多边形及其内角和知识点
多边形内角和知识点
多边形内角和知识点1. 多边形内角和那可是很关键的知识呢呀!就说三角形吧,内角和就是180 度,这就像一个稳定的小团体,三个角紧紧相依。
比如我们常见的直角三角形,一个直角 90 度,那另外两个锐角加起来不就是 90 度嘛!2. 哎呀呀,四边形的内角和是 360 度哟!你想想看,把四边形分成两个三角形,不就清楚啦。
就好比一间房子有四个角,它们的和就是 360 度啊。
像长方形,四个角都是直角,加起来就是 360 度呢!3. 多边形内角和会随着边数增加而变化呢,神奇吧!五边形的内角和是540 度呀。
这就好像是一个更复杂的团队,角度的组合更多啦。
比如五边形的地砖,那里面的角度组合起来就是 540 度哦!4. 你知道吗,多边形内角和的规律超有趣呀!六边形内角和是 720 度呢。
这就如同一个更大型的图案,蕴含着更多的秘密。
像蜂巢的形状,不就是六边形嘛,它们的内角和就有 720 度呀!5. 多边形内角和还能让我们解决很多问题呢!七边形内角和是 900 度哟。
就像是一个难解的谜题,等我们去探索。
好比一个奇特的七边形徽章,它的内角和就是 900 度呢。
6. 哇塞,八边形内角和有 1080 度呢!是不是很惊讶呀!这就像一个超级复杂的结构,需要我们仔细研究。
比如一个八边形的花坛,里面的角度加起来就是 1080 度呀。
7. 多边形内角和真的好神奇呀,九边形内角和是 1260 度呢!就像一个神秘的图案等待我们解开。
像一些特别的九边形装饰,内角和就是1260 度。
8. 多边形内角和可是数学里的宝贝呀!十边形内角和是 1440 度哦!这就如同一个宏伟的计划,充满了未知与挑战。
像一个华丽的十边形图案,那其中的内角和真是让人惊叹!总之,多边形内角和是非常有意思且重要的知识呀!。
多边形及内角和知识点汇总
多边形及内角和知识点汇总多边形是由三个或三个以上的直线段围成的闭合曲线,是几何学中的基本图形之一、多边形的内角和是指多边形的所有内角之和。
1.多边形的定义和分类:-多边形是由三个或三个以上的直线段组成的,首尾相接形成的封闭曲线。
-多边形可根据边的个数进行分类,例如三角形、四边形、五边形等。
2.多边形的性质:-多边形的内角数目等于其边数减2乘以180度,即n个边的多边形的内角和为(2n-4)×180度。
-多边形的外角数目等于360度,即n个边的多边形的外角和为360度。
-多边形的对角线数目等于n(n-3)/2,其中n为多边形的边数。
3.三角形的内角和:-三角形的内角和恒为180度。
-三角形的任意两个内角之和大于第三个内角。
4.四边形的内角和:-任意四边形的内角和恒为360度。
-正方形、矩形、菱形等特殊四边形的内角和有特定的规律。
5.多边形内角和的求解方法:-当已知多边形的边数n时,可以使用公式(2n-4)×180度来计算内角和。
-当已知多边形的一个内角大小时,可以使用内角和等于180度来计算其他内角的大小。
6.多边形内角和的应用:-在计算几何题目中,内角和是解题的基础,可以帮助求解多边形的各个内角的大小。
-内角和也可以用于判断给定的角度是否构成多边形。
7.多边形内角和的证明:-多边形的内角和可以通过数学归纳法进行证明。
-可以将多边形划分为若干个三角形,然后利用三角形的内角和等于180度的性质进行推导证明。
总结:多边形及内角和是几何学中的基础概念和知识点。
通过理解多边形的定义和分类,了解多边形的性质和特点,我们可以计算多边形的内角和,并应用于解决几何问题。
多边形内角和的证明可以通过数学归纳法进行推导。
掌握这些知识点可以帮助我们更好地理解和应用多边形的性质。
多边形及其内角及讲义学生用
多边形内角和第一部分知识点回首定义:由三条或三条以上的线段首位按序连结所构成的关闭图形叫做多边形。
凸多边形分类1:凹多边形正多边形:各边相等,各角也相等的多边形叫做正多边形。
分类2:多边形非正多边形:多边形的定理1、 n 边形的内角和等于180 °( n-2)。
2 、随意凸形多边形的外角和等于360 °。
3、 n 边形的对角线条数等于1/2·n( n-3)只用一种正多边形:3、4、 6/ 。
镶嵌拼成360 度的角只用一种非正多边形(全等):3、 4。
知识点一:多边形及有关观点1、多边形的定义:在同一平面内。
多边形的分类:不叫三边形2、镶嵌:用一些不重叠摆放的多边形把平面的一部分完整覆盖,往常把这种问题叫做用多边形覆盖平面 (或平面镶嵌 )。
这里的多边形能够形状同样,也能够形状不同样。
实现镶嵌的条件:拼接在同一点的各个角的和恰巧等于360°;相邻的多边形有公共边。
3、常有的一些正多边形的镶嵌问题:(1)用正多边形实现镶嵌的条件:边长相等;极点公用;在一个极点处各正多边形的内角之和为360°。
(2)只用一种正多边形镶嵌地面:只有正三角形、正方形、正六边形的地砖能够用。
注意:随意四边形的内角和都等于 360°。
因此用一批形状、大小完整同样但不规则的四边形地砖也能够铺成无缝隙的地板,用随意同样的三角形也能够铺满地面。
(3)用两种或两种以上的正多边形镶嵌地面用两种或两种以上面长相等的正多边形组合成平面图形,重点是有关正多边形“交接处各角之和可否拼成一个周角”的问题。
比如,用正三角形与正方形、正三角形与正六边形、正三角形与正十二边形、正四边形与正八边形都能够作平面镶嵌。
第二部分经典习题种类一:多边形内角和及外角和定理应用1.一个多边形的内角和等于它的外角和的 5 倍,它是几边形【变式【变式1】若一个多边形的内角和与外角和的总度数为2】一个多边形除了一个内角外,其他各内角和为1800 °,求这个多边形的边数.2750°,求这个多边形的内角和是多少.【变式3】个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数。
多边形内角和总结知识点总结
多边形内角和总结知识点总结多边形内角和知识点总结在数学的广阔天地中,多边形内角和是一个重要且基础的概念。
它不仅在几何学习中频繁出现,还在解决实际问题中发挥着关键作用。
接下来,让我们一起深入探索多边形内角和的相关知识。
一、多边形的定义多边形是由在同一平面且不在同一直线上的多条线段首尾顺次连接且不相交所组成的封闭图形。
常见的多边形有三角形、四边形、五边形、六边形等等。
二、多边形内角和的公式多边形内角和的公式为:$(n 2)×180°$,其中$n$为多边形的边数。
这个公式的推导其实很有趣。
我们以三角形为例,三角形的内角和是 180°。
当我们增加一条边,变成四边形时,可以通过连接其中一个顶点和不相邻的顶点,将四边形分成两个三角形,所以四边形的内角和就是 2×180°= 360°。
以此类推,每增加一条边,就多了一个三角形,内角和也就增加 180°。
三、不同边数多边形内角和的计算1、三角形三角形是最基本的多边形,它的内角和是 180°。
2、四边形四边形可以分为矩形、平行四边形、梯形等。
根据内角和公式,$(4 2)×180°= 360°$。
3、五边形五边形的内角和为$(5 2)×180°= 540°$。
4、六边形六边形的内角和是$(6 2)×180°= 720°$。
四、多边形内角和的性质1、多边形的内角和随着边数的增加而增加。
2、任意多边形的外角和都为360°。
这是一个很重要且固定的数值,与多边形的边数无关。
3、多边形的内角中,最多只能有三个锐角。
因为如果锐角过多,内角和就会小于$(n 2)×180°$。
五、应用实例1、已知一个多边形的内角和为 1080°,求它的边数。
我们可以设这个多边形的边数为$n$,则根据内角和公式可得:$(n 2)×180°= 1080°$$n 2 = 6$$n = 8$所以这个多边形是八边形。
专题04 多边形及其多边形内角和(知识点串讲)(解析版)
专题04 多边形及其多边形内角和知识网络重难突破知识点一多边形相关知识多边形概念:在平面中,由一些线段首尾顺次相接组成的图形叫做多边形 内角:多边形中相邻两边组成的角叫做它的内角。
外角:多边形的边与它邻边的延长线组成的角叫做外角。
对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
【对角线条数】一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为2)3(nn(重点)凸多边形概念:画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。
正多边形概念:各角相等,各边相等的多边形叫做正多边形。
(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)典例1 (2018春富顺县期末)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】试题解析:当截线为经过四边形对角2个顶点的直线时,剩余图形为三角形;当截线为经过四边形一组对边的直线时,剩余图形是四边形;当截线为只经过四边形一组邻边的一条直线时,剩余图形是五边形;∴剩余图形不可能是六边形,故选A.典例2 (2018秋桥北区期中)过多边形的一个顶点的所有对角线把多边形分成9个三角形,这个多边形的边数是( )A.10 B.11 C.12 D.13【答案】B【详解】设多边形有n条边,n-2=9,则n=11,故答案选B.典例3 (2018春道里区期末)如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是( ) A.6 B.9 C.14 D.20【答案】B【详解】由题意可知n=6,所以对角线条数为9知识点二多边形的内角和外角(重点)n边形的内角和定理:n边形的内角和为(n−2)∙180°(重点)n边形的外角和定理:多边形的外角和等于360°,与多边形的形状和边数无关。
典例1 (2019春安庆市期中)若正多边形的一个外角是60︒,则该正多边形的内角和为A.360︒B.540︒C.720︒D.900︒【答案】C【详解】由题意,正多边形的边数为360660n︒==︒,其内角和为()2180720n-⋅︒=︒.故选C.典例2 (2019春南阳市期中)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6【答案】B【详解】根据n边形的内角和公式,得:(n-2)•180=360,解得n=4.故选B典例3 (2018春菏泽市期末)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.11【解析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:A.巩固训练一、单选题(共10小题)1.(2018春龙安区期末)一个多边形切去一个角后,形成的另一个多边形的内角和为540 ,那么原多边形的边数为()A.4 B.4或5 C.5或6 D.4或5或6【答案】D【详解】设新多边形的边数为n,则(n−2)⋅180°=540°,解得n=5,如图所示,截去一个角后,多边形的边数可以增加1、不变、减少1,所以,5−1=4,5+1=6,所以原来多边形的边数为4或5或6.故选:D.此题考查多边形内角(和)与外角(和),解题关键在于掌握运算公式.2.(2019春闻喜县期末)下列正多边形中,不能够铺满地面的是()A.正六边形B.正五边形C.正方形D.正三角形【答案】B【详解】A. 正六边形的每个内角是120°,能整除360°,能密铺;B. 正五边形每个内角是180°−360°÷5=108°,不能整除360°,不能密铺;C. 正方形的每个内角是90°,能整除360°,能密铺;D. 正三角形的每个内角是60°,能整除360°,能密铺.故选B.【名师点睛】此题考查平面镶嵌(密铺),解题关键在于掌握计算法则.3.(2018春南昌县期末)已知一个多边形的内角和等于这个多边形外角和的2倍,则这个多边形的边数是A.4 B.5 C.6 D.8【答案】C【详解】设这个多边形是n边形,根据题意,得(n-2)×180°=2×360°,解得:n=6,即这个多边形为六边形,故选C.【名师点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.4.(2019春道外区期末)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.18【答案】B【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.5.(2018春东坡区期末)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.50°B.55°C.60°D.65°【答案】C【详解】∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠EDC+∠BCD=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°-(∠PDC+∠PCD)=180°-120°=60°.故选:C.【名师点睛】主要考查了多边形的内角和以及角平分线的定义,解题时注意:多边形内角和=(n-2)•180 (n≥3且n为整数).6.(2018春金安区期中)如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米【答案】A【详解】解:∵360÷36=10,∴他需要走10次才会回到原来的起点,即一共走了10×10=100米.故选A.【名师点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360º.7.(2018春小店区期中)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【答案】D【解析】试题分析:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选D.8.(2017秋民勤县期中)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选:C.【名师点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.9.(2016春荔湾区期中)若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.70【答案】C【解析】∵一个正n边形的每个内角为144°,∴144n=180×(n﹣2),解得:n=10,这个正n边形的所有对角线的条数是:==35,故选C.10.(2018春德州市期末)一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.6【答案】B【详解】设这个正多边形的边数是n,则(n-2)•180°=900°,解得:n=7.则这个正多边形是正七边形.所以,从一点引对角线的条数是:7-3=4.故选:B【名师点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.二、填空题(共5小题)11.(2018春天水市期末)如图,五边形是正五边形,若,则__________.【答案】72【解析】分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,∵,∴∠2=∠3,∵五边形是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.[名师点睛]题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.12.(2019春海淀区期末)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是__________.【答案】180°或360°或540°【解析】分析: 剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.详解: n边形的内角和是(n-2)•180°,边数增加1,则新的多边形的内角和是(4+1-2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4-2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4-1-2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.故答案为:540°或360°或180°.【名师点睛】本题主要考查了多边形的内角和的计算公式,理解:剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,是解决本题的关键.13.(2018春金东区期末)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是_____.【答案】40°【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为:40°.【名师点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.14.(2018春延边市期中)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=_____.【答案】540°【详解】如下图,由三角形的外角性质可知∠6+∠7=∠8,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠3+∠4+∠5+∠8,又∵∠1+∠2+∠3+∠10=360°, ∠4+∠5+∠8+∠9=360°,∠10+∠9=180°,∴∠1+∠2+∠3+∠4+∠5+∠8=(∠1+∠2+∠3+∠10)+(∠4+∠5+∠8+∠9)-(∠10+∠9)=540°.【名师点睛】本题考查了三角形的外角和性质,四边形的内角,找到外角与邻补角是解题关键.15.(2019春东阳市期末)若一个多边形的内角和比外角和多900,则该多边形的边数是_____.【答案】9,【解析】分析:根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.详解:设这个多边形的边数是n,则 (n−2)⋅180°−360°=900°,解得n=9.故答案为: 9.【名师点睛】本题考查了多边形的内角和外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.三、解答题(共2小题)16.(2018春云岩区期末)一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半.(1)求这个多边形是几边形;(2)求这个多边形的每一个内角的度数.【答案】(1)这个多边形是六边形;(2)这个多边形的每一个内角的度数是120°.【详解】(1)设内角为x,则外角为,由题意得,x+=180°,解得:x=120°,=60°,这个多边形的边数为:=6,答:这个多边形是六边形,(2)设内角为x,则外角为,由题意得: x+=180°,解得:x=120°,答:这个多边形的每一个内角的度数是120度.内角和=(6﹣2)×180°=720°.【名师点睛】本题主要考查多边形内角和外角,多边形内角和以及多边形的外角和,解决本题的关键是要熟练掌握多边形内角和外角的关系以及多边形内角和.17.(2017春黄岩区期中)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【答案】(1)∠1+∠2=90°;理由见解析;(2)(2)BE∥DF;理由见解析.【解析】试题分析:(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.试题解析:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.。
(完整版)多边形及其内角和知识点
(完整版)多边形及其内角和知识点多边形是几何学中常见的一个概念,是由若干个线段组成的一个闭合图形。
根据边的数量,我们可以把多边形分为三类:三角形、四边形和多边形。
三角形是由三条线段组成的闭合图形,是最简单的多边形。
三角形有三个内角和,三个内角和等于180度。
这个定理叫做“三角形内角和定理”。
我们不难想象,如果将三角形沿任意一边割开,得到的两个部分必定可以重新组合成一个平行四边形。
接下来我们来谈谈四边形。
四边形是由四条线段组成的闭合图形,它的内角和是360度。
其中,平行四边形的对边相等,且对角线相交,交点把平行四边形分为两个全等的三角形。
这个定理叫做“平行四边形对角线定理”。
接下来是多边形。
多边形是由三条以上的线段构成的闭合图形,多边形的边和角数可能非常多,我们不方便用公式直接表达其内角和。
不过,由于任何多边形都可以分割成若干个三角形,我们可以通过三角形的内角和定理来计算多边形的内角和。
例如,对于一个五边形,我们可以通过将其分割成三角形,计算出五边形的内角和是540度。
五边形有多种类型,例如正五边形的五个内角都是108度,而五边形中的最大内角则可以达到刚刚好不到180度的夹角。
如果我们将五边形表示为ABCDE,其中C是它的最大内角(得到这个五边形非常简单,只需要将任意二十面体四面体化即可),那么我们容易得到公式:∠ACE= ∠ABC + ∠ACB同时,也有一些其他的多边形内角和求解公式,例如正六边形的内角和公式是720度,不过由于时间和空间的关系,我们不在此一一列举。
在实际问题中,多边形的内角和定理可以用于许多计算问题。
例如,在地理问题中,我们需要计算地球表面的一个多边形的面积时,首先需要计算其内角和,并应用面积公式求解。
在数学竞赛中,也常常会出现一些需要计算多边形的内角和的问题,因此,在学习数学的过程中,理解多边形的内角和定理对很多学生来说是非常重要的。
此外,多边形还有一些其他的重要性质和定理,例如多边形的对称性、多边形划分的方法、多边形面积的计算公式等等,这些知识点也非常重要,有助于我们更好地理解和应用多边形的相关知识。
多边形及其内角和
知识点1、多边形:在平面内,由一些线段首尾顺次相接的图形叫做多边形。
多边形的内角:多边形相邻两边组成的角叫做它的内角。
多边形的外角:多边形的边与它的邻边延长线组成的角叫做它的外角。
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
凸多边形:画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,那,整个多边形叫做凸多边形,否则叫凹多边形。
正多边形:各个角都相等,各条边都相等的多边形叫做正多边形。
知识点2、多边形的内角和N边形内角和等于(N-2)×108°。
知识点3、多边形外角和多边形的外角和等于360°。
知识点4、多边形中锐角、钝角的个数多边形中最多有三个内角为锐角,最少没有锐角(如长方形)。
多边形外角中最多有三个钝角,最少没有钝角。
知识点5、n边形共有对角线的条数为n(n-3)/2。
例1、下列命题:①多边形的外角和小于内角和②三角形的内角和等于外角和③多边形的外角和大于内角和④多边形的外角和是指这个多边形所有外角之和⑤四边形的内角和等于它的外角和。
正确的有()A、0个B、1个C、2个 D3个例2、已知一个多边形各个内角都相等,都等于150°,求这个多边形的边数。
例3、若一个多边形的内角和与外角和之比等于9:2,求此多边形的边数。
例4、某多边形的内角和与外角和的总度数为2160°,求此多边形的边数。
例5、一个同学在进行多边形内角和计算时,求得的内角和为1125°,当发现错了以后,重新检查,发现少算了一个内角,则这个内角是多少度?他求的是几边形的内角和?练一练:1、若N边形的内角和为2160°,求N得值。
2、多边形的内角和与某一个外角的度数总和为1350°。
<1>求多边形的边数。
<2>此多边形必有一个内角为多少度?3、若一个正多边形的一个外角是40°,则这个正多边形的边数是()。
多边形内角和总结知识点总结
多边形内角和总结知识点总结多边形内角和知识点总结在几何学中,多边形内角和是一个重要的概念,它对于我们理解和解决许多与图形相关的问题都具有关键作用。
接下来,让我们深入探讨一下多边形内角和的相关知识。
首先,我们需要明确什么是多边形。
多边形是由在同一平面且不在同一直线上的多条线段首尾顺次连接且不相交所组成的图形。
常见的多边形有三角形、四边形、五边形、六边形等等。
三角形是多边形中最简单的形式。
对于任意一个三角形,其内角和总是 180 度。
这是一个基本且恒定的数值,无论三角形的形状和大小如何变化,其内角和都保持不变。
我们可以通过多种方法来证明三角形内角和为 180 度。
比如,我们可以通过作平行线的方法,将三角形的三个角转移到一条直线上,从而直观地看出它们构成了一个平角,即 180 度。
当我们将多边形的边数增加到四边形时,情况就变得稍微复杂一些。
四边形可以分为平行四边形、矩形、菱形、正方形等等。
对于任意一个四边形,我们可以将其分成两个三角形。
因为一个三角形的内角和是 180 度,所以两个三角形的内角和就是 360 度。
因此,四边形的内角和为 360 度。
以此类推,五边形可以分成三个三角形,其内角和就是 180×3 =540 度;六边形可以分成四个三角形,内角和就是 180×4 = 720 度。
那么,我们能不能找到一个通用的公式来计算任意多边形的内角和呢?答案是肯定的。
经过数学家们的研究和推导,得出了多边形内角和的公式:(n 2)×180 度,其中 n 表示多边形的边数。
这个公式的推导过程其实是基于我们前面将多边形分割成三角形的思路。
一个 n 边形,从一个顶点出发,可以引出(n 3) 条对角线,将多边形分割成(n 2) 个三角形。
因为每个三角形内角和为 180 度,所以 n 边形的内角和就是(n 2)×180 度。
了解了多边形内角和的公式,我们就可以解决很多与多边形相关的问题。
多边形及其内角和知识点汇编
多边形知识要点梳理边形的内角和等于180°(n-2)。
360°。
边形的对角线条数等于1/2·n(n-3)3、4、6/。
拼成360度的角:3、4。
知识点一:多边形及有关概念1、多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.(1)多边形的一些要素:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
(2)在定义中应注意:①一些线段(多边形的边数是大于等于3的正整数);②首尾顺次相连,二者缺一不可;③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形.2、多边形的分类:(1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸多边形.凸多边形凹多边形图1(2)多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。
如正三角形、正方形、正五边形等。
正三角形正方形正五边形正六边形正十二边形要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD为四边形ABCD的一条对角线。
要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
(2)n边形共有条对角线。
多边形及内角和知识点汇总
知识要点梳理180°(n-2)。
360°.n边形得对角线条数等于1/2·n(n-3)3、4、6/。
拼成360度得角):3、4。
、多边形得定义:在平面内,由一些线段首尾顺次相接组成得图形叫做多边边:组成多边形得各条线段叫做多边形得边。
顶点:每相邻两条边得公共端点叫做多边形得顶点。
内角:多边形相邻两边组成得角叫多边形得内角,一个n边形有n个内角。
ﻫ外角:多边形得边与它得邻边得延长线组成得角叫做多边形得外角。
(2)在定义中应注意:ﻫ①一些线段(多边形得边数就是大于等于3得正整数);②首尾顺次相连,二者缺一不可;ﻫ③理解时要特别注意“在同一平面内”这个条件,其目得就是为了排除几个点不共面得情况,即空间ﻫ多边形、ﻫ2、多边形得分类:ﻫ(1)多边形可分为凸多边形与凹多边形,画出多边形得任何一条边所在得直线,如果整个多边形都在这ﻫ条直线得同一侧,则此多边形为凸多边形,反之为凹多边形(见图1)、本章所讲得多边形都就是指凸多边形、ﻫ凸多边形凹多边形ﻫ图1(2)多边形通常还以边数命名,多边形有n条边就叫做n边形。
三角形、四边形都属于多边形,其中三角形就是边数最少得多边形.ﻫ知识点二:正多边形ﻫ各个角都相等、各个边都相等得多边形叫做正多边形.如正三角形、正方形、正五边形等.ﻫ正三角形正方形正五边形正六边形正十二边形要点诠释:ﻫ各角相等、各边也相等就是正多边形得必备条件,二者缺一不可、如四条边都相等得四边形不一定就是正方形,四个角都相等得四边形也不一定就是正方形,只有满足四边都相等且四个角也都相等得四边形才就是正方形知识点三:多边形得对角线多边形得对角线:连接多边形不相邻得两个顶点得线段,叫做多边形得对角线、如图2,BD为四边形ABCD得一条对角线。
ﻫ要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
ﻫ(2)n边形共有条对角线。
ﻫ证明:过一个顶点有n—3条对角线(n≥3得正整数),又∵共有n个顶点,∴共有n(n—3)条对角线,但过两个不相邻顶点得对角线重复了一次,∴凸n边形,共有条对角线。
知识点多边形的内角和与外角性质
知识点多边形的内角和与外角性质知识点:多边形的内角和与外角性质多边形是几何学中的基本概念之一,它由若干条直线段首尾相连而成,形成一个封闭的图形。
根据边的个数,多边形可以分为三角形、四边形、五边形等等。
在多边形中,我们关注的一个重要性质就是多边形的内角和与外角性质。
一、多边形的内角和性质多边形的内角和是指多边形中所有内角的度数之和。
对于n边形,其内角和可以通过以下公式计算:内角和 = (n-2) × 180°以三角形为例,三角形是由三条边组成的多边形。
根据内角和性质,三角形的内角和恒为180°。
即三角形的三个内角的度数之和始终等于180°。
对于四边形,四边形是由四条边组成的多边形。
根据内角和性质,四边形的内角和恒为360°。
即四边形的四个内角的度数之和始终等于360°。
同样地,我们可以推广到多边形的情况。
对于任意n边形,其内角和恒为(n-2) × 180°。
多边形的每个内角的度数之和始终等于(n-2) ×180°。
二、多边形的外角性质多边形的外角是指由多边形的一条边和其相邻的一条边所组成的角。
相邻边是指连接同一个顶点的两条边。
对于n边形,每个外角的度数可以通过以下公式计算:每个外角的度数 = 360° / n以正多边形为例,正多边形是指边长和内角都相等的多边形。
对于正n边形,每个内角的度数为(180° × (n-2)) / n,每个外角的度数为360°/ n。
可以发现,正多边形的每个内角和每个外角的度数之和均为180°。
三、内角和与外角的关系多边形的内角和与外角有着特殊的关系。
对于任意n边形,其内角和与外角和之间存在以下关系:内角和 + 外角和 = 360°这个关系可以通过推导得到。
由于多边形的每个外角的度数为360°/ n,n个外角的度数之和为360°。
多边形及其内角和ppt课件
对于 n 边形,结论仍然成立!
结论: 多边形的外角和等于
360°.
探索与思考
探索多边形的外角和
多边形边 数
多边形的 内角和
4、正方形的内角和是 3600 度,长方形的内 角和是 3600 度。
学习目标
1.掌握多边形的定义及有关概念,能区分凹凸多边形. 2.掌握正多边形的概念.(重点) 3.会求多边形的对角线的条数.(难点)
情境引入
导入新课
在实际生活当中,除了三角形,还有许多由线段围成的图形.观察图片,你 能找到由一些线段围成的图形吗?
5.若两个多边形的比是1:2,内角和的度数比是1:3,求这 两个多边形的边数。
课堂小结
(1)本节课学习了哪些主要内容? (2)我们是怎样得到多边形内角和公式的? (3)在探究多边形内角和公式的过程中, 连接对角线起到什么作用?
∠C=108°,∠D=144° A
B
例题讲解
3、过某个多边形一个顶点的所有对角线,将这 个多边形分成5个三角形。这个多边形是几边形 ?它的内角和是多少? 解:设这个多边形的边数为n,由题意得:
n-2=5 n=7 内角和=(n-2)x180°
=(5-2)x180° =900°
答:这个多边形是七边形,它的内角和是900°
从n边形的一个顶点可以引__n_-3__对角线,把 多边形分成__n-_2_个三角形.
n边形的内角和等于_(n_-2_) ×_1_8_00
(完整版)多边形及其内角和知识点
知识要点梳理边形的内角和等于180°(n-2)。
360°。
边形的对角线条数等于1/2·n (n-3)3、4、6/。
拼成360度的角3、4。
知识点一:多边形及有关概念 1、 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. (1)多边形的一些要素: 边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点. 内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角。
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
(2)在定义中应注意: ①一些线段(多边形的边数是大于等于3的正整数); ②首尾顺次相连,二者缺一不可; ③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间 多边形. 2、多边形的分类: (1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这 条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸 多边形. 凸多边形 凹多边形 图1 (2)多边形通常还以边数命名,多边形有n 条边就叫做n 边形.三角形、四边形都属于多边形,其中三角 形是边数最少的多边形.知识点二:正多边形 各个角都相等、各个边都相等的多边形叫做正多边形。
如正三角形、正方形、正五边形等。
正三角形 正方形 正五边形 正六边形 正十二边形要点诠释: 各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD 为四边形ABCD 的一条对角线。
要点诠释: (1)从n 边形一个顶点可以引(n -3)条对角线,将多边形分成(n -2)个三角形。
多边形内角和和外角和的公式
多边形内角和和外角和的公式多边形是指由三个或更多条线段组成的封闭图形。
在数学中,多边形的内角和和外角和是一个重要的概念。
本文将介绍多边形的内角和和外角和的公式,并解释其含义和应用。
1. 多边形的内角和公式多边形的内角和指的是多边形内部所有角的和。
对于任意n边形(其中n大于等于3),其内角和可以通过以下公式计算得出:内角和 = (n - 2) × 180度这个公式的推导可以通过将多边形分割成n-2个三角形来进行。
每个三角形的内角和为180度,因此n边形的内角和就是(n-2)个三角形的内角和之和。
举例来说,对于一个三角形(3边形),其内角和为180度。
对于一个四边形(四边形),其内角和为360度。
对于一个五边形(五边形),其内角和为540度。
依此类推,随着边数的增加,多边形的内角和也会增加。
2. 多边形的外角和公式多边形的外角和指的是多边形外部所有角的和。
对于任意n边形,其外角和可以通过以下公式计算得出:外角和 = 360度这个公式的推导可以通过将多边形的每个外角和其相邻的内角相加得到。
根据三角形的性质可知,三角形的外角和为360度。
因此,不论多边形的边数是多少,其外角和始终为360度。
举例来说,对于一个三角形,其外角和为360度。
对于一个四边形,其外角和为360度。
对于一个五边形,其外角和为360度。
可见,不论多边形的边数是多少,其外角和始终为360度。
3. 内角和和外角和的关系内角和和外角和有一个重要的关系:它们的和始终等于多边形的边数乘以180度。
这可以通过以下公式表示:内角和 + 外角和= n × 180度这个公式的推导可以通过将多边形的每个内角和其对应的外角相加得到。
根据三角形的性质可知,内角和和外角和的和为180度。
因此,多边形的每个内角和其对应的外角的和为180度。
由于多边形共有n个内角和n个外角,所以它们的和为n × 180度。
举例来说,对于一个三角形,其内角和为180度,外角和为360度,满足内角和 + 外角和= 3 × 180度。
多边形和内角和知识点及练习
多边形和内角和知识点及练习知识点一、多边形及其相关概念(1)多边形的概念:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.(2)多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.(3)正多边形的概念:各个角都相等,各条边都相等的多边形叫做正多边形.(4)多边形的内角:多边形相邻两边组成的角叫做它的内角.(5)多边形的外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. (6)正多边形的定义:边、角都相等的多边形才是正多边形知识点二、多边形的分类多边形可分为凸多边形和凹多边形,辨别凸多边形可用两种方法:①画多边形任何一边所在的直线整个多边形都在此直线的同一侧;②每个内角的度数均小于180°,通常所说的多边形指凸多边形.知识点三、多边形相关公式巩固练习1.下面图形是多边形的是()A B C D2.下列是正多边形的是()A.三条边都相等的三角形 B.四个角都是直角的四边形C.四条边都相等的四边形 D.六条边都相等的六边形3. 在八边形内任取一点,把这个点与八边形各顶点分别连接可得到几个三角形()A.5 个 B.6 个 C.7 个 D.8 个4. 从十二边形的一个顶点画出所有的对角线,对角线的条数为()A.12 B.11 C.10 D.95. 从多边形的一个顶点出发,可以引出 2003 条对角线,则这个多边形的边数为()A.2001 B.2005 C.2004 D.20066.把一个多边形纸片沿一条直线截下一个三角形后,变成一个 7 边形,则原多边形纸片的边数不可能是()A.6 B.7 C.8 D.97.若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为()A.14 或 15 或 16 B.15 或 16C.14 或 16 D.15 或 16 或 178. 下列说法:①正多边形的各边都相等;②各边都相等的多边形是正方形;③各角都相等的多边形一定是正多边形;④正多边形的各个外角都相等.其中结论正确的个数有()A.1个B.2个C.3个D.4个9.已知一个多边形的内角和是 1080°,则这个多边形是()A.六边形 B.七边形 C.八边形 D.九边形10.下列关于多边形的说法不正确的是()A.内角和与外角和相等的多边形是四边形B.七边形的内角和为 900°C.多边形的内角中最多有四个直角D.十边形共有 40 条对角线11. 正多边形的一个内角是144°,则该正多边形的边数为()A.7B.8C.9D.1012. 一个正n边形的每个外角为72°,则这个正n边形的所有对角线的条数为()A.3B.4C.5D.613. 一个正多边形的内角和是720°,则这个多边形的每个外角等于()A.60°B. 72°C.90°D.108°14.一个多边形剪去一个角后(剪痕不过任何一个其它顶点),内角和为 1800°,则原多边形的边数为()A.11 B.12 C.13 D.11 或 1215.如图,五边形 ABCDE 中,AB∥CD,∠1.∠2.∠3 分别是∠BAE.∠AED.∠EDC 的外角,若∠1=32°,∠3=60°,则∠2 等于()A.92° B.88° C.98° D.无法确定二、填空题16.若凸 n 边形的每个外角都是 30°,则从一个顶点出发引的对角线条数是_________17. 若凸 n 边形的每个外角都是 60°,则n边形对角线条数是_________18. 如果多边形的每个内角都比它相邻的外角的 4 倍多30°,则这个多边形的内角和____19. 一个多边形的对角线的条数等于它的边数的4倍,则这个多边形的边数是_________20. 八边形的对角线条数为____________,内角和为__________21. 正十四边形的内角和为___________,外角和为___________三、解决问题22.分别求出图(1),(2),(3)中x的值23.一个多边形的内角和与外角和相加是 1620°,求这个多边形的边数.24.一个多边形,除一个内角外,其余各内角之和等于 2020°,求这个内角的度数及多边形的边数.25.已知两个多边形内角和相加的结果为1440°,这两个多边形的比为 1:3(1)求两个多边形的边数分别是多少;(2)求两个多边形的对角线的和是多少拓展拔高题1.如图所示,从 O 点出发,沿直线前进 10 米后左转 36°,再沿直线前进 10 米,又向左转 36°,…,照这样走下去,他第一次回到出发地 A 点时,一共走的路程是()A.100 米 B.120 米C.130 米 D.140 米2.求∠A+∠B+∠C+∠D+∠E+∠F+∠G 的值.3.解答下列问题(1)如图①,求证:∠A+∠B=∠C+∠D.(2)如图②,求证:∠A+∠B+∠C=∠BDC.(3)如图③,则:∠A+∠B+∠C+∠D+∠E=_________ (4)如图④,则:∠A+∠B+∠C+∠D+∠E+∠F= _________ (5)如图⑤,则:∠A+∠B+∠C+∠D+∠E= _________ (6)如图⑥,则:∠A+∠B+∠C+∠D+∠E+∠F= _________。
11.3.2多边形的内角和 课件(共21张PPT)
知识点二:多边形的外角和
如图,在五边形的每个顶点处各 取一个外角,这些外角的和叫做五边 形的外角和.
1A
B
5
2
E
C3
4 D
问题1:任意一个外角和它相邻的内角有什么关系?
互补
问题2:五个外角加上它们分别相邻的五个内角和是多少?
5×180°=900°
问题3:这五个平角和与五边形的内角和、外角和有什么关系?
方法1:如图,连接AC,
A
D
所以四边形被分为两个三角形,
所以四边形ABCD内角和为
180°×2=360°.
B C
方法2:如图,在CD边上任取一点E,连接AE,DE, 所以该四边形被分成三个三角形, 所以四边形ABCD的内角和为 180°×3-(∠AEB+∠AED+∠CED)=180°×3-180°=360°.
1
2
3
计算规律
1
1 ×180°
2
2 ×180°
3
3 ×180°
4
4 ×180°
…
… …
… … …
n边形
n
n-3
n-2 (n-2) ·180°
总结归纳 一般地,从n边形的一个顶点出发,可以作_(_n__-___3_)_
条对角线,它们将n边形分为_(__n__-___2_)_个三角形,n边形 的内角和等于_(_n__-___2_)_×_1__8_0_°.
解:设这个多边形的内角为7x °,外角为2x°, 根据题意得 7x+2x=180,
解得x=20. 即每个内角是140 °,每个外角是40 °.
360° ÷40 °=9. 答:这个多边形是九边形.
课堂小结
多边形及其内角和知识点
多边形及其内角和知识点多边形是由线段组成的闭合图形,它拥有多个边和多个顶点。
多边形的内角和指的是多边形内部所有角的和。
首先,我们需要了解多边形的基本概念和性质。
1.多边形的定义:多边形是由一系列线段组成的闭合图形。
每条线段称为多边形的一条边,相邻两个边的交点称为多边形的一个顶点。
多边形至少有三条边和三个顶点。
2.多边形的性质:-每个顶点至少有两个邻接的边;-每个边至少有一个邻接的顶点;-每条边的两个端点都是相邻的顶点。
接下来,我们来探讨多边形的内角和的计算方法。
假设一个n边形的内角和为S。
从一个顶点出发,画一条射线,与相邻的两个边相交。
这样,一个n边形就被分成了n个三角形。
由三角形的内角和的性质可知,每个三角形的内角和为180°。
因此,n个三角形的内角和为n×180°。
但是我们需要注意的是,从同一个顶点出发的n个射线会有重叠的部分,即每个内角都重叠了两次。
因此,我们需要减去这些重叠的部分。
由于每个内角重叠了两次,重叠的部分的度数等于(n-2)×180°。
因此,最终的计算公式为:S=n×180°-(n-2)×180°简化后可得到:S=(n-2)×180°通过这个公式,我们可以方便地计算多边形的内角和。
举例来说,如果一个五边形的内角和是多少呢?根据公式S=(5-2)×180°=3×180°=540°所以,五边形的内角和为540°。
通过上面的例子,我们可以看出多边形的内角和的计算方法。
除了计算多边形内角和的方法,我们还可以根据多边形的性质来推导一些结论。
比如:1.任意n边形的内角和等于(n-2)×180°,这个结论适用于所有的多边形,无论是凸多边形还是凹多边形。
2.任意n边形的外角和等于360°。
外角是顶点的补角,即一个内角与相邻的外角之和等于180°。
多边形及其内角和知识点总结
多边形及其内角和知识点总结一、知识点1、多边形的定义:由在同一平面内,不在同一条直线上的若干条线段首尾顺次相接组成的图形叫做多边形。
2、多边形的分类:根据边数的不同,可以将多边形分为三角形、四边形、五边形、六边形等等。
3、多边形的内角:多边形的每个顶点与其相邻的两个顶点相连所形成的角称为该多边形的内角。
4、多边形的内角和公式:n边形的内角和为(n-2)×180°,其中n为多边形的边数。
5、多边形的外角:多边形的每个顶点与其相邻的两个顶点之间的夹角称为该多边形的外角。
6、多边形的外角和公式:多边形的外角和为360°,与多边形的边数无关。
7、勾股定理:在直角三角形中,勾股定理指出两个直角边的平方和等于斜边的平方。
二、重难点精析1、多边形的定义和分类是基础知识,需要理解并掌握不同类型多边形的特点。
2、多边形的内角和公式是重点,需要牢记并能够熟练运用该公式进行计算。
同时,也需要理解该公式的推导过程。
3、多边形的外角和公式是重点,需要理解并掌握该公式的应用。
同时,也需要掌握通过多边形的内角和公式和外角和公式之间的联系,进行计算和推导。
4、勾股定理是重点,需要理解并掌握其应用,特别是在解决与直角三角形相关的问题时。
5、对于一些复杂的多边形问题,需要掌握分解和组合的思想,将复杂的多边形分解为简单的三角形或四边形,从而解决问题。
6、在解决与角度制相关的问题时,需要注意角度制的计算方法和单位转换。
7、在解决与对称性相关的问题时,需要结合多边形的定义和性质进行思考和分析。
总之,对于八年级数学中的多边形及其内角和知识点,学生需要牢固掌握基础知识,理解公式的推导过程,熟练运用公式进行计算和推导,同时还需要灵活运用各种解题技巧和方法,才能够真正掌握该部分知识点的核心内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多边形及其内角和一、知识点总结定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。
凸多边形分类1:凹多边形正多边形:各边相等,各角也相等的多边形叫做正多边形。
分类2:多边形非正多边形:1、n边形的内角和等于180°(n-2)。
多边形的定理 2、任意凸形多边形的外角和等于360°。
3、边形的对角线条数等于1/2·n(n-3)只用一种正多边形:3、4、6/。
镶嵌拼成360度的角只用一种非正多边形(全等):3、4。
知识点一:多边形及有关概念1、多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.(1)多边形的一些要素:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
(2)在定义中应注意:①一些线段(多边形的边数是大于等于3的正整数);②首尾顺次相连,二者缺一不可;③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形.2、多边形的分类:(1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸多边形.凸多边形凹多边形图1(2)多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。
如正三角形、正方形、正五边形等。
正三角形正方形正五边形正六边形正十二边形要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD为四边形ABCD 的一条对角线。
要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
(2)n边形共有条对角线。
证明:过一个顶点有n-3条对角线(n≥3的正整数),又∵共有n个顶点,∴共有n(n-3)条对角线,但过两个不相邻顶点的对角线重复了一次,∴凸n边形,共有条对角线。
知识点四:多边形的内角和公式1.公式:边形的内角和为.2.公式的证明:证法1:在边形内任取一点,并把这点与各个顶点连接起来,共构成个三角形,这个三角形的内角和为,再减去一个周角,即得到边形的内角和为.证法2:从边形一个顶点作对角线,可以作条对角线,并且边形被分成个三角形,这个三角形内角和恰好是边形的内角和,等于.证法3:在边形的一边上取一点与各个顶点相连,得个三角形,边形内角和等于这个三角形的内角和减去所取的一点处的一个平角的度数,即.要点诠释:(1)注意:以上各推导方法体现出将多边形问题转化为三角形问题来解决的基础思想。
(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数。
知识点五:多边形的外角和公式1.公式:多边形的外角和等于360°.2.多边形外角和公式的证明:多边形的每个内角和与它相邻的外角都是邻补角,所以边形的内角和加外角和为,外角和等于.注意:n边形的外角和恒等于360°,它与边数的多少无关。
要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°。
②多边形的外角和等于360°,与边数的多少无关。
知识点六:镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)。
这里的多边形可以形状相同,也可以形状不相同。
2、实现镶嵌的条件:拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边。
3、常见的一些正多边形的镶嵌问题:(1)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°。
(2)只用一种正多边形镶嵌地面对于给定的某种正多边形,怎样判断它能否拼成一个平面图形,且不留一点空隙解决问题的关键在于正多边形的内角特点。
当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形。
事实上,正n边形的每一个内角为,要求k个正n边形各有一个内角拼于一点,恰好覆盖地面,这样360°=,由此导出k==2+,而k是正整数,所以n只能取3,4,6。
因而,用相同的正多边形地砖铺地面,只有正三角形、正方形、正六边形的地砖可以用。
注意:任意四边形的内角和都等于360°。
所以用一批形状、大小完全相同但不规则的四边形地砖也可以铺成无空隙的地板,用任意相同的三角形也可以铺满地面。
(3)用两种或两种以上的正多边形镶嵌地面用两种或两种以上边长相等的正多边形组合成平面图形,关键是相关正多边形“交接处各角之和能否拼成一个周角”的问题。
例如,用正三角形与正方形、正三角形与正六边形、正三角形与正十二边形、正四边形与正八边形都可以作平面镶嵌,见下图:又如,用一个正三角形、两个正方形、一个正六边形结合在一起恰好能够铺满地面,因为它们的交接处各角之和恰好为一个周角360°。
规律方法指导1.内角和与边数成正比:边数增加,内角和增加;边数减少,内角和减少. 每增加一条边,内角的和就增加180°(反过来也成立),且多边形的内角和必须是180°的整数倍.2.多边形外角和恒等于360°,与边数的多少无关.3.多边形最多有三个内角为锐角,最少没有锐角(如矩形);多边形的外角中最多有三个钝角,最少没有钝角.4.在运用多边形的内角和公式与外角的性质求值时,常与方程思想相结合,运用方程思想是解决本节问题的常用方法.5.在解决多边形的内角和问题时,通常转化为与三角形相关的角来解决. 三角形是一种基本图形,是研究复杂图形的基础,同时注意转化思想在数学中的应用.二、经典例题透析类型一:多边形内角和及外角和定理应用1.一个多边形的内角和等于它的外角和的5倍,它是几边形?总结升华:本题是多边形的内角和定理和外角和定理的综合运用. 只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.举一反三:【变式1】若一个多边形的内角和与外角和的总度数为1800°,求这个多边形的边数.【变式2】一个多边形除了一个内角外,其余各内角和为2750°,求这个多边形的内角和是少. 【变式3】一个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数。
类型二:多边形对角线公式的运用【变式1】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7 C.8 D.9【变式2】一个十二边形有几条对角线。
总结升华:对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢。
类型三:可转化为多边形内角和问题【变式1】如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________.【变式2】如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数。
类型四:实际应用题4.如图,一辆小汽车从P市出发,先到B市,再到C市,再到A市,最后返回P市,这辆小汽车共转了多少度角?举一反三:【变式1】如图所示,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,当他第一次回到出发点时,一共走了__________m.【变式2】小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗若能,当他走回点A时共走了多少米若不能,写出理由。
【变式3】如图所示是某厂生产的一块模板,已知该模板的边AB∥CF,CD∥AE. 按规定AB、CD的延长线相交成80°角,因交点不在模板上,不便测量. 这时师傅告诉徒弟只需测一个角,便知道AB、CD的延长线的夹角是否合乎规定,你知道需测哪一个角吗说明理由.类型五:镶嵌问题5.分别画出用相同边长的下列正多边形组合铺满地面的设计图。
(1)正方形和正八边形;(2)正三角形和正十二边形;(3)正三角形、正方形和正六边形。
思路点拨:只要在拼接处各多边形的内角的和能构成一个周角,那么这些多边形就能作平面镶嵌。
解析:正三角形、正方形、正六边形、正八边形、正十二边形的每一个内角分别是60°、90°、120°、135°、150°。
(1)因为90+2×135=360,所以一个顶点处有1个正方形、2个正八边形,如图(1)所示。
(2)因为60+2×150=360,所以一个顶点处有1个正三角形、2个正十二边形,如图(2)所示。
(3)因为60+2×90+120=360,所以一个顶点处有1个正三角形、1个正六边形和2个正方形,如图(3)所示。
总结升华:用两种以上边长相等的正多边形组合成平面图形,实质上是相关正多边形“交接处各角之和能否拼成一个周角”的问题。
举一反三:【变式1】分别用形状、大小完全相同的①三角形木板;②四边形木板;③正五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是( ) A、①B、②C、③D、④【变式2】用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数应是( )A、4B、5C、6D、8三、综合练习一、选择题:1.一个多边形的内角和是720°,则这个多边形是( )A.四边形B.五边形C.六边形D.七边形2.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( )3.若正n边形的一个外角为60°,则n的值是( )4.下列角度中,不能成为多边形内角和的是( ) ° ° ° °5.若一个多边形的内角和与外角和之和是1800°,则此多边形是( )A.八边形B.十边形C.十二边形D.十四边形6.下列命题:①多边形的外角和小于内角和,②三角形的内角和等于外角和,③多边形的外角和是指这个多边形所有外角之和,④四边形的内角和等于它的外角和.其中正确的有( )个个个个7.一个多边形的边数增加2条,则它的内角和增加 ( )°° C. 360°°8.过多边形的一个顶点可以作7条对角线,则此多边形的内角和是外角和的( )倍 倍 倍 倍9.在四边形ABCD 中,A ∠、B ∠、C ∠、D ∠的度数之比为2∶3∶4∶3,则D ∠的外角等于( ) ° ° ° ° 10.在各个内角都相等的多边形中,一个内角是与它相邻的一个外角的3倍,那么这个多边形的边数是( ) A. 4 B. 6 C. 8 D. 1011.如图,AB ∥CD ∥EF,则下列各式中正确的是 ( )A.∠1+∠2+∠3=180°B.∠1+∠2-∠3=90°C.∠1-∠2+∠3=90°D.∠2+∠3-∠1=180°12.在下列条件中:①C B A ∠=∠+∠②321::C :B :A =∠∠∠③B A ∠-︒=∠90 ④C B A ∠=∠=∠中,能确定ABC ∆是直角三角形的条件有( ) A.①② B.③④ C.①③④ D.①②③ 二、填空题1.五边形的内角和等于______度.2.若一凸多边形的内角和等于它的外角和,则它的边数是______.3.正十五边形的每一个内角等于_______度.4.十边形的对角线有_____条.5.内角和是1620°的多边形的边数是________.6.一个多边形的每一个外角都等于36°,那么这个多边形的内角和是 °.7.一个多边形的内角和是外角和的4倍,则这个多边形是 边形. 8.已知等腰梯形ABCD 中,AD ∥BC,若∠B=31∠D ,则∠A 的外角是 °. 9题图 9.如图在△ABC 中,D 是∠ACB 与∠ABC 的角平分线的交点,BD 的延长线交AC 于E , 且∠EDC=50°,则∠A 的度数为 .10.如图,在六边形ABCDEF 中,AF ∥CD ,AB ∥DE ,且∠A =120°,∠B=80°,则∠C 的度数是 ,∠D 的度数是 . 10题图 三、计算题1.一个多边形的每一个外角都等于45°,求这个多边形的内角和.2.一个多边形的每一个内角都等于144°,求它的边数.3.如果四边形有一个角是直角,另外三个角的度数之比为2∶3∶4,那么这三个内角的度数分别是多少4.一个正多边形的一个内角比相邻外角大36°,求这个正多边形的边数.5. 已知多边形的内角和等于1440°,求(1)这个多边形的边数,(2)过一个顶点有几条对角线,(3)总对角线条数.6.一个多边形的外角和是内角和的72,求这个多边形的边数;7.已知一多边形的每一个内角都相等,它的外角等于内角的32,求这个多边形的边数;8.一多边形内角和为2340°,若每一个内角都相等,求每个外角的度数.9.已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°, 求各内角的度数.10.一个多边形,除一个内角外,其余各内角之和等于1000°,求这个内角及多边形的边数.11.如图,一个六边形的六个内角都是120°,AB=1,BC=CD=3,DE=2,求该六边形的周长.四、拓展练习1. 探究:(1)如图①21∠+∠与CB∠+∠有什么关系为什么(2)把图①ABC∆沿DE折叠,得到图②,填空:∠1+∠2_______CB∠+∠ (填“>”“<”“=”),当︒=∠40A时,CB∠+∠+21∠+∠=______.(3)如图③,是由图①的ABC∆沿DE折叠得到的,如果︒=∠30A,则-=+360yx(CB∠+∠+21∠+∠)-︒=360= ,从而猜想yx+与A∠的关系为 .图① 图② 图③2. 如图1、图2、图3中,点E、D分别是正ABC∆、正四边形ABCM、正五边形ABCMN中以C点为顶点的一边延长线和另一边反向延长线上的点,且ABE∆与BCD∆能互相重合,BD延长线交AE于点F.(1)求图1中,AFB∠的度数;(2)图2中,AFB∠的度数为_______,图3中,AFB∠的度数为_______;图1图2图3EFDBCA3.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=________,∠XBC+∠XCB=_______.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化若变化,请举例说明;若不变化,请求出∠ABX+∠A CX的大小.4.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何请写出你的结论并说明理由.。