椭圆第二定义应用及经典例题解析

合集下载

椭圆的第二定义及简单几何性质

椭圆的第二定义及简单几何性质

二、椭圆的简单几何性质一、知识要点椭圆的第二定义:当点M 与一个定点的距离和它到一条定直线的距离的比是常数)10(<<=e ace 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.e dMF =||∴准线方程:对于椭圆12222=+b y a x ,相应于焦点)0,(c F 的准线方程是c a x 2=.根据对称性,相应于焦点)0,(c F ′的准线方程是c a x 2-=.对于椭圆12222=+b x a y 的准线方程是ca y 2±=.焦半径公式:由椭圆的第二定义可得:右焦半径公式为ex a c a x e ed MF -|-|||2===右; 左焦半径公式为ex a ca x e ed MF +===|)-(-|||2左二、典型例题例1、求椭圆1162522=+y x 的右焦点和右准线;左焦点和左准线;练习:椭圆81922=+y x 的长轴长为_________,短轴长为_________,半焦距为_________,离心率为_________,焦点坐标为_________,顶点坐标为__________________,准线方程为____________.例2、已知椭圆方程13610022=+y x ,P 是其上一点,21,F F 分别为左、右焦点,若81=PF ,求P 到右准线的距离.例3、已知点M 为椭圆1162522=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求||35||1MF MA +的最小值.变式、若椭圆:3 \* MERGEFORMAT 13422=+y x 内有一点3 \* MERGEFORMAT )1-,1(P ,3 \* MERGEFORMAT F 为右焦点,椭圆上有一点3 \* MERGEFORMAT M ,使3 \* MERGEFORMATMF MP 2+值最小,求:点3 \* MERGEFORMAT M 的坐标。

椭圆的第二定义及简单几何性质

椭圆的第二定义及简单几何性质

二、椭圆的简单几何性质一、知识要点椭圆的第二定义:当点M 与一个定点的距离和它到一条定直线的距离的比是常数)10(<<=e ace 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.e dMF =||∴准线方程:对于椭圆12222=+b y a x ,相应于焦点)0,(c F 的准线方程是c a x 2=.根据对称性,相应于焦点)0,(c F ′的准线方程是c a x 2-=.对于椭圆12222=+b x a y 的准线方程是ca y 2±=.焦半径公式:由椭圆的第二定义可得:右焦半径公式为ex a c a x e ed MF -|-|||2===右; 左焦半径公式为ex a ca x e ed MF +===|)-(-|||2左二、典型例题例1、求椭圆1162522=+y x 的右焦点和右准线;左焦点和左准线;练习:椭圆81922=+y x 的长轴长为_________,短轴长为_________,半焦距为_________,离心率为_________,焦点坐标为_________,顶点坐标为__________________,准线方程为____________.例2、已知椭圆方程13610022=+y x ,P 是其上一点,21,F F 分别为左、右焦点,若81=PF ,求P 到右准线的距离.例3、已知点M 为椭圆1162522=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求||35||1MF MA +的最小值.变式、若椭圆:3 \* MERGEFORMAT 13422=+y x 内有一点3 \* MERGEFORMAT )1-,1(P ,3 \* MERGEFORMAT F 为右焦点,椭圆上有一点3 \* MERGEFORMAT M ,使3 \* MERGEFORMATMF MP 2+值最小,求:点3 \* MERGEFORMAT M 的坐标。

巧用椭圆的第二定义解题

巧用椭圆的第二定义解题

巧用椭圆的第二定义解题1 / 1巧用椭圆的第二定义解题《一般数学课程标准》 在圆锥曲线这一章较过去增添一种要求: 即学生要依据方程的形式和图形特点等进行类比猜想,培育直觉思想与合情推理能力。

增添这一要求是很科学的, 因为好多圆锥曲线问题用代数法运算特别繁琐, 而一旦抓住图形特点后,运用数形联合, 则可以简化运算,大幅度提升解题效率,下边以椭圆为例说明。

例:已知椭圆的中心在原点,其左焦点为F (-2 , 0),左准线 l 的方程为 x=- 32 ,2PQ 是过 F 且与 x 轴不垂直的弦, PQ 的中点 M 到左准线 l 的的距离为 d ,1:求椭圆的方程2:求证:PQ为定值Q /Qd3:在 l 上能否存在点 R ,使 PQR 为正三角形M /M若存在,求出点 R 的坐标,若不存在,说明原因x 2 y 2P /1:分析:易得椭圆的方程3112:证明:如图,作PP / l 与 P , QQ / l 与 Q ,则由椭圆的第二定义,易得PF e , QF e ;于是//2 6=定值PP /QQ /PQ=PF+QF=ePP + eQQ =2ed= 33:分析:本题若从代数角度下手,设直线的方程,联立的方程再用韦达定理,则运算繁琐,好多同学会丧失期心; 若能抓住图形特点, 运用椭圆的第二定义和正三角形的性质, 则可化难为易。

假定存在点 R ,使 PQR 为正三角形,且椭圆固定,则 PQ 确立,于是 PQ 的垂直均分线 RM 也确立,因此 RM 的斜率确立,能够考虑先求 RM 的斜率,Q /MM / 的大小,R 即求倾斜角-Q /Q而 COS Q / MM /= MM/M /,由第 2 问的结论可得:MQ / MP /PMM /1COS Q /MM/ = = 2 e/ M3Q 2PQ = 1 2, Q /MM /PQ 3e2为 45○,依据对称性, RM 的斜率应为 1 ,从而可得 PQ 的方程及中点 M 的坐标,再由点斜式求得 RM 的方程,再联立左准线l 的方程 x=-32 ,得交点 R 的坐标(-32, 2)。

椭圆的第二定义(含解析)

椭圆的第二定义(含解析)

课题:椭圆的第二定义【1】【学习目标】1、掌握椭圆的第二定义;2、能应用椭圆的第二定义解决相关问题;一、椭圆中的基本元素(1).基本量: a 、b 、c 、e几何意义:a-半长轴、b-半短轴、c-半焦距,e-离心率;相互关系: ac e b a c =-=,222 (2).基本点:顶点、焦点、中心(3).基本线: 对称轴二.椭圆的第二定义的推导 问题:点()M x y ,与定点(0)F c ,的距离和它到定直线2:a l x c =的距离的比是常数(0)c a c a>>,求点M 的轨迹. 解:设d 是点M 到直线l 的距离,根据题意,所求轨迹就是集合MF c P M d a ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭|c a =. 将上式两边平方,并化简得22222222()()a c x a y a a c -+=-.设222a cb -=,就可化成22221(0)x y a b a b +=>>. 这是椭圆的标准方程,所以点M 的轨迹是长轴长为2a ,短轴长为2b 的椭圆.由此可知,当点M 与一个定点的距离和它到一条定直线的距离的比是常数(01)c e e a=<<时,这个点的轨迹是椭圆,一般称为椭圆的第二定义,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 对于椭圆22221(0)x y a b a b +=>>,相应于焦点(0)F c ,的准线方程是2a x c=.根据椭圆的对称性,相应于焦点(0)F c '-,的准线方程是2a x c=-,所以椭圆有两条准线. 可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线的距离的比,这就是离心率的几何意义.【注意】:椭圆的几何性质中,有些是依赖坐标系的性质(如:点的坐标\线的方程),有些是不依赖坐标系、图形本身固有的性质(如:距离\角),要注意区别。

中心到准线的距离:d=c a 2焦点到准线的距离:d=c a 2-c 两准线间的距离:d=2ca 2三.第二定义的应用1、求下列椭圆的焦点坐标和准线(1)13610022=+y x (2)8222=+y x2、椭圆13610022=+y x 上一点P 到右准线的距离为10,则:点P 到左焦点的距离为( ) A.14 B.12 C.10 D.83、若椭圆的两个焦点把两准线间的距离三等分,则:离心率e=______;4、离心率e=22,且两准线间的距离为4的椭圆的标准方程为________________________;5、若椭圆的短轴长为2,长轴是短轴的2倍,则:中心到准线的距离为____________;6、求中心在原点,一条准线方程是x=3,离心率为35 的椭圆标准方程.7、椭圆方程为16410022=+y x ,其上有一点P ,它到右焦点的距离为14,求P 点到左准线的距离.8、已知椭圆22143x y +=内有一点(11)P F -,,是椭圆的右焦点,在椭圆上有一点M ,使2MP MF +的值最小,求M 的坐标.(如图)分析:若设()M x y ,,求出2MP MF +,再计算最小值是很繁的.由于MF 是椭圆上一点到焦点的距离,由此联想到椭圆的第二定义,它与到相应准线的距离有关,故有如下解法.解:设M 在右准线l 上的射影为1M .由椭圆方程可知12312a b c e ====,,,.根据椭圆的第二定义,有112MFMM =,即112ME MM =.12MP MF MP MM +=+∴. 显然,当1P M M ,,三点共线时,1MP MM +有最小值.过P 作准线的垂线1y =-.由方程组2234121x y y ⎧+=⎨=-⎩,,解得1M ⎫-⎪⎪⎝⎭.即M的坐标为1⎫-⎪⎪⎝⎭.。

2.2.2椭圆的第二定义

2.2.2椭圆的第二定义

4.已 知 椭 圆 1的 一 条 准 线 方 程 是 y ,则 m4 9 2
3.已知椭圆中心在原点, 长轴在 x轴上,一条准线方程是 x 3, 2 2 x y 5 离 心 率 为 , 则 该 椭 圆 的 方 程 为 5 20 1 。 3 9 x2 y2 9
m的值是( A )
将上式两边平方 , 并化简得
若点M ( x, y )与定点F (c, 0)的距离和它到定直线 探究:
a2 c l : x 的距离的比是常数 (a c 0),求点M的轨迹。 c a
解:设d是点M直线l的距离,根据题意,所 求轨迹就是集合
MF c P M , 由此可得: d a
A.1 B.2 C .3 D.7
应用: 1、求下列椭圆的准线方程:
x y + =1 ② 16 81
2 2
2 2
①x2+4y2=4
x y + = 1 2.已知P是椭圆 100 36 上的点,P
到右准线的距离为 8 ,则P到左焦点 的距离为_________.
x y 3、已知P点在椭圆 25 + 16 =1 上,且P到
问:对于椭圆C1 : 9 x y 36与椭圆C :
2 2
C2 。 更接近于圆的是
x2 2 16
y2 12
2,
x y 1 (4)P为椭圆 上任意一点,F1、F2是焦点, 4 3
2
2
则∠F1PF2的最大值是
.
5 5 设 P(x,y), 则 | PF1 | a ex 3 x, | PF2 | a ex 3 x 3 3 5 2 x 1 | PF1 |2 | PF2 |2 | F1 F2 |2 由余弦定理,有 cos F1 PF2 9 5 2 2 | PF1 | | PF2 | 2(9 x ) 9 5 2 x 1 F1PF2为钝角1 cos F1 PF2 0,即 1 9 0 2 5x 2(9 ) 9 35 35 解之得 x . 法二 5 5

高二数学椭圆的第二定义(2019年)

高二数学椭圆的第二定义(2019年)
例4、点M(x,y)与定点F (c,0)的距离和它到定直线l:x=a2/c 的距离的比 是常数(a>c>0),求点M 的轨迹。
解:设 d是M到直线l 的距离,根据题意,
所求轨迹就是集合
I’
y
l
P={M|
MF c

c a
}
M
F’ o F
x
由此得
x c2 y 2 c
a2 x
a
c
将上式两边平方,并化简,得
a2 c2 x2 a2 y2 a2 a2 c2
设 a2-c2=b2,就可化成
x2 a2

y2 b2
1(a
b
0)
这是椭圆的标准方程,所以点M的轨迹 是长轴、短轴分别为2 a,2b 的椭圆
I’ y
l
F’ o F
x
由例4可知,当点M与一个定点的距离的和它到一条定直
六月 戊子晦 群臣连与成朋 问良愿降意 博望 为云求为天子 郡中愈治 子夫为平阳主讴者 《强弩将军王围射法》五卷 三代之盛 萤惑初从毕口大星东东北往 吾视沛公大度 乃求见沛公 诸生 庶民大和会 张旗志 然大王能饶人以爵邑 掌图籍秘书 庚戌 太中大夫公孙敖为骑将军 及后母终 谓何曰 天下匈匈 温即虫 西乡 今子幸得遭明盛之世 烧铁钳灼 皇帝不许 三年冬十二月 国除 刘向以为周十二月 有谗乱臣在侧 汉王使侯公说羽 师率减什二 钩盾五丞两尉 《诗》 《书》所述 属昭仪为私婢 天下当为父后者爵一级 至拜 设挟书之法 规者 求周至 临城自刭以却齐而存魏 到国 呼韩邪单 于且喜且惧 国除 宜阳人也 咎至於此 上书言延年罪名十事 弓矢斯张 将军柴武斩韩王信於参合 巨鹿城中食尽 则有诏还 尚安所施 歌数阕 汉将一日过成皋者四十馀人 五人同日封 大夫 博士 御史

127椭圆的第二定义应用

127椭圆的第二定义应用

一、圆锥曲线第二定义的应用例1:椭圆192522=+y x 上有一点P ,如果它到左准线的距离为5/2,那么P 到右焦点的距离是 。

例2:F 2是椭圆x 2/a 2+y 2/b 2=1(a >b>0)的右焦点,P(x 0,y 0)是椭圆上任一点,则|PF 2|的值为:A. ex 0-aB. a-ex 0C. ex 0-aD.e-ax 0例3:过抛物线y 2=4x 的焦点的一条直线交抛物线于A 、B 两点,若线段的中点的横坐标为3,则|AB|= 。

例4 已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为例6:已知双曲线x 2/25-y 2/144=1的左右焦点分别为F 1和F 2,能否在双曲线的左支上找到一点P ,使|PF 1|是P 到左准线的距离d 与|PF 2|的等比中项?若能,求出P 的坐标,若不能,说明理由。

[分析]这是一道存在性探索问题,解题思路一般是:先假设存在,然后在合理的计算、推理或求解过程中做出准确的判断。

圆锥曲线第二定义起到了条件联络转化的作用。

[解]根据题意:|PF 1|2=d |PF 2|,即|PF 2|/|PF 1|=|PF 1|/d= e ∴|PF 2|= e|PF 1|∵|PF 2|-|PF 1|=2a=10 c=13 e=13/5∴13|PF 1|/5-|PF 1|=10 |PF 1|=25/4 |PF 2|=65/4 ∴|PF 1|+|PF 2|=45/2 又|F 1F 2|=26 从而|PF 1|+|PF 2|<|F 1F 2|矛盾 ∴符合条件的点P 不存在。

例7 设椭圆2222by a x +=1(a>b>0)的右焦点为1F ,右准线为l 1,若过F 1且垂直于x 轴的弦的长度等于F 1到准线l 1的距离,求椭圆的离心率。

解:如图,AB 是过F 1垂直于x 轴的弦,|C F |1为F 1到准线l 1的距离,AD ⊥l 1于D ,则|AD|=|F 1C|,由题意知|AB |21|AF |1=。

椭圆的第二定义及有关最值

椭圆的第二定义及有关最值
1
变2:P在椭圆上运动, P在何点时, F1 PF2的最大,求其余弦值。 变3:P在何点时, S PF1F 2最大,并为多少。
变1:当F1 PF2 600 时,S PF F 2
x2 y2 例3: 1上一点P, 当F1 PF 2为直角时,则 x, y的值 :9 4 变1:当F1 PF 2为钝角时,则 x, y的范围 变2:当F1 PF 2为锐角时,则 x, y的范围
2
2
4
O
A
又KOP=KAB b b ac a 因此b=c 即 a2 c2 c
c e a
2 2
作业
1、椭圆的一焦点与长轴较近端点的距离为 焦点与短轴两端点连线互相垂直,求该椭圆的标准 方程。 2、已知椭圆在x轴和y轴正半轴上两顶点分别为A, B,原点到直线AB的距离等于 ,又该椭圆 的离心率为 ,求该椭圆的标准方程。
温故知新
1、若椭圆的焦距长等于它的短轴长,则其离心率 2 为 。
2
2、若椭圆的两个焦点及一个短轴端点构成正三角 形,则其离心率为 1/2 。 3、若椭圆的 的两个焦点把长轴分成三等分,则其 1/3 离心率为 。 4、已知椭圆 m= 4或-5/4 . 的离心率为1/2,则
5:与椭圆4x2+9y2=36有相同的焦距,且离心率为 解:由已知得所求椭圆2c=2 5
椭圆的第二定义 及有关最值
PF1 e; 第二定义: d
思考:2 所求的轨迹方程的离心率,焦点各是什么?并 a 计算 c 等于多少?
其中:d为F1对应准线的方程;e 为离心率
当点M到定点距离与不过该定 点的定直线的距离比是 常数 这点M的轨迹是椭圆。 其中定点是椭圆一个焦 点,定直线称为准线常数e为离心率。 ,

高二数学椭圆的第二定义(201911)

高二数学椭圆的第二定义(201911)

自是突厥畏惧屏迹 朝玉帛而万国欢 时突厥启民可汗请朝 御史见而不言 方为敕书 帝不受 会杨玄感围逼东都 朝野咸共疾怨 尚书左丞 至今开皇六年 潜驱之涧谷间 因而大溃 光少骁捷 宴故老 家世寒微 久不得济 "又劝上除六官 数漏泄省中语 又将兵击宜阳贼 获迥所署刺史李仲康及上仪同 房劲 所往皆捷 义臣哭之甚恸 所在影从 右仆射苏威与文振有隙 文德来 奫父双欲率子弟击之 治粟内史 即令其弟难敌召募乡曲 仲文回击 三十余国 赐奴婢六十人 陈主嘉之 轻其众少 谥曰刚 击其不意 奏诏巡抚岭南 澄波澜于江海 赐爵宗城县公 如鹰鹯之逐鸟雀 殆未之有 "矩始留情世事 上 禀成规 虑染恶徒 安若长逝 及为丞相 导旬始以前驱 为士卒先 传首京师 帝大悦 不许 汉王谅反于并州 转鹰扬郎将 义臣率马步二万 九年 年未弱冠 口陈降款 还除卫尉少卿 高智慧等作乱江南 《隋书》 既济宽而济猛 右光禄大夫 东至萨水 恐为国患 矩请速进 明识之士 又击破之 恒置左右 高祖具知之 "子孟才嗣 转为安州刺史 始轩轩而鹤举 "帝曰 从驾还东都 立碑颂德 以时喻遣 名教顿尽 炀帝嗣位 吏不敢过门 凯而陪位 祥乃简精锐于下流潜渡 顗率开府元绍贵 其父崇时在常山 仕至果毅郎将 可谓备矣 颎复进谏 尉迥之反也 诸贼甚惮之 仲文以羸师挑战 河 属射匮可汗遣其 犹子 拜云州总管 敏创其谋 威惠兼举 "忻自此遂安 遣范富娄等入自西苑 帝省表 稍失部伍 指摄提于斗极 帝北巡狩 长杨校猎 整尤骁勇 如不以为非 月馀拔之 炀帝嗣位 果于速进 伐陈之役 时义臣尚幼 赐爵黄县公 周为木 茂固止不得 妻以公主 直趣河阳 为之不流 以围浑主 斩首千馀级 后 除枞阳太守 并是数极 世充不知 授大都督 起于丙子 寻为南海太守 迥守将刘子宽弃城遁走 追西园之爱客 及沈光者 三军莫不涕咽 江南刘元进作乱 左右婢仆咸所敬惮

椭圆第二定义及其应用

椭圆第二定义及其应用

椭圆第二定义及其应用在新课标课本(人教A 版)《椭圆》中,有这样一道例题“例6 点),(y x M 与定点)0,4(F 的距离和它到直线425:=x l 的距离的比是常数54,求点M 的轨迹”。

我们知道,点M 的轨迹是长轴、短轴长分别为10、6的椭圆,如果对这道例题进行推广,就得到椭圆的第二定义(比值定义).定义:平面内与一个定点F 的距离和一条定直线的距离之比为常数)10(<<e e 的点的轨迹是椭圆. 定点F 称为椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.椭圆第二定义的巧妙运用可以使题目化繁为简,下面举例如下: 一、求距离[例1]椭圆的方程为16410022=+y x 上有一点P ,它到椭圆的左准线的距离等于10,求点P 到它的右焦点的距离.解:∵64,10022==b a ,∴66410022=-=-=b ac ,∴a c e ==53106= 依椭圆第二定义,设P 点到椭圆左焦点的距离为d ,则5310=d ,∴6=d ∴点P 到椭圆右焦点距离为2×10-6=14评述:椭圆第二定义的巧妙运用可以使题目化繁为简,熟练掌握椭圆第二定义灵活地将它应用到解题当中,是我们在学习中的重要训练对象.二、求最值[例2]已知定点A (-2,3),点F 为椭圆1121622=+y x 的右焦点,点M 在该椭圆上移动时,求|MA |+2|FM |的最小值,并求出此时点M 的坐标.分析:设M (x ,y ),则有⎪⎩⎪⎨⎧=++-+-++=+11216)2(2)3()2(2222222y x y x y x FM MA 由①可将y 用x 表示出来,将其代入②,则式子|MA |+2|FM |可转化成一个关于x 的一元函数,再求其最小值.以上解法,思路可行,计算量却很繁琐,不妨换一种思考方法.解:∵a =4,b =23,c =2∴e =21 右焦点F (2,0),右准线方程l :x =8设点M 到右准线l 的距离为d ,则21==e dFM 得2|MF |=d ∴|MA |+2|MF |=|MA |+d由于点A 在椭圆内,过A 作A K ⊥l ,K 为垂足,易证|A K|为|MA |+d 的最小值,其值为8+2=10∵M 点的纵坐标为3,得横坐标为23① ②∴|MA |+|2MF |的最小值为10,点M 的坐标为(23,3)评述:(1)以上解法就是椭圆第二定义的巧用,将问题转化成点到直线的距离去求,就可以使题目变得简单易解了.(2)一般地,如果遇到一个定点到定直线问题应联想到椭圆第二定义. 三、推导公式[例3]设P (x 0,y 0)是离心率为e 的椭圆,方程为12222=+by a x 上的一点,P 到左焦点F 1和右焦点F 2的距离分别为1r 和2r .求证:0201,ex a r ex a r -=+=证明:由椭圆第二定义,得e ca x PF =+201∴|PF 1|=e ca x 20+=e )(20c a x +,∴|PF 1|=0ex a +又e cax PF =-202,∴|PF 2|=e ca x 20-=e )(20c a x -, ∴|PF 2|=0ex a -,综上所述0201,ex a r ex a r -=+= 注意:|PF 1|=0ex a +,|PF 2|=0ex a -,称为(00,y x )点椭圆的焦半径,焦半径公式在解题中的作用应引起我们广大师生的注意.[例4]已知椭圆1922=+y x ,过左焦点F 作倾斜角为30°的直线交椭圆于A 、B 两点,求弦AB 的长. 解法一:∵a =3,b =1,c =22,∴F (-22,0)∴直线方程为y =)22(31+x 与1922=+y x 联立消元,得4x 2+122x +15=0 ①设A (x 1,y 1),B (x 2,y 2)则依韦达定理,得x 1+x 2=-32,x 1x 2=415∴|AB |=21221214)(32311x x x x x x -+=-+,∴|AB |=2解法二:由于所求线段AB 是椭圆的“焦点弦”,故也可用“焦半径”公式计算:|AB |=|AF |+|BF |=2a +e (x 1+x 2)=2评述:一般地,遇到点到椭圆焦点的距离问题,可采用“焦半径”公式处理.。

椭圆的第二定义(1)PPT课件

椭圆的第二定义(1)PPT课件

a
c
将上式两边平方,并化简,得
a 2 c 2 x 2 a 2 y 2 a 2 a 2 c 2
设 a2-c2=b2,就可化成
x2 a2
by22
1(ab0)
202这0年是10椭月圆2日的标准方程,所以点M的轨迹 是长轴、短轴分别为2 a,2b 的椭圆 2
y
I’
l
F’ o F
x
由例4可知,当点M与一个定点的距离的和它到一条定直线的距离
的比是常数 e c0e1 时,这个点的轨迹 就是椭圆,定点是
a
椭圆的焦点,定直线叫做椭圆的准线,常数e是椭圆的离心率。
对于椭圆
x2 a2
y2 b2
1 ,相应于焦点F(c,0)的准线方程是 x
a2 c
根据椭圆的对称性,相应于焦点F‘(-c.0) 准线方程是 x a 2 c
所以椭圆有两条准线。
练习P102 6
6B
7
1、若椭圆 则
x2 3
y2 2
1
上一点到左准线的距离是到右准线的距离的2倍, A
8 这点的坐对比:P94 C 3
B(1, 2 )
3
C (1, 2 )
3
D(1, 2 )
3
在椭圆上 两倍。
x2 y2 1 25 9
2020年10月2日
求一点P,使它到左焦点的距离是它到右焦点距离的
(c) m<1/2 且 m 0
(B) m>1/2 且 m 1 (D) m>0 且 m 1
3、椭圆的两焦点把两准线间的距离三等分,则这个椭圆的离心率是( C )
A 3
2020年10月2日
B 3
2
C 3
3
D 3

「8.2椭圆的第二定义练习」

「8.2椭圆的第二定义练习」

§8.2椭圆的第二定义例:点()y x M ,与定点()0,c F 的距离和它到定直线ca x l 2:=的距离的比是常数ac ()0>>c a ,求点M 的轨迹。

解:如图所示:设d 是点M 到直线l 的距离, 根据题意得ac d MF =2 所以得 ()a c x c a y c x =-+-222 两边同时平方,并化简,得()()22222222c a a y a x c a -=+-,令222b c a =-,得椭圆的方程为12222=+b y a x ()0>>b a 椭圆的第二定义:当点M与一个定点的距离和它到一条定直线的距离的比是常数ac e = ()10<<e 时,点M的轨迹是椭圆。

例:如图所示:以原点为圆心,分别以()0,>>b a b a 为半径做两个圆。

点B 是大圆半径OA 与小圆的交点,过点A 作Ox AN ⊥,垂足为N,过点B 作AN BM ⊥,垂足为M,求当半径O A绕点O旋转时,点M的轨迹的参数方程。

ﻩ'分析:求点的轨迹方程问题,应先设点的坐标;找出点M 与其他条件的关系。

解:练习题:1. 写出椭圆13422=+y x 的焦点和顶点,离心率2.给出一个矩形木板,长为25,宽为16,如何能在这个矩形里得到一个最大的椭圆,简单的做法做法为:3、求适合下列条件的椭圆的标准方程。

(1)4=a ,21=e ,焦点在x 轴上;方程为 (2)4=b ,21=e ,焦点在y 轴上;方程为 (3)3=c ,53=e ,焦点在y 轴上;方程为4.求出下列哪一个椭圆更接近圆,为什么?(1) 191622=+y x 和 1162522=+y x(2) 36922=+y x 和 19622=+y x5.求椭圆的焦点坐标和准线方程: (1) 141022=+y x (2) 14222=+y x习题8.21.讨论下列椭圆的范围,并描点画出图形:16422=+y x1009522=+y x2212y x -=2.选择题:在下列方程所表示的曲线中,关于x 轴,y 轴都对称的是( )A 、y x 42= B、022=++y xy xC 、x y x 5422=-D 、4922=+y x3.求下列各椭圆的长轴和短轴的长、离心率、焦点坐标、定点坐标,并画出草图。

高二数学椭圆的第二定义

高二数学椭圆的第二定义
( B )
( A)
2 11 11
11 ( B) 2
2 (C ) 11
7 ( D) 11
2、椭圆
x2 y2 1 的准线平行于 x轴,则( C ) 2 2 m (m 1)
(A)0 〈 m<1/2 (c) m<1/2 且 m
0
(B) m>1/2 且 m (D) m>0 且 m
1 1
)
3、椭圆的两焦点把两准线间的距离三等分,则这个椭圆的离心率是( C
将上式两边平方,并化简,得
a

2
c2 x2 a2 y 2 a2 a2 c2



a2-c2=b2,就可化成
x2 y2 2 1(a b 0) 2 a b
这是椭圆的标准方程,所以点M的轨迹 是长轴、短轴分别为2 a,2b 的椭圆
I’
y
l
F’
o
F
x
由例4可知,当点M与一个定点的距离的和它到一条定直 c 0 e 1 e 线的距离 的比是常数 时,这个点的轨 a 迹 就是椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线, 常数e是椭圆的离心率。 对于椭圆
A
3
ห้องสมุดไป่ตู้
3 2
C
3 3
D
3 4
x2 y 2 1 上一点P到右焦点F的距离为3/2,则P 到左准线的 4、 (1)若椭圆 4 1 5 3 3 距离是 ______________
(2)已知椭圆 8 距离是 ______________ 5 B 1、若椭圆 这点的坐标是
lpu35hln
全由白色石砖雕砌而成,云气环绕辉煌而不失仙气,走到殿前,十米宽的白玉大门缓缓打开,突然一种沉闷压抑之感充斥着五脏六腑。随 之而来的是身体出现了奇异的狂热,突然暮雨只觉得背后被人使劲拍了一掌,整个人向前飞去。顿时整座宫殿红光四起。10桫椤树妖|终于 再次见到了亲爱的太阳,照在身上暖暖的。可是出来后却来到了一个完全不认识的地方,这里不是我进来时的那个出口,心想这样或许更 好,找到一条公路,我想只要是路就行,然后离开这里,什么山神,什么渡劫者,什么妖魔鬼怪都去一边吧,我要回到我以前的生活,正 常人的生活。这样想着看着周围的地形判断自己所在的位置。这座山的植物极其茂盛。山中弥漫着雾,罩着一片耀眼的新绿。往下走总能 下山,下了山就回到正常的世界,再也不回来。就这样一直往下走,太阳都下山了还没到山下,这山得有多高啊,一刻不停的走居然都没 到山下,别说山下,连下面的影子都看不到,全都笼罩在云雾中,走了那么久干脆休息会吧,这样想着,在歇息的时候环顾着周围的风景, 走了一天除了几只鸟和松鼠蝴蝶外,别的什么大型动物都没看到,还有这座山究竟有多高啊,正午时依然云雾弥漫,丝毫没有退去。这座 山特别陡峭,自己几乎是拉着旁边的树下来的,一不小心估计就得滚下山了吧。经过没有树的地方,地面布满了湿滑的苔藓,几乎是自己 用屁股滑下来的。按照白天行走的速度怎么也应该有二十多公里了吧,再怎么也应该到山中间了,可是越往下云雾越厚,也越发的陡峭。 往山下眺望,突然看见不远处有亮亮的什么东西在动,连忙站起身来,离得越近湿气越重快靠近的时候听到了水的声音,心中一惊,有水。 瀑布的不远处是一片树林,但是只有叶子在往外延伸却不见枝干,估计是太茂盛了吧。水的周围是一片平躺的地方,只有零星的几处灌木 丛,按理说不是越靠近水,植被越茂盛吗,这里却刚好相反。好像还是一个小型的瀑布。几步走到瀑布边眼前的一切令人难以置信,瀑布 在往上流!以为这一切都是幻觉,说不定这里的雾有毒,吸了那么长时间的雾我可能是中毒了。这里是瀑布的源头,大约有五六米宽的湖 在往上流。弯下腰,手伸进水里,冰凉刺骨,河水泛绿,涓涓细流,清澈见底。河的两旁草木青翠。绿色的苔藓布满了河边的石头,潮湿 鲜艳,手按下去就能按出水来。水的确是往上流的,水流沿着河床奔走,冲击着陡峭的岩石,水一缕一缕地倾泻向上。风吹过来,把水吹 成轻雾洒在我脸上,这真的是水。此时的我就像是在倒立着看瀑布。瀑布从下往上冲,宛若游龙在攀爬石壁。又像是一缕白烟不断地往上 冒,瀑布在往上流,真是颠覆了我的三观啊。还是在那么陡峭的山坡上,这是怎么回事,难道是我走错了,其实这里的山

2020 年椭圆的第二定义例题

2020 年椭圆的第二定义例题

椭圆第二定义应用一、随圆的第二定义(比值定义): 若),e e dMF 为常数10(,<<=则M 的轨迹是以F 为焦点,L 为准线的椭圆。

注:①其中F 为定点,F (C ,0),d 为M 到定直线L :ca x 2=的距离②F 与L 是对应的,即:左焦点对应左准线,右焦点对应右准线。

二、第二定义的应用[例1]已知11216,)3,2(22=+-y x F A 是的右焦点,点M 为椭圆的动点,求MF MA 2+的最小值,并求出此时点M 的坐标。

分析:此题主要在于MF 2的转化,由第二定义:21==e dMF ,可得出d MF =2,即为M 到L (右准线)的距离。

再求最小值可较快的求出。

解:作图,过M 作l MN ⊥于N , L 为右准线:8=x , 由第二定义,知:21==e dMF ,MN d MF ==∴2,2MN MA MF MA +=+Θ要使MF MA 2+为最小值, 即:MF MA +为“最小”, 由图知:当A 、M 、N 共线,即:l AM ⊥时,MF MA 2+为最小; 且最小值为A 到L 的距离=10,此时,可设)3,(0x M ,代入椭圆方程中, 解得:320=x 故:当)3,32(M 时,MF MA 2+为的最小值为10[评注]:(1)以上解法是椭圆第二定义的巧用,将问题转化为点到直线的距离去求,可使题目变得简单。

(2)一般地,遇到一个定点到定直线问题应想到椭圆的第二定义。

[例2]:设),(00y x P 为椭圆)0(,12222>>=+b a b y a x 的一点,离心率为e ,P 到左焦点F 1和右焦点F 2的距离分别为r 1,r 2求证:0201,ex a r ex a r -=+= 证明:作图, 由第二定义:e ca x PF =+201即:a ex ca x e c a x e PF r +=+=+⋅==0202011)(又a PF PF 221=+0012)(22ex a ex a a r a r -=+-=-=∴注:①上述结论01ex a r +=,02ex a r -=称为椭圆中的焦半径公式②a x a ex a r PF ≤≤-+==0011由 得出c a a e a r c a ea a r -=-⋅+≥+=+≤)(11且即c a PF c a +≤≤-1当)a ,(,P c a PF 01--=为时 当)(a,,P c a PF 01为时+= [练习](1)过1922=+y x 的左焦点F 作倾斜角为300的直线交椭圆于A 、B 两点,则弦AB 的长为 2 分析:是焦点弦AB Θ)x (x e a )ex (a )ex (a BF AF AB B AB A +⋅+=+++=+=∴2只需求?=+B A x x (用联立方程后,韦达定理的方法可解)(2)148642122=+y x 、F F 为的左、右焦点,P 为椭圆上的一点,若,321PF PF =则P 到左准线的距离为 24分析:由焦半径公式,设)y x p 00,(得,x )ex a ex a 8(3000=-=+即又左准线为:16-=x 则P 到左准线距离为8-(-16)=24[例3] 设椭圆的左焦点为F ,AB 过F 的弦,试分析以AB 为直径的圆与左准线L 的位置关系解,设M 为弦AB 的中点,(即为“圆心”) 作,A L AA 11于⊥,B L BB 11于⊥ ,M L MM 11于⊥由椭圆的第二定义知:)(11BB AA e BF AF AB +=+= 10<<e Θ11BB AA AB +<∴又在直角梯形11A ABB 中,1MM 是中位线1112MM BB AA =+∴即:12MM AB < 12MM AB <∴(2AB 为圆M 的半径1MM r ,为圆心M 到左准线的距离d d r <⇒故以AB 为直径的圆与左准线相离 四、小结本节,重点是掌握第二定义的应用方法,特别是焦半径公式的运用(通常在焦点弦中采用)。

椭圆第二定义在解题中的应用

椭圆第二定义在解题中的应用
右焦点,点 椭 M, 圆使 上 M| 有 | P 一 2| + M| F
值最小M , 的求 坐: 标点 。
小结:
y
本题是椭圆第二定义 应用的典型例子。
l
M
d
求最值时,运
O
F
x
用数形结合,也值
得学习
P
M
(2 3
6 ,1)
例3、设椭圆的左焦点为F,AB为过焦点F的弦,
证明:以AB为直径的圆与左准线相离。
焦半径公式
我们的目标:
1. 熟悉椭圆第二定义在解题中的应用。 2.理解和掌握焦半径公式的推导方法。
(一)朝花夕拾:
一、椭圆的第二定义: 1、定义:平面内到一个
定点F和一条定直线 l 的距
l1
d1
y M (x,y) d2 l2
F1 o F2
x
离的比为常数e(0<e<1)的点
M的轨迹,叫椭圆。 定点F叫焦点,定直线 l 叫准线。
F2
应用椭圆的第二定义,可以把焦半径表示成一个坐标的一次
形式,(即焦半径公式),从而简化了运算过程。
弦长问题
一般弦长---弦长公式: |A| B1k2|x1x2|1k 1 2|y1y2| 焦点弦长----使用定义---简化运算
作业:红对勾 P32 T11,12,13
d1
1、定义:(略)
F1
2、定义式: | MF 1 | e , | MF 2 | e
3、焦半径公式d:1
d2
第一标准位置:|MF1| = a + ex , |MF2| = a - ex
第二标准位置:|MF1| = a + ey , |MF2| = a - ey
二、椭圆第二| | 等 于 椭 圆 的 短。轴

椭圆的第二定义

椭圆的第二定义

椭圆的第二定义今天我们研究椭圆的第二定义:平面内与一个定点的距离和它到一条定直线的距离之比是常数(介于0与1之间)的动点M 的轨迹叫做椭圆。

定点为椭圆的一个焦点,定直线为椭圆的相应准线。

先看例题:例:点()y x M ,与定点()0,c F 的距离和它到定直线cax l 2:=的距离的比是常数ac ()0>>c a ,求点M 的轨迹。

解:设d 是点M 到直线l 的距离,根据题意得=M F c da整理得:()ac xcay c x =-+-222两边同时平方,并化简,得()()22222222caaya xca -=+-,令222b ca=-,得轨迹的方程为12222=+by ax ()0>>b a如图所示:归纳整理: 椭圆的第二定义:平面内与一个定点()0,c F 的距离和它到一条定直线cax l 2:=的距离之比是常数(01)c e e a=<<的动点M 的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为椭圆的准线,常数e 是椭圆的离心率。

注意: ①对于椭圆方程22221(0)x y a b ab+=>>对应于右焦点2(0)Fc ,的准线称为右准线,方程为2ax c =对应于左焦点1(0)F c -,的准线为左准线,方程为2ax c=-②e 的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。

再看一个例题,加深印象例:到定点(2,0)的距离与到定直线x =8的距离之比为22的动点的轨迹方程是解:设动点(,)M x y=2两边平方整理得0568222=-++x y x .注意:本题中椭圆中心不在原点。

如果误认为椭圆中心在原点,而直接使用相应的a ,b ,c 直接计算,就会产生错误。

所以解决问题,要从题目条件本身出发,不能自己“创造”条件。

总结:1.了解椭圆的第二定义中的各常量a ,b ,c ,ca ,2a c几何意义。

认识到离心率c a在第二定义中的关键作用。

椭圆的第二定义最新版

椭圆的第二定义最新版

,
c
所以椭圆有两条准线。
达标训练A:
1、椭圆
x2 y 2 1 上一点到准线 11 7
x


11 2
与到焦点(-2,0)的距离
的比是
(B )
( A) 2 11 11
( B ) 11 2
(C ) 2 11
(D ) 7 11
2、椭圆
x2
y2
m2 (m1)2 1 的准线平行于 x轴,则( C )
a
c
将上式两边平方,并化简,得
a 2 c 2 x 2 a 2 y 2 a 2 a 2 c 2
设 a2-c2=b2,就可化成 x2 y2 1(ab0)
a2 b2
这是椭圆的标准方程,所以点M的轨迹 是长轴、短轴分别为2 a,2b 的椭圆
I’ y
l
F’ o F
x
由例4可知,当点M与一个定点的距离的和它到一条定直
6B
7
1、若椭圆 则
x2 3

y2 2
1
上一点到左准线的距离是到右准线的距离的2倍, A
8 这点的坐标是
()
A1, 2

3
对比:P94 C 3
B(1, 2 )
3
C (1, 2 )
3
D(1, 2 )
3
在椭圆上 两倍。
x2 y2 1
25 9
求一点P,使它到左焦点的距离是它到右焦点距离的
椭圆的第二定 义
例4、点M(x,y)与定点F (c,0)的距离和它到定直线l:x=a2/c 的距离的比 是常数(a>c>0),求点M 的轨迹。
解:设 d是M到直线l 的距离,根据题意,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学-椭圆第二定义应用
一、随圆的第二定义(比值定义): 若),e e d MF
为常数10(,<<=则M 的轨迹是以F 为焦点,L 为准线的椭圆。

注:①其中F 为定点,F (C ,0),d 为M 到定直线L :c
a x 2=的距离 ②F 与L 是对应的,即:左焦点对应左准线,右焦点对应右准线。

二、第二定义的应用
[例1]已知112
16,)3,2(2
2=+-y x F A 是的右焦点,点M 为椭圆的动点,求MF MA 2+的最小值,并求出此时点M 的坐标。

分析:此题主要在于MF 2的转化,由第二定义:2
1==e d MF ,可得出d MF =2,即为M 到L (右准线)的距离。

再求最小值可较快的求出。

解:作图,过M 作l MN ⊥于N ,
L 为右准线:8=x , 由第二定义,知:
2
1==e d MF , MN d MF ==∴2
,2MN MA MF MA +=+ 要使MF MA 2+为最小值, 即:MF MA +为“最小”,
由图知:当A 、M 、N 共线,
即:l AM ⊥时,MF MA 2+为最小;
且最小值为A 到L 的距离=10, 此时,可设)3,(0x M ,代入椭圆方程中, 解得:320=x 故当)3,32(M 时, MF MA 2+为的最小值为10
[评注]:
(1)以上解法是椭圆第二定义的巧用,将问题转化为点到直线的距离去求,可使题目变得简单。

(2)一般地,遇到一个定点到定直线问题应想到椭圆的第二定义。

[例2]:设),(00y x P 为椭圆)0(,12222>>=+b a b
y a x 的一点,离心率为e ,P 到左焦点F 1和右焦点F 2的距离分别为r 1,r 2 求证:0201,ex a r ex a r -=+=
证明:作图, 由第二定义:e c a x PF =+
201
即:a ex c a x e c a x e PF r +=+=+⋅==02
02011)( 又a PF PF 221=+
0012)(22ex a ex a a r a r -=+-=-=∴
注:①上述结论01ex a r +=,02ex a r -=称为椭圆中的焦半径公式 ②a x a ex a r PF ≤≤-+==0011由 得出
c a a e a r c a ea a r -=-⋅+≥+=+≤)(11且 即c a PF c a +≤≤-1 当)a ,
(,P c a PF 01--=为时
当)(a,,P c a PF 01为时+=
[练习]
(1)过19
22
=+y x 的左焦点F 作倾斜角为300的直线交椭圆于A 、B 两点,则弦AB 的长为 2
分析:是焦点弦AB )x (x e a )ex (a )ex (a BF AF AB B A B A +⋅+=+++=+=∴2只需求?=+B A x x (用联立方程后,韦达定理的方法可解)
(2)148
64212
2=+y x 、F F 为的左、右焦点,P 为椭圆上的一点,若,321PF PF =则P 到左准线的距离为 24
分析:由焦半径公式,设)y x p 00,(得,x )ex a ex a 8(3000=-=+即
又左准线为:16-=x 则P 到左准线距离为8-(-16)=24
[例3] 设椭圆的左焦点为F ,AB 过F 的弦,试分析以AB 为直径的圆与左准线L 的位置关系
解,设M 为弦AB 的中点,(即为“圆心”)
作,A L AA 11于⊥ ,B L BB 11于⊥
,M L MM 11于⊥
由椭圆的第二定义知:
)(11BB AA e BF AF AB +=+=
10<<e 11BB AA AB +<∴
又在直角梯形11A ABB 中,1MM 是中位线
1112MM BB AA =+∴ 即:12MM AB < 12MM AB <∴
(2AB
为圆M 的半径1MM r ,为圆心M 到左准线的距离d d r <⇒
故以AB 为直径的圆与左准线相离
椭圆第二定义的应用练习
1、椭圆两准线间的距离等于焦距的4倍,则此椭圆的离心率e 等于( )
A .21 B.31 C.41 D.4
2 2、椭圆的两个焦点是)3,0(1-F 和)3,0(2F ,一条准线方程是3
16-
=y ,则此椭圆方程是( ) A .191622=+y x B.17
162
2=+y x C. 116922=+y x D.11672
2=+y x 3、由椭圆116
92
2=+y x 的四个顶点组成的菱形的高等于: 。

4、不论k 为何实数值,直线y=kx+1和焦点在x 轴的椭圆1522=+β
y x 总有公共点,则β的取值范围是: 。

5、已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.
6、已知椭圆的中心在原点,且经过点()03,
P ,b a 3=,求椭圆的标准方程.
7、已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为
35
4和
35
2,过P点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.
8、求中心在原点,对称轴为坐标轴,且经过)2
,3
(-
A和)1,3
2
(-
B两点的椭圆方程.
分析:可设其方程为1
2
2=
+ny
mx(0
>
m,0
>
n),且不必去考虑焦点在哪个坐标轴上,直接可求出方程.
椭圆第二定义的应用练习答案:
1、( A )
2、( D )
3、 524
4、51<≤β。

5、故5=m .
6、19812
2=+x y .
7、110352
2=+y x 或151032
2=+y x .
8、15152
2=+y x .。

相关文档
最新文档