过程控制及仪表实验指导书(本部)

合集下载

过程控制实验指导书

过程控制实验指导书

过程控制实验指导书实验一:对象动态特性实验目的:1、学习被控对象动态特性的工程测试方法。

2、掌握被控对象动态特性特征参数的求取方法。

实验要求:1、预习被控对象有关章节;安排好实验计划;作好前期准备。

2、依据实验曲线求取被控对象动态特性的特征参数。

实验内容:1、对象的动态特性:下图为单位阶跃时输入系统输出测试曲线:曲线1.1实验报告:⑴依据曲线1.1、1.2和1.3 求取对象动态特性的特征参数(K 、T 、τ)。

由此确定闭环系统模型。

⑵ 分别确定系统开环传递函数,并分别画出单位负反馈时系统动态结构图。

⑶用SIMULINK 构建系统,比较仿真曲线与输出测试曲线。

⑷比较曲线1.1、1.2和1.3,说明不同系统的动态特性在运动形态、特征参数等方面的异同。

实验二:调节器控制规律实验目的:1、熟悉SIMULINK 调节器模块的使用方法。

2、掌握调节器控制规律特征参数的整定方法。

实验要求:1、预习调节器有关章节;安排好实验计划;作好前期准备。

2、用工程测试法绘制调节器的输出特性,求取PID 参数。

实验内容:被控对象分别为)11.0)(1(2)(1++=s s s G p 和)11.0(2)(2+=s s s G p分别对以上系统,构建下述调节器,研究调节器对输出特性的影响:1、比例调节器的输出特性:⑴ 用SIMULINK 构建比例控制系统。

⑵ 设定值为单位阶跃信号,改变比例调节器的大小,观察对系统的影响。

2、比例积分调节器的输出特性:⑴用SIMULINK 构建比例积分控制系统。

⑵设定值为单位阶跃信号,改变比例积分调节器的大小,观察对系统的影响。

注意调节器的整定顺序。

3、比例微分调节器的输出特性:⑴用SIMULINK 构建比例微分控制系统。

⑵改变比例微分调节器的大小,观察对系统的影响。

注意调节器的整定顺序。

4、比例积分微分调节器的输出特性:⑴用SIMULINK构建比例积分微分控制系统。

⑵改变比例积分微分调节器的大小,观察对系统的影响。

过程控制实验指导书

过程控制实验指导书

过程控制及仪表实验指导书襄樊学院实验装置的基本操作与仪表调试一、实验目的1、了解本实验装置的结构与组成。

2、掌握压力变送器的使用方法。

3、掌握实验装置的基本操作与变送器仪表的调整方法。

二、实验设备1、THKGK-1型过程控制实验装置GK-02 GK-03 GK-04 GK-072、万用表一只三、实验装置的结构框图图1-1、液位、压力、流量控制系统结构框图四、实验内容1、设备组装与检查:1)、将GK-02、GK-03、GK-04、GK-07挂箱由右至左依次挂于实验屏上。

并将挂件的三芯蓝插头插于相应的插座中。

2)、先打开空气开关再打开钥匙开关,此时停止按钮红灯亮。

3)、按下起动按钮,此时交流电压表指示为220V,所有的三芯蓝插座得电。

4)、关闭各个挂件的电源进行连线。

2、系统接线:1)、交流支路1:将GK-04 PID调节器的自动/手动切换开关拨到“手动”位置,并将其“输出”接GK-07变频器的“2”与“5”两端(注意:2正、5负),GK-07的输出“A、B、C”接到GK-01面板上三相异步电机的“U1、V1、W1”输入端;GK-07 的“SD”与“STF”短接,使电机驱动磁力泵打水(若此时电机为反转,则“SD”与“STR”短接)。

2)、交流支路2:将GK-04 PID调节器的给定“输出”端接到GK-07变频器的“2”与“5”两端(注意:2正、5负);将GK-07变频器的输出“A、B、C”接到GK-01面板上三相异步电机的“U2、V2、W2”输入端;GK-07 的“SD”与“STR”短接,使电机正转打水(若此时电机为反转,则“SD”与“STF”短接)。

3、仪表调整:(仪表的零位与增益调节)在GK-02挂件上面有四组传感器检测信号输出:L T1、PT、L T2、FT(输出标准DC0~5V),它们旁边分别设有数字显示器,以显示相应水位高度、压力、流量的值。

对象系统左边支架上有两只外表为蓝色的压力变送器,当拧开其右边的盖子时,它里面有两个3296型电位器,这两个电位器用于调节传感器的零点和增益的大小。

自动化仪表与过程控制实验指导书教材

自动化仪表与过程控制实验指导书教材

自动化仪表与过程控制实验指导书实验一位式控制一、实验目的1、了解简单控制系统的构成及仪表的应用(熟悉仪表的操作)2、掌握简单过程控制的原理及仪表使用二、实验设备及参考资料1、PCS过程控制实验装置(使用其中:位式电磁阀、AI818智能调节仪一台、上水箱液位传感器、水泵1系统等)。

2、AI-818仪表的操作说明书和液位变送器的调试(一般出厂之前已调试好)方法。

三、实验系统流程图:四、实验原理本实验采用位式控制原理进行液位的范围控制,即,将液位控制在一定的上下限范围内。

水箱液位变送器输出信号,经AI-818仪表进行处理后与设定上下限水位值进行比较。

控制仪表内继电器触点状态,对位式电磁阀进行控制,以达到控制目的。

图1-1五、实验步骤1、按附图位式控制实验接线图接好实验导线。

2、将手动阀门1V2、1V10、V4、V5打开,其余阀门全部关闭。

3、先打开实验对象的系统电源,然后打开控制台上的总电源,再打开仪表电源。

4、设置智能调节器参数,其需要设置的参数如下:(未列出者用出厂默认值)HIAL=30 (参考值)LOAL=20 (参考值)dHAL=9999dlAL=9999dF=0.5 (参考值)Ctrl=0Sn=33Dip=1 (参考值)dIL=0dIH=50Alp=2OP1=0具体请详细阅读调节器使用手册5、在控制板上打开水泵1、位控干扰。

6、在信号板上打开上水箱输出信号。

六、思考建议在什么样的情况下适合采用位式控制。

实验二电动阀支路单容液位控制一、实验目的1、了解简单过程控制系统的构成及仪表的应用(熟悉仪表的操作)2、掌握简单过程控制的原理及仪表使用二、实验设备及参考资料1、PCS过程控制实验装置(使用其中:电动调节阀、AI818智能调节仪一台、上水箱及液位变送器、水泵1系统等)2、AI-818仪表的操作说明书,智能电动调节阀使用手册和液位变送器的调试(一般出厂之前已调试好)方法。

三、实验系统流程图:四、实验原理本实验采用仪表控制,将液位控制在设定高度。

过程控制实验指导书

过程控制实验指导书

过程控制实验指导书THKGK-1过程控制实验装置的组成和各部分使用说明THKGK-1型过程控制实验装置是根据自动化专业及相关专业教学的特点,吸收了国内外同类实验装置的特点和长处,经过精心设计,多次实验和反复论证,向广大师生推出一套全新的实验设备。

该设备可以满足《过程控制》、《自动化仪表》、《工程检测》、《计算机控制系统》等课程的教学实验、课程设计等。

整个系统结构紧凑、功能多样、使用方便,既能进行验证性、研究性实验,又能提供综合性实验。

本实验装置可满足本科、大专及中专等不同层次的教学实验要求,还可为科学研究的开发提供实验手段。

本实验装置的控制信号及被控信号均采用IEC标准,即电压0~5V或1~5V,电流0~10mA或4~20mA。

实验系统供电要求为单相交流220V±10%,10A;外型尺寸为:182×160×70,重量:380Kg。

装置特点本实验装置具有以下特点:1、多种被控参数:液位、压力、流量、温度。

2、多种控制方式:位式控制、PID控制、智能仪表控制、单片机控制、PLC控制、计算机控制等。

3、多种计算机控制软件:西门子PROTOOL-CS组态软件、北京昆仑公司的MCGS组态软件以及本公司开发的上位机监控软件,另外还可以用台湾HITECH公司的ADP6.0软件与PLC 相连进行控制。

4、丰富的计算机控制算法:P、PI、PID、死区PID、积分分离、不完全积分、模糊控制、神精元控制、基于SIMULINK的动态参数自适应补偿控制等。

5、开放的软件平台:在我们提供的软件平台上,学生既可以利用我们所提供的算法程序进行实验,又可以用自己编写的PLC程序、MATLAB`程序等进行实验,还可以利用人机界面(触摸屏)的组态再结合PLC的编程来进行控制实验。

6、灵活多样的实验组合:可以很方便地对控制方式与被控参数进行不同组合,得到自己需要的单回路、多回路等多种控制系统。

系统组成被控对象包括上水箱、下水箱、复合加热水箱以及管道。

过程控制实训指导书

过程控制实训指导书

过程控制工程实训报告学号:班别:姓名:实验一上水箱特性测试实验一、实验目的:了解调节器的功能和操作方法,学会使用调节器。

通过实验,了解对象特性曲线的测量的思路和方法,掌握对象模型参数的求取方法。

二、实验设备:水泵Ⅰ、变频器、压力变送器、调节器、主回路调节阀、上水箱、上水箱液位变送器、调节器、电流表。

图1.1实验接线图三、实验步骤:1、认识实验系统,了解本实验系统中的各个对象。

了解本实验系统中各仪表的名称、基本原理以及功能,掌握其正确的接线与使用方法,以便于在实验中正确、熟练地操作仪表读取数据。

熟悉实验装置面板图,做到根据面板上仪表的图形、文字符号找到该仪表。

熟悉系统构成和管道的结构,认清电磁阀和手动阀的位置及其作用。

本实验采用调节器手动输出控制调节阀,计算机采集并记录数据。

图1.2 上水箱特性测试(调节器控制)系统框图图1.3 恒压供水(调节器控制)系统框图2、将上水箱特性测试(调节器控制)实验所用的设备,参照流程图和系统框图接线。

3、确认接线无误后,接通总电源、各仪表的电源,打开上水箱进水阀和下水箱排水阀。

4、设置调节器参数,使用手动输出功能。

(注意:更改调节器参数时,严禁用指甲按调节器面板,为防止损坏面板上的按钮,应用手指均匀用力)按调节器的增/减键改变输出值,使上水箱的液位处于某一平衡位置,记下此时手动输出值。

5、按调节器的增/减键增加调节器手动输出,给系统输入幅值适宜的阶跃信号(阶跃信号不要太大),使系统的输出产生变化,在液位较高处达到新的平衡状态。

6、观察计算机采集的上水箱液位的阶跃响应和历史曲线。

7、调节器的手动输出回到原来的输出值,记录液位下降的曲线。

8、曲线的分析处理,对实验的记录曲线分别进行分析和处理,处理结果记录于表格1。

四、试验报告:根据试验结果编写实验报告,并计算出K、T、τ的平均值,写出系统的广义传递函数(等效成惯性环节,K为静态增益,T为时间常数,τ为延迟时间)。

实验二压力单闭环实验一、实验目的:通过实验掌握单回路控制系统的构成。

过程控制及仪表实验指导书

过程控制及仪表实验指导书

过程控制及仪表实验指导书西安文理学院机械电子工程系目录实验一热电偶特性与应用 (2)实验二调节器参数校验 (4)实验三过程特性测试 (7)实验四控制系统参数整定 (9)实验一热电偶特性与应用一、实验目的1. 了解热电偶构造及热电特性2. 掌握热电势基本测量方法3. 领会冷端温度对热电偶输出电势的影响,掌握补偿导线的正确使用方法。

二、实验设备1. K分度热电偶及补偿导线1支;S分度热电偶及补偿导线1支;2. 管式电炉1台;3. 电炉温度控制器1台;4. UJ-37电位差计1台;5. 电吹风1支。

三、实验设备连接图1 热电偶特性与使用设备连接示意图四、实验内容1. 热电偶热电特性测量将两支热电偶分别从电炉两端插入电炉,通过温度测量控制仪依次改变炉温,待炉温稳定后,由控制仪的指示盘读取温度,由UJ-37电位差计测取热电势,得出电势-温度关系,同时记取室温。

2. 观察冷端温度对测量的影响在炉温保持恒定情况下,用电吹风改变热电偶冷端温度,观察电位差计的读数变化,体会冷端温度补偿的意义,分以下不同情形分别进行:⑴补偿导线极性连接正确,用电吹风改变热电偶与补偿导线连接点温度,观察电位差计读数变化。

⑵补偿导线极性连接不正确,用电吹风改变热电偶与补偿导线连接点温度,观察电位差计读数变化。

(注意:改变热电偶与补偿导线连接极性时,要同时调换补偿导线与电位差计连接极性。

)⑶用导线替换补偿导线,用电吹风改变铜导线与热电偶连接点的温度,观察电位差计读数变化情况。

五、实验报告1、将实验内容1所测得的热电势-温度关系经冷端温度(实验时读取的室温)转换修正后,在方格纸上画出电势-温度曲线,并与K分度的热点偶标准热电势特性比较,简要讨论误差发生的原因。

2、通过实验内容2中三种情况对比,论述正确使用补偿导线的重要性。

实验二调节器参数校验一、实验目的1.了解工业用调节器的结构、特性和基本使用方法。

2.学习调节器重要参数的校验方法。

3.体验调节器无扰切换过程。

AE2000型仪表实验指导书

AE2000型仪表实验指导书

AE2000型过程控制实验系统使用手册智能仪表实验指导书目录第一章系统熟悉实验 (3)实验一、实验装置的基本操作(一) (3)实验二、实验装置的基本操作(二) (5)实验三、AE2000-YB软件熟悉实验 (7)第二章系统主题实验 (9)实验一、一阶单容水箱对象特性测试实验 (9)实验二、二阶双容中水箱对象特性测试实验 (15)实验三、锅炉内胆温度二位式控制实验 (21)实验四、单容水箱液位PID整定实验 (27)实验五、串接双容中水箱液位PID整定实验 (34)实验六、锅炉内胆水温PID整定实验(动态) (38)实验七、锅炉夹套水温PID整定实验(动态) (45)实验八、流量计流量PID整定实验 (52)实验九、上水箱液位和涡轮流量串级控制实验 (58)实验十、锅炉内胆和夹套温度串级控制系统 (62)实验十一、电磁和涡轮流量计流量比值控制系统实验 (67)实验十二、上水箱中水箱液位串级控制实验 (71)实验十三、换热器热水出口温度控制实验 (74)实验十四、下水箱对象特性测试实验 (80)实验十五、三容下水箱液位PID整定实验 (84)第一章系统熟悉实验实验一、实验装置的基本操作(一)系统结构的熟悉和液位传感器的校准一、实验目的1.了解实验装置的结构和组成。

2.了解信号的传输方式和路径。

3.掌握实验装置的基本操作。

4.掌握液位传感器的校准方法。

二、实验设备AE2000型过程控制实验装置,万用表。

三、实验内容1、设备的连接与检查1).关闭阀门,往AE2000型过程控制对象的储水箱灌水,水位达到总高度的90%以上时停止灌水。

2).打开以齿轮泵为动力的支路至上水箱的所有阀门,关闭动力支路上通往其它对象的切换阀门。

3).关闭上水箱泄水阀。

4).检查电源开关是否关闭。

2、系统连线1).将I/O信号面板上水箱液位的切换开关设置在1~5V位置上。

2).不需连线。

3、启动实验装置1).将实验装置电源插头接到单相220V交流电源上。

自动化仪表与过程控制实验指导书

自动化仪表与过程控制实验指导书

扰动 设定值 上水箱 电动阀 e
调节器 反馈值 上水箱 液位变送器 图1-2 五、实验步骤 1、按附图单容液位控制实验接线图接好实验导线和通讯线。
2、将控制台背面右侧的通讯口(在电源插座旁)与上位机连 接。 3、将手动阀门1V1、1V10、V4、V5打开,其余阀门全部关闭。 4、先打开实验对象的系统电源,然后打开控制台上的总电源, 再打开仪表电源。 5、整定参数值的计算 设定适当的控制参数使过渡过程的衰减比为4:1,整定参数 值可按下列“阶跃反应曲线整定参数表”。 表1 阶跃反应曲线整定参数表
再打开仪表电源。 5、设置智能调节器参数(可在仪表上直接设置,也可在计算机 上设置),其需要设置的参数如下:(未列出者用出厂默认值) (1)主调节器 SV=20 (参考值) dF=0.3 (参考值) CtrL=1 P=30 (参考值) I=60 (参考值) d=0 (参考值) Sn=33 Dip=2 (参考值) dIL=0 dIH=50 OP1=4 OPL=0 OPH=100 CF=0 Addr=2 run=1 (2)副调节器 dF=0.3 (参考值) CtrL=1 P=36 (参考值) I=15 (参考值) d=0 (参考值) Sn=32 Dip=1 (参考值) dIL=0 dIH=800 OP1=4 OPL=0 OPH=100 CF=8 Addr=1 run=1 具体请详细阅读调节器使用手册
dHAL=9999 dlAL=9999 dF=0.5 (参考值) Ctrl=0 Sn=33 Dip=1 (参考值) dIL=0 dIH=50 Alp=2 OP1=0 具体请详细阅读调节器使用手册 5、在控制板上打开水泵1、位控干扰。 6、在信号板上打开上水箱输出信号。 六、 思考建议 在什么样的情况下适合采用位式控制。

过程控制实验指导书

过程控制实验指导书

过程控制及仪表实验指导书襄樊学院实验装置的基本操作与仪表调试一、实验目的1、了解本实验装置的结构与组成。

2、掌握压力变送器的使用方法。

3、掌握实验装置的基本操作与变送器仪表的调整方法。

二、实验设备1、THKGK-1型过程控制实验装置GK-02 GK-03 GK-04 GK-072、万用表一只三、实验装置的结构框图图1-1、液位、压力、流量控制系统结构框图四、实验内容1、设备组装与检查:1)、将GK-02、GK-03、GK-04、GK-07挂箱由右至左依次挂于实验屏上。

并将挂件的三芯蓝插头插于相应的插座中。

2)、先打开空气开关再打开钥匙开关,此时停止按钮红灯亮。

3)、按下起动按钮,此时交流电压表指示为220V,所有的三芯蓝插座得电。

4)、关闭各个挂件的电源进行连线。

2、系统接线:1)、交流支路1:将GK-04 PID调节器的自动/手动切换开关拨到“手动”位置,并将其“输出”接GK-07变频器的“2”与“5”两端(注意:2正、5负),GK-07的输出“A、B、C”接到GK-01面板上三相异步电机的“U1、V1、W1”输入端;GK-07 的“SD”与“STF”短接,使电机驱动磁力泵打水(若此时电机为反转,则“SD”与“STR”短接)。

2)、交流支路2:将GK-04 PID调节器的给定“输出”端接到GK-07变频器的“2”与“5”两端(注意:2正、5负);将GK-07变频器的输出“A、B、C”接到GK-01面板上三相异步电机的“U2、V2、W2”输入端;GK-07 的“SD”与“STR”短接,使电机正转打水(若此时电机为反转,则“SD”与“STF”短接)。

3、仪表调整:(仪表的零位与增益调节)在GK-02挂件上面有四组传感器检测信号输出:L T1、PT、L T2、FT(输出标准DC0~5V),它们旁边分别设有数字显示器,以显示相应水位高度、压力、流量的值。

对象系统左边支架上有两只外表为蓝色的压力变送器,当拧开其右边的盖子时,它里面有两个3296型电位器,这两个电位器用于调节传感器的零点和增益的大小。

过程控制及仪表实验指导书

过程控制及仪表实验指导书

过程控制及仪表实验指导书过程控制系统及仪表实验指导书潘岩左利长沙理工大学电气与信息工程学院20XX年4月1目录第一章系统概述第二章实验装置介绍一、THJ-3型高级过程控制对象系统实验装置二、THSA-1型过控综合自动化控制系统实验平台三、软件介绍四、实验要求及安全操作规程第三章实验内容实验一、单容自衡水箱液位特性测试实验实验二、双容水箱特性的测试实验实验三、单容液位定值控制系统实验2第一章系统概述THSA-1型过程综合自动化控制系统(Experiment Platform of Process Synthetic automation Control system)THJ-3型高级过程控制对象系统实验装置、THSA-1型综合自动化控制系统实验平台及上位监控PC机三部分组成。

如图1-1所示。

图1-1 THSA-1过程综合自动化控制系统实验平台该套实验装置紧密结合工业现场控制的实际情况,能够对流量、温度、液位、压力等变量实现系统参数辨识,并能够进行单回路控制、串级控制、前馈-反馈控制、滞后控制、比值控制、解耦控制等多种控制实验,是一套集成了自动化仪表技术、计算机技术、自动控制技术、通信技术及现场总线技术等的多功能实验设备。

THSA-1型过程综合自动化控制系统能够为在校学生和相关科研人员提供有力帮助。

学生通过学习,应对传感器特性及零点漂移有初步认识,同时能掌握自动化仪表、变频器、电动调节阀等仪器的规范操作,并能够整定控制系统中相关参数。

这套实验设备综合性强,所涉及的工业生产过程多,所有部件均来自工业现场,严格遵循相关国家标准,具有广泛的可扩展性和后续开发功能,有利于培养学生的独立操作、独立分析问题和解决问题的创新能力.整套实验装置的电源、控制屏均装有漏电保护装置,装置内各种仪表均有可靠的自保护功能,强电接线插头采用封闭式结构,强弱电连接采用不同结构接头,安全可靠。

3第二章实验装置介绍“THSA-1型过控综合自动化控制系统实验平台”是实验控制对象、实验控制台及上位监控PC机三部分组成。

过程控制与仪表实验指导书

过程控制与仪表实验指导书

过程控制与仪表实验指导书电子信息工程学院2012年9月目录目录........................................................................ 第一章安全注意事项 .. (1)1.1防止触电 (1)1.2防止烫伤 (1)1.3防止损坏 (1)1.4其他注意事项 (2)第二章 A3000过程控制实验系统说明 (3)2.1现场系统 (3)实验一对象飞升特性曲线实验 (6)1.1实验目的 (6)1.2实验要求 (6)1.3实验设备及系统组成 (6)1.4操作步骤和调试 (8)1.5实验结果 (9)1.6实验思考 (9)实验二单容水箱液位变频器控制实验 (10)2.1实验目的 (10)2.2实验要求 (10)2.3实验设备及系统组成 (10)2.4操作步骤和调试 (10)2.5实验结果 (11)2.6实验思考 (11)实验三单容水箱液位调节阀控制实验 (12)3.1实验目的 (12)3.2实验要求 (12)3.3实验设备及系统组成 (12)3.4操作步骤和调试 (13)3.5实验结果 (14)3.6实验思考 (14)实验四流量调节阀控制实验 (15)4.1实验目的 (15)4.2实验要求 (15)4.3实验设备及系统组成 (15)4.4操作步骤和调试 (16)4.5实验结果 (17)4.6实验思考 (17)第一章安全注意事项安全注意事项:在安装、操作、维护或检查本系统之前.一定仔细阅读以下安全注意事项。

在熟悉设备的知识、安全信息及全部有关注意事项以后使用。

在本使用说明书中,将安全注意事项等级分为“危险”和“注意”。

!危险:不正确的操作造成的危险情况,将导致死亡或重伤的发生。

!注意:不正确的操作造成的危险情况,将导致一般或轻微的伤害或造成物体的硬件损坏。

注意:根据情况的不同,“注意”等级的事项也可能造成严重后果。

请遵循两个等级的注意事项,因为它们对于个人安全都是重要的。

自动化过程控制实验指导书

自动化过程控制实验指导书

一、过程控制仪表认识实验一、实验目的1、熟悉装置的具体结构、明确各部件的作用。

2、掌握常用传感器的工作原理及使用方法。

二、实验内容1、水箱本装置包括上水箱、中水箱、下水箱和储水箱,上、中、下三个水箱都有三个槽,分别是缓冲槽、工作槽和溢流槽。

实验时,水流首先进入缓冲槽(可减小水流对工作槽的冲击),当缓冲槽中注满水时,水流便溢出到工作槽。

整个装置的管道都采用铝塑管,以防止阀门生锈。

打开储水箱后的小球阀可排出水箱中的水,另外还可排出空气,以防抽不上水。

2、微型锅炉、纯滞后系统、热电阻本装置采用锅炉进行温度实验,锅炉用不锈钢材料制作,共有四层,从内向外依次是加热层、冷却层、溢流层和纯滞后管道层(盘管长达20米)。

热电阻为Pt100,三线制工作。

温度变送器内部已有内置电源,不能再接外加电源。

系统用2Kw的加热丝进行加热,并采用可控硅移相触发模块(移相触发角与输入电流成正比),本模块输入为4—20mA的标准电流,输出为380V的交流电。

3、液位传感器本装置采用扩散硅压力变送器(不锈钢隔离膜片),标准二线制进行传输,因此工作时需要串接24V电源。

压力变送器通电15分钟后,方可调整零点和量程。

使用的原则是:没通电,不加压;先卸压,再断电。

零点调整:在水箱液位为零时,调整输出电流表的读数为4mA。

满量程调整:在水箱加满水时,调整输出电流表的读数为20mA。

调整的原则是:先调零点,再调满量程,要反复多次调整(满量程调整后会影响零点)。

4、电动调节阀采用德国PS公司生产的PSL 202型智能电动调节阀。

调节阀由220V50HZ电源供电。

工作环境温度为-20—70摄氏度,输入信号为4—20mA的控制信号,输出信号为4—20mA 的阀位信号。

5、变频器采用日本三菱FR-S520变频器,内控为0—50HZ,外控为4—20mA,可通过控制屏上的双掷开关进行切换。

内控:上电时,EXT灯先亮,开关打到内控,Run灯亮,开始内控变频控制水泵。

过程控制工程实验指导书

过程控制工程实验指导书

过程控制实验指导书(DCS篇)曾慧敏自动化教研室自动化与电子信息学院自动化教研室2015年12月5日前言本实验指导书是根据求是实验室设备-和利时DCS实验装置和A3000过程控制系统的相关内容编写的,可满足《DCS与现场总线》、《过程控制》、《过程控制与仪表》、《计算机控制》、《自动化仪表》等相关课程的实验教学要求。

过程控制通常是指石油、化工、电力、冶金、轻工、建材、核能等工业生产中连续的或按一定周期程序进行的生产过程自动控制,它是自动化技术的重要组成部分。

和利时DCS实验装置根据现行教材教学的要求,设置了压力、流量、液位、温度等单回路、串级、比值及前馈等实验。

实验指导书叙述了实验装置的各个仪表的原理、工作情况,实验项目及实验原理。

并讲述了系统的一些硬件的特点和技术指标。

本书试图通过对各实验原理的认识到对实验的实践,使学生对和利时DCS实验装置和系统原理有一个较为深刻的认识。

同时学生可自行设计实验方案,进行综合性、设计性过程控制系统实验的设计、调试、分析,培养学生的独立操作、独立分析问题和解决问题的能力。

若有疏漏,恳请批评指正!目录主要内容 (4)第一部分 A3000设备简介 (6)第二部分基础学习 (9)和利时DCS的应用系统设计内容及步骤 (9)第三部分实验内容 (43)实验一水箱液位控制系统 (43)实验二液位和进口流量串级控制系统 (55)主要内容1、实验总体目标通过实验,巩固掌握DCS课程的讲授内容,使学生对过程控制系统的基本理论及分析方法有一个感性认识和更好地理解,使学生在分析问题与解决问题的能力及实践技能方面有所提高。

2、适用专业自动化和电气自动化专业本科生、研究生3、先修课程控制装置、自动化仪表、计算机控制系统、过程控制系统及DCS与现场总线4、实验课时分配实验环境:和利时MACS和A3000过程控制系统6、实验总体要求(1)、掌握单回路控制系统原理和参数整定方法;(2)、掌握串级控制系统原理和参数整定方法。

过程控制系统实验指导书第二版

过程控制系统实验指导书第二版
式中:K——仪表常数。 由式(3)可知,当仪表常数 K 确定后,感应电动势 E 与流量 Q 成正比。 E 通常为流量信号,将流量信号输入转换计,经过处理,输出与流量成正比的 4~20mADC 信号, 可与单元组合仪表配套,对流量进行显示、记录、计算、调节等。 注意事项: 1、电磁流量计为贵重仪器,接线正式投入运行之前,应严格检查安装、接线是否正确。 2、将传感器前后阀门打开,让传感器测量管内冲满被测介质。 (二)对象特性测试 工业过程动态数学模型的表达方式很多,其复杂程度相差悬殊。对于数学模型,应根据实际应 用情况提出适当的要求。一般说来,用于控制的数学模型并不要求十分准确。闭环控制本身具有一 定的鲁棒性,模型本身的误差可视为干扰,而闭环控制在某种程度上具有自动消除干扰的能力。 实际生产过程的动态特性非常复杂,往往需要作很多近似处理。有些近似处理需要作线性化处 理、降阶处理等,但却能满足控制的要求。建立数学模型有两个基本方法,即机理法和实验法。实 验法一般只用于建立输入输出模型。它的特点是把被研究的工业过程视为一个黑匣子,完全从外部 特性上测试和描述它的动态性质,因此不需要深入掌握其内部机理。 通过简单的测试获得被被控对象的阶跃响应,进一步把它拟合成近似的传递函数,是建立被控 对象数学模型简单有效的方法。用实验法建立被控对象的数学模型,首先要选定模型的结构。典型 的工业过程的传递函数可以取为各种形式,例如: 1、 一阶惯性环节加纯延迟 一阶惯性环节的传递函数:
过程控制系统实验指导书
引言
浙江求是科教设备有限公司生产的 PCT 系列过程控制实验系统装置,可以非常好地满足过程控制 课程实验的要求。在这套设备由被控对象和控制台组成,通过手动或计算机控制,可以将被控对象 转变成不同特性的过控对象,因此,在此基础上可以进行简单的温度、压力、流量、液位的单回路 控制,而且也可以进行一系例复杂控制系统实验如:变比值控制、Simth 预估控制、解耦控制、三容 液位控制、换热器温度控制等。 一、PCT 系列过程控制实验装置特点:

过程控制实验指导书

过程控制实验指导书

第三章 对象特性测试实验第一节 测试对象特性的方法工业过程动态数学模型的表达方式很多,其复杂程度相差悬殊。

对于数学模型,应根据实际应用情况提出适当的要求。

一般说来,用于控制的数学模型并不要求十分准确。

闭环控制本身具有一定的鲁棒性,模型本身的误差可视为干扰,而闭环控制在某种程度上具有自动消除干扰的能力。

实际生产过程的动态特性非常复杂,往往需要作很多近似处理。

有些近似处理需要作线性化处理、降阶处理等,但却能满足控制的要求。

建立数学模型有两个基本方法,即机理法和测试法。

测试法一般只用于建立输入输出模型。

它的特点是把被研究的工业过程视为一个黑匣子,完全从外部特性上测试和描述它的动态性质,因此不需要深入掌握其内部机理。

一、测试法求取传递函数通过简单的测试获得被被控对象的阶跃响应,进一步把它拟合成近似的传递函数,是建立被控对象数学模型简单有效的方法。

用测试法建立被控对象的数学模型,首先要选定模型的结构。

典型的工业过程的传递函数可以取为各种形式,例如:1、 一阶惯性环节加纯延迟 一阶惯性环节的传递函数:1)(+=Ts Ks G 延迟环节的传递函数为:τs )(-=e s G一阶加纯滞后对象的传递函数1)(τs+=-Ts Ke s GtXΔx阶跃信号一阶惯性环节阶跃响应KΔxT图 3.1.1对于有纯滞后的一阶对象,滞后时间可直接由图中测量出纯滞后时间τ。

2、二阶或高阶惯性环节加纯延迟ns1)(Ts )(+=-τKe s G 在确定传递函数的形式后,要对函数中的各个参数与测试的响应曲线进行拟合。

如果阶跃响应是如图3.1.2所示的S 形单调曲线,就可以用一阶惯性加纯延迟对象的传递函数去拟合。

增益K 由输入输出的稳态值直接算出,而τ和T 则可以用作图法确定。

tABpCy y(∞)τT图 3.1.2在曲线的拐点p 作切线,它与时间轴交于A 点,与曲线的稳态渐进线交于B 点。

0A 段的值即为纯滞后时间τ,CB 段的值即为时间常数T ,这样就确定了τ和T 的数值。

过程控制实验指导书

过程控制实验指导书

出流量 G 成正比。 本装置的调节阀采用线性的理想特性, 当水源压力 P 稳定的情况下, 由于管 道压力损失很小, 因此调节阀在系统中 S 接近于 1, 其工作特性基本上是线性的。 所以系统的广义对象是线性的,所构成的控制系统为线性控制系统。 2 控制面板: 1) O 为插座孔。 2) C1、C2、C3 为三个控制器,框中的 PV、SP、OUT 分别为控制器的测量 值、外给定、输出值; 3) 流量变送器 1、流量变送器 2 分别为两套管路的流量检测变送值经 F/I 转 换后的标准电流输出信号; 4) 电气转换器 1、电气转换器 2 分别为两套管路的调节阀输入信号插座孔, 接收来自控制器的标准电流输出信号并经电气转换器转换成标准气信号后 送到气动调节阀; 5) 比值器,即乘除运算器,左插孔、中插孔连结二个输入信号,右插孔将乘 除运算结果信号输出。乘法运算由比值模块控制器设置参数,当 AB=0 时为 乘法,当 AB=1 时为除法。 本装置的气动调节阀采用线性理想特性,s=1,系统的广义对象是线性的, 故本装置是线性控制系统。
符号
名称
说明 .无禁锁 (可修改一、二级参数)。 .禁 锁 (设定参数不可修改)。 .可进入修改仪表日期及时间。 .无禁锁(可进入修改三级参数设定)。 .显示程序比例带的设定值。 .显示程序积分时间的设定值。 .解除比例控制所产生的残留偏差。 .显示程序微分时间的设定值。
00
50 200
D
微分时间 积 分
B. 控制器的操作方式
1. 仪表的上电 打开控制器上端的红色电源开关按钮,指示灯点亮,即控制器进入工作状 态 。 2. 仪表设备号及版本号的显示 仪表在投入电源后,可立即确认仪表设备号及版本号。3秒种后,仪表自动 转入工作状态,PV显示测量值,SV显示控制目标值或输出量的百分比。如要求 再次自检,可按一下面板右下方的复位键,仪表将重新进入自检状态。

自动化仪表与过程控制实验指导书.

自动化仪表与过程控制实验指导书.

自动化仪表与过程控制实验指导书电气自动化实验中心2009年3月实验一. DDZ-III型电动温度变送器的调校一.实验目的:1、了解DDZ-III型温度变送器(DBW-5500A)的结构接线情况,熟悉其使用方法,进一步理解其工作原理。

2、学会DBW-5500A热电阻温度变送器的零位与量程的调整,以及精度校验方法。

二.实验设备:1、DBW-5500A型温度变送器一台2、ZX-21型旋转式电阻箱一台3、0.5级电流表一台4、连接导线若干根5、螺丝刀一把三.实验接线:按下图方法进行接线,并将电阻箱阻值调整在100Ω,电流表量程接0-20mA 档。

mA四.实验内容:1、零点与量程的调整:根据仪表的温度测量范围,调整电阻箱,加入温度下限值所对应的电阻值,观察输出电流表的读数。

调整零点电位器,使变送器输出信号为4mA。

再调节电阻箱,加入温度上限值所对应的电阻值,调整量程电位器,使变送器输出信号为20mA。

并且反复多次调整,直到“零点”、“满量程”都符合要求为止。

2、线性测试:按表正行程法次序依次逐渐增加阻值,同时记录相应的输出电流,以完成正行程测试。

然后,按下表反行程法次序依次逐渐减少阻值,同时记录相应的输出电流,以完成反行程的测试。

结果如下:五.作图:实验二电动调节器的PID参数校正一、实验目的1)、通过实验熟悉单回路反馈控制系统的组成和工作原理。

2)、研究系统分别用P、PI和PID调节器时的阶跃响应。

3)、研究系统分别用P、PI和PID调节器时的抗扰动作用。

4)、定性地分析P、PI和PID调节器的参数变化对系统性能的影响。

二、实验装置1)、TKGK-1型过程控制实验装置:PID调节器GK-04、变频器GK-07-22)、计算机及监控软件三、实验原理1、单容水箱液位控制系统图7-1、单容水箱液位控制系统的方块图图7-1为单容水箱液位控制系统。

这是一个单回路反馈控制系统,它的控制任务是使水箱液位等于给定值所要求的高度;并减小或消除来自系统内部或外部扰动的影响。

过程控制与检测仪表课程设计报告指导书

过程控制与检测仪表课程设计报告指导书

- - -.过程控制与检测仪表课程设计指导书杜玉晓XX工业大学自动化学院二00六年十月实验项目名称:题目一单容水箱液位定值控制系统实验项目性质:综合性所属课程名称:《过程控制系统》、《组态软件技术》、《PLC与电器控技术》实验计划学时:1周一.实验目的使学生针对典型的工业控制对象,实现单容水箱液位的定值控制。

单容液位控制系统设计包括系统的设备选型、控制器设计(智能控制仪表/PLC)和监控界面设计,使学生初步掌握工业控制系统的设计和实现方法。

了解P、PI、PD和PID四种调节器分别对液位控制的作用,了解单容液位定值控制系统的结构与组成,掌握单容液位定值控制系统调节器参数的整定和投运方法。

二、预习与参考自动控制原理、过程控制系统、MCGS、西门子200、300PLC编程。

三.实验要求和设计指标按照实验要求,综合运用所学理论知识,通过查阅手册和文献资料,完成单容液位控制系统的综合与设计,培养学生独立分析问题和解决实际问题的能力。

掌握自动控制系统的综合与设计方法,熟悉控制器的结构、类型及其校正作用。

(1)根据选定的典型系统类型、选择合适的控制器型号;(2)确定控制系统控制算法以及实现方法;(3)智能控制仪表控制设定;或者西门子PLC程序设计;(4)M CGS监控界面。

四.实验(设计)仪器设备和材料清单实验对象及控制屏、SA-11挂件一个、计算机一台、万用表一个;SA-12挂件一个、RS485/232转换器一个、通讯线一根;SA-44挂件一个、CP5611专用网卡及网线、PC/PPI通讯电缆一根。

五.调试及结果测试根据题目指标,实验教师对每个指标进行现场验收。

六.考核形式实验完成后,交实验报告一份,包括计算与系统设计说明。

实验考核方法:随堂考核试验操作能力;评分标准:含各项目成绩、参考平时成绩和实验报告成绩,分为优、良、中、及格、不及格五级打分。

七.实验报告要求每位同学根据自己的实验数据和结果,根据给定的格式,独立完成实验报告。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过程控制系统及仪表实验指导书长沙理工大学电气与信息工程学院2013年4月目录第一章系统概述第二章实验装置介绍一、THJ-3型高级过程控制对象系统实验装置二、THSA-1型过控综合自动化控制系统实验平台三、软件介绍四、实验要求及安全操作规程第三章实验内容实验一、单容自衡水箱液位特性测试实验实验二、双容水箱特性的测试实验实验三、单容液位定值控制系统实验第一章系统概述THSA-1型过程综合自动化控制系统(Experiment Platform of Process Synthetic automation Control system)由THJ-3型高级过程控制对象系统实验装置、THSA-1型综合自动化控制系统实验平台及上位监控PC机三部分组成。

如图1-1所示。

图1-1 THSA-1过程综合自动化控制系统实验平台该套实验装置紧密结合工业现场控制的实际情况,能够对流量、温度、液位、压力等变量实现系统参数辨识,并能够进行单回路控制、串级控制、前馈-反馈控制、滞后控制、比值控制、解耦控制等多种控制实验,是一套集成了自动化仪表技术、计算机技术、自动控制技术、通信技术及现场总线技术等的多功能实验设备。

THSA-1型过程综合自动化控制系统能够为在校学生和相关科研人员提供有力帮助。

学生通过学习,应对传感器特性及零点漂移有初步认识,同时能掌握自动化仪表、变频器、电动调节阀等仪器的规范操作,并能够整定控制系统中相关参数。

这套实验设备综合性强,所涉及的工业生产过程多,所有部件均来自工业现场,严格遵循相关国家标准,具有广泛的可扩展性和后续开发功能,有利于培养学生的独立操作、独立分析问题和解决问题的创新能力.整套实验装置的电源、控制屏均装有漏电保护装置,装置内各种仪表均有可靠的自保护功能,强电接线插头采用封闭式结构,强弱电连接采用不同结构接头,安全可靠。

第二章实验装置介绍“THSA-1型过控综合自动化控制系统实验平台”是由实验控制对象、实验控制台及上位监控PC机三部分组成。

一、THJ-3型高级过程控制对象系统实验装置实验对象总貌图如图2-1所示:图2-1 实验对象总貌图本实验装置对象主要由水箱、锅炉和盘管三大部分组成。

供水系统有两路:一路由三相(380V恒压供水)磁力驱动泵、电动调节阀、直流电磁阀、涡轮流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V变频调速)、涡轮流量计及手动调节阀组成。

(一)被控对象由不锈钢储水箱、三个串接有机玻璃水箱(上、中、下)、4.5KW三相电加热模拟锅炉(由不锈钢锅炉内胆加温筒和封闭式锅炉夹套构成)、盘管和敷塑不锈钢管道等组成。

1.水箱包括上水箱、中水箱、下水箱和储水箱。

上、中、下水箱均采用淡蓝色优质有机玻璃,坚实耐用,透明度高,便于直接观察液位的变化和记录结果。

上、中水箱尺寸均为:D=25cm,H=20cm;下水箱尺寸为:D=35cm,H=20cm。

水箱结构独特,由三个槽组成,分别为缓冲槽、工作槽和出水槽,进水时水管的水先流入缓冲槽,出水时工作槽的水经过带燕尾槽的隔板流入出水槽,这样经过缓冲和线性化的处理,工作槽的液位较为稳定,便于观察。

水箱底部均接有扩散硅压力传感器与变送器,可对水箱的压力和液位进行检测和变送。

上、中、下水箱可以组合成一阶、二阶、三阶单回路液位控制系统和双闭环、三闭环液位串级控制系统。

储水箱由不锈钢板制成,尺寸为:长×宽×高=68cm×52㎝×43㎝,完全能满足上、中、下水箱的实验供水需要。

储水箱内部有两个椭圆形塑料过滤网罩,以防杂物进入水泵和管道。

2.模拟锅炉是利用电加热管加热的常压锅炉,包括加热层(锅炉内胆)和冷却层(锅炉夹套),均由不锈钢精制而成,可利用它进行温度实验。

做温度实验时,冷却层的循环水可以使加热层的热量快速散发,使加热层的温度快速下降。

冷却层和加热层都装有温度传感器检测其温度,可完成温度的定值控制、串级控制,前馈-反馈控制,解耦控制等实验。

3.盘管模拟工业现场的管道输送和滞后环节,长37米(43圈),在盘管上有三个不同的温度检测点,它们的滞后时间常数不同,在实验过程中可根据不同的实验需要选择不同的温度检测点。

盘管的出水通过手动阀门的切换既可以流入锅炉内胆,也可以经过涡轮流量计流回储水箱。

它可用来完成温度的滞后和流量纯滞后控制实验。

4.管道及阀门整个系统管道由敷塑不锈钢管连接而成,所有的手动阀门均采用优质球阀,彻底避免了管道系统生锈的可能性。

有效提高了实验装置的使用年限。

其中储水箱底部有一个出水阀,当水箱需要更换水时,把球阀打开将水直接排出。

(二)检测装置1.压力传感器、变送器三个压力传感器分别用来对上、中、下三个水箱的液位进行检测,其量程为0~5KP,精度为0.5级。

采用工业用的扩散硅压力变送器,带不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。

采用标准二线制传输方式,工作时需提供24V直流电源,输出:4~20mADC。

2.温度传感器装置中采用了六个Pt100铂热电阻温度传感器,分别用来检测锅炉内胆、锅炉夹套、盘管(有3个测试点)以及上水箱出口的水温。

Pt100测温范围:-200~+420℃。

经过调节器的温度变送器,可将温度信号转换成4~20mA直流电流信号。

Pt100传感器精度高,热补偿性较好。

3.模拟转换器三个模拟转换器(涡轮流量计)分别用来对由电动调节阀控制的动力支路、由变频器控制的动力支路及盘管出口处的流量进行检测。

它的优点是测量精度高,反应快。

采用标准二线制传输方式,工作时需提供24V直流电源。

流量范围:0~1.2m3/h;精度:1.0%;输出:4~20mADC。

(三)执行机构1.电动调节阀采用智能直行程电动调节阀,用来对控制回路的流量进行调节。

电动调节阀型号为:QSTP-16K。

具有精度高、技术先进、体积小、重量轻、推动力大、功能强、控制单元与电动执行机构一体化、可靠性高、操作方便等优点,电源为单相220V,控制信号为4~20mADC 或1~5VDC,输出为4~20mADC的阀位信号,使用和校正非常方便。

2.水泵本装置采用磁力驱动泵,型号为16CQ-8P,流量为30升/分,扬程为8米,功率为180W。

泵体完全采用不锈钢材料,以防止生锈,使用寿命长。

本装置采用两只磁力驱动泵,一只为三相380V恒压驱动,另一只为三相变频220V输出驱动。

3.电磁阀在本装置中作为电动调节阀的旁路,起到阶跃干扰的作用。

电磁阀型号为:2W-160-25 ;工作压力:最小压力为0Kg/㎝2,最大压力为7Kg/㎝2 ;工作温度:-5~80℃;工作电压:24VDC。

4.三相电加热管由三根1.5KW电加热管星形连接而成,用来对锅炉内胆内的水进行加温,每根加热管的电阻值约为50Ω左右。

二、THSA-1型过控综合自动化控制系统实验平台“THSA-1型过控综合自动化控制系统实验平台”主要由控制屏组件、智能仪表控制组件、远程数据采集控制组件、DCS分布式控制组件、PLC控制组件等几部分组成。

(一)控制屏组件1.SA-01电源控制屏面板充分考虑人身安全保护,装有漏电保护空气开关、电压型漏电保护器、电流型漏电保护器。

图2-2为电源控制屏示意图。

接上三相四线电源控制屏两侧的插座均带电,合上总电源空气开关及钥匙开关,此时三只电压表均指示380V左右,定时器兼报警记录仪数显亮,停止按钮灯亮,照明灯亮、此时打开24V开关电源即可提供24V电。

按下启动按钮,停止按钮灯熄,启动按钮灯亮,此时合上三相电源、单相Ⅰ、单相Ⅱ、单相Ⅲ空气开关即可提供相应电源输出,作为其他组件的供电电源。

2.SA-02 I/O信号接口面板该面板的作用主要是通过航空插头(一端与对象系统连接)将各传感器检测信号及执行器控制信号同面板上自锁紧插孔相连,便于学生自行连线组成不同的控制系统。

图2-2 电源控制屏示意图3.SA-11交流变频控制挂件SA-11交流变频控制挂件如图2-3所示,采用日本三菱公司的FR-S520SE-0.4K-CHR)型变频器,控制信号输入为4~20mADC或0~5VDC,交流220V变频输出用来驱动三相磁力驱动泵。

有关变频器的使用请参考变频器使用手册中相关的内容。

变频器常用参数设置:P30=1;P53=1;P62=4;P79=0。

图2-3 SA-11交流变频控制挂件4.三相移相SCR调压装置、位式控制接触器采用三相可控硅移相触发装置,输入控制信号为4~20mA标准电流信号,其移相触发角与输入控制电流成正比。

输出交流电压用来控制电加热器的端电压,从而实现锅炉温度的连续控制。

位式控制接触器和AI-708仪表一起使用,通过AI-708仪表输出继电器触点的通断来控制交流接触器的通断,从而完成锅炉水温的位式控制实验。

(二)智能仪表控制组件1.AI智能调节仪表挂件采用上海万迅仪表有限公司生产的AI系列全通用人工智能调节仪表,其中SA-12智能调节仪控制挂件为AI-818型,如图2-4所示。

SA-13智能位式调节仪为AI-708型。

AI-818型仪表为PID控制型,输出为4~20mADC信号;而AI-708型仪表为位式控制型,输出为继电器触点型开关量信号。

AI系列仪表通过RS485串口通信协议与上位计算机通讯,从而实现系统的实时监控。

图2-4 SA-12智能调节仪控制挂件AI仪表常用参数设置::控制方式。

=0,采用位式控制;=1,采用AI人工智能调节/PID调节;=2,启动自整定参数功能;=3,自整定结束。

:输入规格。

=21,Pt100热电阻输入;=32,0.2~1VDC。

电压输入;=33,1~5VDC电压输入。

DIL:输入下限显示值,一般DIL=0;热电阻输入不用设置此项。

DIH:输入上限显示值。

输入为液位信号时,DIH=50.0;输入为流量信号时,DIH=20.0;热电阻输入不用设置此项。

OP1:输出方式,一般OP1=4为4~20mA线性电流输出。

CF:系统功能选择。

CF=0为内部给定,反作用调节;CF=1为内部给定,正作用调节;CF=8为外部给定,反作用调节;CF=9为外部给定,正作用调节。

:通讯地址。

单回路实验=1;串级实验主控为=1,副控为=2;三闭环实验主控为=1,副控为=2,内环为=3。

实验中各仪表通讯地址不允许相同。

P、I、D参数可根据实验需要调整,其他参数请参考默认设置。

有关AI系列仪表的使用请参考说明书上相关的内容。

(三)远程数据采集控制组件远程数据采集控制即我们通常所说的直接数字控制(DDC),它的特点是以计算机代替模拟调节器进行控制,并通过数据采集板卡或模块进行A/D、D/A转换,控制算法全部在计算机上实现。

在本装置中远程数据采集控制系统包括SA-21远程数据采集热电阻输入模块挂件、SA-22远程数据采集模拟量输入模块挂件、SA-23远程数据采集模拟量输出模块挂件。

相关文档
最新文档