六年级奥数数学【综合复习课件】

合集下载

奥数按比例分配(课件)六年级下册数学人教版

奥数按比例分配(课件)六年级下册数学人教版
2.再找出分配的比,并求各个部分占总数量的几分之几。
3.用总数量乘部分量占总数量的几分之几得到各个部分的数量。
【小结与提示】要求每个书店分多少本,必须知道与之对应的总数量。
实践与应用
化“整”为“零”,注意比例。
【例2】 某校六年级三个班的人数如表:
班级
六(1)班 六(2)班 六(3)班
人数
45
【小结与提示】行Biblioteka 全程所用的时间可以通过上坡所用时间以及行各段路所用时间之比求出。
实践与应用
【练习5】 P88 某实验小学六年级学生分三组参加植树活动。第一组和第二组的人数比为
5:4,第二组和第三组的人数比为3:2。已知第一组的人数比第二、第三组的 人数和少15人。六年级参加植树活动的共有多少人?
解题步骤: 1.先求出按比例分配的总数量。 2.再找出分配的比,并求各个部分占总数量的几分之几。 3.用总数量乘部分量占总数量的几分之几得到各个部分的数量。
【例题1】 甲数是乙数的2/3,乙数是丙数的4/5,甲、乙、丙三数的比是( ): ( ):( )。
【思路导航】 甲、乙两数的比 2:3 乙、丙两数的比 4:5
【练习3】 P86 某农场把61600平方米的耕地规划为粮出和田以及其他作物,粮田
和棉田之间的面积比是7:2,棉田与其他作物面积的比是6:1,每种作物 的面积各是多少?
【例4】 甲、乙两个玩具厂一个月内生产玩具的数量比是5:4,两厂玩具的单价的比为7:8, 已知两个厂这个月总产值为134万元,两厂的产值各是多少万元? 【分析与解答】 先求出两厂的产值比,再根据“产值=单价×数量”,求出甲、乙两厂的产值比。 甲厂产值:乙厂产值=(5×7):(4×8)=35:32
54
48

小学六年级奥数举一反三PPT课件

小学六年级奥数举一反三PPT课件

32 =3 ×25 +25.4×6.4+12.5×6.4
55
=(3.6+6.4)×25.4+12.5×8×0.8
=254+80
CHENLI
22
【练习4】
CHENLI
23
【例题5】 计算81.5×15.8+81.5×51.8+67.6×18.5 原式=81.5×(15.8+51.8)+67.6×18.5 =81.5×67.6+67.6×18.5 =(81.5+18.5)×67.6 =100×67.6 =6760
x⊙16=4x-2×16+1/2×x×16
=12x-32
12x-32 = 34
12x= 66
x=5.512x-32 = 34,求出x的值。列算式为
CHENLI
12
【练习5】 1.设a⊙b=3a-2b,已知x⊙(4⊙1)=7求x。
2 . 对 两 个 整 数 a 和 b 定 义 新 运 算 “ △” : a△b= , 求 6△4+9△8。
CHENLI
3
【例题1】 假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】
这题的新运算被定义为:a*b等于a和b两数之和加上两数之 差。这里的“*”就代表一种新运算。在定义新运算中同样规 定了要先算小括号里的。因此,在13*(5*4)中,就要先算 小括号里的(5*4)。
【思路导航】这题的新运算被定义为:@ = (a-1)×a× (a+1),据此,可以求出1/⑥-1/⑦ =1/(5×6×7)-1/ (6×7×8),这里的分母都比较大,不易直接求出结果。 根据1/⑥-1/⑦ =1/⑦×A,可得出A = (1/⑥-1/⑦)÷1/⑦ = (1/⑥-1/⑦)×⑦ = ⑦/⑥ -1。即

小学六年级奥数总复习课件

小学六年级奥数总复习课件

分析:根据题意,甲堆用去后的重量,和乙堆运来后的重量相 等, 于是 甲堆重量×(1-1/4)=乙堆重量×(1+2/5) 甲堆 重量:乙堆重量=(1÷3/4):(1÷7/5)=28:15 甲堆占总重的 28/(28+15)=28/43 乙堆占总重 15/43 然后可求得各堆的 得量
解:甲堆重量×(1-1/4)=乙堆重量×(1+2/5) 甲堆重量:乙 堆重量=(1÷3/4):(1÷7/5)=28:15 甲堆占总重的 172 × 28/(28+15)=172 × 28/43=112吨 乙堆占总重 172 × 15/43 =60吨
解:甲原有钱数×1/4=乙原有钱数×1/5 甲原有钱数:乙原有 钱数=(1÷1/4): (1÷1/5)=4:5 甲占总数的 4/(4+5)=4/9 甲带来的钱数为 108*4/9=12*4=48元
例7:甲乙两堆煤共重172吨,甲堆用去1/4,乙堆又运来2/5,后, 两堆煤的重量相等,求原来两堆煤各重多少吨?
6-4 比例的应用 转化成与“1”的比例2
例6:甲乙两人到超市购物,共带了108元,甲用了自已的3/4, 乙用了自已的4/5,这时两人剩下的钱正好相等。甲带来了多 少钱?
分析:甲用了3/4,还剩下1/4, 乙用了4/5,还剩下1/5 这时剩 下的正好相等 甲原有钱数×1/4=乙原有钱数×1/5 甲原有 钱数:乙原有钱数=(1÷1/4): (1÷1/5)=4:5 甲占总数的 4/(4+5)=4/9
解:现在甲仓存量数:现时乙仓存粮数=(1 ÷2/3): (1 ÷3/5 )=9:10 现时甲仓的重量 950 ×9/(9+10)=950×9/19=450吨 对应的分率为(1-1/4) 甲 仓的重量为 450 ÷3/4=600吨,乙堆的重量为 950-600= 350吨

小学六年级奥数经典讲义(全套36讲)

小学六年级奥数经典讲义(全套36讲)

第一讲循环小数与分数第二讲和差倍分问题第三讲行程问题第五讲质数与合数第六讲工程问题第七讲牛吃草问题第八讲包含与排除第九讲整数的拆分第十讲逻辑推理第十一讲通分与裂项第十二讲几何综合第十三讲植树问题第十五讲余数问题第十六讲直线面积第十七讲圆与扇形第十八讲数列与数表综合第十九讲数字迷综合第二十讲计数综合第二十一讲行程与工程第二十二讲复杂工程问题第二十三讲运用比例求解行程问题第二十四讲应用题综合第二十五讲数论综合2第二十六讲进位制问题第二十七讲取整问题第二十八讲数论综合3第二十九讲数论综合4第三十讲几何综合2第三十一讲图形变换第三十二讲勾股定理第三十三讲计数综合第三十四讲最值问题第三十五讲构造与论证1第三十六讲构造与论证2第一讲循环小数与分数循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.1.真分数7a化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么a 是多少?【分析与解】17=0.142857 ,27=0.285714 ,37=0.428571 ,47=0.571428 ,57=0.714285 , 67=0.857142. 因此,真分数7a化为小数后,从小数点第一位开始每连续六个数字之和都是1+4+2+8+5+7=27,又因为1992÷27=73……21,27-21=6,而6=2+4,所以7a =0..857142 ,即a =6.评注:7a的特殊性,循环节中数字不变,且顺序不变,只是开始循环的这个数有所变化.2.某学生将1.23乘以一个数a 时,把1.23 误看成1.23,使乘积比正确结果减少0.3.则正确结果该是多少?【分析与解】 由题意得:1.23 a -1.23a =0.3,即:0.003 a =0.3,所以有:3390010a =.解得a = 90,所以1.23a =1.23 × 90=123290-×90=11190× 90=111.3.计算:0.1+0.125+0.3+0.16,结果保留三位小数. 【分析与解】 方法一:0.1+0.125+0.3+0.16≈-0.1111+0.1250+0.3333+0.1666=0.7359≈0.736方法二:0.1+0.125+0.3+0.16113159899011118853720.7361=+++=+== ≈0.7364.计算:0.010.120.230.340.780.89+++++ 【分析与解】 方法一:0.010.120.230.340.780.89+++++ =1121232343787898909090909090-----+++++ =11121317181909090909090+++++ =21690=2.4方法二:0.010.120.230.340.780.89+++++ =0+0.1+0.2+0.3+0.7+0.8+(0.010.020.030.040.080.09+++++ ) =2.1+0.01×(1+2+3+4+8+9) =2.1+190×27 =2.1+0.3 =2.4方法三:如下式, 0.011111… 0.122222... 0.233333... 0.344444...(1+2+3+4+8+9=27) 0.788888...+0.899999... 2.399997...注意到,百万分位的7是因为没有进位造成,而实际情况应该是2.399999…=2.39 =2.4.评注:0.9=99=1 ,0.09 =919010=.5.将循环小数0.027与0.179672 相乘,取近似值,要求保留一百位小数,那么该近似值的最后一位小数是多少?【分析与解】0.×0.179672=27179672117967248560.00485699999999937999999999999⨯=⨯== 循环节有6位,100÷6=16……4,因此第100位小数是循环节中的第4位8,第10l 位是5.这样四舍五入后第100位为9.6.将下列分数约成最简分数:166********66666666664【分析与解】 找规律:161644=,16616644=,1666166644= ,166661666644=,…所以1666666666666666666664=14评注:类似问题还有38538853888538888538888888885234 (29729972999729999729999999997)+⨯+⨯+⨯++.7.将下列算式的计算结果写成带分数:0.523659119⨯⨯【分析与解】0.523659119⨯⨯=11859119⨯=1(1)119-×59=59-59119=58601198.计算:744808333÷2193425909÷11855635255【分析与解】 744808333÷2193425909÷11855635255=62811259093525583332193453811⨯⨯ =373997131993564111136412119973331993⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=7523⨯⨯=5569.计算:1111111 81282545081016203240648128 ++++++【分析与解】原式1111111 81288128406420321016508254 =++++++2111118128406420321016508254 =+++++ 1111114064406420321016508254 =+++++ 11111203220321016508254=++++111110161016508254=+++111508508254=++11254254=+1127=10.计算:153219(4.85 3.6 6.153) 5.5 1.75(1) 4185321⎡⎤⨯÷-+⨯+-⨯+⎢⎥⎣⎦【分析与解】原式=1757193.6(4.851 6.15)5.5443421⨯⨯-++-⨯-⨯=135193.610 5.5412+⨯⨯+-=9+5.5-4.5 =1011.计算: 41.2×8.1+11×194+537×0.19【分析与解】原式=412×0.81+11×9.25+0.19×(412+125) =412×(0.81+0.19)+11×9.25+0.19×125 =412+11×8+11×1.25+19×1.25=412+88+1.25×30=500+37.5=537.512.计算:2255 (97)() 7979+÷+【分析与解】原式=656555 ()() 7979+÷+=[]555513()()137979⨯+÷+=13.计算:12324648127142113526104122072135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯【分析与解】 原式=33333333123(1247)1232135(1247)1355⨯⨯⨯+++⨯⨯==⨯⨯⨯+++⨯⨯14.(1)已知等式0.126×79+1235×□-6310÷25=10.08,那么口所代表的数是多少? (2)设上题答案为a .在算式(1993.81+a )×○的○内,填入一个适当的一位自然数,使乘积的个位数字达到最小值.问○内所填的数字是多少? 【分析与解】 (1)设口所代表的数是x ,0.126×79+1235x -6310÷25=10.08,解得:x =0.03,即口所代表的数是0.03.(2)设○内所填的数字是y ,(1993.81+O.03)×y =1993.84×y ,有当y 为8时1993.84×y =1993.84×8=15050.94,所以○内所填的数字是8.15.求下述算式计算结果的整数部分:111111()38523571113+++++⨯ 【分析与解】原式=111111(38538538538538538523571113⨯+⨯+⨯+⨯+⨯+⨯≈192.5+128.3+77+55+35+29.6=517.4 所以原式的整数部分是517.第二讲 和差倍分问题各种具有和差倍分关系的综合应用题,重点是包含分数的问题.基本的解题方法是将已知条件用恰当形式写出或变形,并结合起来进行比较而求出相关的量,其中要注意单位“1”的恰当选取.1.有甲、乙两个数,如果把甲数的小数点向左移两位,就是乙数的18,那么甲数是乙数的多少倍?【分析与解】甲数的小数点向左移动两位,则甲数缩小到原来的1100,设这时的甲数为“1”,则乙数为1×8=8,那么原来的甲数=l×100=100,则甲数是乙数的100÷8=12.5倍.2.有三堆棋子,每堆棋子数一样多,并且都只有黑、白两色棋子.已知第一堆里的黑子和第二堆里的白子一样多,第三堆里的黑子占全部黑子的25.如果把这三堆棋子集中在一起,那么白子占全部棋子的几分之几?【分析与解】如下表所示:设全部黑子为“5”份,则第三堆里的黑子为“2”份,那么剩下的黑子占5-2=“3”份,而第一堆里的黑子和第二堆里的白子一样多,将第一堆黑子和第二堆白子调换,则第二堆全部为黑子.所以第二堆棋子总数为“3”份,三堆棋子总数为3×3=“9”份,其中黑子占“5”份,则白子占剩下的9-5=“4”份,那么白子占全部棋子的4÷9=49.3.甲、乙两厂共同完成一批机床的生产任务,已知甲厂比乙厂少生产8台机床,并且甲厂的生产量是乙厂的1213,那么甲、乙两厂一共生产了机床多少台?【分析与解】因为甲厂生产的是乙厂的1213,也就是甲厂为12份,乙厂为13份,那么甲厂比乙厂少1份=8台.总共=8×(12+13)=200台.4.足球赛门票15元一张,降价后观众增加了一半,收入增加了五分之一,那么一张门票降价多少元?【分析与解】设原来人数为“1”,则现在有1+0.5=1.5.原来收入为l×15=15,降价后收人为15×(1+15)=18元,那么降价后门票为18÷1.5=12元,则一张门票降价15-12=3元.5.李刚给军属王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块.这时,已运来的恰好是没运来的57.问还有多少块蜂窝煤没有运来?【分析与解】已经运来的是没有运来的57,则运来的是5份,没有运来的是7份,也就是运来的占总数的512.则共有50÷(512-38)=1200块,还剩下1200×712=700块.6.有两条纸带,一条长21厘米,一条长13厘米,把两条纸带都剪下同样长的一段以后,发现短纸带剩下的长度是长纸带剩下的长度的813.问剪下的一段长多少厘米?【分析与解】方法一:开始时,两条纸带的长度差为21-13=8厘米.因为两条纸带都剪去同样长度,所以两条纸带前后的长度差不变.设剪后短纸带长度为“8”份,长纸带即为“13”份,那么它们的差为13-8=5份,则每份为8÷5=1.6(厘米).所以,剪后短纸带长为1.6×8=12.8(厘米),于是剪去13-12.8=O.2(厘米).方法二:设剪下x厘米,则1382113xx-=-,交叉相乘得:13×(13-x)=8×(21-x),解得x=0.2,即剪下的一段长0.2厘米.7.为挖通300米长的隧道,甲、乙两个施工队分别从隧道两端同时相对施工.第一天甲、乙两队各掘进了10米,从第二天起,甲队每天的工作效率总是前一天的2倍,乙队每天的工作效率总是前一天的l 12倍.那么,两队挖通这条隧道需要多少天?【分析与解】如下表所示:天数工作量1 2 3 4 5甲10 20 40 80 160乙10 15 22.5 33.75 50.625 当天工作量20 35 62.5 113.75 210.625已完成工作量20 55 117.5 231.25 441.375 说明在第五天没有全天干活,则第四天干完以后剩下:300-231.25=68.75米,那么共用时间为4+68.75÷210.625=4110 337天.8.有一块菜地和一块麦地.菜地的一半和麦地的三分之一放在一起是13公顷.麦地的一半和菜地的三分之一放在一起是12公顷.那么菜地是多少公顷?【分析与解】如下表所示:菜地12麦地13⇒13公顷菜地3 麦地2 ⇒78公顷菜地2 麦地3 ⇒72公顷菜地13麦地12⇒12公顷即5倍菜地公顷数+5倍麦地公顷数=78+72=150,所以菜地与麦地共有150÷5=30(公顷).而菜地减去麦地,为78-72=6(公顷),所以菜地有(30+6)÷2=18(公顷).9.春风小学原计划栽种杨树、柳树和槐树共1500棵.植树开始后,当栽种了杨树总数的3 5和30棵柳树以后,又临时运来15棵槐树,这时剩下的3种树的棵数恰好相等.问原计划要栽植这三种树各多少棵?【分析与解】将杨树分为5份,以这样的一份为一个单位,则:杨树=5份;柳树=2份+30棵;槐树=2份-15棵,则一份为(1500-30+15)÷(2+2+5)=165棵,有:杨树=5×165=825棵;柳树=165×2+30=360棵;槐树=165×2-15=315棵.10.师徒二人共同加工170个零件,师傅加工零件个数的13比徒弟加工零件个数的14还多10个.那么,徒弟一共加工了多少个零件?【分析与解】我们用“师”表示师傅加工的零件个数,“徒”表示徒弟加工的零件个数,有:1 3“师”-14“徒”=10,4“师”- 3“徒”=120,而4“师”+4“徒”=170×4=680.那么有7“徒”=680-120=560,“徒”=80,徒弟一共加工了80个零件.11. 一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的11 2倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有712的人去甲工地,其他人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天.那么这批工人共有多少名?【分析与解】设甲工地的工作量为“1.5”,则乙工地的工作量为“1”.甲乙上午33134=+11134=+下午7121-712=512于是甲工地一整天平均用了这批工人的372()24123+÷=,乙工地一整天平均用了这批工人的1-21 33 =.这批工人的23完成了“1.5”的工作量,那么13的这批工人完成1.5÷2=“0.75”的工作量,于是乙工地还剩下1-0.75=“0.25”的工作量,这“0.25”的工作量需要4人工作1天.而甲、乙工地的工作量为1.5+1=2.5,那么需2.5÷0.25× 4=40人工作1天.所以原来这批工人共有40-4=36人.12.有一个分数,如果分子加1,这个分数就等于12;如果分母加1,这个分数就等于13.问原来的分数是多少?【分析与解】如果分子加1,则分数为12,设这时的分数为:2xx,则原来的分数为12xx-,分母加1后为:11213xx-=+,交叉相乘得:3(x-1)=2x+1,解得x=4,则原分数为38.13.图2-1是某市的园林规划图,其中草地占正方形的34,竹林占圆形的67,正方形和圆形的公共部分是水池.已知竹林的面积比草地的面积大450平方米.问水池的面积是多少平方米?【分析与解】因为水池是正方形的14,是圆的17,则正方形是水池的4倍,圆是水池的7倍,相差7-4=3倍,差450平方米,则水池=450÷3=150平方米.14.唐僧师徒四人吃了许多馒头,唐僧和猪八戒共吃了总数的12,唐僧和沙僧共吃了总数的13,唐僧和孙悟空共吃了总数的14.那么唐僧吃了总数的几分之几?【分析与解】唐+猪=12、唐+沙=13、唐+孙=14.(两边同时加减)唐+猪+唐+沙+唐+孙=2唐+(唐+猪+沙+孙)=2唐+1=12+13+14=1112.则:2唐=112,唐=124.唐僧吃了总数的124.15.小李和小张同时开始制作同一种零件,每人每分钟能制作1个零件,但小李每制作3个零件要休息1分钟,小张每制作4个零件要休息1.5分钟.现在他们要共同完成制作300个零件的任务,需要多少分钟?【分析与解】方法一:先估算出大致所需时间,然后再进行调整.因为小李、小张的工作效率大致相等,那么完成时小李完成300÷2=150个零件左右;小李完成150个零件需要150÷3×4=200分钟;在200分钟左右,198分钟是5.5的整数倍,此时乙生产198÷5.5×4=144个零件,并且刚休息完,所以在2分钟后,即200分钟时完成144+2=146个零件;那么在200分钟时,小李、小张共生产150+146=296个零件,还剩下4个零件未完成,所以再需2分钟,小李生产2个零件,小张生产2个零件,正好完成.所以共需202分钟才能完成.方法二:把休息时间包括进去,小李每4分钟做3个,小张每5.5分钟做4个.则在44分钟内小李做了:44÷4×3=33个,小张做了:44÷5.5×4=32个,他们一共做了:33+32=65个.300÷65=4……40,也就是他们共同做了4个44分钟即:44×4=176分钟后,还剩下40个零件没有做完.而22=4+4+4+4+4+2=5.5×4,所以22分钟内小李做了:3+3+3+3+3+2=17个,小张做了:4×2=16个,那么还剩下:40-17-16=7个,4分钟内小李做3个,小张做4个,共做4+3=7个,即这40个零件还需要26分钟.所以共用时间:44×4+26=202分钟.第三讲行程问题(1)涉及分数的行程问题.顺水速度、逆水速度与流速的关系,以及与此相关的问题.环形道路上的行程问题.解题时要注意发挥图示的辅助作用,有时宜恰当选择运动过程中的关键点分段加以考虑.1.王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时55千米.如果他想按时返回甲地,他应以多大的速度往回开?【分析与解】设甲地到乙地的路程为单位“1”,那么按时的往返一次需时间260,现在从甲到乙花费了时间1÷55=155千米,所以从乙地返回到甲地时所需的时间只能是211 605566-=.即如果他想按时返回甲地,他应以每小时66千米的速度往回开.2.甲、乙两地相距100千米,小张先骑摩托车从甲地出发,1小时后小李驾驶汽车从甲地出发,两人同时到达乙地.摩托车开始速度是每小时50千米,中途减速后为每小时40千米.汽车速度是每小时80千米,汽车曾在途中停驶1O 分钟.那么小张驾驶的摩托车减速是在他出发后的多少小时?【分析与解】 汽车从甲地到乙地的行驶时问为100÷80=1.25小时=1小时15分钟,加上中途停驶的10分钟,共用时1小时25分钟.而小张先小李1小时出发,但却同时到达,所以小张从甲到乙共用了2小时25分钟,即2最小时.以下给出两种解法:方法一:设小张驾驶的摩托车减速是在他出发后x 小时,有50×x +40×5210012x ⎛⎫-= ⎪⎝⎭,解得13x =. 所以小张驾驶的摩托车减速是在他出发后13小时. 方法二:如果全程以每小时50千米的速度行驶,需100÷50=2小时的时间,全程以每小时40千米的速度行驶,需100÷40=2.5小时.依据鸡兔同笼的思想知,小张以每小时50千米的速度行驶了52.521122.526-=-的路程,即行驶了10015010063⨯=千米的路程,距出发5015033÷=小时.3. 一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用多少秒?【分析与解】 我们知道顺风速度=无风速度+风速,逆风速度=无风速度-风速. 有顺风时速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒. 则无风速度=2顺风速度+逆风速度=982+7=米/秒 所以无风的时候跑100米,需100÷8=12.5秒.124.一条小河流过A ,B, C 三镇.A,B 两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B,C 两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A,C 两镇水路相距50千米,水流速度为每小时1.5千米.某人从A 镇上船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时.那么A,B 两镇间的距离是多少千米?【分析与解】 如下画出示意图,有A →B 段顺水的速度为11+1.5=12.5千米/小时, 有B →C 段顺水的速度为3.5+1.5=5千米/小时. 而从A →C 全程的行驶时间为8-1=7小时. 设AB 长x 千米,有50712.55x x -+=,解得x =25. 所以A,B 两镇间的距离是25千米.5.一条大河有A,B 两个港口,水由A 流向B,水流速度是每小时4千米.甲、乙两船同时由A 向B 行驶,各自不停地在A,B 之间往返航行,甲船在静水中的速度是每小时28千米,乙船在静水中的速度是每小时20千米.已知两船第二次迎面相遇的地点与甲船第二次追上乙船(不算甲、乙在A 处同时开始出发的那一次)的地点相距40千米,求A,B 两个港口之间的距离.【分析与解】 设AB 两地的路程为单位“1”,则:甲、乙两人在A 、B 往返航行,均从A 点同时同向出发,则第n 次同向相遇时,甲、乙两人的路程差为2n ;甲、乙两人在A 、B 往返航行,均从A 点同时同向出发,则第n 次相向相遇时,甲、乙两人的路程和为2n ;甲、乙两人在A 、B 往返航行,分别从A 、B 两点相向出发,则第n 次同向相遇时,甲、乙两人的路程差为(2n -1);甲、乙两人在A 、B 往返航行,分别从A 、B 两点相向出发,则第n 次相向相遇时,甲、乙两人的路程和为(2n -1).有甲船的顺水速度为32千米/小时,逆水速度为24千米/小时, 乙船的顺水速度为24千米/小时,逆水速度为16千米/小时. 两船第二次迎面相遇时,它们的路程和为“4”;甲船第二次追上乙船时,它们的路程差为“4”.(一)第二次迎面相遇时,一定是甲走了2~3个AB 长度,乙走了2~1个AB 长度,设甲走了2+x 个AB 的长度,则乙走了2-x 个AB 的长度,有11322432x ++=112416x -+,解得13x =,即第二次迎面相遇的地点距A 点13AB 的距离.(二)①第二次甲追上乙时,有甲行走2y z +(y 为整数,z ≤1)个AB 的长度,则乙行走了24y z -+个AB 的长度,有322432y y z ++=22241624y y z --++,化简得320y z +=,显然无法满足y 为整数,z ≤1;②第二次甲追上乙时,有甲行走21y z ++(y 为整数,z ≤1)个AB 的长度,则乙行走了23y z -+个AB 的长度,有1322424y y z +++=12241616y y z--++,化简有3213y z +=,有0.5z =,4y =. 即第二次甲追上乙时的地点距B 点12AB 的距离,那么距A 也是12AB 的距离.所以,题中两次相遇点的距离为(111236⎛⎫-= ⎪⎝⎭AB ,为40千米,所以AB 全长为240千米.6.甲、乙两船分别在一条河的A ,B 两地同时相向而行,甲顺流而下,乙逆流而上.相遇时,甲乙两船行了相等的航程,相遇后继续前进,甲到达B 地、乙到达A 地后,都立即按原来路线返航,两船第二次相遇时,甲船比乙船少行1000米.如果从第一次相遇到第二次相遇的时间相隔为1小时20分,那么河水的流速为每小时多少千米? 【分析与解】 因为甲、乙第一次相遇时行驶的路程相等,所以有甲、乙同时刻各自到达B 、A 两地.接着两船再分别从B 、A 两地往AB 中间行驶.所以在第二次相遇前始终是一船逆流、一船顺流,那么它们的速度和始终等于它们在静水中的速度和.有:甲静水速度+水速=乙静水速度-水速.还有从开始到甲第一次到达B 地,乙第一次到达A 地之前,两船在河流中的速度相等.所以甲船比乙船少行驶的1000米是在甲、乙各自返航时产生的.甲乙返航时,有甲在河流中行驶的速度为:甲静水速度-水速,乙在河流中的速度为:乙静水速度+水速.它们的速度差为4倍水速.从第一次相遇到第二次相遇,两船共行驶了2AB 的路程,而从返航到第二次相遇两船共行驶了AB 的路程,需时间80÷2=40分钟. 有4倍水速=401000150060⎛⎫÷=⎪⎝⎭,有水速=375米/小时=0.375千米/小时. 即河水的流速为每小时0.375千米.7.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟? 【分析与解】 甲行走45分钟,再行走70-45=25分钟即可走完一圈.而甲行走45分钟,乙行走45分钟也能走完一圈.所以甲行走25分钟的路程相当于乙行走45分钟的路程. 甲行走一圈需70分钟,所以乙需70÷25×45=126分钟.即乙走一圈的时间是126分钟.8.如图3-1,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【分析与解】 注意观察图形,当甲、乙第一次相遇时,甲乙共走完12圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32圈的路程. 所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米. 有甲、乙第二次相遇时,共行走(1圈-60)+300,为32圈,所以此圆形场地的周长为480米.9.甲、乙二人在同一条椭圆形跑道上作特殊训练:他们同时从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲速度的23.甲跑第二圈时速度比第一圈提高了13;乙跑第二圈时速度提高了15.已知沿跑道看从甲、乙两人第二次相遇点到第一次相遇点的最短路程是190米,那么这条椭圆形跑道长多少米? 【分析与解】设甲跑第一圈的速度为3,那么乙跑第一圈的速度为2,甲跑第二圈的速度为4,乙跑第二圈的速度为125. 如下图,第一次相遇地点逆时针方向距出发点35的跑道长度. 有甲回到出发点时,乙才跑了23的跑道长度.在乙接下来跑了13跑道的距离时,甲以“4”的速度跑了122433÷⨯=圈.所以还剩下13的跑道长度,甲以4的速度,乙以125的速度相对而跑,所以乙跑了112124355⎡⎤⎛⎫⨯÷+ ⎪⎢⎥⎝⎭⎣⎦18=圈.也就是第二次相遇点逆时针方向距出发点18圈.即第一次相遇点与第二次相遇点相差31195840-=圈, 所以,这条椭圆形跑道的长度为1919040040÷=米.10.如图3-2,在400米的环形跑道上,A,B 两点相距100米.甲、乙两人分别从A ,B 两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟.那么甲追上乙需要时间是多少秒?【分析与解】 如果甲、乙均不休息,那么甲追上乙的时间为100÷(5-4)=100秒. 此时甲跑了100×5=500米,乙跑了100×4=400米.而实际上甲跑500米,所需的时间为100+4×10=140秒,所以140~150秒时甲都在逆时针距A 点500处.而乙跑400米所需的时间为100+3×10=130秒,所以130~140秒时乙走在逆时针距B点400处.显然从开始计算140秒时,甲、乙在同一地点,即甲追上乙需要时间是140秒.11.周长为400米的圆形跑道上,有相距100米的A ,B 两点.甲、乙两人分别从A ,B 两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A 时,乙恰好跑到B .如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米? 【分析与解】 如下图,记甲乙相遇点为C.当甲跑了AC 的路程时,乙跑了BC 的路程;而当甲跑了400米时,乙跑了2BC 的路程. 由乙的速度保持不变,所以甲、乙第一次相向相遇所需的时间是甲再次到达A 点所需时间的12. 即AC=12×400=200(米),也就是甲跑了200米时,乙跑了100米,所以甲的速度是乙速度的2倍.那么甲到达A ,乙到达B 时,甲追上乙时需比乙多跑400-100=300米的路程,所以此后甲还需跑300÷(2-1)×2=600米,加上开始跑的l 圈400米.所以甲从出发到甲追上乙时,共跑了600+400=1000米.12.如图3-3,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?【分析与解】 开始时,甲在顺时针方向距乙8+13+8=29米.因为一边最长为 13、所以最少要追至只相差13,即至少要追上29-13=16米. 甲追上乙16米所需时间为16÷(3-2)=16秒,此时甲行了3×16=48米,乙行了2×16=32米.甲、乙的位置如右图所示:显然甲还是看不见乙,但是因为甲的速度比乙快,所以甲能在乙离开上面 的那条边之前到达上面的边,从而看见乙.而甲要到达上面的边,需再跑2米,所需时间为2÷3=23秒. 所以经过16+23=1623秒后甲第一次看见乙.13.如图3-4,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重.甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,两人同时从两跑道的交点A 处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?【分析与解】 如下图,甲、乙只可能在大跑道上相遇.并且只能在AB 顺时针的半跑道上.易知小跑道AB 逆时针路程为100,顺时针路程为200,大跑道上AB 的顺、逆时针路程均是200米.我们将甲、乙的行程状况分析清楚.当甲第一次到达B 时,乙还没有到达B 点,所以第一次相遇一定在逆时针的BA 某处.而当乙第一次到达B 点时,所需时间为200÷4=50秒,此时甲跑了50×6=300米,在B 点300-200=100米处.乙跑出小跑道到达A 需100÷4=25秒,则甲又跑了25×6=150米,在A 点左边(100+150)-200=50米处.所以当甲到达B 处时,乙还未到B 处,那么甲必定能在B 点右边某处与乙第二次相遇. 从乙再次到达A 处开始计算,还需(400-50)÷(6+4)=35秒,甲、乙第二次相遇,此时甲共跑了50+25+35=110秒.所以,从开始到甲、乙第二次相遇甲共跑了110×6=660米.14.如图3-5,正方形ABCD 是一条环形公路.已知汽车在AB 上时速是90千米,在BC 上的时速是120千米,在CD 上的时速是60千米,在DA 上的时速是80千米.从CD 上一点P,同时反向各发出一辆汽车,它们将在AB 中点相遇.如果从PC 的中点M,同时反向各发出一辆汽车,它们将在AB 上一点N 相遇.问A 至N 的距离除以N 至B 的距离所得到的商是多少?【分析与解】 如下图,设甲始终顺时针运动,乙始终逆时针运动,并设正方形ABCD 的边长为单位“1”.有甲从P 到达AB 中点O 所需时间为608090PD DA AO ++10.5608090PD =++. 乙从P 到达AB 中点O 所需时间为6012090PC BC BO ++10.56012090PD =++. 有甲、乙同时从P 点出发,则在AB 的中点O 相遇,所以有:16080PD +=160120PC +且有PD=DC-PC=1-PC,代入有116080PC -+160120PC =+,解得PC=58. 所以PM=MC=516,DP=38.现在甲、乙同时从PC 的中点出发,相遇在N 点,设AN 的距离为x .有甲从M 到达N 点所需时间为608090MD DA AN ++351816608090x+=++; 乙从M 到达N 点所需时间为6012090MC CB BN ++511166012090x-=++. 有351816608090x +++511166012090x -=++,解得132x =.即AN=132. 所以AN ÷BN 1313232=÷131=15.如图3-6,8时10分,有甲、乙两人以相同的速度分别从相距60米的A ,B 两地顺时针方向沿长方形ABCD 的边走向D 点.甲8时20分到D 点后,丙、丁两人立即以相同速度从D 点出发.丙由D 向A 走去,8时24分与乙在E 点相遇;丁由D 向C 走去,8时30分在F 点被乙追上.问三角形BEF 的面积为多少平方米?【分析与解】 如下图,标出部分时刻甲、乙、丙、丁的位置.先分析甲的情况,甲10分钟,行走了AD 的路程;再看乙的情况,乙的速度等于甲的速度,乙14分钟行走了60+AE 的路程,乙20分钟走了60+AD+DF 的路程.所以乙10分钟走了(60+AD+DF)-(AD)=60+DF 的路程.有601014AD AE +=6010DF +=,有()()607560AD DFAE ED AE =+⎧⎪⎨-=+⎪⎩然后分析丙的情况,丙4分钟,行了走ED 的路程,再看丁的情况,丁的速度等于丙的速度,丁10分钟行走了DF 的距离.。

(精编)数学总复习课件六年级奥数

(精编)数学总复习课件六年级奥数
分析(1) 由于296与104可以凑成整数,这样就可以化简了, 变成41与整数相加 ,加法的交换律
(2) 由于375与175相减是整数,相减后变成整数与81 相加,也是用了加减法的交换律
(3)据观察199与1999都相差1就可以凑成整数,因此可将2 分拆成1+1这样,运用加法交换律就可以都凑成整数了。
例六 (1)999+99+9+9999+99999= (2)1990-1985+1980-1975+ ……+20-15+10-5= (3)1999+999 ×999= 分析(1) 加数各项都缺1就可以凑成整数,因此加5就可以
了简公了。 (2) 通过分析,每两项的差都为5,项数为1990缩小
10倍就是了。 (3)1999 可加上1凑整,而被乘数999可看成1000-1

(3)被除数可拆分为1300+26 而这二个数都可被13整 除因则变得简单。
解(1)解法一 :原式=125×(10+1)=1250+125=1375 解法二:原式=125×(8+3)=1000+375=1375
(2)原式=125×8×11=1000×11=11000 (3) 原式=(1300+26)÷13=100+2=102
所有数的和为 5050+5150+5250+……+9950=(5050+14950)*100/2
=20000*50=1000000
4 小数运算的巧算1 (升中之五年级奥数1)
在整数的运算中适用的定律、性质、公式、分解、组合、拼拆等方 法,在小数的运算中同样适用。
例1 (1)10.1×76= (2)127.5-(16.73+27.5)= (3) 0.25×3.75+0.75×3.75= (4) 12.5×0.64×2.5=

小学六年级奥数教学ppt课件:

小学六年级奥数教学ppt课件:

再次,作系统的训练。在讲课的时候, 我经常对同学们讲:“奥数,只看不练,等于 白干”。学奥数,就像学自行车,你的理论知 识再好,没有足量的练习,你还是不能真正 掌握奥数。
像速算、巧算的题目,这样题目几乎每 次考试都会出现,但是这样题目同学得分情 况十分不好!!究其原因:一是没有对这类题目 很好的总结学习,二是没有对这类题目系统 的训练。
比如说,三四年级中的“假设法”、“对应 法”、“画图法”等等,在五六年级中的分数应 用题、行程问题、工作问题中运用;在五、六年级 的教材上,大量出现小学奥数里的知识,比如五、 六年级的“解决问题的策略”、可能性”等等, 解决思路相同但会加进新学到的知识,如分数、 比例、负数、图形等等。
五六年级,是关键的两年,这两年一定要全 力以赴,如果你在三四年级已经打好了基础,相 信五六年级的压力就非常小了。相反,估计你就 要加把劲了。五六年级如果从头一点点的学,估 计是没有太多的时间了,这个时候老师会根据你 的情况,给你来一个个性化的辅导方案,只要你 肯下功夫,相信,也能后来者居上!
其次,改掉自己的坏习惯。奥数学习好的学 生,特别是男生,都有马虎的毛病,他们不怕题目 多难,而是怕题目简单。
二、奥数学习不扎实的同学。
更多的同学,或者说是大多数同学的状况是这 样的:他们四年级或五年级才开始学习奥数,有的 甚至是六年级暑假刚开始学,我们称这样的同学是 半路出家的学生;
有的同学是从三年级开始学的奥数,但是学 了2年,只是听课,没有做过系统的训练,甚至是没 有做过训练,有的同学家长就跟我抱怨说:以前, 他们的孩子在某某学校学习奥数,学校的老师不负 责任--只是讲课,不留作业--这样学过来的学生, 我们只能说他听过奥数课,但并没有真正学到奥数。 那一下三种情况:
一、奥数学的很扎实

小学六年级奥数举一反三ppt课件

小学六年级奥数举一反三ppt课件
2.规定:③=2×3×4,④=3×4×5,⑤=4×5×6,⑥ = 5×6×7 , …… 如 果 1/⑩+1/⑾ = 1/⑾×□ , 那 么 □ = ________。
3 . 如 果 1※2 = 1+2 , 2※3 = 2+3+4 , ……5※6 = 5+6+7+8+9+10,那么x※3=54中,x=________。
16
【练习1】计算下面各题。
17
【例题2】
计算 3333871 ×79+790×666611
2
4
原式=333387.5×79+790×66661.25
=(33338.75+66661.25)×790
=100000×790
=79000000
18
【练习2】
19
【例题3】 计算:36×1.09+1.2×67.3
63
【例题1】 乙数是甲数的2/3,丙数是乙数的4/5,丙数是甲 数的几分之几? 【思路导航】 2/3×4/5=8/15
64
【练习1】1.乙数是甲数的3/4,丙数是乙数的3/5,丙数是 甲数的几分之几?
2.一根管子,第一次截去全长的1/4,第二次截去余下的1/2, 两次共截去全长的几分之几?
3.一个旅客从甲城坐火车到乙城,火车行了全程的一半时 旅客睡着了。他醒来时,发现剩下的路程是他睡着前所行路 程的1/4。想一想,剩下的路程是全程的几分之几?他睡着时 火车行了全程的几分之几?
新定义的算式中有括号的,要先算括号里面的。但它在没有 转化前,是不适合于各种运算定律的。
3
【例题1】 假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。 【思路导航】 这题的新运算被定义为:a*b等于a和b两数之和加上两数之 差。这里的“*”就代表一种新运算。在定义新运算中同样规 定了要先算小括号里的。因此,在13*(5*4)中,就要先算 小括号里的(5*4)。 13*5=(13+5)+(13-5)=18+8=26 5*4=(5+4)+(5-4)=10 13*(5*4)=13*10=(13+10)+(13-10)=26

人教版六年级下册数学奥数:计算面积一(课件)(共19张PPT)

人教版六年级下册数学奥数:计算面积一(课件)(共19张PPT)


三角形AEC与三角形ACF等底等高,C为EF中点,而三角形ACE与三角形BEC等底,又因为=,所以三角形


BCE的面积等于三角形ACE面积的,同理可得三角形ADB的面积是三角形ADE面积的。


【我来解答】:三角形ABC的面积是:16-4-4×-8×=7。
【小结与提示】添加辅助线,使得图形计算更加简便。
实践与应用
【练习5】
P67
如图所示,长方形ABCD的面积是20平方厘米,三角形ADF的面积为5平方厘米,三角形ABE
的面积为7平方厘米,求三角形AEF的面积。
同学们,经过这一讲的学习,你对面积的计算是否有了自己的理解?
我们在解决这类问题时,还要注意几个基本方法:
1.添加辅助线。
2.利用平移、旋转和剪拼的方法进行计算。
【例5】如左图所示,长方形ADEF的面积是16,三角形ADB的面积是2,三角形ACF的面积是4,
求三角形ABC的面积
【分析与解答】
连接AE。仔细观察添加辅助线AE后,如右图,使问题可有如下解法。
由图上看出:三角形ADE的面积等于长方形面积的一半(16÷2)=8。用8减去3得到三角形ABE的面积为5。
3.14×62×1/4-(6×4-3.14×42×1/4)=16.82(平方厘米)
【例题4】在图中,正方形的边长是10厘米,求图中阴影部分的面积。
【思路导航】
解法一:先用正方形的面积减去一个整圆的面积,得空部分的一半(如图所示),
再用正方形的面积减去全部空白部分。
空白部分的一半:10×10-(10÷2)2×3.14=21.5(平方厘米)
S△DAB =4×3=12平方厘米
【小结与提示】
在添加辅助线,变换图形,使得计算更加简便。

小学奥数总复习教程PPT(下)(小升初必备资料)

小学奥数总复习教程PPT(下)(小升初必备资料)

2、列方程解应用题的步骤: (1)分析题意,弄清已知条件和所求问题; (2)根据分析设定未知数; (3)利用等量关系列出方程; (4)求解方程; (5)将结果代回原题检验,答。
典型例题精讲
( 生活中问题)
例1. 有两根绳子,第一根长56cm, 第二根长36cm,同时点燃后,平均 每分钟都烧掉2cm,多少分钟后, 第一根绳子的长度是第二根绳子 长度的3倍。
因为BF:FC=1:2,所以SBEF:SCEF=1:2,
SCEF=18÷ 3× 2=12(平方厘米)
A
E
B
SACFE=9+12=21(平方厘米)
F
D
C
课后作业
如图,正方形ABCD的边长是4厘米,长方形DEFG的顶点G在BC边
上,则长方形的面积为多少平方厘米?
E
A
D
F
B
G
C
巧求面积 ——割补法
典型例题精讲
方厘米,求图中阴影部分的面积。
A
B
C
D
O
解析
连辅助线BD, S△OBD和S△OBC是等底等高的三角形,面积相等,
是平行四边形面积的一半。
S阴40÷ 2÷ 2=10(平方厘米) A
B
C
D
O
例2.如图,正方形ABCD和正方形EFGC并排放置,BF和EC交 于H点,已知AB=4厘米,EF=6厘米,则阴影部分的面积是 多少平方厘米?
方法二:用方程做
解答
解设:有X只兔,有鸡(X+10)只。
4X+ 2(X+10)=110
6X=90
X=15
15+10=25(只)
答:鸡有25只,兔有15只。

小学数学奥数基础教程(六年级)30讲全

小学数学奥数基础教程(六年级)30讲全

1小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

六年级数学奥数第8讲:定义新运算-课件

六年级数学奥数第8讲:定义新运算-课件
9△4=9+99+999+9999,那么8△2=__9_6___;4△6=4_9__3_8_2_4。
a△b=a+aa+aaa+aaaa+…+a……a
8△2=8+88=96
b个a
4△6=4+44+444+4444+44444+444444=493824
规定a△b=a+aa+aaa+…+aa........a,那么8△6=_9_8_7_2。 (b-2)个a
定义新运算“⊙”如下:对于两个自然数a和b,他 们的最大公约数与最小公倍数的和记为a⊙b,那么 4⊙6=_________。
4、6的最大公约数是 4、6的最小公倍数是
4⊙6=2+12=14
把64=2×2×2×2×2×2表示成∫(64)= 6 , 把243=3×3×因3数×23有×63个表示成g(243)= 5 ,那 么∫(16)因=g(数__83_1有。)5个
16=2×2×2×2 ∫(16)=4
3×3×3×3=81
如果规定符号“↑(a,b)”表示两个数的和除以两个数的差,例如
↑(4,2)= 4 2 =3,规定符号“↓(a,b)”表示两个数的差除以两个
42
数的和,例如↓(4,2)= 4 2
42
=1
3
7 ,那么↑[2,↓(8,4)]=__5____。
↓(8,4) =
16◇6 =4 16÷6=2……4 12△(16◇6)=12△4 =3
12÷4=3
有括号要先 算括号
定义运算“⊙”如下:对于两个自然数a和b,他 们的最大公约数和最小公倍数的和记为a⊙b,那 么4⊙12⊙20=_8_4_______。

六年级奥数题精讲精练PPT课件

六年级奥数题精讲精练PPT课件

▪ 5、如果挖1米长、1米宽、1米深 ▪ 7、学校门口经常有小贩搞摸奖活
的池子需要12个人干2小时。那么
动。某小贩在一只黑色的口袋里装
6个人挖一个长、宽、深是它两倍
有颜色不同的50只小球,其中红
的池子需要 小时。
球1只,黄球2只,绿球10只,其
余为白球。搅拌均匀后,每2元摸
▪ 6、设有如图所示2个互相3啮2 合的 齿轮,齿轮上各画了一条带箭头的 直线。开始时,2个简头正好相对。
▪ 再“看问题定方向”,要求第2个数和 第5个数的和,
▪ 说明跟内圈另外三个数有关系,而其 中第6个数和第8个数的和是50-25=25,
▪ 再看第3个数,在加两条直线第1、2、 3、4个数和第9、3、5、10个数时,重 复算到第3个数,
▪ 好戏开演: ▪ 74+76+50+25+第2个数+第5个数=

CD
水洼里一共有100条变形虫。
试问:其中有多少条蓝色变形

答:他们的年龄分别是17、28、 39、43。

虫? 分析:
▪ 答:有33条蓝色变形虫。
三、解答题(10′×4=40′)
▪ 3、如图所示,设ABCD是长方 形台球桌,一个黑球在P点被 击中,依次碰撞AB、BC再反 弹后击中在Q点的白球。已知P 点到AB的距离为5个单位,到 BC的距离为12个单位,Q点到 AB的距离为7个单位,到BC的 距离为4个单位。试问:黑球从 P点出发经过AB、BC反弹后到 击中Q点的白球的路线长度有 多少个单位?
50×5 ▪ 所以 第2个数+第5个数=25
▪ 有74+76+A2+A5+2(A6+A8) + A7=250,而三角形 A6A7A8中有A6+A7+A8=50,其中A7=25,所以 A6+A8=50-25=25.

六年级上册数学奥数之工程问题1人教版(22张ppt)标准课件

六年级上册数学奥数之工程问题1人教版(22张ppt)标准课件
六年级奥数之工 程问题1
一.基本公式 • 工程问题是应用题中的一种类型。在工程问题中,一般要出现三个量:工
作总量(即工量)、工作时间(完成工作总量所需时间 即工时)和工作 效率(单位时间内完成的工作量 即工效):
①工作效率×工作时间=工作总量 ②工作总量÷工作时间=工作效率
③工作总量÷工作效率=工作时间
• 1÷[(1/12+1/15+1/20)÷2]=10(天)
关键是什么?找出甲队的工作总量
现在甲先做了3天,余下的工作由乙继续完成. 完成了余下的1/2,再余下的有两队合做还要几天完成? 排水问题(将一池水排空):出水的工效-进水的工效 一件工作,甲做10天可完成,乙做15天可完成. 甲乙丙三队合作的工效和的2倍:1/12+1/15+1/20 一件工作,甲做9天可以完成,乙做6天可以完成. 而把工量看做单位1时,工效即用工时的倒数来表示。 乙的工效1/4÷10=1/40 思路:用乙完工的天数(总共用的天数)-甲干的天数 1÷[(1/12+1/15+1/20)÷2]=10(天) 现在甲先做了3天,余下的工作由乙继续完成. 而把工量看做单位1时,工效即用工时的倒数来表示。 一件工作,甲做9天可以完成,乙做6天可以完成. 不管题型如何,都要学会确定工作量、工作时间、工作效率间的两两对应关系 甲乙丙三队合作的工效和:(1/12+1/15+1/20)÷2 乙的工效1/4÷10=1/40 进水问题(将一池水装满):进水的工效-出水的工效 乙的工效1/4÷10=1/40 不管题型如何,都要学会确定工作量、工作时间、工作效率间的两两对应关系
• 例2 一项工程,甲乙两队合作需12天完成,乙丙两队合作需15天完 成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成?
• 甲乙合工效1/20 • 甲乙丙三队合作的工效和的2倍:1/12+1/15+1/20 • 甲乙丙三队合作的工效和:(1/12+1/15+1/20)÷2

小学六年级奥数教学课件ppt:

小学六年级奥数教学课件ppt:

A
B
课堂练习3.如图,有一个直径为6分米的半圆,这个半 圆以A为圆心逆时针方向旋转60°,使B转到B’位置, 那么阴影部分面积是多少平方分米?(π取3.14)
A
B
课堂练习3.如图,有一个直径为6分米的半圆,这个半 圆以A为圆心逆时针方向旋转60°,使B转到B’位置, 那么阴影部分面积是多少平方分米?(π取3.14)
A
B
课堂练习3.如图,有一个直径为6分米的半圆,这个半 圆以A为圆心逆时针方向旋转60°,使B转到B’位置, 那么阴影部分面积是多少平方分米?(π取3.14)
A
B
课堂练习3.如图,有一个直径为6分米的半圆,这个半 圆以A为圆心逆时针方向旋转60°,使B转到B’位置, 那么阴影部分面积是多少平方分米?(π取3.14)
阴影面积: 4×4÷2=8(平方分米) 答:阴影部分面积是8平方分米.
每讲一测5.求下图阴影部分的面积。(单位:厘米)
阴影面积: 4×4÷2=8(平方分米) 答:阴影部分面积是8平方分米.
课堂练习3.如图,有一个直径为6分米的半圆,这个半 圆以A为圆心逆时针方向旋转60°,使B转到B’位置, 那么阴影部分面积是多少平方分米?(π取3.14)
A
B
课堂练习3.如图,有一个直径为6分米的半圆,这个半 圆以A为圆心逆时针方向旋转60°,使B转到B’位置, 那么阴影部分面积是多少平方分米?(π取3.14)
B’
60°
A
B
课堂练习3.如图,有一个直径为6分米的半圆,这个半 圆以A为圆心逆时针方向旋转60°,使B转到B’位置, 那么阴影部分面积是多少平方分米?(π取3.14)
每讲一测1.阴影部分的面积是10平方 厘米,求环形的面积。
课堂练习3.如图,有一个直径为6分米的半圆,这个半 圆以A为圆心逆时针方向旋转60°,使B转到B’位置, 那么阴影部分面积是多少平方分米?(π取3.14)

六年级下册数学课件 小学奥数计算模块分数裂项 全国通用 30张

六年级下册数学课件 小学奥数计算模块分数裂项 全国通用 30张
基本条件
母积子差;母积子和
解题步骤
符合要求,直接裂项、抵消、求解,不满足条件,先构造,再进行求解
例题讲解
找规律:
例题1
1 32 3 2 1 1; 6 23 23 23 2 3 2 53 5 3 1 1; 15 35 35 35 3 5 1 3 1 7 4 1 7 4 1 1 1 1; 28 28 3 4 7 3 4 7 4 7 3 4 7 3 1 42 3 70 1 63
挑战3 有一列分数3,7,13,21, 若[x]表示x的整数部分,{x}表示x的小数部分, 23 4 5
这个数
3
7
4
13
a2016的计算结果.
a2016
2 3 4
找规律:
例题4
5 3 2 3 2 1 1; 6 23 23 23 2 3 7 43 4 3 1 1; 12 3 4 3 4 3 4 3 4 ab ab 20 91 24 143
目录
CONTENTS
1
知识概述
3
总结归纳
2
例题讲解
4
课后作业
知识概述
重要程度
分数裂项是分数简便计算中最为基础的一种,也是考查最多的一种,其核心思想是抵消,尤其是 分数裂差,题目形式比较多,需要重点关注
基本内容
b a b a 1 1;b a b a 1 1 ab ab ab a b ab ab ab a b
2 6 12 20 30
9900
5 5 5 5 5 5 5 3 15 35 63 99 143 195
计算:
例题3
22 42
62
82
102
122
142
13 35 5 7 79 911 1113 1315
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 和倍
• 和÷(倍数+1)=小数
• 小数×倍数=大数
和-小数=大数
• ③差÷(倍数-1)=小数
• 小数×倍数=大数
小数+差=大数
• 2.年龄问题的三个基本特征: • ①两个人的年龄差是不变的;
• ②两个人的年龄是同时增加或者同时 减少的;
• ③两个人的年龄的倍数是发生变化的;
植树问题
基本类型
在直线或者不封闭的曲线上植树,两端都植树
代表物体和抽屉的量,而后依据抽屉原则进行
运算。
定义新运算

基本概念:定义一种新的运算符号,这个
新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,
把已知的数代入,转化为加减乘除的运算,然
后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意
义。

注意事项:①新的运算不一定符合运算规

项数=(末项-首项)÷公差+1;

公差公式:d =(an-a1))÷(n-1);
棵距×段数=总长 棵数=段数+1 在直线或者不封闭的曲线上植树,两端都不植树
棵距×段数=总长 棵数=段数-1 在直线或者不封闭的曲线上植树,只有一端植树
封闭曲线上植树
• 棵距×段数=总长 棵数=段数 • 关键问题 确定所属类型,从而确定棵数与段
数的关系。
鸡兔同笼问题

基本概念:鸡兔同笼问题又称为置换问题、假
• 抽屉原则二:如果把n个物体放在m个抽屉里, 其中n>m,那么必有一个抽屉至少有:

①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;

关键问题:构造物体和抽屉。也就是找到
六年级奥数综合复习
• 和差倍问题
• 已知条件
• 和差问题
几个数的和与差
和倍问题
几个数的和与倍数差
差倍问题
几个数的差与倍数
• 公式适用范围 已知两个数的和,差, 倍数关系
公式
• ①(和-差)÷2=较小数 较小数+差=较大数

和-较小数=较大数
• ②(和+差)÷2=较大数 较大数-差=较小数
• 和-较大数=较小数
• 基本题型:
• ①一次有余数,另一次不足;
• 公式:总份数=(余数+不足数)÷两次每份数的差
• ②当两次都有余数;
• 公式:总份数=(较大余数一较小余数)÷两次每份数 的差
• ③当两次都不足;
• 基本公式:总份数=(较大不足数一较小不足数)÷两 次每份数的差

基本特点:对象总量和总的组数是不变的。
律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使
用。
• 数列求和

等差数列:在一列数中,任意相邻两个数的差是一
定的,这样的一列数,就叫做等差数列。

基本概念:首项:等差数列的第一个数,一般用a1
表示;

项数:等差数列的所有数的个数,一般用n表示;

公差:数列中任意相邻两个数的差,一般用d表示;
设问题,就是把假设错的那部分置换出来;

基本思路:

①假设,即假设某种现象存在(甲和乙一样或
者乙和甲一样):

②假设后,发生了和题目条件不同的差,找出
这个差是多少;

③每个事物造成的差是固定的,从而找出出现
这个差的原因;

④再根据这两个差作适当的调整,消去出现的
差。
• 基本公式:
• ①把所有鸡假设成兔子:鸡数=(兔 脚数×总头数-总脚数)÷(兔脚数-鸡 脚数)

关键问题:确定对象总量和总的组数。
牛吃草问题

基本思路:假设每头牛吃草的速度为“1”
份,根据两次不同的吃法,求出其中的总
草量的差;再找出造成这种差异的原因,
即可确定草的生长速度和总草量。
• 基本特点:原草量和新草生长速度是不变 的;
• 关键问题:确定两个不变的量。
• 基本公式:

生长量=(较长时间×长时间牛头数-较
• ②把所有兔子假设成鸡:兔数=(总 脚数一鸡脚数×总头数)÷(兔脚数一鸡 脚数)
盈亏问题
• 基本概念:一定量的对象,按照某种 标准分组,产生一种结果:按照另一种标 准分组,又产生一种结果,由于分组的标 准不同,造成结果的差异,由它们的关系 求对象分组的组数或对象的总量.
• 基本思路:先将两种分配方案进行比 较,分析由于标准的差异造成结果的变化, 根据这个关系求出参加分配的总份数,然 后根据题意求出对象的总量.
则年份必须能被400整除;

平 年:一年有365天。

①年份不能被4整除;②如果年份能被100整除,
但不能被400整除;
平均数

基本公式:①平均数=总数量÷总份数

总数量=平均数×总份数

总份数=总数量÷平均数

②平均数=基准数+每一个数与基准数
差的和÷总份数
• 基本算法:

①求出总数量以及总份数,利用基本公式
①进行计算.

②基准数法:根据给出的数之间的关系,
确定一个基准数;一般选与所有数比较接近的
数或者中间数为基准数;以基准数为标准,求 所有给出数与基准数的差;再求出所有差的和;
再求出这些差的平均数;最后求这个差的平均
数和基准数的和,就是所求的平均数,具体关 系见基本公式②。
• 抽屉原理

抽屉原则一:如果把(n+1)个物体放在n个抽
屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分
解成三个整数的和,那么就有以下四种情况:

①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1

观察上面四种放物体的方式,我们会发现一个
共同特点:总有那么一个抽屉里有2个或多于2个物
体,也就是说必有一个抽屉中至少放有2个物体。
短时间×短时间牛头数)÷(长时间-短时
间);

总草量=较长时间×长时间牛头数-较长
时间×生长量;
周期循环与数表规律

周期现象:事物在运动变化的过程中,某些特
征有规律循环出现。

周期:我们把连续两次出现所经过的时间叫周
期。

关键问题:确定循环周期。
•பைடு நூலகம்
闰 年:一年有366天;

①年份能被4整除;②如果年份能被100整除,

通项:表示数列中每一个数的公式,一般用an表示;

数列的和:这一数列全部数字的和,一般用Sn表
示.
• 基本公式:通项公式:an = a1+(n-1)d;

通项=首项+(项数一1) ×公差;

数列和公式:sn,= (a1+ an)×n÷2;

数列和=(首项+末项)×项数÷2;

项数公式:n= (an+ a1)÷d+1;
相关文档
最新文档