为必要条件。这种方法具 有一定的或然性,需要注意反例的存 在。
02
必要条件
必要条件的定义
必要条件是指在某个逻辑命题中,如果缺少了该条件,则该命题不成立。换句话 说,必要条件是某个结果发生的先决条件,没有它结果就不会发生。
在数学逻辑中,必要条件通常表示为:如果P则Q,其中P是Q的必要条件。这意 味着,如果Q为真,则P必须也为真。
必要条件的性质
必要性
必要条件是不可或缺的, 缺少了它,相应的结果便 无法实现。
充分条件与必要条件
2024-01-23
目录
• 充分条件与必要条件概述 • 必要条件 • 充分条件与必要条件的转化 • 充分条件与必要条件在数学中的应用 • 充分条件与必要条件在生活中的应用
01
充分条件与必要条件概述
定义与概念
充分条件
如果A发生,则B一定发生,即A 是B的充分条件。
充分条件与必要条件
(2)p:两个角是对顶角, q:两个角相等 (3)p:ab=0 q:a=0 (4)p:两个三角形全等, q:两个三角形面积相等
练习二
指出下列各组命题中, 的什么条件, 的什么条件? 指出下列各组命题中,p是q 的什么条件,q是p的什么条件?
(1) p: x2=9 q: x= -3 (2) p: 三角形是直角三角形 q:三角形有一个角等于60 (3) p:三角形的三条边相等 q:三角形的三个角相等
三,举例应用
例题 指出下列各组命题中,p是q 的什么条件,q是p的什么条件? 指出下列各组命题中, 的什么条件, 的什么条件?
(1) P:x=y
q:x=y
解
(1) p是q的充分条件, q是p的必 要条件. (2) p是q的充分条件, q是p的 必要条件. (3) p是q的充分条件, q是p的 必要条件. (4) p是q的充分条件, q是p的 必要条件.
充分条件和必要条件
一,复习引入
四种命题
原命题: 若 p 则 q 逆命题: 若 q 则 p 否命题: 若 p 则 q 逆否命题:若 q 则p
二,新课讲授
1,一般地:若p则q为真,记作:p=>q或q<=p ,一般地: 为真, 则 为真 记作: 或 为假, 若p则q为假,记作:p≠q 则 为假 记作:
(3) p:内错角相等 (4) p:两直线平行 (5) P:x=1
q:两直线平行 q:内错角相等
q:x=1
小 结 1,一般地:若p则q为真,记作 ,一般地: 为真, 则 为真 记作:p=>q 为假, 若p则q为假,记作 ≠>q 则 为假 记作:p 2,充分条件与必要条件 , 一般地, 一般地,如果已知 p=>q 那么我们就说 p是q的充分条件, q是p的必要条件. 是 的充分条件 的充分条件, 是 的必要条件
充分条件和必要条件的判断
充分条件和必要条件的判断一、必要和充分条件怎么判断充分条件:如果A能推出B,那么A就是B的充分条件。
其中A 为B的子集,即属于A的一定属于B,而属于B的不一定属于A,具体的说若存在元素属于B的不属于A,则A为B的真子集;若属于B 的也属于A,则A与B相等。
必要条件:必要条件是数学中的一种关系形式。
如果没有A,则必然没有B;如果有A而未必有B,则A就是B的必要条件,记作B→A,读作“B含于A”。
数学上简单来说就是如果由结果B能推导出条件A,我们就说A是B的必要条件。
二、充分条件和必要条件的关系1、充分条件:如果条件A是结论B的充分条件:A与其他条件是并连关系,即A、C、D….中任意一个存在都可以使得B成立(就像是个人英雄主义)。
2、必要条件:条件A是结论B的必要条件:A与其他条件是串联关系,即条件A必须存在,且条件C、D….也全部存在才可能导致B结论。
(团结的力量)。
3、充分必要条件,又称充要条件,是数学中的一种关系形式,即如果能从命题p推出命题q,而且也能从命题q推出命题p,则称p是q的充分必要条件,且q也是p的充分必要条件。
三、充分条件和必要条件哪个范围大一些充分条件大,充分条件:有A这个条件一定能推出B这个结果,但是有B这个结果不一定能推出A这个唯一条件。
必要条件:有B这个结果一定能推出A这个条件,但是A这个条件不能推出B 这个结果。
充要条件”包含了“充分条件”和“必要条件”,范围比两者都要更大,而“充分条件”和“必要条件”则包含了小部分条件不是完整的。
相互推理不同:“充分条件”不能推理出“必要条件”和“充要条件”;“必要条件”不能推理出“充分条件”和“充要条件”;“充要条件”可以推理出一定满足“充分条件”和“必要条件”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pq
解:命题(1)(2)是真命题,命题(3)是假命题, 所以命题(1)(2)中的p是q的充分条件
例2 下列“若p,则q”形式的命题中,哪些命题中的 q是p的必要条件? (1) 若x=y,则x2=y2。
pq
(2) 若两个三角形全等,则这两个三角形的面积相等。 (3) 若a>b,则ac>bc。
解:命题(1)(2)是真命题,命题(3)是假命题, 所以命题(1)(2)中的q是p的必要条件。
例5、请用“充分不必要”、“必要不充分”、 “充要”、“既不充分也不必要”填空: 必要不充分 (1)“(x-2)(x-3)=0”是“x=2”的______条件 . 充要 (2)“同位角相等”是“两直线平行”的___条 件. 充分不必要 (3)“x=3”是“x2=9”的______条件. 既不充分也不必要 (4)“四边形的对角线相等”是“四边形为平行四 边形”的__________条件.
4)若A=B ,则甲是乙的
A B
充分且必要条件
A =B
3 )
4 )
小结
充分必要条件的判断方法: 定义法、集合法、等价法(逆否命题)
例4.在下列电路图中,闭合开关A是灯泡B亮的什么条件: 如图(1)所示,开关A闭合是灯泡B亮的充分不必要 条件; 如图(2)所示,开关A闭合是灯泡B亮的必要不充分 条件; 如图(3)所示,开关A闭合是灯泡B亮的 充要 条件; 如图(4)所示,开关A闭合是灯泡B亮的 条件;
2)若A B且B A,则A是B的 3)若A B 且B A,则A是B的 4)A B且B A,则A是B的
从集合与集合的关系看充分条件、必要条件 1)若AB且BA,则甲是乙的 2)若A B且B A,则甲是乙的
1) B A 2) A
充分非必要条件 必要非充分条件
B
3)若A B且B A,则甲是乙的 既不充分也不必要条件
判别步骤:
① 认清条件和结论。 ② 考察p
判别技巧:
q和q
p的真假。
① 可先简化命题。 ② 否定一个命题只要举出一个反例即可。
③ 将命题转化为等价的逆否命题后再判断。
从逻辑推理关系看充分条件、必要条件: 1) A B且 B A,则A是B的
充分非必要条件 必要非充分条件 既不充分也不必要条件 充分且必要条件
小结:
1、 定义1:如果已知p 定义2:如果已知q 定义3:如果既有p q,则说p是q的充分条件。 p,则说p是q的必要条件。 q,又有q p,就记作 p q,
则说p是q的充要条件。
2、充分条件、必要条件的四种形式: 1) A B且 B A,则A是B的
充分非必要条件
2)若A B且B A,则A是B的 3)若A B 且B A,则A是B的 4)A B且B A,则A是B的
注:1.“ p 是 q 的充要条件”也说成“ p 与 q 等价” 、 “ p 当且仅当 q ”等.
2. 充要条件是非常好的一种条件 ,因为可以相互等 价转化.
例3、下列各题中,那些p是q的充要条件?
(1)p: b=0, q: 函数f(x)=ax2+bx+c是偶函数;
(2)P: x>0,y>0, (3)P: a>b,
如果“若 p , 则 q ”是真命题 ,且它的逆命题也 是真命题即 p q 且 p q , 我们就说, p 是 q 的充分必要条件 ,简称充要条件 .记为 p q .
显然 , 如果 p 是 q 的充要条件 , 那么 q 也是 p 的 充要条件 .概括地说 ,如果 p q ,那么 p 与 q 互为充要 条件.
则说p是q的充要条件。 2、从集合角度理解:
口诀:对于具体的数集,以条件集合为基础,小充分,大必要
①p ②q ③p q,相当于P Q ,即 p,相当于Q P ,即 P Q 或 P、Q Q P 或 P、Q P、Q 有它就行 缺它不行 同一事物
q,相当于P=Q ,即
p是q的各种条件的可能情况
1、充分且必要条件 2、充分非必要条件 3、必要非充分条件 4、既不充分也不必要条件
既不充分也不必要
练习、判断下列命题的真假: (1)x=2是x2 –4x+4=0的必要条件; (2)圆心到直线的距离等于半径是这条 直线为圆的切线的必要条件; (3)sin =sin 是 = 的充分条件; (4)ab = 0是a = 0的充分条件。
答:命题(1)为真命题:
命题(2)为真命题; 命题(3)为假命题; 命题(4)为真命题。
q: xy>0;
p q
.
q: a+c>b+c.
解:在(1)(3)中,p q, 所以(1)(3)中的p是q 的充要条件。在(2)中,q p,所以(2)中p的 不是q的充要条件。
归纳
1、 定义1:如果已知p q,则说p是q的充分条件。 定义2:如果已知q p,则说p是q的必要条件。 定义3:如果既有p q,又有q p,就记作 p q,
一、复习引入
3、例 :判断下列命题的真假。 (1)若x>a2+b2,则x>2ab 。 (2)若ab=0,则a=0。
解(1)因为若x>a2+b2 ,而a2+b2 得到 x>2ab 。
2ab,所以可以
真命题
(2)因为若ab=0 则应该有a=0 或b=0。 所以并不能得到a一定为0。
假命题
二、新课
高中选修《数学2-1》(新人教A版)
1.2.1充分条件与 必要条件
一、复习引入
1、命题:可以判断真假的陈述句,可写成:若p则q。
2、四种命题及相互关系: 原命题 若 p则 q
互 否 互逆
逆命题 若 q则 p
互 否
互为
逆否
否命题 若 p则 q
互逆
逆否命题 若 q则 p
注:两个命题互为逆否命题,它们有相同的真假性。
3、只要有p是q的充分条件就必有q是p的必要条件,但 不是p为q的必要条件。
简化定义:
如果已知p
q,则说p是q的充分
条件, q是p的必要条件。 例1,下列“若p,则q”形式的命题中,哪些命题 中的p是q的充分条件? (1)若x=1,则x2 –4x+3=0; (2)若f(x)=x,则f(x)为增函数; (3)若x 为无理数,则x2 为无理数
如何正确理解p是q的充分条件与必要条件
1、充分条件的特征是:当p成立时,必有q成 立,但当p不成立时,未必有q不成立。因此 要使q成立,只需要条件p即可,故称p是q成 立的充分条件。
pq
2、必要条件的特征是:当q不成立时,必有p不 成立,但当q成立时,未必有p 成立。因此要使 p成立,必须具备条件q,故称q是p成立的必要 条件。
必要非充分条件 既不充分也不必要条件 充分且必要条件
四、作业
课本P12习题1.2-A组2T、3T 课本P13习题1.2-B组1T
1、如果命题“若p则q”为真,则记作p q(或q p)。
2、如果命题“若p则q”为假,则记作p
ቤተ መጻሕፍቲ ባይዱ
q。
练习1 用符号
与
填空。
(1) x2=y2 x=y; (2)内错角相等 (3)整数a能被6整除 (4)ac=bc a=b
两直线平行; a的个位数字为偶数;
一般地, “若 p , 则 q ”为真命题 , 是指由 p 通过推理可以得出 q .
思考: “若 p , 则 q ” 的逆命题成立, p 是 q 的什么条件?
p 是 q 的必要条件.
就是说: 由 p q 可知 p 是 q 的必要条件, q 是 p 的充分条件.
通俗地说,就是“ p 被 q 推出”判断为 “ p 是 q 必要条件”.
思考: “若 p , 则 q ” 的原命题与逆命题均是真命题, p 是 q 的什么条件? q 是 p 的什么条件? p q 且 p q
并且说 p 是 q 的充分条件,说 q 是 p 的必要条件.
这时,我们就说,由 p 可推出 q ,记作 p q .
注 : 这里 充分 、必要 的意义 和日常 生活 中的 “充分”、 “必要”的意义是相近的. ⑴ p 是 q 的充分条件── 有 p 就可推出 q ; ⑵ q 是 p 的必要条件── 没有 q 就推不出 p .