一次函数的实际应用(分类题型)

合集下载

初中数学一次函数的应用题型分类汇编——销售最大利润问题2(附答案详解) (1)

初中数学一次函数的应用题型分类汇编——销售最大利润问题2(附答案详解) (1)
(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?
2.新春佳节来临,某公司组织10辆汽车装运苹果、芦柑、香梨三种水果共60吨去外地销售,要求10辆汽车全部装满,每辆汽车只能装运同一种水果,且装运每种水果的车辆都不少于2辆,根据下表提供的信息,解答以下问题:
苹果
芦柑
香梨
每辆汽车载货量 吨
7
6
(2)商场决定甲商品以每件20元出售,乙商品以每件50元出售,为满足市场需求,需购进甲、乙两种商品共60件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.
8.端午节是我国的传统节日,人们素有吃粽子的习俗,某商场在端午节来临之际用3000元购进 、 两种粽子1100个,购买 种粽子与购买 种粽子的费用相同,已知 粽子的单价是 种粽子单价的1.2倍.
(1)求 、 两种粽子的单价各是多少?
(2)若计划用不超过7000元的资金再次购买 、 两种粽子共2600个,已知 、 两种粽子的进价不变,求 中粽子最多能购进多少个?
9.某书店用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在书店购买甲种图书的数量比用1400元购买乙种图书的数量少10本.
(2)请你设计获利最大的进货方案,并求出最大利润.
13.某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映:每涨价1元,每星期要少卖出10件.
(1)求甲、乙两种商品的进价各是多少元?
(2)已知甲种商品的售价为240元/件,乙种商品的售价为130元/件,若超市销售甲、乙两种商品共80件,其中销售甲种商品为 件( ),设销售完80件甲、乙两种商品的总利润为 元,求 与 之间的函数关系式,并求出 的最小值.

一次函数的应用题型总结(经典实用!!!!)

一次函数的应用题型总结(经典实用!!!!)

一次函数的应用题型总结(经典实用)用一次函数的解决实际问题。

类型一根据题目中信息建立一次函数关系式或找出符合题意的图像,再根据函数的性质解决问题;1、学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的()2、.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()3.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系用图象表示应为下图中的()1/ 74、从甲地到乙地,汽车先以速度,行驶了路程的一半,随后又以速度()行驶了余下的一半,则下列图象,能反应汽车离乙地的距离(s)随时间(t)变化的函数图象的应为()5.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是( )(A)(B)(C)(6、为加强公民的节水意识,某市对用水制定了如下的收费标准,每户每月用水量不超过l0吨时,水价每吨l.2元,超过l0吨时,超过部分按每吨1.8元收费。

该市某户居民,8月份用水吨(),应交水费元,则与的关系式为__________7、购买作业本每个0.6元,若数量不少于13本,则按8折优惠.(1)写出应付金额y元与购买数量元之间的函数关系式:(2)求购买5本、20本的金额;(3)若需12本作业本,怎样购买合算?8、一个蓄水池有153m的水,用每分钟35.0m的水泵抽水,设蓄水池的含水量为)(3mQ,抽水时间为分钟)(t。

⑴写出Q关于t的函数关系式⑵求自变量t的取值范围⑶画出函数图象2/ 73 / 79.某城市为了尽快改善职工住房条件,积极鼓励个人购房和积累建房基金,决定住公房的职工按基本工资的高低交纳建房公积金,办法如下:(2)设每月基本工资为x 元,交纳公积金后实得金额为y 元,试写出当100<x ≤200时,y 与x 之间的关系式.10、已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元.①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?11、.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a 元收费,超过6立方米时,不超过的部分每立方米仍按a 元收费,超过的部分每立方米按c 元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元) (1) 求a,c 的值(2) 当x ≤6,x ≥6时,分别写出y 于x 的函数关系式(3) 若该户11月份用水量为8立方米,求该4 / 7户11月份水费是多少元?类型二 根据函数图像先求出各段函数的解析式,然后根据实际意义解决问题。

河南数学中考题型汇总一次函数的实际应用题型练习含答案

河南数学中考题型汇总一次函数的实际应用题型练习含答案

河南数学中考题型汇总一次函数的实际应用题型练习含答案类型 1 方案选取型问题角度1 图象类1.甲、乙两家樱桃采摘园的樱桃品质相同,售价也相同.“五一”假期期间,两家采摘园推出如下优惠方案:甲园:每名游客进园需购买20元的门票,采摘的樱桃六折优惠;乙园:游客进园不需购买门票,采摘的樱桃不超过6 kg时,按原价销售,超过6 kg 时,超过的部分五折优惠.设当游客的采摘量是x kg时,在甲园所需总费用为y1元,在乙园所需总费用为y2元,如图所示是y1,y2与x之间的函数关系图象.(1)优惠前,甲、乙两家采摘园的樱桃的售价是元/kg.(2)求y1,y2关于x的函数解析式.(3)若某游客计划采摘m kg樱桃,则选择哪个采摘园更省钱?角度2 文字类2.某家具厂生产一种餐桌和椅子,每张餐桌的售价为400元,每把椅子的售价为80元,为促进销售,该家具厂制定了如下两种优惠方案:方案一:买一张餐桌送一把椅子;方案二:餐桌和椅子均打九折销售.某饭店准备在该家具厂购买餐桌50张,购买椅子x(x>50)把.设按方案一购买需要花费y1元,按方案二购买需要花费y2元.(1)分别求出y1,y2与x之间的函数关系式.(2)当x取何值时,两种方案所需费用相同?(3)当x=100时,选择方案比较合算;请你设计出一种更省钱的购买方式,并通过计算说明理由.类型 2 方案设计型问题角度1 费用问题3.[2022福建]在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰, 问可购买绿萝和吊兰分别多少盆.(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.角度2 利润问题4.[2022江苏苏州]某水果店经销甲、乙两种水果,两次购进水果的情况如下表所示:进货批次甲种水果质量/千克乙种水果质量/千克总费用/元第一次6040 1 520第二次3050 1 360(1)求甲、乙两种水果的进价.(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3 360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大..利润不低于800元,求正整数m的最大值.类型 3 图象型问题角度1 行程问题5.[2022浙江湖州]某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/时,轿车行驶的速度是60千米/时.(1)轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式.(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.角度2 其他问题6.[2022商丘二模]近年来随着科技的发展,药物制剂正朝着三效(高效、速效、长效)及三小(毒性小、副作用小、剂量小)的方向发展.缓释片是通过一些特殊的技术和手段,使药物在体内持续释放,从而使药物在体内能长时间的维持有效血药浓度,使药物作用更稳定持久.某医药研究所研制了一种具有缓释功能的新药,在试验药效时发现:成人按规定剂量服用后,检测到从第0.5小时起开始起效,第2小时起每毫升血液中含药量达到最高12微克,并维持这一最高值至第4小时结束,接着开始衰退,每毫升血液中含药量y(微克)与时间x(小时)的函数关系如图,并发现衰退时y与x成反比例函数关系.(1)填空:①当0.5≤x≤2时,y与x之间的函数关系式为;②当x>4时,y与x之间的函数关系式为.(2)如果每毫升血液中含药量不低于4微克时有效,求一次服药后的有效时间是多少小时.7.现有甲、乙两个底面积不同的圆柱形水槽,如图(1).将甲槽中的水匀速注入乙槽,甲、乙水槽中水的深度y甲(cm),y乙(cm)与注水时间x(min)之间的函数关系图象如图(2)所示(图象不完整).(1)乙槽的底面积是甲槽底面积的倍.(2)求y甲与x之间的函数关系式.(3)小文说:“注水3 min时,甲槽中的水比乙槽中的水深5 cm.”睿睿说:“注水4 min时,两个水槽中的水深度相等.”他们的说法对吗?请说明理由.图(1)图(2)类型 4 物资调运问题8.[2022山东济宁]某运输公司安排甲、乙两种货车24辆恰好一次性将328 t的物资运往A,B两地,两种货车载重量及到A,B两地的运输成本如下表:货车类型载重量/(t/辆)运往A地的成本/(元/辆)运往B地的成本/(元/辆)甲种16 1 200900乙种12 1 000750(1)求甲、乙两种货车分别用了多少辆.(2)如果前往A地的甲、乙两种货车共12辆,所运物资不少于160 t,其余货车将剩余物资运往B地.设甲、乙两种货车到A,B两地的总运输成本为w元,前往A 地的甲种货车为t辆.①写出w与t之间的函数解析式.②当t为何值时,w最小?最小值是多少?答案:1.(1)10解法提示:由题图可知,当x=6时,y2=60,故优惠前,甲、乙两家采摘园的樱桃的售价是60÷6=10(元/kg).(2)由题意得,y1=20+10×0.6x=6x+20.当x≤6时,y2=10x,当x>6时,y2=10×6+(x-6)×10×0.5=5x+30,故y2={10x,5x+30.(3)当x ≤6时,令6x+20=10x ,解得x=5; 当x>6时,令6x+20=5x+30,解得x=10.结合图象分析可知,当m<5或m>10时,选择乙园更省钱; 当5<m<10时,选择甲园更省钱;当m=5或m=10时,选择甲园和选择乙园所需总费用相同. 2.(1)根据题意,得y 1=50×400+(x-50)×80=80x+16 000,y 2=50×400×0.9+80x ×0.9=72x+18 000. (2)令y 1=y 2,则80x+16 000=72x+18 000, 解得x=250.答:当x=250时,两种方案所需费用相同. (3)一先按方案一购买50张餐桌和50把椅子,再按方案二购买50把椅子. 理由:所设计的购买方式需要花费50×400+50×80×0.9=23 600(元), 只选择方案一需要花费24 000元. 23 600<24 000,故先按方案一购买50张餐桌和50把椅子,再按方案二购买50把椅子更省钱. 3.(1)设购买绿萝x 盆,吊兰y 盆. 根据题意,得{x +y =46,9x +6y =390,解得{x =38,y =8. 因为38>2×8,所以答案符合题意. 答:可购买绿萝38盆,吊兰8盆.(2)设购买绿萝m 盆,吊兰(46-m )盆,购买两种绿植的总费用为W 元, 则W=9m+6(46-m )=3m+276.根据题意,得m ≥2(46-m ),解得m ≥923. 因为3>0,所以W 随m 的增大而增大.又m 为整数,所以m 取最小值31时,W 的值最小. 当m=31时,W=3×31+276=369.答:购买两种绿植总费用的最小值为369元.4. (1)设甲种水果的进价为每千克a 元,乙种水果的进价为每千克b 元.根据题意,得{60a +40b =1520,30a +50b =1360,解得{a =12,b =20.答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元. (2)设水果店第三次购进x 千克甲种水果,则购进(200-x )千克乙种水果. 根据题意,得12x+20(200-x )≤3 360, 解得x ≥80.设获得的利润为w 元.根据题意,得w=(17-12)×(x-m )+(30-20)×(200-x-3m )=-5x-35m+2 000.∵-5<0,∴w 随x 的增大而减小,∴当x=80时,w 的最大值为-35m+1 600. 根据题意,得-35m+1 600≥800, 解得m ≤1607, ∴正整数m 的最大值为22.5.(1)设轿车行驶的时间为x 小时,则大巴行驶的时间为(x+1)小时. 根据题意,得60x=40(x+1),解得x=2, 则60x=60×2=120.答:轿车出发2小时后追上大巴,此时两车与学校相距120千米. (2)∵轿车追上大巴时,大巴行驶了3小时, ∴点B 的坐标是(3,120).由题意,得点A 的坐标为(1,0).设AB 所在直线的解析式为s=kt+b ,则{3k +b =120,k +b =0,解得{k =60,b =−60,∴AB 所在直线的解析式为s=60t-60. (3)由题意,得40(a+1.5)=60×1.5,解得a=34,∴a 的值为34. 6.(1)①y=8x-4 ②y=48x解法提示:①当0.5≤x ≤2时,设y=kx+b ,将(0.5,0),(2,12)分别代入,得{0.5k +b =0,2k +b =12,解得{k =8,b =−4.故当0.5≤x ≤2时,y 与x 之间的函数关系式为y=8x-4.②当x>4时,设y=m x, 把(4,12)代入,得12=m 4,解得m=48. 故当x>4时,y 与x 之间的函数关系式为y=48x . (2)把y=4代入y=8x-4,得4=8x-4, 解得x=1.把y=4代入y=48x,得x=12.故一次服药后的有效时间为12-1=11(小时). 7. (1)2解法提示:由题图(2)可知,甲槽中水面下降的速度为20÷(6-2)=5(cm/min ), 乙槽中水面上升的速度为5÷2=2.5(cm/min ). 设甲槽的底面积为m ,乙槽的底面积为n ,则5m=2.5n , 故n=2m ,即乙槽的底面积是甲槽底面积的2倍. (2)设y 甲=kx+b ,将A (2,20),B (6,0)分别代入,得{2k +b =20,6k +b =0,解得{k =−5,b =30,故y 甲=-5x+30.(3)小文的说法不对,睿睿的说法对. 理由:设y 乙=cx , 将C (2,5)代入,可得c=52, 故y 乙=52x. 当x=3时,y 甲=-5×3+30=15, y 乙=52×3=7.5. 15-7.5=7.5≠5,故小文的说法不对. 令y 甲=y 乙,即-5x+30=52x ,解得x=4, 故睿睿的说法对.8.(1)设甲种货车用了x 辆,则乙种货车用了(24-x )辆, 根据题意,得16x+12(24-x )=328, 解得x=10,则24-x=14.答:甲种货车用了10辆,乙种货车用了14辆.(2)①由题意,得w=1 200t+1 000(12-t )+900(10-t )+750×[14-(12-t )]=50t+22 500.②∵16t+12(12-t )≥160,t ≥0,12-t ≥0,10-t ≥0,14-(12-t )≥0,∴4≤t ≤10. ∵50>0,∴w 随着t 的增大而增大,∴当t=4时,w 最小,最小值为50×4+22 500=22 700.。

第05讲一次函数的应用(6类热点题型讲练)(原卷版)

第05讲一次函数的应用(6类热点题型讲练)(原卷版)

第05讲一次函数的应用(6类热点题型讲练)1、掌握一次函数与一元一次方程之间的关系;2、掌握单个一次函数图象的应用;3、掌握两个一次函数图象的应用;4、能利用函数图象解决数学问题.知识点01 一元一次方程与一次函数的关系1)一元一次方程可转化为一般式:ax+b=02)一次函数为:y=kx+b的形式;当y=0时,一次函数x的值就是一元一次方程的解。

y=0时x的值,即一次函数与x轴的交点横坐标,就是对应一元一次方程的解3)每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标.知识点02 一次函数的实际应用1)数学建模的一般思路数学建模的关键是将实际问题数学化,从而得到解决问题的最佳方案、最佳策略.在建模的过程中,为了既合乎实际问题又能求解,这就要求在诸多因素中抓住主要因素进行抽象化简,而这一过程恰是我们的分析、抽象、综合、表达能力的体现.函数建模最困难的环节是将实际情景通过数学转化为什么样的函数模型. 2)正确认识实际问题的应用在实际生活问题中,如何应用函数知识解题,关键是建立函数模型,即列出符合题意的函数解析式,然后根据函数的性质综合方程(组)、不等式(组)及图象求解.注:要注意结合实际,确定自变量的取值范围,这是应用中的难点,也是中考的热门考点.3)选择最简方案问题分析问题的实际背景中包含的变量及对应关系,结合一次函数的解析式及图象,通过比较函数值的大小等,寻求解决问题的最佳方案,体会函数作为一种数学模型在分析解决实际问题中的重要作用.题型01 已知直线与坐标轴交点求一元一次方程的解22023()0y kx b k =+≠x y 题型02 利用图象法解一元一次方程【典例2】(2023春·河北石家庄·八年级校考期中)数形结合是解决数学问题常用的思想方法.如图,直线21y x =-与直线()0y kx b k =+≠相交于点()23P ,.根据图像可知,关于x 的方程21x kx b -=+的解是( )A .1x =B .2x =C .3x =D .4x =【变式1】(2023春·山东烟台·七年级统考期末)如图,直线5y x =+和直线y ax b =+相交于点(2025)P ,,则方程5x ax b +=+的解是( )A .25x =B .20xC .15x =D .5x =【变式2】(2023春·河南商丘·八年级统考期末)如图,直线4y x =+和直线y ax b =+相交于点P ,根据图像可知,关于x 的方程4x ax b +=+的解是( )A .16x =或20xB .20xC .16x =D .16x =-题型03 一次函数的应用——分配方案问题【典例3】(2023春·云南临沧·八年级统考期末)为全面推进乡村振兴,某省实行城市援助乡镇的政策.该省的A 市有120吨物资,B 市有130吨物资.经过调研发现该省的甲乡需要140吨物资,乙乡需要110吨物资.于是决定由A 、B 两市负责援助甲、乙两乡、已知从A 市往甲、乙两乡运送物资的运费分别为300元/吨、150元/吨,从B 市往甲、乙两乡运送物资的运费分别为200元/吨、100元/吨.(1)设从A 市往甲乡运送x 吨物资,从A 、B 两市向甲、乙两乡运送物资的总运费为y 元,求y 与x 的函数解析式.(2)请设计运费最低的运送方案,并求出最低运费.【变式1】(2023春·河南郑州·八年级河南省实验中学校考期中)4月23日是“世界读书日”,某书店在这一天举行了购书优惠活动,有两种优惠方案可以选择:方案一:享受当天购书按标价总额8折的普通优惠;方案二:50元购买一张“书香城市纪念卡”,当天凭卡购书,享受标价总额在普通优惠的基础上再打7.5折的优惠.设小明当天购书标价总额为x (50)x >元,方案一应付1y 元,方案二应付2y 元.(1)当150x =时,请通过计算说明选择哪种购书方案更划算;(2)直接写出12,y y 与x 的函数关系式;(3)小明如何选择购书方案才更划算?【变式2】(2023春·河南南阳·八年级统考阶段练习)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求k 1和b 的值,并说明它们的实际意义;(2)求打折前的每次健身费用和2k 的值;(3)八年级学生小华计划暑期前往该俱乐部健身7次,应选择哪种方案所需费用更少?请说明理由.题型04一次函数的应用——最大利润问题(1)求购进A,B两种模型每件分别需多少元?(2)若销售每件A种模型可获利润20元.每件B种模型可获利润30元.商店用1万元购进模型,且购进A 种模型的数量不超过B种模型数量的8倍,设总盈利为W元,购买B种模型b件,请求出W关于b的函数关系式,并求出当b为何值时,销售利润最大,并求出最大值.题型05一次函数的应用——行程问题【典例5】(2023春·山东淄博·七年级统考期中)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发开往乙地.如图,线段OA表示货车离甲地距离(y千米)与时间(x小时)之间的函数关系;折线BCD表示轿车离甲地距离(y千米)与(x小时)之间的函数关系.请根据图象解答下列问题:(1)求线段CD对应的函数解析式.(2)货车从甲地出发后多长时间被轿车追上?此时离甲地的距离是多少千米?(3)轿车到达乙地后,货车距乙地多少千米.【变式1】(2023·河北沧州·校考模拟预测)航模兴趣小组在操场上进行航模试验,甲型航模从距离地面20米处出发,以a米/分的速度匀速上升,乙型航模从距离地面50米处同时出发,以15米/分的速度匀速上升,经过6分钟,两架航模距离地面高度都是b米,两架航模距离地面的高度y米与时间x分钟的关系如图.两架航模都飞行了20分钟.(1)直接写出a、b的值;(2)求出两架航模距离地面高度y甲、y乙(米)与飞行时间x(分钟)的函数关系式;(3)直接写出飞行多长时间,两架航模飞行高度相差25米?【变式2】(2023春·江苏淮安·九年级校考期中)如图1,甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,甲车到达C地后因有事立刻按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图像信息解答下列问题:(1)乙车的速度是千米/时,乙车行驶小时到达A地;(2)求甲车从C地按原路原速返回A地的过程中,甲车距它出发地的路程y与它出发的时间x的函数关系式;(3)求甲车出发多长时间两车相距60千米?题型06一次函数的应用——几何问题【典例6】(2023春·河南南阳·八年级校考阶段练习)如图,正方形ABCD的边长为4,P为正方形边上一动→→→,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则点,运动路线是D C B A下列图象能大致反映y与x的函数关系的是()A .B .C .D .【变式1】(2021春·福建漳州·七年级福建省漳州第一中学校考期中)如图,已知动点P 从B 点出发,以每秒2cm 的速度在图①的边(相邻两边互相垂直)上按B C D E F A →→→→→的路线移动,相应的ABP的面积()2cm S 与点P 的运动时间()t s 的图象如图②所示,且6cm AB =.当230cm S =时,t = .【变式2】(2023春·安徽宿州·七年级校考期中)如图,在长方形ABCD 中,8BC =,6CD =,点E 为边AD 上一动点,连接CE ,随着点E 的运动,DCE △的面积也发生变化.(1)写出DCE △的面积y 与AE 的长()08x x <<之间的关系式;(2)当3x =时,求y 的值.A .0x =B .3x =C .2x =-D .3x =-1A .湖水面大气压强为76.0cmHgB .湖水深23m 处的压强为230cmHg二、填空题5.(2022秋·江西景德镇·八年级统考期中)如图,一次函数y kx b =+的图象与x 轴、y 轴分别交于点()30A -,和点()0,2B ,则关于x 的一元一次方程0kx b +=的解为x = .6.(2023·辽宁葫芦岛·统考二模)如图,直线3y x 与直线y kx b =+交于点(),2A m ,则关于x 的方程3kx b x +=+的解为 ;7.(2023春·山东烟台·六年级统考期末)某菜农想围成一个如图所示的长方形ABCD 菜园,菜园的一边利用足够长的墙,已知长方形菜园ABCD 的另外三边总长度恰好为48米,设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间关系表达式是 .8.(2023春·浙江杭州·九年级校联考阶段练习)为运输一批医用物质,一辆货车先从甲地出发运送物资到乙地,稍后一辆轿车从甲地急送专家到乙地.已知甲、乙两地的路程是360km ,货车行驶时的速度是60/h km ,两车离甲地的路程s (km )与时间t (h )的函数图象如图,则=a ;轿车比货车早 小时到达乙地.三、解答题9.(2023春·山东聊城·八年级校考阶段练习)某健身体验中心为答谢新老会员举行春日大回馈活动,特推出两种“春季唤醒计划活动方案.方案1:顾客不购买会员卡,每次健身收费20元.方案2:顾客购买会员卡,每张会员卡100元,每张会员卡仅限本人使用一年,每次健身收费10元.设小宇一年来此健身体验中心健身的次数为x (次),使用方案1的费用为y 1(元),使用方案的费用为y 2(元).(1)请直接写出y 1,y 2与x 之间的函数表达式;(2)请根据小宇一年内前往该健身房训练的次数确定哪种方案比较合算.10.(2023春·陕西榆林·九年级校考期中)陕西周至,被誉为“猕猴桃之乡”,世界上最大的猕猴桃种植基地.某水果经销商计划从种植专业户李大爷处购进甲,乙两种新品猕猴桃进行销售.已知李大爷处乙种猕猴桃的进价为8元/千克:李大爷对甲种猕猴桃的价格根据进货量给予优惠,设该经销商购进甲种猕猴桃x 千克,购进甲种猕猴桃所需费用为y 元,y 与x 之间的函数关系如图所示.(1)求y 与x 之间的函数关系式;(2)若该经销商计划从李大爷处一次性购进甲,乙两种猕猴桃共200千克,且甲种猕猴桃不少于45千克,但又不超过80千克.如何分配甲,乙两种猕猴桃的购进量,才能使该经销商购进这两种猕猴桃付款总金额w (元)最少?11.(2023春·河南漯河·八年级校考期末)为响应习近平总书记的号召,鼓励学生多读书,某图书馆针对学生推出两种新的借阅优惠方案.甲方案:凭学生证办理借阅卡,充值超过20元时,超过多少送多少;乙方案:凭学生证办理会员卡,充值每满40元再送20元.设借阅时间为x 天,甲、乙两种方案每本书的借阅租金分别表示1y (元),2y (元)12y y ,关于x 的所数图象如图所示.(1)分别直接写出12y y ,与x 之间的函数关系式;(2)请求出图中线段AB 的长并说明它的实际意义;(3)八年级小兰准备用40元钱在该图书馆借阅一本书,选择哪种方案办卡更划算?说明理由.12.(2021春·福建漳州·七年级福建省漳州第一中学校考期中)某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以小明3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.如图中线段AB ,OB 分别表示父子俩送票、取票过程中,离体育馆的路程s (米)与所用时间t (分钟)之间的图象,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变).(1)图中可知小明家离体育馆_____________米,父子俩在出发后_____________分钟相遇.(2)你能求出父亲与小明相遇时,距离体育馆还有多远?(3)小明能否在比赛开始之前赶回体育馆?13.(2023春·河南商丘·八年级校联考期末)2022年河南省全民健身(线上)运动会最终各奖项于12月20日公布,此次盛会充分展示疫情防控常态化下我省全民健身开展情况,某健身房于此推出“云健身”服务,针对特殊人群开展活动.活动方案如下:方案一:不购买“云VIP ”,每次收费10元;方案二:购买“云VIP ”,(1)k=;购买“云VIP”需元;B款汴绣打几折出售时,A,B两款沐绣的销售总额恰好实现盈亏平衡?。

初中数学一次函数的应用题型分类汇编——销售最大利润问题2(附答案详解)

初中数学一次函数的应用题型分类汇编——销售最大利润问题2(附答案详解)

初中数学一次函数的应用题型分类汇编——销售最大利润问题3(附答案详解) 1.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y (千克)与销售单价x (元/千克)之间为一次函数关系,如图所示.(1)当2080x ≤≤时,y = ;(2)要使销售利润达到800元,销售单价应定为每千克多少元.2.“低碳生活,绿色出行”,自行车成为人们喜爱的交通工具.某品牌共享自行车在温州的投放量自2017年起逐月增加,据统计,该品牌共享自行车1月份投放了640辆,3月份投放了1000辆.(1)该品牌共享自行车前3个月的投放量的月平均增长率相同,则这三个月一共投放了多少辆自行车?(2)考虑到增强客户体验,该品牌共享自行车准备投入3万元向自行车生产厂商定制了一批两种规格比较高档的自行车,之后投放到某高端写字楼区域.已知自行车生产厂商生产A 型车的成本价为300元/辆,售价为500元/辆,生产B 型车的成本价为700元/辆,售价为1000元/辆.根据指定要求,B 型车的数量需超过12辆,且A 型车的数量不少于B 型车的2倍.自行车生产厂商应如何设计生产方案才能获得最大利润?最大利润是多少?3.某公司在北部湾经济区农业示范基地采购A ,B 两种农产品,已知A 种农产品每千克的进价比B 种多2元,且用24000元购买A 种农产品的数量(按重量计)与用18000元购买B 种农产品的数量(按重量计)相同.(1)求A ,B 两种农产品每千克的进价分别是多少元?(2)该公司计划购进A ,B 两种农产品共40吨,并运往异地销售,运费为500元/吨,已知A 种农产品售价为15元/kg ,B 种农产品售价为12元/kg ,其中A 种农产品至少购进15吨且不超过B 种农产品的数量,问该公司应如何采购才能获得最大利润,最大利润是多少?4.五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.5.一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.()1直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;()2若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?6.某经销商从市场得知如下信息:某品牌空调扇某品牌电风扇进价(元/台)700 100售价(元/台)900 160他现有40000元资金可用来一次性购进该品牌空调扇和电风扇共100台,设该经销商购进空调扇x台,空调扇和电风扇全部销售完后获得利润为y元.(1)求y关于x的函数解析式;(2)利用函数性质,说明该经销商如何进货可获利最大?最大利润是多少元?7.甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏“元/(吨、千米)”表示每吨水泥运送1千米所需人民币)(本题满分10分)路程/千米运费(元/吨、千米)甲库乙库甲库乙库A地20 15 12 12B地25 20 10 8(1)设甲库运往A地水泥x吨,求总运费y(元)关于x(吨)的函数关系式;(2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?8.在2019春季环境整治活动中,某社区计划对面积为1600m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,甲队每天能完成绿化的面积是80 m2,乙队每天能完成绿化面积的40 m2(1)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y关于x的函数解析式;(2)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过25天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.9.一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.10.总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,甲店一天可售出20件,每件盈利40元;乙店一天可售出32件,每件盈利30元.经调查发现,每件衬杉每降价1元,甲、乙两家店一天都可多售出2件.设甲店每件衬衫降价a元时,一天可盈利y1元,乙店每件衬衫降价b元时,一天可盈利y2元.(1)当a=5时,求y1的值.(2)求y2关于b的函数表达式.(3)若总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和最大,最大是多少元?11.武汉市雾霾天气严重,环境治理已刻不容缓,武汉市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台,经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台,若供应商规定这种空气净化器售价不低于330元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式.(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?(3)当售价x(元/台)满足什么条件时,商场每月销售这种空气净化器所获得的利润w(元)不低于70000元?12.某书店在“读书节”之前,图书按标价销售,在“读书节”期间制定了活动计划.(1)“读书节”之前小明发现:购买5本A图书和8本B图书共花279元,购买10本A 图书比购买6本B图书多花162元,请求出A、B图书的标价;(2)“读书节”期间书店计划用不超过3680元购进A、B图书共200本,且A图书不少于50本,A、B两种图书进价分别为24元、16元;销售时准备A图书每本降价1.5元,B图书价格不变,那么书店如何进货才能使利润最大?13.某商店用2500元采购A型商品的件数是用750元采购B种商品件数数量的2倍,已知一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若商店购进A,B型商品共150件,已知A型商品的售价为30元/件,B型商品的售价为25元/件,且全部售出,设购进A型商品m件,求这批商品的利润W(元)与m之间的函数关系式;(3)在(2)的条件下,若A型商品的件数不少于B型商品的4倍,请你设计获利最大的进货方案,并求最大利润.14.城区某新建住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.(1)若购买树苗共用21000元,问甲、乙两种树苗应各买多少株?(2)据统计,甲、乙两种树苗每株树苗对空气的净化指数分别为0.2和0.6,问如何购买甲、乙两种树苗才能保证该小区的空气净化指数之和等于90?15.某超市准备购进甲、乙两种品牌的文具盒,甲、乙两种玩具盒的进价和售价如下表,预计购进乙品牌文具盒的数量y(个)与甲品牌玩具盒数量x(个)之间的函数关系如图所示.甲乙进价(元)15 30售价(元)20 38(1)y与x之间的函数关系式是;(2)若超市准备用不超过6000元购进甲、乙两种文具盒,则至少购进多少个甲种文具盒?(3)在(2)的条件下,写出销售所得的利润W(元)与x(个)之间的关系式,并求出获得的最大利润.16.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?17.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16 000元采购A型商品的件数是用7 500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B 型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数解析式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.18.某商场计划购进A、B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?19.一水果店主分两批购进同一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主购进第一批这种水果每箱的单价是多少元?(2)该水果店主计划两批水果的售价均定为每千克4元,每箱10千克,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a%销售,结果还是出现了2%的损耗,但这两批水果销售完后仍赚了不低于2346元,求a的最大值.20.随着生活水平的提高,人们对饮水品质的需求越来越高,某公司根据市场需求代理A,B两种型号的净水器,其中A型净水器每台的利润为400元,B型净水器每台的利润为500元.该公司计划再一次性购进两种型号的净水器共100台,其中B型净水器的进货量不超过A 型净水器的2倍,设购进A 型净水器x 台,这100台净水器的销售总利润为y 元.(1)求y 关于x 的函数关系式;(2)该公司购进A 型、B 型净水器各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A 型净水器出厂价下调a (0<a <150)元,且限定公司最多购进A 型净水器60台,若公司保持同种净水器的售价不变,请你根据以上信息,设计出使这100台净水器销售总利润最大的进货方案.21.在某水果店进行了一次促销活动,一次性购买A 种水果的单价y (元)与购买量x (千克)的函数关系如图.(1)当05x <≤时,单价y 为_______元.(2)求图中第②段函数图象的解析式,并指出x 的取值范围.(3)促销活动期间,张老师计划去该店买A 种水果10千克,那么张老师共需花费多少钱?22. 黄石知名特产“黄石港饼”“白鸭牌松花皮蛋”“珍珠果米酒”一直以来享有美誉,深受人们喜爱.端午节快到了,为了满足市场需求,某公司组织20辆汽车装运港饼、皮蛋、米酒共120吨去外地销售,按计划20辆汽车都要装满,且每辆汽车只能装运同一类食品,根据下表提供的信息解答以下问题. 港饼 皮蛋 米酒每辆汽车载重量(吨) 8 65 每吨食品获利(万元) 0.20.4 0.6(1)设装运港饼的车辆为x 辆,装运皮蛋的车辆为y 辆,求y 与x 之间的函数关系式;(2)此次销售获利为W 万元,试求W 关于x 的函数关系式;(3)如果装运每种食品的车辆都不少于2辆,那么怎样安排车辆能使此次销售获利最大?并求出最大利润.23.我市从2018 年1 月1 日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8 万元购进A、B 两种型号的电动自行车共30 辆,其中每辆B 型电动自行车比每辆A 型电动自行车多500 元.用5 万元购进的A 型电动自行车与用 6 万元购进的B 型电动自行车数量一样.(1)求A、B 两种型号电动自行车的进货单价;(2)若A 型电动自行车每辆售价为2800 元,B 型电动自行车每辆售价为3500 元,设该商店计划购进A 型电动自行车m 辆,两种型号的电动自行车全部销售后可获利润y 元.写出y 与m 之间的函数关系式;(3)该商店如何进货才能获得最大利润;此时最大利润是多少元.24.A城有某种农机30台,B城有该农机40台.现要将这些农机全部运往C、D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C、D两乡运送农机的费用分别为250元/台和200元/台,从B城往C、D两乡运送农机的费用分别为150元/台和240元/台(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并直接写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(100<a<250)作为优惠,其他费用不变.在(2)的条件下,若总费用最小值为10740元,直接写出a的值.25.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:信息三:按件计酬:每生产一件甲产品可得3.00元,每生产一件乙产品可得5.60元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)小王该月最多能得多少元,此时生产甲、乙两种产品分别多少件.26.黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A ,B 两种树木共100棵进行校园绿化升级,经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元.(1)求A 种,B 种树木每棵各多少元;(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.27.21.(2013年四川攀枝花8分)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元;(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案;(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大;最大利润是多少元.28.某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资. 已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为120元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x (元),年销售量为y (万件),年获利为z (万元)。

2024年中考数学一轮复习考点精讲课件—一次函数的应用

2024年中考数学一轮复习考点精讲课件—一次函数的应用
点的坐标为

【详解】解:如图, = = 6,∵ ∠ = 60°,∴ 4,3 3 ,
∵点在边上且横坐标为8,∴ 8, 3 , 10,3 3 ,
∵直线过定点,∴ ⊥ 时,点到所在直线的距离取得最大值.
∵ 0, −
5 3
3
∴ 3 = 8 −
, 8, 3 ,设解析式为 = −
考点一 一次函数的实际应用
【变式】(2021·河南平顶山·统考二模)小明和小亮相约从学校前往博物馆,其中学校距离博物馆900米.小明因有
事,比小亮晚一些出发,图中1 = 1 、2 = 2 + 分别是小明、小亮行驶的路程与小明追赶时间之间的关系.
(1)观察图象可知,小亮比小明先走了_______米.
2
20
故答案为:5;3; 3
20
km;
3
考点一 一次函数的实际应用
题型03 行程问题
【例3】(2022·浙江绍兴·统考一模)绍兴首条智慧快速路于今年3月19日正式通车.该快速路上,两站相距
20km,甲、乙两名杭州亚运会会务工作志愿者从站出发前往站附近的比赛场馆开展服务.甲乘坐无人驾驶小
巴,乙乘坐无人驾驶汽车.图中,分别表示甲、乙离开站的路程 km 与时间 min 的函数关系的图象.
(2)求1 、2 的值,并解释2 的实际意义.
(3)通过计算说明,谁先到博物馆.
【详解】
(1)根据图像可以看出小明走的时候,小亮已经走了 100 米.故答案为:100.
(2)将 = 20, = 60代入1 = 1 ,得60 = 201 ,∴1 = 3;
分别将 = 0时, = 100; = 20时, = 140代入2 = 2 + 得
∴A种物品购买7个,B种物品购买13个最省钱.

题型七 第21题一次函数的实际应用

题型七 第21题一次函数的实际应用

题型七第21题一次函数的实际应用类型一文字型(2019、2015、2014、2012.21)【类型解读】文字型函数实际应用题近10年考查4次,分值7~8分.出题形式:气温随高度变化问题(1次)、阶梯收费问题(2次)、空气含氧量问题(1次),设问均为两问.考查点:求一次函数表达式(必考)、解一元一次方程(4次).针对训练1.某中学图书馆为了丰富馆藏图书,更好服务师生,计划用不超过5000元的资金购买A、B两种图书80本,且购买A种图书不超过45本.已知A种图书售价为50元/本,B种图书售价为70元/本,设购进A 种图书x本,购书总费用为y元.(1)求y与x之间的函数关系式并写出x的取值范围;(2)已知购买A、B两种图书刚好花了4920元,问购买B种图书多少本?2. (2019西工大附中模拟)碑林书法社小组用的书法练习纸(毛边纸)可以到甲商店购买,也可以到乙商店购买.已知两商店的标价都是每刀20元(每刀100张),但甲商店的优惠条件是:若购买不超过10刀,则按标价卖,购买10刀以上,从第11刀开始按标价的七折卖;乙商店的优惠条件是:购买一只9元的毛笔,从第一刀开始按标价的八五折卖.设购买刀数为x刀,在甲商店购买所需要费用为y1元,在乙商店购买所需要费用为y2元.(1)写出y1、y2与x(x>0)之间的函数关系式;(2)求在乙商店购买所需总费用小于甲商店购买所需总费用时x的取值范围.3.某长途汽车客运公司规定旅客可免费携带一定重量的行李,当行李的重量超过规定时,需付的行李费y(元)是行李重量x(kg)的一次函数.当行李重量为20 kg时需付行李费2元,行李重量为50 kg时需付行李费8元.(1)当行李的重量x超过规定时,求y与x之间的函数关系式;(2)求旅客最多可免费携带行李的重量.4.(2019陕西定心卷)陕西省某甜瓜基地因“规模大、品质好、品牌亮”吸引了周边大批水果批发商订购,该基地对需要送货上门且购买量在1000 kg~3000 kg(含1000 kg和3000 kg)的客户制定了两种销售方案(客户只能选择其中一种方案),已知该基地甜瓜批发价随市场变化波动,设某天批发价为每千克m元.方案一:每千克(m+0.5)元,免运费;方案二:每千克m元,客户需支付运费1200元.(1)请分别写出这一天按方案一、方案二购买这种甜瓜的应付款y(元)与购买量x(kg)之间的函数表达式;(2)当购买量x在什么范围时,选择方案二比方案一付款少;(3)已知5月某天批发价为每千克8元,某水果批发商计划用25000元在这一天购买尽可能多的这种甜瓜并需要送货上门,那么他在这两种方案中,应选择哪一种方案?类型二 图象型(2016、2013.21)【类型解读】图象型函数实际应用题近10年考查2次,分值为7分.出题形式:均为行程问题,设问为2~3问,其中单程问题(1次),往返程问题(1次).考查点:待定系数法求一次函数表达式(必考)、解一元一次方程(必考).1. (2019绍兴)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x ≤150时,求1千瓦时的电量汽车能行驶的路程;(2)当150≤x ≤200时,求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.第1题图2. “五一小长假”期间,小明一家乘车去离家80千米的牛背梁旅游,出发前1.5小时匀速行驶了30千米,之后又匀速行驶了1小时到达旅游景区,他们在景区游玩了4小时后乘车回家.他们离家的距离y (千米)与时间x (小时)之间的函数图象如图所示.(1)求AB 段对应的函数关系式;(2)小明一家出发多长时间离家的距离为40千米?第2题图3. 暑假期间,小刚一家乘车去离家380 km 的某景区旅游,他们离家的距离y (km)与汽车行驶时间x(h)针对训练之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数关系式;(3)小刚一家出发2.5 h时离目的地多远?第3题图4.(2019济宁)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.第4题图类型三表格型(2018、2017、2011、2010.21)【类型解读】表格型函数实际应用题近10年考查4次,分值为7~8分.出题形式:利润问题(3次)、方案设计(1次),设问均为两问.考查点:求一次函数表达式(必考)、解一元一次不等式(必考).1. (2019西安交大附中模拟)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.该公司准备投入资金y 万元,购买A ,B 两种机器人共8台,其中购进A 型机器人x 台.下表是某科技公司提供给快递公司有关两种型号的机器人分拣速度和单价的信息:型号分拣速度 单价 A1200件/小时6万元/台 B 1000件/小时4万元/台(1)求y 关于x 的函数关系式;(2)若要使这8台机器人每小时分拣快递件数总和不少于8300件,该公司至少需要投入资金多少万元?2. (2019西安高新一中模拟)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A 、B 两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A 、B 两个果园分别需用110吨和70吨有机化肥.两个仓库到A 、B 两个果园的路程如表所示:设甲仓库运往A 果园x 吨有机化肥,汽车每吨每千米的运费为1元. (1)设总运费为y 元,求y 关于x 的函数表达式;(2)当甲仓库运往A 果园多少吨有机化肥时,总运费最省?最省的总运费是多少?3. 某木器厂生产一款夏凉椅,已知这款夏凉椅的生产成本为每件180元.经市场调研发现:该款夏凉椅每天的销售量y (件)与售价x (元)之间存在着如下表所示的一次函数关系:路程(千米)甲仓库 乙仓库 A 15 25 B2020路程果园针对训练售价(元)...200260300...销售量y(件)...600300100...(1)求y与x之间的函数关系式;(2)当售价为280元时,每天获得的利润是多少元?4. (2019陕西定心卷)八宝甑糕是以糯米、红(蜜)枣、红芸豆、莲子、杏仁等食材为原料制作的一种中式小吃,某八宝甑糕专卖店每天固定制作甲、乙两种口味的八宝甑糕共800份,且当天全部售出,原料成本、销售单价及店员生产提成如下表所示:原料成本(元/份)销售单价(元/份)生产提成(元/份)甲种口味4102乙种口味38 1.5设该店每天制作甲种口味的八宝甑糕x份,每天获得的利润为y元.(1)求出y与x之间的函数关系式;(2)若该店每天投入总成本不超过4080元,应怎样安排甲、乙两种口味甑糕的制作量,可使该店一天所获得的利润最大?并求出最大利润.(注:投入总成本=原料成本+生产提成,利润=销售收入-投入总成本)参考答案类型一文字型1. 解:(1)购进A 种图书x 本,则购进B 种图书(80-x )本, ∴y =50x +70(80-x )=-20x +5600, ∵-20x +5600≤5000, ∴x ≥30, 又∵x ≤45, ∴30≤x ≤45,∴y 与x 之间的函数关系式为y =-20x +5600(30≤x ≤45); (2)令y =-20x +5600=4920, 解得x =34, ∴80-34=46(本), ∴购买B 种图书46本. 2. 解:(1)由题意可得,y 1={20x (x ≤10)14x +60(x >10), y 2=17x +9;(2)当y 2<y 1时,由(1)可得, 当x ≤10时,17x +9<20x , 解得x >3, ∴3<x ≤10;当x >10时,17x +9<14x +60, 解得x <17, ∴10<x <17.综上所述,在乙商店购买所需总费用小于甲商店购买所需总费用时,x 的取值范围为3<x <17. 3. 解:(1)根据题意,设y 与x 的函数关系式为y =kx +b , ∵当x =20时,y =2, 当x =50时,y =8,∴当行李的重量x 超过规定时,y 与x 之间的函数关系式为y =15x -2;(2)当y =0时,15x -2=0,解得x =10.答:旅客最多可免费携带行李10 kg. 4. 解:(1)方案一:y =(m +0.5)x , 方案二:y =mx +1200; (2)令(m +0.5)x >mx +1200,解不等式,得x>2400,∴当购买量x的取值范围为2400<x≤3000时,选择方案二比方案一付款少;(3)当m=8时,方案一:y=8.5x,方案二:y=8x+1200.由题意得:方案一可购买甜瓜25000÷8.5≈2941(kg),方案二可购买甜瓜(25000-1200)÷8=2975(kg).∵2975>2941,∴他在这两种方案中,应选择方案二.类型二图象型1.解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车行驶了150千米,∴1千瓦时的电量汽车能行驶15060-35=6(千米);(2)设y=kx+b(k≠0),把点(150,35)、(200,10)代入,∴y=-0.5x+110.当x=180时,y=-0.5×180+110=20.答:当150≤x≤200时,y关于x的函数表达式为y=-0.5x+110,当汽车行驶180千米时,蓄电池的剩余电量为20千瓦时.2.解:设AB段对应的函数关系式为y=kx+b(k≠0),∵y=kx+b(k≠0)的图象过点A(1.5,30),B(2.5,80),∴将A、B两点坐标代入函数关系式,∴AB段对应的函数关系式为y=50x-45(1.5≤x≤2.5);(2)设CD段对应的函数关系式为y=mx+n(m≠0),由题知y=mx+n(m≠0)的图象过点C(6.5,80),D(8.5,0),∴将C、D两点坐标代入函数关系式,∴CD段对应的函数关系式为y=-40x+340(6.5≤x≤8.5).AB段:当y=40时,即40=50x-45,解得x=1.7;CD段:当y=40时,即40=-40x+340,解得x=7.5,∴当小明一家出发1.7小时或7.5小时时,离家的距离为40千米. 3. 解:(1)由图象可知,乘车4 h 时,小刚一家离家的距离为380 km , ∴小刚家到该景区乘车一共用了4 h ;(2)设线段AB 对应的函数关系式为y =kx +b (k ≠0), 把点A (1,80)、B (3,320)分别代入,∴线段AB 对应的函数关系式为y =120x -40(1≤x ≤3);(3)当x =2.5时,y =120x -40=120×2.5-40=260,即此时离家260 km , 则离目的地380-260=120 km ,答:小刚一家出发2.5 h 时离目的地120 km.4. 解:(1)设小王和小李的速度分别a km/h ,b km/h(a <b ),结合图象可知:答:小王和小李的速度分别是10 km/h ,20 km/h ;(2)由题意得,相遇后小李走完剩余路程所用时间为30-2020=0.5 (h ),∴点C 的坐标为(1.5,15). 又∵点B 的坐标为(1,0),∴设线段BC 的函数解析式为y =kx +b ,∴线段BC 的函数解析式为y =30x -30(1≤x ≤1.5).类型三 表格型1. 解:(1)根据题意得,y 与x 之间的函数关系式为y =6x +4(8-x )=2x +32; (2)由题可得:1200x +1000(8-x )≥8300, 解得x ≥32,∵在y =2x +32中,k =2>0, ∴y 随x 的增大而增大, ∴当x =2时,y 取得最小值, ∴y 最小=2×2+32=36,∴该公司至少需要投入资金36万元.2. 解:(1)根据题意可得y =1×15x +1×25×(110-x )+1×20×(80-x )+1×20×(x -10),即y关于x的函数表达式为y=-10x+4150;(2)∵-10<0,且10≤x≤80,∴当x=80时,总运费y最省,此时y最小=-10×80+4150=3350.答:当甲仓库运往A果园80吨有机化肥时,总运费最省,最省的总运费是3350元.3.解:(1)设销售量y(件)与售价x(元)之间的函数关系式为y=kx+b(k≠0),由表格中数据可得,∴y与x之间的函数关系式为y=-5x+1600;(2)当x=280时,y=-5×280+1600=200,∴(280-180)×200=20000(元).答:当售价为280元时,每天获得的利润是20000元.4.解:(1)该店每天制作甲种口味的八宝甑糕x份,则制作乙种口味的八宝甑糕(800-x)份,∴y=(10-4-2)x+(8-3-1.5)×(800-x)=4x+2800-3.5x=0.5x+2800,即y=0.5x+2800;(2)由题意得(4+2)x+(3+1.5)×(800-x)≤4080,解得x≤320,∵y=0.5x+2800,其中0.5>0,∴y随x的增大而增大,∴当x=320时,800-x=480,y最大=0.5×320+2800=2960,∴安排甲、乙两种口味甑糕的制作量分别为320份、480份时,可使该店一天所获得的利润最大,最大利润为2960元.。

专题5.5一次函数的应用(举一反三)(浙教版)(原卷版)

专题5.5一次函数的应用(举一反三)(浙教版)(原卷版)

专题5.5 一次函数的应用【八大题型】【浙教版】【题型1 行程问题】 (1)【题型2 工程问题】 (2)【题型3 利润最大问题】 (4)【题型4 费用最低问题】 (6)【题型5 调运问题】 (7)【题型6 体积问题】 (9)【题型7 几何图形问题】 (10)【题型8 其他问题】 (11)【题型1 行程问题】【例1】(2022春•大足区期末)甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过12小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当乙车到达A地时,甲车距A地150千米.【变式11】(2022•前进区校级开学)甲、乙两车从佳木斯出发前往哈尔滨,甲车先出发,1h以后乙车出发,在整个过程中,两车离开佳木斯的距离y(km)与乙车行驶时间x(h)的对应关系如图所示:(1)直接写出佳木斯、哈尔滨两城之间距离是多少km?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车在行驶过程中经过多长时间,与乙车相距18km.【变式12】(2022秋•舞钢市期末)甲、乙两人分别从笔直道路上的A、B两地出发相向匀速而行,已知甲比乙先出发6分钟,两人在C地相遇,相遇后甲立即按原速原路返回A地,乙继续向A地前行,约定先到A地者停止运动就地休息.若甲、乙两人相距的路程y(米)与甲行走的时间x(分钟)之间的关系如图所示,有下列说法:①甲的速度是60米/分钟,乙的速度是80米/分钟;②甲出发30分钟时,两人在C地相遇;③乙到达A地时,甲与A地相距450米,其中正确的说法有()A.0个B.1个C.2个D.3个【变式13】(2022春•南川区期末)甲、乙两运动员在直线跑道上同起点、同终点、同方向匀速跑步560米,先到终点的运动员原地休息.已知甲先出发1秒,两运动员之间的距离y(米)与乙出发的时间x (秒)之间的关系如图所示.给出以下结论:①a=7;②b=63;③c=80.其中正确的是()A.①②③B.②③C.①②D.①③【题型2 工程问题】【例2】(2022•李沧区一模)李沧区海绵工程建设过程中,需要将某小区内两段长度相等的人行道改造为透水人行道,人行道绿篱改造为下沉式绿篱.现分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设人行道的长度y(米)与施工时间x(时)之间关系的部分图象,请解答下列问题:(1)求乙队在2≤x≤6的时间段内,y与x的函数关系式;(2)若甲队施工速度不变,乙队在施工6小时后,施工速度增加到12米/时,结果两队同时完成了任务,求甲队从开始施工到完成,所铺设的人行道共是多少米.【变式21】(2022春•华容县期末)某乳品公司向某地运输一批牛奶,由铁路运输每千克需运费0.60元,由公路运输,每千克需运费0.30元,另需补助600元.(1)设该公司运输的这批牛奶为x千克,选择铁路运输时,所需运费为y1元,选择公路运输时,所需运费为y2元,请分别写出y1、y2与x之间的关系式;(2)若公司只支出运费1500元,则选用哪种运输方式运送的牛奶多?若公司运送1500千克牛奶,则选用哪种运输方式所需用较少?【变式22】(2022春•庐江县期末)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x (时)的函数图象为折线BC﹣﹣CD﹣﹣DE,如图所示,从甲队开始工作时计时.(1)直接写出乙队铺设完的路面长y(米)与时间x(时)的函数关系式;(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?【变式23】(2022•无锡模拟)甲,乙两人同时各接受了300个零件的加工任务,甲比乙每小时加工的数量多,两人同时开工,其中一人因机器故障停止加工若干小时后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(小时)之间的函数关系,观察图象解决下列问题:(1)其中一人因故障,停止加工小时,C点表示的实际意义是.甲每小时加工的零件数量为个;(2)求线段BC对应的函数关系式和D点坐标;(3)乙在加工的过程中,多少小时时比甲少加工75个零件?(4)为了使乙能与甲同时完成任务,现让丙帮乙加工,直到完成.丙每小时能加工80个零件,并把丙加工的零件数记在乙的名下,问丙应在第多少小时时开始帮助乙?并在图中用虚线画出丙帮助后y与x 之间的函数关系的图象.【题型3 利润最大问题】【例3】(2022春•遵义期末)钓鱼成为越来越多人休闲娱乐的选择,鱼密度大的鱼塘的门票在300﹣600元不等,这让爱好钓鱼的钓友们喜欢到能回鱼的鱼塘垂钓(回鱼是指钓友钓上的鱼返卖给塘主),如果鱼情和钓鱼技能好的话还能获得一些利润.欢乐鱼塘的门票为450元5小时,回鱼标准为56斤以内为12元/斤,超过56斤的部分7元/斤:云门鱼塘门票为320元5小时,回鱼标准是律按8元/斤.(斤是重量单位,1斤0.5千克),设钓友获得的利润为y元,鱼的重量为x斤.(1)求在两家鱼塘钓鱼时y欢乐、y云门与x之间的函数关系式;(2)如图,在平面直角坐标系中,M,N为图象的交点,m,n分别为点M,N的横坐标,写出图中m,n的值分别为、;(3)钓友会根据自己的钓鱼技能和鱼塘的回鱼标准选择不同的鱼塘垂钓,请帮钓友们分析选择在哪家鱼塘钓鱼更划算?【变式31】(2022春•武汉期末)某商店销售一种产品,该产品成本价为6元/件,售价为8元/件,销售人员对该产品一个月(30天)销售情况记录绘成图象.图中的折线ODE表示日销量y(件)与销售时间x(天)之间的函数关系,若线段DE表示的函数关系中,时间每增加1天,日销量减少5件.(1)第25天的日销量是件,这天销售利润是元;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?销售期间日销售最大利润是多少元?【变式32】(2022•济宁二模)某商店购进了A,B两种家用电器,相关信息如下表:家用电器进价(元/件)售价(元/件)A m+2001800B m1700已知用6000元购进的A种电器件数与用5000元购进的B种电器件数相同.(1)求表中m的值.(2)由于A,B两种家用电器热销,该商店计划用不超过23000元的资金再购进A,B两种电器总件数共20件,且获利不少于13300元.请问:有几种进货方案?哪一种方案才能获得最大利润?最大利润是多少?【变式33】(2022•长垣市模拟)某营业厅销售3部A型号和2部B型号的营业额为10800元,销售4部A型号和1部B型号的营业额为10400元.(1)求每部A型号和B型号的售价;(2)该营业厅计划一次性购进两种型号共50部,其中B型号的进货数量不超过A型号数量的3倍.已知A型和B型的进货价格分别为1500元/部和1800元/部,设购进A型号a部,这50部的销售总利润为W元.①求W关于a的函数关系式;②该营业厅购进A型号和B型号各多少部时,才能使销售总利润最大,最大利润为多少元?【题型4 费用最低问题】【例4】(2022春•前郭县期末)共享电动车是一种新理念下的交通工具,主要面向3~10km的出行市场现有A、B品牌的共享电动车,收费与骑行时间之间的函数关系如图所示,其中A品牌收费方式对应y1,B 品牌的收费方式对应y2.(1)请求出两个函数关系式.(2)如果小明每天早上需要骑行A品牌或B品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为20km/h,小明家到工厂的距离为6km,那么小明选择哪个品牌的共享电动车更省钱呢?(3)直接写出第几分钟,两种收费相差1.5元.【变式41】(2022春•碑林区校级期末)某校张老师寒假准备带领他们的“三好学生”外出旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人400元,经协商,甲旅行社表示:“如果带队张老师买一张全票,则学生可半价”;乙旅行社表示:“所有游客全部享受6折优惠.”则:(1)设学生数为x(人),甲旅行社收费为y甲(元),乙旅行社收费为y乙(元),两家旅行社的收费各是多少?(2)哪家旅行社收费较为优惠?【变式42】(2022春•滦南县期末)某人因需要经常去复印资料,甲复印社直接按每次印的张数计费,乙复印社可以加入会员,但需按月付一定的会员费.两复印社每月收费情况如图所示,根据图中提供的信息解答下列问题:(1)乙复印社要求客户每月支付的会员费是元;甲复印社每张收费是元;(2)求出乙复印社收费情况y关于复印页数x的函数解析式,并说明一次项系数的实际意义;(3)当每月复印多少页时,两复印社实际收费相同;(4)如果每月复印200页时,应选择哪家复印社?【变式43】(2022春•石河子期末)某种黄金饰品在甲、乙两个商店销售,甲店标价280元/克,按标价出售,不优惠,乙店标价300元/克,但若买的黄金饰品重量超过3克,则超出部分可打八折出售.(1)分别写出到甲、乙商店购买该种黄金饰品所需费用y(元)和重量x(克)之间的函数关系,并写出定义域;(2)李阿姨要买一条重量不超过10克的此种黄金饰品,到哪个商店购买最合算?请说明理由.【题型5 调运问题】【例5】(2022•贺兰县模拟)云南某县境内发生地震,某市积极筹集救灾物资260吨从该市区运往该县甲、乙两地,若用大、小两种货车共20辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:甲地(元/辆)乙地(元/辆)车型运往地大货车720800小货车500650(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于132吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.【变式51】(2022春•扎鲁特旗期末)某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表:每台甲型收割机的租金每台乙型收割机的租金A地区1800元1600元B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)试问有无可能一天获得总租金是80050元?若有可能,请写出相应的调运方案;若无可能,请说明理由.【变式52】(2022春•海淀区校级期末)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾民安置点从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值:C D总计/tA200B x300总计/t240260500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.【变式53】(2022春•巴南区月考)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现要调往A县10辆,调往B县8辆,已知调运一辆农用车的费用如表:县名A B费用仓库甲4080乙3050(1)设从乙仓库调往A县农用车x辆,求总运费y关于x的函数关系式.(2)若要求总运费不超过900元.共有哪几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?【题型6 体积问题】【例6】(2022秋•邗江区月考)某水池的容积为90m3,水池中已有水10m3,现按8m3/h的流量向水池注水.(1)写出水池中水的体积y(m3)与进水时间t(h)之间的函数表达式,并写出自变量t的取值范围;(2)当t=1时,求y的值;当y=50时,求t的值.【变式61】(2022春•北京期末)如图,有一个装水的容器,容器内的水面高度是10cm,水面面积是100cm2.现向容器内注水,并同时开始计时.在注水过程中,水面高度以每秒0.2cm的速度匀速增加.容器注满水之前,容器内水面的高度h,注水量V随对应的注水时间t的变化而变化,则h与t,V与t满足的函数关系分别是()A.正比例函数关系,正比例函数关系B.正比例函数关系,一次函数关系C.一次函数关系,一次函数关系D.一次函数关系,正比例函数关系【变式62】(2022春•梁子湖区期末)水龙头关闭不严会造成漏水浪费,已知漏水量与漏水时间之间满足一次函数关系,八年级同学进行了以下实验:在漏水的水龙头下放置一个能显示水量的容器,每10分钟记录一次容器中的水量.下表是一位同学的记录结果,老师发现有一组数据记录有较大偏差,它是()组别12345010203040时间t(min)1 2.4 3.8 5.2 6.8水量w(ml)A.第2组B.第3组C.第4组D.第5组【变式63】(2022•宣城模拟)某容器有一个进水管和一个出水管,从某时刻开始的前4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水.已知进水管进水的速度与出水管出水的速度是两个常数,容器内水量y (升)与时间x (分钟)之间的关系如图所示.则每分钟的出水量为( )A .4升B .152升C .154升D .134升 【题型7 几何图形问题】【例7】(2022春•交城县期末)菜农张大叔要用63米的篱笆围一个矩形的菜地,已知在菜地的一边AB 边上留有1米宽的入口.设AB 边的长为x ,BC 边的长为y ,则y 与x 之间的函数关系式是( )A .y =63−2x 2B .y =63−2x+12C .y =63﹣2xD .y =632−12x 【变式71】(2022春•阿荣旗期末)已知等腰三角形周长为20(1)写出底边长y 关于腰长x 的函数解析式(x 为自变量);(2)写出自变量的取值范围;(3)在直角坐标系中,画出函数图象.【变式72】(2022秋•富民县校级期末)如图,正方形ABCD 的边长为6cm ,动点P 从A 点出发,在正方形的边上由A ⇒B ⇒C ⇒D 运动,设运动的时间为t (s ),△APD 的面积为S (cm 2),S 与t 的函数图象如图所示,请回答下列问题:(1)点P 在AB 上运动的速度为 ,在CD 上运动的速度为 ;(2)求出点P 在CD 上时S 与t 的函数关系式;(3)t为何值时,△APD的面积为10cm2?【变式73】(2022春•泰和县期末)如图1是一个大型的圆形花坛建筑物(其中AB与CD是一对互相垂直的直径),小川从圆心O出发,按图中箭头所示的方向匀速散步,并保持同一个速度走完下列三条线路:①线段OA、②圆弧A→D→B→C、③线段CO后,回到出发点.记小川所在的位置距离出发点的距离为y(即所在位置与点O之间线段的长度)与时间t之间的图象如图2所示,(注:圆周率π取近似值3)(1)a=,b=.(2)当t≤2时,试求出y关于t的关系式;(3)在沿途某处小川遇见了他的好朋友小翔并聊了两分钟的时间,然后继续保持原速回到终点O,请回答下列两小问:①小川渝小翔的聊天地点位于哪两点之间?并求出此时他距离终点O还有多远;②求他此行总共花了多少分钟的时间.【题型8 其他问题】【例8】(2022春•昌平区期末)某旅客携带x(公斤)的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李质量x(公斤)的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李质量x(公斤)的对应关系,行李的质量x(公斤)快递费不超过1公斤10元超过1公斤但不超过5公斤的3元/公斤部分5元/公斤超过5公斤但不超过15公斤的部分(1)如果旅客选择托运,求可携带的免费行李的最大质量为多少公斤?(2)如果旅客选择快递,当1≤x≤15时,求快递费y2(元)与行李质量x(公斤)的函数关系式;(3)某旅客携带25公斤的行李,设托运m(公斤)行李(10≤m<24,m为正整数),剩下的行李选择快递,m为何值时,总费用y的值最小,总费用的最小值是多少?【变式81】(2022春•正定县期中)弹簧挂物体会伸长,测得弹簧长度y(cm)(最长为20cm),与所挂物体质量x(kg)之间有下面的关系:x/kg01234…y/cm88.599.510…下列说法不正确的是()A.x与y都是变量,x是自变量,y是x的函数B.所挂物体质量为6kg时,弹簧长度为11cmC.y与x的函数表达式为y=8+0.5xD.挂30kg物体时,弹簧长度一定比原长增加15cm【变式82】(2022秋•和平县期末)某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)之间的关系,并画出如图所示的图象(AC是线段,射线CD平行于x轴).有下列说x+6;③观察第40天时,法:①从开始观察起,60天后该植物停止长高;②直线AC的函数表达式为y=15该植物的高度为14厘米;④该植物最高为15厘米.其中说法正确的是()A.①②③B.②④C.②③D.①②③④【变式83】(2022•阿城区模拟)某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中240度仍按照“基础电价”计费,超过的部分按照“提高电价”收费,设每个家庭月用电量为x度时,应交电费为y元.具体收费情况如折线图所示,下列叙述错误的是()A.“基础电价”是0.5元/度B.“提高电价”是0.6元/度C.小红家5月份用电260度的电费是132元D.小红家4月份198元电费的用电量是129度。

一次函数的应用典型题型

一次函数的应用典型题型

例题:甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).知识点一:一次函数与坐标轴交点和面积问题1:交点问题一次函数的图象是经过(0,b)和(-,0)两点。

【典型例题】1.直线y=-x+2与x轴的交点坐标是,与y轴的交点坐标是__________.2.直线y=-x-1与x轴的交点坐标是,与y轴的交点坐标是____________.3.函数y=x+1与x轴交点为()A.(0,-1) B.(1,0) C.(0,1) D.(-1,0)4.直线y=-x+3与x轴、y轴所围成的三角形的面积为()A.3 B.6 C. D.5.直线y=-2x-4交x轴、y轴于点A、B,O为坐标原点,则S△AOB=_______。

6.若直线y=3x+b与两坐标轴所围成的三角形的面积是6个单位,则b的值是______。

7.如图所示,已知直线y=kx-2经过M点,求此直线与x轴交点坐标和直线与两坐标轴围成三角形的面积.2:面积问题面积:一次函数y=kx+b与x、y轴所交的两点与原点组成的三角形的面积为(1):两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解。

(2):复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形)。

(3):往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高。

1. 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。

2. 已知一个正比例函数与一个一次函数的图象交于点A(4,3),且OA=OB(1)求两个函数的解析式;(2)求△AOB的面积;3. 已知:经过点(-3,-2),它与x轴,y轴分别交于点B、A,直线经过点(2,-2),且与y轴交于点C(0,-3),它与x轴交于点D (1)求直线的解析式;(2)若直线与交于点P,求的值。

一次函数的应用题分类总结整理剖析

一次函数的应用题分类总结整理剖析

一次函数的应用题分类总结整理剖析一次函数应用一、确定解析式的几种方法:1.直接写出一次函数表达式,根据实际意义解决相应问题;(直接法)2.利用待定系数法构建函数表达式,已经明确函数类型;(待定系数法)3.利用问题中各个量之间的关系,变形推导所求两个变量之间的函数关系式;(等式变形法)二、重点题型1.根据各类信息猜测函数类型为一次函数,并验证猜想;2.运用函数思想,构建函数模型解决(最值、决策)问题。

一)根据实际意义直接写出一次函数表达式,然后解决相应问题特点:当所给问题中的两个变量间的关系非常明了时,可以根据二者之间的关系直接写出关系式,然后解决问题。

例1:某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠。

书包每个定价20元,水性笔每支定价5元。

XXX和同学需买4个书包,水性笔若干支(不少于4支)。

1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;直接法:对于第一种优惠方法,每个书包都赠送1支水性笔,所以购买4个书包需要买4支水性笔,总共需要花费4×20+4×5=100元。

因此,y=100.对于第二种优惠方法,购买4个书包和4支水性笔需要花费4×20×0.9+4×5×0.9=82.8元。

因此,y=82.8-0.9x。

2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;当0≤x≤4时,第一种优惠方法更便宜;当x>4时,第二种优惠方法更便宜。

3)XXX和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济。

由于第一种优惠方法总共需要花费100元,而第二种优惠方法的费用函数为y=82.8-0.9x,因此需要求解当x=12时,y 的值为多少。

代入公式得到y=71.4元。

因此,购买4个书包和12支水性笔的最经济方法是选择第二种优惠方法。

例2:某实验中学组织学生到距学校6千米的XXX去参观,学生XXX因事没能乘上学校的校车,于是准备在学校门口改乘出租车去XXX,出租车的收费标准为:3千米以下(含3千米)收费8元,3千米以上,每增加1千米,收费1.8元。

初中数学一次函数的应用题型分类汇编——销售最大利润问题(附答案详解)

初中数学一次函数的应用题型分类汇编——销售最大利润问题(附答案详解)

初中数学一次函数的应用题型分类汇编——销售最大利润问题(附答案详解)1.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元2.小卖部从批发市场购进一批李子,在销售了部分李子之后,余下的每千克降价3元,直至全部售完.销售金额(元)与李子销售量(千克)之间的关系如图所示.若销售这批李子一共赢利220元,那么这批李子的进价是_____元.3.某商店卖水果,数量x(千克)与售价y(元)之间的关系如下表,(y是x的一次函数): x/(千克) 0.51 1.52···y/(元) 1.60.1+ 6.40.1+···+ 3.20.1+ 4.80.1x=千克时,售价_______________元当74.某蔬菜公司收到某种绿色蔬菜20吨,准备一部分进行精加工,其余部分进行粗加工,加工后销售获利的情况如下表:销售方式粗加工后销售精加工后销售每吨获利(元)1000 2000设该公司精加工的蔬菜为x吨,加工后全部销售获得的利润为y元.(1)求y与x间的函数表达式;(2)若该公司加工后全部销售获得的利润为28000元,求该公司精加工了多少吨蔬菜?5.某校计划组织1920名师生研学,经过研究,决定租用当地租车公司一共40辆A、B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息.(注:载客量指的是每辆客最多可载该校师生的人数)设学校租用A型号客车x辆,租车总费用为y元.(1)求y与x的函数关系式,并求出x的取值范围;(2)若要使租车总费用不超过25200元,一共有几种租车方案?哪种租车方案最省钱,并求此方案的租车费用.6.某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:数量/条平均每条鱼的质量/kg第1次捕捞20 1.6第2次捕捞15 2.0第3次捕捞15 1.8(1)求样本中平均每条鱼的质量;(2)估计鱼塘中该种鱼的总质量;(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y(元)与出售该种鱼的质量x(kg)之间的函数关系,并估计自变量x的取值范围.7.某商人进货时,进价已按原价a扣去了25%,他打算对此货订一新价销售,以便按新价让利20%销售后,还可获得售价的25%的利润.试写出此商人经销这种货物时按新价让利总额与货物售出件数之间的函数关系式.8.某县盛产苹果,春节期问,一外地经销商安排15辆汽年装运A、B、C三种不同品质的苹果120吨到外地销售,按计划15辆汽年都要装满且每辆汽车只能装同一种品质的苹果,每辆汽车的运载量及每吨苹果的获利如下表:苹果品种A B C 每辆汽车运载数9 8 7 每吨获利(元)600 1000 800(1)设装运A 种苹果的车辆数为x 辆,装运B 种苹果车辆数为y 辆,据上表提供的信息,求出y 与x 之间的函数关系式;(2)为了减少苹果的积压,县林业局制定出台了促进销售的优惠政策,在外地经销商原有获利不变情况下,政府对外地经销商按每吨50元的标准实行运费补贴若A 种苹果的车辆数x 满足36x ≤≤.若要使该外地经销商所获利W (元)最大,应采用哪种车辆安排方案并求出最大利润W (元)的最大值.9.某种蔬菜的销售单价y 1与销售月份x 之间的关系如图(1)所示,成本y 2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)(1)分别求出y 1、y 2的函数关系式(不写自变量取值范围);(2)通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?10.某养殖户长期承包一口鱼糖养鱼,每年养殖一批,从鱼苗放入养到成品需要300天,鱼糖承包费用每年5000元,他记录了前几年平均每天投入饲料量(单位:kg )与年底成品鱼(达到一定规格可以销售)产量之间的关系如下表:平均每天投入饲料(kg )2025 30 40 50 60 70 80 成品鱼产量(kg )2800 3000 3200 3600 3900 4000 3900 3600(1)请用适当的函数模型描述平均每天投入饲料数量与成品鱼产量之间的关系;(2)如果今年的饲料价格为1.6元/kg ,成品鱼销售价为20元/kg ,鱼苗费用4000元,假设养成的成品鱼全部都能按此价格卖出.请建立适当的函数模型分析:平均每天投入饲料多少千克时,该养殖户当年在该鱼糖养殖这种鱼获得的利润最多,最多利润是多少元?(利润=销售收入﹣饲料成本﹣鱼糖承包费﹣鱼苗成本).11.我市某公司用800万元购得某种产品的生产技术后,进一步投入资金1550万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价需要定在200元到300元之间较为合理.销售单价x (元)与年销售量y (万件)之间的变化可近似的看作是如下表所反应的一次函数: 销售单价x (元) 200 230250 年销售量y (万件) 1411 9(1)请求出y 与x 之间的函数关系式,并直接写出自变量x 的取值范围;(2)请说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?12.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围. 13.某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y (万元)与产量x (吨)之间的关系如图所示()0100x ≤≤.已知草莓的产销投入总成本p (万元)与产量x x (吨)之间满足1p x =+.(1)直接写出草莓销售单价y (万元)与产量x (吨)之间的函数关系式;(2)求该合作社所获利润w (万元)与产量x (吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润'w (万元)不低于55万元,产量至少要达到多少吨?14.某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表: 商品甲 乙 进价(元/件)60x + x 售价(元/件)200 100若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价是多少元?(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为a 件(30a ≥),设销售完50件甲、乙两种商品的总利润为w 元,求w 与a 之间的函数关系式,并求出w 的最小值.15.为加快“智慧校园”建设,某市准备为试点学校采购一批,A B 两种型号的一体机,经过市场调查发现,每套B 型一体机的价格比每套A 型一体机的价格多0.6万元,且用960万元恰好能购买500套A 型一体机和200套B 型一体机.(1)列二元一次方程组解决问题:求每套A 型和B 型一体机的价格各是多少万元? (2)由于需要,决定再次采购A 型和B 型一体机共1100套,此时每套A 型体机的价格比原来上涨25%,每套B 型一体机的价格不变.设再次采购A 型一体机()600m m ≤套,那么该市至少还需要投入多少万元?16.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有,A B 两种型号的挖掘机,已知3台A 型和5台B 型挖掘机同时施工一小时挖土165立方米;4台A 型和7台B 型挖掘机同时施工一小时挖土225立方米.每台A 型挖掘机一小时的施工费用为300元,每台B 型挖掘机一小时的施工费用为180元.(1)分别求每台A 型, B 型挖掘机一小时挖土多少立方米?(2)若不同数量的A 型和B 型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?17.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?18.某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题: 产品名称核桃 花椒 甘蓝 每辆汽车运载量(吨)10 6 4 每吨土特产利润(万元)0.7 0.8 0.5若装运核桃的汽车为x 辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y 万元.(1)求y 与x 之间的函数关系式;(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.19.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x (x 为正整数).(I )根据题意,填写下表:(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.20.为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x 天(1≤x≤15,且x 为整数)每件产品的成本是p 元,p 与x 之间符合一次函数关系,部分数据如表:任务完成后,统计发现工人李师傅第x 天生产的产品件数y (件)与x (天)满足如下关系:y=()()220110401015x x x x x ⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数, 设李师傅第x 天创造的产品利润为W 元.(1)直接写出p 与x ,W 与x 之间的函数关系式,并注明自变量x 的取值范围: (2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?21.某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同.(1)求甲、乙两种水果的单价分别是多少元?(2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少?22.某商场计划销售甲、乙两种产品共200件,每销售1件甲产品可获得利润0.4万元, 每销售1件乙产品可获得利润0.5万元,设该商场销售了甲产品x(件),销售甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每件甲产品成本为0.6万元,每件乙产品成本为0.8万元,受商场资金影响,该商场能提供的进货资金至多为150万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润.23.为建设最美恩施,一旅游投资公司拟定在某景区用茶花和月季打造一片人工花海,经市场调查,购买3株茶花与4株月季的费用相同,购买5株茶花与4株月季共需160元. (1)求茶花和月季的销售单价;(2)该景区至少需要茶花月季共2200株,要求茶花比月季多400株,但订购两种花的总费用不超过50000元,该旅游投资公司怎样购买所需总费用最低,最低费用是多少. 24.某校为奖励学习之星,准备在某商店购买A、B两种文具作为奖品,已知一件A种文具的价格比一件B种文具的价格便宜5元,且用600元买A种文具的件数是用400元买B种文具的件数的2倍.(1)求一件A种文具的价格;(2)根据需要,该校准备在该商店购买A、B两种文具共150件.①求购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式;②若购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,求有几种购买方案,并找出经费最少的方案,及最少需要多少元?25.某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价x元(x为非负整数),每周的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?26.已知某服装厂现有A 种布料70米,B 种布料52米,现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元.(1)求y (元)与x (套)的函数关系式.(2)有几种生产方案?(3)如何生产使该厂所获利润最大?最大利润是多?27.某商店分两次购进A 、B 两种商品进行销售,每次购进同一种商品的进价相同,具体情况如下表所示:(1)求A 、B 两种商品每件的进价分别是多少元?(2)商店计划用5300元的资金进行第三次进货,共进A 、B 两种商品100件,其中要求B 商品的数量不少于A 商品的数量,有几种进货方案?(3)综合考虑(2)的情况,商店计划对第三次购进的100件商品全部销售,A 商品售价为30元/件,每销售一件A 商品需捐款a 元(1≤a≤10)给希望工程,B 商品售价为100元/件,每销售一件B 商品需捐款b 元给希望工程,a+b =14.直接写出当b = 时,销售利润最大,最大利润为 元.28.为响应市政府“创建国家森林城市”的号召,某小区计划购进A 、B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进A 、B 两种树苗刚好用去1220元,问购进A 、B 两种树苗各多少棵? (2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.29.某生产商存有1200千克A 产品,生产成本为150元/千克,售价为400元千克.因市场变化,准备低价一次性处理掉部分存货,所得货款全部用来生产B 产品,B 产品售价为200元/千克.经市场调研发现,A 产品存货的处理价格y (元/千克)与处理数量x (千克)满足一次函数关系(01000x ),且得到表中数据. x (千克)y (元/千克) 200 350400 300(1)请求出处理价格y (元千克)与处理数量x (千克)之间的函数关系;(2)若B 产品生产成本为100元千克,A 产品处理数量为多少千克时,生产B 产品数量最多,最多是多少?(3)由于改进技术,B 产品的生产成本降低到了a 元/千克,设全部产品全部售出,所得总利润为W (元),若5001000x <≤时,满足W 随x 的增大而减小,求a 的取值范围.30.(2017黑龙江省龙东地区,第27题,10分)由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A 型口罩和3个B 型口罩共需26元;3个A 型口罩和2个B 型口罩共需29元.(1)求一个A 型口罩和一个B 型口罩的售价各是多少元?(2)药店准备购进这两种型号的口罩共50个,其中A 型口罩数量不少于35个,且不多于B 型口罩的3倍,有哪几种购买方案,哪种方案最省钱?31.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y (千克)与销售单价x (元)符合一次函数关系,如图是y 与x 的函数关系图象.(1)求y 与x 的函数关系式;(2)直接写出自变量x 的取值范围.32.为节能减排,某公交公司计划购买A 型和B 型两种环保节能公交车共10辆,若购买A 型公交车2辆,B 型公交车3辆,共需650万元;若购买A 型公交车3辆,B 型公交车2辆,共需600万元.(1)求购买A 型和B 型公交车每辆各需多少万元?(2)预计在该线路上A 型和B 型公交车每辆年均载客量分别为80万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于830万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?33.为加强校园文化建设,某校准备打造校园文化墙,需用甲、乙两种石材经市场调查,甲种石材的费用y (元)与使用面积x ()2m 间的函数关系如图所示,乙种石材的价格为每平方米50元.(1)求y 与x 间的函数解析式;(2)若校园文化墙总面积共2600m ,其中使用甲石材x 2m ,设购买两种石材的总费用为w 元,请直接写出w 与x 间的函数解析式;(3)在(2)的前提下,若甲种石材使用面积多于2300m ,且不超过乙种石材面积的2倍,那么应该怎样分配甲、乙两种石材的面积才能使总费用最少?最少总费用为多少元?34.某水果经销商到水果种植基地采购葡萄,经销商一次性采购葡萄的采购单价y (元/千克)与采购量x (千克)之间的函数关系图象如图中折线AB BC CD →→所示(不包括端点A ).(1)当5001000x <≤时,写出y 与x 之间的函数关系式;(2)葡萄的种植成本为8元/千克,某经销商一次性采购葡萄的采购量不超过1000千克,当采购量是多少时,水果种植基地获利最大,最大利润是多少元?35.某大型水果超市销售无锡水蜜桃,根据前段时间的销售经验,每天的售价x (元/箱)与销售量y(箱)有如表关系:每箱售价x(元) 68 67 66 65 (40)每天销量y(箱) 40 45 50 55 (180)已知y与x之间的函数关系是一次函数.(1)求y与x的函数解析式;(2)水蜜桃的进价是40元/箱,若该超市每天销售水蜜桃盈利1600元,要使顾客获得实惠,每箱售价是多少元?(3)七月份连续阴雨,销售量减少,超市决定采取降价销售,所以从7月17号开始水蜜桃销售价格在(2)的条件下,下降了m%,同时水蜜桃的进货成本下降了10%,销售量也因此比原来每天获得1600元盈利时上涨了2m%(m<100),7月份(按31天计算)降价销售后的水蜜桃销售总盈利比7月份降价销售前的销售总盈利少7120元,求m的值.36.佳佳商场卖某种衣服每件的成本为80元,据销售人员调查发现,每月该衣服的销售量y(单位:件)与销售单价x(单位:元/件)之间存在如图中线段AB所示的规律:(1)求y与x之间的函数关系式,并写出x的取值范围;(2)若某月该商场销售这种衣服获得利润为1350元,求该月这种衣服的销售单价为每件多少元?37.瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x (元)之间存在一定的关系,其几组对应量如下表所示:(元)19 20 21 30(1)根据表中数据的规律,分别写出毎日销售量y (件),每日的利润w (元)关于销售单价x (元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数). (2)当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少? (3)根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元? 38.某文具店计划购进A ,B 两种笔记本共60本,每本A 种笔记本比B 种笔记本的利润高3元,销售2本A 种笔记本与3本B 种笔记本所得利润相同,其中A 种笔记本的进货量不超过进货总量的23,B 种笔记本的进货量不少于30本. (1)每本A 种笔记本与B 种笔记本的利润各为多少元?(2)设购进B 种笔记本m 本,销售总利润为W 元,文具店应如何安排进货才能使得W 最大?(3)实际进货时,B 种笔记本进价下降n (35n ≤≤)元.若两种笔记本售价不变,请设计出笔记本销售总利润最大的进货方案.39.某公司欲将m 件产品全部运往甲,乙,丙三地销售(每地均有产品销售),运费分别为40元/件,24元/件,7元/件,且要求运往乙地的件数是运往甲地件数的3倍,设安排x (x 为正整数)件产品运往甲地. (1)根据信息填表:(2)若总运费为6300元,求m 与x 的函数关系式并求出m 的最小值.40.为了“还城市一片蓝天”,市政府决定大力发展公共交通,鼓励市民乘公交车或地铁出行.设每天公交车和地铁的运营收入为y 百万元,客流量为x 百万人,以(x ,y )为坐标的点都在左图中对应的射线上.其中,运营收入=票价收入﹣运营成本.交通部门经过调研,采取了如图所示的调整方案.(1)在左图中,代表公交车运营情况的(x,y)对应的点在射线上,公交车的日运营成本是百万元,当客流量x满足时,公交车的运营收入超过4百万元;(2)求调整后地铁每天的运营收入和客流量之间的函数关系,不要求写自变量的取值范围.参考答案1.D【解析】【分析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.2.10【解析】【分析】观察函数图象,利用单价=总价÷数量及数量=总价÷单价,可分别求出李子的原价及降价后销售的数量,设这批李子的进价是x元/千克,根据利润=销售收入−成本,即可得出关于x的一元一次方程,解之即可得出结论.【详解】李子的原价为600÷40=15(元/千克),降价后销售的数量为(720﹣600)÷(15﹣3)=10(千克). 设这批李子的进价是x 元/千克, 依题意,得:720﹣(40+10)x =220, 解得:x =10. 故答案为:10. 【点睛】本题考查了一元一次方程的应用以及一次函数的应用,找准等量关系,正确列出一元一次方程是解题的关键. 3.22.5 【解析】 【分析】根据表格可直接得到数量x (千克)与售价y (元)之间的关系式,然后把7x =代入计算,即可得到答案. 【详解】解:根据表格,设一次函数为:y kx b =+,则1.60.1=0.5+b3.20.1k k b+⎧⎨+=+⎩, 解得: 3.20.1k b =⎧⎨=⎩,∴ 3.20.1y x =+; 把7x =代入,得:3.270.1=22.5y =⨯+;∴当7x =千克时,售价为22.5元. 【点睛】本题考查了一次函数的性质,求一次函数的解析式,解题的关键是熟练掌握待定系数法求一次函数的解析式.4.(1)y 100020000x =+;(2)该公司精加工了8吨蔬菜. 【解析】 【分析】。

一次函数的实际应用专题(四个常考模型)【精品】

一次函数的实际应用专题(四个常考模型)【精品】

解:(1)y甲=477x,y乙= 530x(0≤x≤3) 424x+318(x>3)
(2)当477x=424x+318时,解得x=6. 即当x=6时,到甲、乙两个商店购买所需费用相同; 当477x<424x+318时,解得x<6, 又x≥4,于是,当4≤x<6时,到甲商店购买合算; 当477x>424x+318时,解得x>6, 又x≤10,于是,当6<x≤10时,到乙商店购买合算.
(3)如果购进两种饮料的总费用不超过2 100元,那么该商场如何进货才能获利最多? 并求出最大利润.
果汁饮料 碳酸饮料
进价/(元/箱)
40
25
售价/(元/箱)
52
32
解:(1)y与x的函数解析式为y=60-x. (2)总利润w关于x的函数解析式为 w=(52-40)x+(32-25)(60-x)=5x+420. (3)由题意,得40x+25(60-x)≤2 100,解得x≤40. ∵w=5x+420,w随x的增大而增大, ∴当x=40时,w最大=5×40+420=620,
此时购进碳酸饮料60-40=20(箱). ∴该商场购进两种饮料分别为40箱和20箱时,能获得最大利润620元.
2.有A,B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电, A焚烧20吨垃圾比B焚烧30吨垃圾少发1800度电. (1)求焚烧1吨垃圾,A和B各发电多少度? (2)A,B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾 的两倍,求A厂和B厂总发电量的最大值.
解:(1)设焚烧1吨垃圾,A发电厂发电a度,B发电厂发电b度,根据题意,得 30b-20a=1800, a-b=40,
解得 a=300 b=260
答:焚烧1吨垃圾,A发电厂发电300度,B发电厂发电260度. (2)设A发电厂焚烧x吨垃圾,B发电厂焚烧(90-x)吨垃圾,总发电量为y度,则 y=300x+260(90-x)=40x+23400, ∵x≤2(90-x), ∴x≤60. ∵y随x的增大而增大, ∴当x=60时,y有最大值,此时y=40×60+23400=25800. 答:A厂和B厂总发电量的最大值是25800度.

初中数学一次函数的应用题型分类汇编——分配方案决策问题3(附答案详解)

初中数学一次函数的应用题型分类汇编——分配方案决策问题3(附答案详解)

初中数学一次函数的应用题型分类汇编——分配方案决策问题3(附答案详解) 1.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:例如,购买A 类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为( )A .购买A 类会员卡B .购买B 类会员年卡C .购买C 类会员年卡D .不购买会员年卡2.超市有A ,B 两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A 型瓶3个或以上,一次性返还现金5元,设购买A 型瓶x (个),所需总费用为y (元),则下列说法不一定成立的是( )A .购买B 型瓶的个数是253x ⎛⎫- ⎪⎝⎭为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为30y x =+D .小张买瓶子的最少费用是28元 3.学校准备租用甲乙两种大客车共8辆,送师生集体外出研学,每辆甲种客车的租金是400元,每辆乙种客车的租金是280元,设租用甲种客车x 辆,租车费用为y 元. (1)求出y 与x 的函数关系式;(2)若租用甲种客车不少于6辆,应如何租用租车费用最低,最低费用是多少? 4.某草莓采摘园元旦至春节期间推出了甲、乙两种优惠方案.甲种优惠方案:游客进园需要购买40元的门票(每个家庭购买一张门票),采摘的草莓均按定价的六折卖给采摘游客;乙种优惠方案:游客进园不需购买门票,采摘的草莓按定价出售,但超过一定重量后,超过的部分打折卖给采摘的游客.优惠期间,设某游客(或一个家庭)采摘草莓的重量为x (kg ),选用甲种优惠方案采摘所需的总费用为y1(元),选用乙种优惠方案采摘所需的总费用为y2(元).已知1,y2与采摘重量x(kg)之间的函数关系如图所示.(1)分别求y1,y2与x之间的函数关系式;(2)求点A的坐标,并解释坐标的实际意义;(3)采摘重量x为多少时,游客选用甲种优惠方案采摘更合算.(直接写出答案即可)5.某市为支援灾区建设,计划向A、B两受灾地运送急需物资分别为60吨和140吨,该市甲、乙两地有急需物资分别为120吨和80吨,已知甲、乙两地运到A、B两地的每吨物资的运费如表所示:甲乙A20元/吨15元/吨B25元/吨24元/吨(1)设甲地运到A地的急需物资为x吨,求总运费y(元)关于x(吨)的函数关系式,并写出x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.6.为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?7.为了争创全国文明卫生城市,优化城市环境,节约能源,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多10万元,购买3台A型车比购买4台B型车少30万元.(1)请求出a和b的值;(2)若购买这批混合动力公交车(两种车型都要有)每年能节省的油量不低于21.6万升,请问有几种购车方案?请写出解答过程.(3)求(2)中最省钱的购车方案及所需的购车款.8.某电视机厂要印制产品宜传材料甲印刷厂提出:每份材料收1元印制费,另收1500元制版费;乙厂提出:每份材料收2.5元印制费,不收制版费.(1)分别写出两厂的收费y元与印制数量x(份)之间的关系式(2)在同一直角坐标系内画出它们的图象;(3)根据图像回答下列问题:①印制800份宣传材料时,选择哪家印刷厂比较合算?②电视机厂拟拿出3000元用于印制宣传材料,找哪家印刷厂印制宣传材料能多一些? 9.“垃圾分类”意识已经深入人心.我校王老师准备用2000元(全部用完)购买,A B两类垃圾桶,已知A类桶单价20元,B类桶单价40元,设购入A类桶x个,B类桶y个.(1)求y关于x的函数表达式.(2)若购进的A类桶不少于B类桶的2倍.①求至少购进A类桶多少个?②根据临场实际购买情况,王老师在总费用不变的情况下把一部分A类桶调换成另一种C类桶,且调换后C类桶的数量不少于B类桶的数量,已知C类桶单价30元,则按这样的购买方式,B类桶最多可买个.(直接写出答案)10.中国移动公司开设适合普通用户的两种通讯业务分别是:“全球通”用户先缴12元月租,然后每分钟通话费用0.2元;“神州行”用户不用缴纳月租费,每分钟通话0.3元.(通话均指拨打本地电话)()1设一个月内通话时间约为x分钟(3x≥且x为整数),求这两种用户每月需缴的费用分别是多少元?(用含x的式子表示)()2若张老师一个月通话约180分钟,请你给他提个建议,应选择哪种移动通讯方式合算一些?并说明理由.11.为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?12.某大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.13.某城市为了加强公民的节气和用气意识,按以下规定收取每月煤气费:所用煤气如果不超过50立方米,按每立方米0.8元收费;如果超过50立方米,超过部分按每立方米1.2元收费设小丽家每月所用煤气量为x立方米,应交煤气费为y元.(1)若小丽家某月所用煤气量为80立方米,则小丽家该月应交煤气费多少元?(2)试写出y与x之间的解析式.(3)若小丽家4月份的煤气费为88元,则她家4月份所用煤气量为多少立方米?(4)已知小丽家6月份所交的煤气费平均每立方米为0.95元,那么6月份小丽家用了多少立方米的煤气?14.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.15.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.16.为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元。

一次函数经典例题分类总结

一次函数经典例题分类总结

一次函数典型例题题型一:求解析式例1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.解:(1)由题意得:202 44a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4(•函数图象略).(2)∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.练习:已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.题型二:分段函数例2.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.解:(1)设一次函数为y=kx+b,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.练习:已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B 种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?解:.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.题型三:图像题例3.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15),∴y=15x.(0≤x≤1),•分别令y=12,得x=265(小时),x=45(小时).答:小明出发小时265或45小时距家12千米.练习:1.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?2.如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?题型四:图像面积、坐标问题例4.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.练习:1.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.2.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.一次函数测试题一、选择(每小题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y=2x - B .y=2x - C .y=24x - D .y=2x +·2x - 2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y=12x-3二、填空(每小题3分,共30分)11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.16.若一次函数y=kx+b交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.。

20.4一次函数的应用(5种题型基础练提升练)(原卷版)

20.4一次函数的应用(5种题型基础练提升练)(原卷版)

20.4一次函数的应用(5种题型基础练+提升练)题型一:一次函数与反比例函数综合一、单选题=-的图像大致是()2y kxA.B.C.D.二、填空题三、解答题,若ABO的面积为x题型二:分配方案问题(一次函数的实际应用)1.(2021下·上海·八年级上外附中校考期末)学校计划在总费用2800元的限额内,租用客车接送204名师生(其中包括6名教师)到校外参加活动,要求师生都有座位,且每辆客车上至少要有1名教师.现有标(1)求一共需租多少辆客车?说明理由;(2)设租用x辆标准型车,求租车的总费用y(单位:元)关于x的函数关系式及x的取值范围,并说明最省钱的租车方案及租金.2.(2021上·上海虹口·八年级统考期末)某通讯公司推出①、②两种通讯收费方式供用户选择,其中①有月租费,②无月租费,两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系图象均为直线,如图所示.请根据图象回答下列问题:(1)当通讯时间为500分钟时,①方式收费元,②方式收费元;(2)②收费方式中y与x之间的函数关系式是;(3)如果某用户每月的通讯时间少于200分钟,那么此用户应该选择收费方式是(填①或②).题型三:最大利润问题(一次函数的实际应用)1.(2021下·上海徐汇·八年级位育中学校考期中)疫情期间,甲厂欲购买某种无纺布生产口罩,A、B两家无纺布公司各自给出了该种无纺布的销售方案.A公司方案:无纺布的价格y(万元)与其重量x(吨)是如图所示的函数关系;B公司方案:无纺布不超过30吨时,每吨收费2万元;超过30吨时,超过的部分每吨收费1.9万元.(1)求如图所示的y与x的函数解析式;(不要求写出定义域)(2)如果甲厂所需购买的无纺布是40吨,试通过计算说明选择哪家公司费用较少.2.(2022下·上海·八年级期中)某年,埃博拉病毒在非洲肆虐,某制药厂研制出一种提高免疫力的药品,为赶制这批紧销药品投放市场,立即组织100名工人进行生产,已知生产这种药品有两道工序:一是由原材料生产半产品,二是由半产品生产出药品.由于半产品不易保存,剩余半成品当天必须卖给附近大厂,每名工人每天可生产半成品30千克或由半成品生产药品4千克(两项选一项),每2千克半成品只能生产1千克药品.若药品出厂价为30元/千克,半成品价格为3元/千克.(1)设厂长每天安排x名工人生产半成品,销售药品收入y1元,请用x的代数式表示销售药品收入y1;设当天剩余半成品全部卖出收入为y2元,请用x的代数式表示y2,并求出这个问题中x的取值范围.(2)为了使每天收益最大,请你帮厂长策划:每天安排多少名工人生产半产品?并求出这个最大收益.题型四:行程问题(一次函数的实际应用)1.(2023下·上海虹口·八年级上外附中校考期末)甲乙二人登山,均从距离地面0米处出发,甲乙二人距离地面的高度y(米)关于甲出发时间x(分钟)的函数图像如图所示,已知甲在出发2分钟后将速度提升为原来的3倍并一路登顶,乙始终保持匀速前进.根据图像判断,以下说法正确的有几个?()(1)山的高度为340米(2)甲乙二人不同时出发(3)甲登顶的时间为自己出发后7分钟(4)乙出发42.5分钟后登顶(5)甲出发5分钟后追上乙A.5个B.4个C.3个D.2个2.(2023下·上海宝山·八年级校考期中)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.根据图中信息,解答下列问题:(1)当x ______时,两车相遇;(2)求线段AB所在直线的函数解析式和甲乙两地之间的距离;(3)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t小时,求t的值.3.(2023下·上海青浦·八年级统考期末)已知甲、乙两车分别从A、B两地同时出发,沿同一条公路相向而行,甲车先以75千米/时的速度匀速行驶150千米后与乙车相遇,再以另一速度继续匀速行驶3小时到达B地;乙车匀速行驶至A地,两车到达各自的目的地后停止.甲、乙两车各自距A地的路程y(km)与行驶时间x(h)之间的函数关系如图所示.(1)求两车相遇后,甲车距A 地的路程y 与行驶时间x 之间的函数关系式;(2)当乙车到达A 地时,求甲车距A 地的路程.4.(2023下·上海宝山·八年级统考期末)元朝朱世杰的《算学启蒙》一书记载了一个数学问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”它的大意是∶“良马每天行240里,劣马每天行150里,劣马先行12天,良马需要多少天才能追上劣马?”如图,是良马与驽马行走路程s (单位∶里)关于行走时间t (单位∶日)的函数图象.(1)射线OA 记为1S ,射线BA 记为2S ,那么良马行走路程s 关于行走时间t 的函数图象是____________;(填1S 或2S )(2)两图象交点A 的坐标是____________;(3)求良马行走路程S 关于行走时间t 的函数解析式.题型五:几何问题(一次函数的实际应用)1.(2023下·上海宝山·八年级校考期中)在平面直角坐标系中,直线y kx b =+经过点()0,6,且平行于直线2y x =-.(1)若这条直线经过点(),2P m ,求m 的值;(2)求由直线y kx b =+、直线OP 与x 轴围成的三角形的面积.2.(2022上·上海青浦·八年级校考期末)如图,平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点()4,0A 、点()0,2B .(1)求直线AB 的表达式;(2)设点C 为线段AB 上一点,过点C 分别作CD x ⊥轴、CE y ⊥轴,垂足分别为D 、E ,当OC 平分AOB ∠时,求点C 的坐标.3.(2023上·上海金山·八年级校考期中)已知,如图,在平面直角坐标系xOy 中,正比例函数图象上有一点()3,2A ,点B 在x 轴上,作直线AB ,与y 轴交于点C ,且45ABO ∠=︒.(1)求正比例函数的解析式;(2)求点B的坐标;(3)在直线OA上是否存在一点P,使ABP的面积等于BOC的面积?若存在,请求出点P的坐标,请说明理由.八年级校考期末)已知:如图,在ABC中,上的一动点(点于点G4.(2022秋·上海·八年级上海市浦东外国语学校东校校考期中)在直角坐标平面中,任意线段的中点坐标可以用这条线段的两个端点的坐标来表示,若平面内点()11,M x y ,点()22,N x y ,则线段MN 的中点坐标可以表示为1212,22x x y y ++⎛⎫ ⎪⎝⎭,如图,直线122y x =+与x 轴交于A 点,与y 轴交于B 点,点C 是线段AB 的中点.(1)求点C的坐标,求直线CD的表达式.(2)点D在y轴上,且CD AB(3)在平面直角坐标系内,直线AB下方是否存在一点E,使得ABE是等腰直角三角形,若存在,请直接写出点E的坐标,不存在,请说明理由.。

第五章一次函数专题5.5 一次函数的应用-重难点题型(含解析)

第五章一次函数专题5.5 一次函数的应用-重难点题型(含解析)

一次函数的应用6大题型【题型1 一次函数的应用(行程问题)】【例1】(2021春•海门市期中)甲、乙两人分别从笔直道路上的A、B两地同时出发相向匀速而行,已知甲比乙先出发6分钟,两人在C地相遇,相遇后甲立即按原速原路返回A地,乙继续向A地前行,约定先到A地者停止运动就地休息.若甲、乙两人相距的路程y(米)与甲行走的时间x (分钟)之间的关系如图所示,有下列说法:①甲的速度是60米/分钟,乙的速度是80米/分钟;②甲出发30分钟时,两人在C地相遇;③乙到达A地时,甲与A地相距450米,其中正确的说法有( )A.0个B.1个C.2个D.3个【变式1-1】(2021春•巴彦淖尔期末)如图,折线ABCDE描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)与行驶时间t(h)之间的函数关系,根据图中提供的信息,判断下列结论正确的选项是( )①汽车在行驶途中停留了0.5h;②汽车在整个行驶过程的平均速度是40km/h;③汽车共行驶了240km;④汽车出发4h离出发地40km.A.①②④B.①②③C.①③④D.①②③④【变式1-2】(2021•沙坪坝区校级开学)某天上午,大学生小南从学校出发去重庆市图书馆查阅资料,同时他的同学小开从该图书馆看完书回学校.两人在途中相遇,于是马上就各自最近的研究课题交流了6分钟,又各自按原速前往自己的目的地.直到小开回到学校并电话告知小南后,小南决定提速25%到达图书馆(接打电话的时间忽略不计).在整个运动过程中,小南和小开之间的距离y(m)与小南所用的时间x(min)之间的函数关系如图所示,则下列说法中正确的是( )A.学校和图书馆的之间的距离为1200mB.小南提速前,小开的速度是小南的1.8倍C.m=1500D.n=62【变式1-3】(2021•蒙阴县二模)甲、乙两车从M地到480千米的N地,甲车比乙车晚出发2小时,乙车途中因故停车检修,图中线段DE、折线OABC分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数图象,请根据图象所提供的信息,解决如下问题:(1)求两车在途中第二次相遇时,它们距目的地的路程;(2)甲车出发多长时间,两车在途中第一次相遇?【题型2 一次函数的应用(调运问题)】【例2】(2021春•大安市期末)A城有肥料400吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡镇,从A城运往C、D两乡镇肥料费为20元/吨和25元/吨;从B城往C、D两乡镇运肥料的费用分别为15元/吨和24元/吨,C乡镇需要肥料340吨,D乡镇需要肥料360吨.设A城运往C乡镇x吨肥料,请解答下列问题:(1)根据题意,填写下列表格:城、乡/吨数C DA x B (2)设总运费为W(元),求出W(元)与x(吨)的函数关系式,并写出自变量的取值范围;(3)求怎样调运可使总运费最少?最少为多少元?【变式2-1】(2021•寻乌县模拟)疫情期间,甲、乙两个仓库要向M,N两地运送防疫物资,已知甲仓库可调出50吨防疫物资,乙仓库可调出40吨防疫物资,M地需35吨防疫物资,N地需55吨防疫物资,两仓库到M,N两地的路程和运费如下表:路程/千米运送1千米所需运费/(元/吨)甲仓库乙仓库甲仓库乙仓库M地20151212N地2520108(1)设从甲仓库运往M地防疫物资x吨,两仓库运往M,N两地的总费用为y元,求y关于x的函数关系式.(2)如何调运才能使总运费最少?总运费最少是多少?【变式2-2】(2021春•满洲里市期末)已知A地有蔬菜200t,B地有蔬菜300t,现决定将这些蔬菜全部调运给C,D两地,C,D两地分别需要调运蔬菜240t和260t.其中从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B 地运往C地的蔬菜为x吨.设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案.【变式2-3】(2021春•昆明期末)某市A、B两个仓库分别有救灾物资200吨和300吨,2021年5月18日起云南大理州漾濞县已连续发生多次地震,最高震级为5月21日发生的6.4级地震,为援助灾区,现需将这些物资全部运往甲,乙两个受灾村.已知甲村需救灾物资240吨,乙村需救灾物资260吨,从A仓库运往甲,乙两村的费用分别为每吨20元和每吨25元,从B仓库运往甲,乙两村的费用分别为每吨15元和24元.设A仓库运往甲村救灾物资x吨,请解答下列问题:(1)根据题意,填写下表格:仓库甲村乙村A x①B②③①= ;②= ;③= .(2)设总运费为W(元),求出W(元)与x(吨)的函数关系式.(3)求怎么调运可使总运费最少?最少运费为多少元?【题型3 一次函数的应用(利润最大化)】【例3】(2021•镇雄县二模)2020年6月1日上午,国务院总理在山东烟台考察时表示,地摊经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.“地摊经济”成为了社会关注的热门话题.小明从市场得知如表信息:甲商品乙商品进价(元/件)355售价(元/件)458小明计划购进甲、乙商品共100件进行销售,设小明购进甲商品x件,甲、乙商品全部销售完后获得利润为y元.(1)求出y与x之间的函数关系式;(2)小明用不超过2000元资金一次性购进甲,乙两种商品,求x的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于632.5元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大.【变式3-1】(2021•青白江区模拟)在近期“抗疫”期间,某药店销售A,B两种型号的口罩,已知销售80只A型和45只B型的利润为21元,销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不少于A型口罩的进货量且不超过它的3倍,则该药店购进A型、B型口罩各多少只,才能使销售总利润y最大?【变式3-2】(2021春•连山区期末)由于新能源汽车越来越受到消费者的青睐,某经销商决定分两次购进甲、乙两种型号的新能源汽车(两次购进同一种型号汽车的每辆的进价相同).第一次用270万元购进甲型号汽车30辆和乙型号汽车20辆;第二次用128万元购进甲型号汽车14辆和乙型号汽车10辆.(1)求甲、乙两种型号汽车每辆的进价;(2)经销商分别以每辆甲型号汽车8.8万元,每辆乙型号汽车4.2万元的价格销售后,根据销售情况,决定再次购进甲、乙两种型号的汽车共100辆,且乙型号汽车的数量不少于甲型号汽车数量的3倍,设再次购进甲型汽车a辆,这100辆汽车的总销售利润为W万元.①求W关于a的函数关系式;并写出自变量的取值范围;②若每辆汽车的售价和进价均不变,该如何购进这两种汽车,才能使销售利润最大?最大利润是多少?【变式3-3】(2021•鹿邑县一模)草莓是一种极具营养价值的水果,当下正是草莓的销售旺季.某水果店以2850元购进两种不同品种的盒装草莓.若按标价出售可获毛利润1500元(毛利润=售价﹣进价),这两种盒装草莓的进价、标价如表所示:价格/品种A品种B品种进价(元/盒)4560标价(元/盒)7090(1)求这两个品种的草莓各购进多少盒;(2)该店计划下周购进这两种品种的草莓共100盒(每种品种至少进1盒),并在两天内将所进草莓全部销售完毕(损耗忽略不计).因B品种草莓的销售情况较好,水果店计划购进B品种的盒数不低于A品种盒数的2倍,且A品种不少于20盒.如何安排进货,才能使毛利润最大,最大毛利润是多少?【题型4 一次函数的应用(费用最低)】【例4】(2021春•广安期末)为积极响应垃圾分类的号召,某街道决定在街道内的所有小区安装垃圾分类的温馨提示牌和垃圾箱.已知购买3个垃圾箱和2个温馨提示牌需要280元,购买2个垃圾箱和3个温馨提示牌需要270元.(1)每个垃圾箱和每个温馨提示牌各多少元?(2)若购买垃圾箱和温馨提示牌共100个(两种都买),且垃圾箱的个数不少于温馨提示牌个数的3倍,请写出总费用w(元)与垃圾箱个数m(个)之间的函数关系式,并说明当购买垃圾箱和温馨提示牌各多少个时,总费用最低,最低费用为多少元?【变式4-1】(2021春•环江县期末)某县园林局打算购买三角梅、水仙装点城区道路,负责人小李去花卉基地调查发现:购买1盆三角梅和2盆水仙需要14元,购买2盆三角梅和1盆水仙需要13元.(1)求三角梅、水仙的单价各是多少元?(2)购买三角梅、水仙共10000盆,且购买的三角梅不少于3000盆,但不多于5000盆.①设购买的三角梅种花a盆,总费用为W元,求W与a的关系式;②当总费用最少时,应选择哪一种购买方案?最少费用为多少元?【变式4-2】(2021•三水区校级二模)截至2021年4月10日,全国累计报告接种新冠疫苗16447.1万剂次,接种总剂次数为全球第二.某社区有80000人每人准备接种两剂次相同厂家生产的新冠疫苗并被分配到A、B两个接种点,A接种点有5个接种窗口,B接种点有4个接种窗口.每个接种窗口每天的接种量相同,并且在独立完成20000人的两剂次新冠疫苗接种时,A接种点比B接种点少用5天.(1)求A、B两个接种点每天接种量;(2)设A接种点工作x天,B接种点工作y天,刚好完成该社区80000人的新冠疫苗接种任务,求y关于x的函数关系式;(3)在(2)的条件下,若A接种点每天耗费6.5万元,B接种点每天耗费为4万元,且A、B两个接种点的工作总天数不超过85天,则如何安排A、B两个接种点工作的天数,使总耗费最低?并求出最低费用.【变式4-3】(2021春•大同期末)在新冠疫情防控期间,某校新购进A、B两种型号的电子体温测量仪共20台,其中A型仪器的数量不少于B型仪器的,已知A、B两种测温仪的价格如表所示,请问购买A、B两种测温仪各多少台时,可使所购仪器的总费用最少?最少需多少元?型号A B价格800元/台600元/台【题型5 一次函数的应用(工程问题)】【例5】(2021•汇川区三模)为了主题为“醉美遵义,酒都仁怀”第十三届遵义文化旅游产业发展大会召开,仁怀某社区计划对面积为2000m2的区域进行绿化,经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2.5倍,并且在独立完成面积为500m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是1.5万元,乙队每天绿化费用为0.5万元,且甲乙两队施工的总天数不超过19天,则如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低费用.【变式5-1】(2021春•青羊区期末)甲、乙两个工程队分别同时铺设两条公路,所铺设公路的长度y (m)与铺设时间x(h)之间的关系如图所示,根据图象所提供的信息分析,解决下列问题:(1)在2时~6时段时,乙队的工作效率为 5 m/h;(2)分别求出乙队在0时~2时段和2时~6时段,y与x的关系式,并求出甲乙两队所铺设公路长度相等时x的值;(3)求出当两队所铺设的公路长度之差为5m时x的值.【变式5-2】(2021春•沙坪坝区校级期末)甲、乙两人同时开始共同组装一批零件,工作两小时后,乙因事离开,停止工作.一段时间后,乙重新回到岗位并提高了工作效率.最后40分钟,甲休息,由乙独自完成剩余零件的组装.甲在工作过程中工作效率保持不变,乙在每个工作阶段的工作效率保持不变.甲、乙两人组装零件的总数y(个)与工作时间x(小时)之间的图象如图.(1)这批零件一共有多少个?(2)在整个组装过程中,当甲、乙各自组装的零件总数相差40个时,求x的值.【变式5-3】(2020秋•郑州期末)工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间t(时),甲组加工零件的数量为y甲(个),乙组加工零件的数量为y乙(个),其函数图象如图所示.(1)求y乙与t之间的函数关系式,并写出t的取值范围;(2)求a的值,并说明a的实际意义;(3)甲组加工多长时间时,甲、乙两组加工零件的总数为480个.【题型6 一次函数的应用(其他问题)】【例6】(2021春•沙河口区期末)为预防疫情传播,学校对教室定期喷药消毒.如图为一次消毒中,某教室每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)的函数图象,它是由关闭门窗集中喷药,通风前和打开门窗后通风三段不同的一次函数组成的.在下面四个选项中,错误的是( )A.经过5min集中喷药,教室每立方米空气中含药量最高达到10mg/m3B.持续11min室内空气中的含药量不低于8mg/m3C.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才有效杀灭病毒.由此判断此次消毒有效D.当室内空气中的含药量低于4mg/m3时,对人体是安全的.从室内空气中的含药量达到10mg/m3开始,需经过40min后学生才能进入室内【变式6-1】(2021春•朝阳区校级期末)某地自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)某月该单位用水3200吨,水费是 元;若用水2800吨,水费是 元;(2)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式;(3)若某月该单位缴纳水费1540元,则该单位这个月的用水量为多少吨?【变式6-2】(2021春•河东区期末)一个水库的水位在某段时间内持续上涨,表格中记录了连续5h 内6个时间点的水位高度,其中x表示时间,y表示水位高度.0123453 3.3 3.6 3.9 4.2 4.5(1)水位高度y是否为时间x的函数?若是,请求出这个函数解析式;(2)据估计,这种上涨规律还会持续,并且当水位高度达到8m时,水库报警系统会自动发出警报.请预测再过多久系统会发出警报?【变式6-3】(2021•涧西区三模)某大型商场为了提高销售人员的积极性,对原有的薪酬计算方式进行了修改,设销售人员一个月的销售量为x(件),销售人员的月收入为y(元),原有的薪酬计算方式y1元采用的是底薪+提成的方式,且y1=k1x+b,已知每销售一件商品另外获得15元的提成修改后的薪酬计算方式为y2(元),且y2=k2x+b,根据图象回答下列问题:(1)求y1和y2的解析式,并说明b的实际意义;(2)求两个函数图象的交点F的坐标,并说明交点F的实际意义;(3)根据函数图象请判断哪种薪酬计算方式更适合销售人员.一次函数的应用-重难点题型第3步:列函数。

初中数学一次函数的应用题型分类汇编——销售最大利润问题4(附答案详解)

初中数学一次函数的应用题型分类汇编——销售最大利润问题4(附答案详解)
(1)求购进A.B两种纪念品每件各需要多少元?
(2)若该商店决定拿出10000元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种的6倍,且少于B种纪念品数量的8倍,设购进B种纪念品a件,则该商店共有几种进货方案?
(3)在第(2)问的条件下,若销售每件A种纪念品可获利润30元,每件B种纪念品可获利润40元,设总利润为y元,请写出总利润y(元)与a(个)的函数关系式,并根据函数关系式说明总利润最高时的进货方案.
(1)求y与x的函数关系式;
(2)如何分配工人才能获利最大?
3.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.
(1)求A,两种奖品的单价;
(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的 .请设计出最省钱的购买方案,并说明理由.
初中数学一次函数的应用题型分类汇编——销售最大利润问题4(附答案详解)
1.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
9.某厂计划生产A、B两种产品共100件,已知A产品每件可获利润400元,B产品每件可获利润500元,其中规定生产B产品的数量不超过A产品数量的2倍,设生产A产品的数量为x(件),生产两种产品的获利总额为y(元)

一次函数的实际应用实用分类

一次函数的实际应用实用分类

一次函数的应用 济宁学院附属中学李涛纯数学应用1.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.2. 在同一平面直角坐标系中,若一次函数y x 3=-+与y 3x 5=-图象交于点M ,则点M 的坐标为【 】A .(-1,4) B .(-1,2) C .(2,-1) D .(2,1) 3、若点(m ,n )在函数y=2x+1的图象上,则2m-n 的值是【 】A.2B.-2C.1D. -14.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,﹣2). (1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC=2,求点C 的坐标. (3)求S △AOC 的面积?实际应用题----根据实际意义直接写出一次函数表达式,1.某校办工厂现在的年产值是15万元,计划今后每年增加2万元. (1)写出年产值y (万元)与年数x (年)之间的函数关系式;(2)求5年后的产值.----单直线问题1. 某地长途汽车客运公司规定,旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y (元)是行李重量x (公斤)的一次函数,其图象如图所示。

求 (1)y 与x 之间的函数关系式 ⑵ 旅客最多可免费携带行李的公斤数。

---分段函数1.某移动公司采用分段计费的方法来计算话费,月通话时间x (分钟)与相应话费y (元)之间的函数图象如图所示: (1)月通话为100分钟时,应交话费 元; (2)当100x ≥时,求y 与x 之间的函数关系式; (3)月通话为280分钟时,应交话费多少元?100200(分钟)行李票费用(元)行李重量(公斤)2. 今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法.若某户居民每月应交电费y (元)与用电量x (度)的函数图像是一条折线(如图所示),根据图像解答下列问题:(1) 分别写出100x 0≤≤和100x ≥时,y 与x(2) 利用函数关系式,说明电力公司采取的收费标准;(3) 若该用户某月用电62度,则应缴费多少元?(4) 若该用户某月缴费105元时,则该用户该月用了多少度电?----双直线问题1.如图,l 1表示神风摩托厂一天的销售收入与摩托车销售量之间的关系;l 2表示摩托厂一天的销售成本与销售量之间的关系。

一次函数的应用题分类总结整理

一次函数的应用题分类总结整理

一、明确函数类型,利用待定系数法构建函数表达式;特点:所给问题中已经明确告知为一次函数....关系或者给出函数的图像为直线或直线的一部分时,就等于告诉我们此函数为“一次函数”,此时可以利用待定系数法,设关系式为:y=kx+b ,然后寻找满足关系式的两个x与y的值或两个图像上的点,代入求解即可。

常见题型:销售问题中售价与销量之间常以表格形式给出的有规律的变化,蕴含着一次函数关系;行程问题中的路程与时间的关系常给出函数的图像(多是直线或折线);【典型例题赏析】1.(2010 江苏连云港)(本题满分10分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系.售价…70 90 …x(元)销售…3000 1000 …量y(件)(1)求销售量y(件)与售价x(元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40 000 元?2.已知A、B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即沿原路返回.图2是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图像。

(1)求甲车在行驶过程中y与x之间的函数关系式;(2)当它们行驶了7小时时,两车相遇. 求乙车的速度.3.(2010浙江湖州)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t 的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的实际应用
基础扫描:在同一坐标系中作一次函数y
1=2x-2 与y2=0.5x+1的图象.
①求出它们的交点坐标是②则方程组
22
0.51
y x
y x
=-


=+

的解是 .
③当x时, y1>y2④当x时, y1=y2⑤当x时, y1<y2
举一反三:(2010 云南玉溪)某种铂金饰品在甲、乙两个商店销售.甲店标价477元/克,按标价出售,不优惠.乙店标价530元/克,但若买的铂金饰品重量超过3克,则超出部分可打八折出售.
⑴分别写出到甲、乙商店购买该种铂金饰品所需费用y(元)和重量x(克)之间的函数关系式;
⑵李阿姨要买一条重量不少于4克且不超过10克的此种铂金饰品,到哪个商店购买最合算?
模仿操练:1.(2010山东泰安)某电视机厂要印制产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费;乙厂提出:每份材料收2元印制费,不收制版费.
(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数关系式;
(2)电视机厂拟拿出3000元用于印制宣传材料,找哪家印刷厂印制的宣传材料能多一些?
(3)印刷数量在什么范围时,在甲厂的印制合算?
2.(2009年潍坊)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:
方案一:从纸箱厂定制购买,每个纸箱价格为4元;
方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.
y(元)和蔬菜加工厂自己加工制作纸(1)若需要这种规格的纸箱x个,请分别写出从纸箱厂购买纸箱的费用
1
y(元)关于x(个)的函数关系式;
箱的费用
2
(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.
3.(2010辽宁丹东市)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).
(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;
(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
一次函数的实际应用(分配方案问题)
基础扫描:利用题意中的数量关系建立函数模型,利用自变量及其相关的代数式的实际意义确定其取值范围,是求函数实际问题中的常用方法。

举一反三:(09年辽南)辽南素有“苹果之乡”美称,某乡组织20辆汽车装运A、B、C三种苹果42吨到外地销售,按规定每辆车只装同一种苹果,且必须装满,每种苹果不少于2车。

(1)设有x辆车装A种苹果,用y辆车装B种苹果,根据下表提供的信息求y与x的函数关系式,并求x 的取值范围。

苹果的品种A B C
每辆车运载量(吨) 2.2 2.12
每吨苹果获利(百
685
元)
(2)设此次外销活动的利润为W(百元),求W与x的函数关系式及最大利润,并安排相应的车辆分配方案。

思路导航:y与x的函数关系式应结合车辆总数和外销苹果总吨数来建立函数模型,每种苹果的利润等于每辆车的运载量×车辆数×每吨苹果的获利,利用题意中的数量关系建立函数模型,利用自变量及其相关的代数式的实际意义确定其取值范围,是求函数实际问题中的常用方法。

模仿操练:1.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
2.(2009年牡丹江)某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:
(1)冰箱厂有哪几种生产方案?
(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?
(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.
3.(2009年鄂州)某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售。

按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,
解答以下问题
(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.
(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案。

(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值。

一次函数的实际应用(最大利润问题)
基础扫描:一次函数)0
kx
y,当k 0时,y的值随x值得增大而增大;当k___0时,y的值随x值
b
=k
+
(≠
得增大而减小。

举一反三:(2010黑龙江绥化)为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?
(3)若若销售每件A种纪念品可获利润20元,每件 B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
思路导航:主要建立数学模型方程组、不等式、一次函数。

模仿操练:1.(2010 广西玉林、防城港)玉柴一分厂计划一个月(按30天计)内生产柴油机500台。

(1)若只生产一种型号柴油机,并且每天生产量相同,按原先的生产速度,不能完成任务;如果每天比原先多生产1台,就提前完成任务。

问原先每天生产多少台?
(2)若生产甲、乙两种型号柴油机,并且根据市场供求情况确定;乙型号产量不超过甲型号产量的3倍。

已知:甲型号出厂价2万元,乙型号出厂价5万元,求总产值w最大是多少万元。

2.(2009恩施市)某超市经销A、B两种商品,A种商品每件进价20元,售价30元;B种商品每件进价35元,售价48元.
(1)该超市准备用800元去购进A、B两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大(其中B种商品不少于7件)?
(2
促销活动期间小颖去该超市购买种商品,小华去该超市购买种商品,分别付款210元与268.8元.促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?
3.(2010 广东珠海)今年春季,我国云南、贵州等西南地区遇到多少不遇旱灾,“一方有难,八方支援”,为及时灌溉农田,丰收农机公司决定支援上坪村甲、乙、丙三种不同功率柴油发电机共10台(每种至少一台)及配套相同型号抽水机4台、3台、2台,每台抽水机每小时可抽水灌溉农田1亩.现要求所有柴油发电机及配套抽水机同时工作一小时,灌溉农田32亩.
(1)设甲种柴油发电机数量为x台,乙种柴油发电机数量为y台.
①用含x、y的式子表示丙种柴油发电机的数量;
②求出y与x的函数关系式;
(2)已知甲、乙、丙柴油发电机每台每小时费用分别为130元、120元、100元,应如何安排三种柴油发电机的数量,既能按要求抽水灌溉,同时柴油发电机总费用W最少?。

相关文档
最新文档