函数的含参零点问题

合集下载

高考数学《含参函数的零点问题》

高考数学《含参函数的零点问题》

高考数学 含参函数的零点问题
如图所示,只有当 b∈0,e12时,直线 y=b 与曲线 y=x-ex 1和直线 y=-x-1 共有 3 个公共点.
第 2 题图 因为直线 y=e12与直线 y=-x-1 的交点为-1-e12,e12, 所以当 a∈-1-e12,2时,直线 y=b 与曲线 y=f(x)才可能有 3 个公共点.
b=3.
高考数学 含参函数的零点问题
2. 若关于 x 的方程 kx+1=lnx 有解,则实数 k 的取值范围是________. -∞,e12 解析:因为 x>0,所以 k=lnxx-1,因此方程 kx+1=lnx 有解时,k 的 取值范围即为函数 f(x)=lnxx-1的值域.又 f′(x)=1x·x-xln2 x-1=2-x2lnx,令 f′(x) =0,得 x=e2.当 x∈(0,e2)时,f′(x)>0;当 x∈(e2,+∞)时,f′(x)<0,所以当 x =e2 时,f(x)有极大值,也是最大值.所以 f(x)max=f(e2)=e12,故实数 k 的取值范围 是-∞,e12.
高考数学 含参函数的零点问题
解得 x0=e3,此时 k=e13,当 k<0 时,当 y=kx+2 与曲线 y=xx+ +21相切于点(0,2)时, 函数 y=f(x)和 y=kx+2 的图象只有 3 个公共点,不符合题意,此时 k=-1,当- 1<k<0 时,函数 y=f(x)和 y=kx+2 的图象只有 3 个公共点,不符合题意,当直线 y=kx+2 与 y=f(x)(0<x<1)相切时,两图象只有 3 个公共点,设切点(x0,-lnx0), 则切线的斜率 k=-x10,又 k=-lnxx00-2,则-x10=-lnxx00-2,

函数的含参零点问题

函数的含参零点问题

函数的含参零点问题函数的含参零点问题根据函数的零点情况,讨论参数的范围是⾼考的重点和难点.对于此类题⽬,我们常利⽤零点定理、数形结合、函数单调性与分离参数等思想⽅法来求解.[典例] (2014·全国卷Ⅰ)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯⼀的零点x 0,且x 0>0,则a 的取值范围为( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1) [答案] B [思路点拨]本题的实质是函数f (x )存在唯⼀的零点x 0∈(0,+∞),因此可利⽤其代数特征转化为⽅程有唯⼀的正根来构思解析,也可以从零点本⾝的⼏何特征⼊⼿,将其转化为曲线的交点问题来突破,还可以利⽤选项的唯⼀性选取特例求解.[⽅法演⽰]法⼀单调性法:利⽤函数的单调性求解由已知得,a ≠0,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x =0或x =2a.当a >0时,x ∈(-∞,0),f ′(x )>0;x ∈0,2a ,f ′(x )<0;x ∈2a ,+∞,f ′(x )>0.所以函数f (x )在(-∞,0)和2a ,+∞上单调递增,在0,2a 上单调递减,且f (0)=1>0,故f (x )有⼩于零的零点,不符合题意.当a <0时,x ∈-∞,2a ,f ′(x )<0;x ∈2a ,0,f ′(x )>0;x ∈(0,+∞),f ′(x )<0.所以函数f (x )在-∞,2a 和(0,+∞)上单调递减,在2a ,0上单调递增,所以要使f (x )有唯⼀的零点x 0且x 0>0,只需f 2a>0,即a 2>4,解得a <-2. 法⼆数形结合法:转化为直线与曲线的位置关系求解由ax 3-3x 2+1=0可知x ≠0,可得ax =3-1x 2,作出y =3-1x 2的图象如图所⽰,转动直线y =ax ,显然a >0时不成⽴;当a <0,直线y =ax 与左边的曲线相切时,设切点为t,3-1t 2,其中t <0,则切线⽅程为y-3-1t 2=2t 3(x -t ).⼜切线过原点,则有0-3-1t 2=2t3(0-t ),解得t =-法三数形结合法:转化为两曲线的交点问题求解令f (x )=0,得ax 3=3x 2-1.问题转化为g (x )=ax 3的图象与h (x )=3x 2-1的图象存在唯⼀的交点,且交点横坐标⼤于零.当a =0时,函数g (x )的图象与h (x )的图象存在两个的交点;当a >0时,如图(1)所⽰,不合题意;当a <0时,由图(2)知,可先求出函数g (x )=ax 3与h (x )=3x 2-1的图象有公切线时a 的值.由g ′(x )=h ′(x ),g (x )=h (x ),得a =-2.由图形可知当a <-2时,满⾜题意.法四分离参数法:参变分离,演绎⾼效易知x ≠0,令f (x )=0,则a =3x -1x 3,记g (x )=3x -1x 3,g ′(x )=-3x 2+3x 4=-3(x 2-1)x 4,可知g (x )在(-∞,-1)和(1,+∞)上单调递减,在(-1,0)和(0,1)上单调递增,且g (-1)=-2,画出函数⼤致图象如图所⽰,平移直线y =a ,结合图象,可知a <-2.法五特例法:巧取特例求解取a =3,则f (x )=3x 3-3x 2+1.由于f (0)=1,f (-1)<0,从⽽f (x )在(-∞,0)上存在零点,排除A 、C. 取a =-43,则f (x )=-43x 3-3x 2+1.由于f (0)=1,f -32<0,从⽽f (x )在(-∞,0)上存在零点,排除D ,故选B.[解题师说]函数的含参零点问题是⾼考热门题型,既能很好地考查函数、导数、⽅程与不等式等基础知识,⼜能考查分类讨论、数形结合、转化与化归等思维能⼒,所以此类题往往能较好地体现试卷的区分度.由本题的五种⽅法,可知破解含参零点问题常有“三招”. 第⼀招当我们⽆法通过等价转化的思想将原问题转化为相对容易的问题时,我们带参讨论要根据题设要求直接研究函数的性质.由于函数含有参数,通常需要合理地对参数的取值进⾏分类,并逐⼀求解.(如本题解法⼀)第⼆招数形结合由两个基本初等函数组合⽽得的超越函数f (x )=g (x )-h (x )的零点个数,等价于⽅程g (x )-h (x )=0的解的个数,亦即g (x )=h (x )的解的个数,进⽽转化为基本初等函数y =g (x )与y =h (x )的图象的交点个数.(如本题解法⼆和解法三)第三招分离参数通过将原函数中的变参量进⾏分离后变形成g (x )=l (a ),则原函数的零点问题化归为与x 轴平⾏的直线y =l (a )和函数g (x )的图象的交点问题.(如本题解法四)[应⽤体验]1.(2017·全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯⼀零点,则a =( )A .-12 B.13 C.12 D .1解析:选C 法⼀:由函数f (x )有零点,得x 2-2x +a (e x -)=0有解,即(x -1)2-1+a (e x -1+e-x +1)=0有解,令t =x -1,则上式可化为t 2-1+a (e t +e -t )=0,即a =1-t 2e t +e -t . 令h (t )=1-t 2e t +e -t ,易得h (t )为偶函数,⼜由f (x )有唯⼀零点得函数h (t )的图象与直线y =a 有唯⼀交点,则此交点的横坐标为0,所以a =1-02=12,故选C. 法⼆:由f (x )=0?a (e x -1+e -x +1)=-x 2+2x .e x -1+e-x +1≥2e x -1·e-x +1=2,当且仅当x =1时取“=”.-x 2+2x =-(x -1)2+1≤1,当且仅当x =1时取“=”.若a >0,则a (e x -1+e-x +1)≥2a ,要使f (x )有唯⼀零点,则必有2a =1,即a =12.若a ≤0,则f (x )的零点不唯⼀.综上所述,a =12.2.设m ∈N ,若函数f (x )=2x -m 10-x +10存在整数零点,则符合条件的m 的个数为( )A .2B .3D .5解析:选C 令f (x )=0,得m =2x +1010-x . ⼜m ∈N ,因此有?10-x >0,2x +10≥0,解得-5≤x <10,x∈Z ,∴0<10-x ≤15.当2x +10=0,即x =-5时,m =0;当2x +10≠0时,要使m ∈N ,则需10-x ∈N ,当10-x =1,即x =9时,m =28;当10-x =2,即x =6时,m =11;当10-x =3,即x =1时,m =4,所以符合条件的m 的个数为4.3.设函数f (x )=12x 2+2x +2,x ≤0,|log 2x |,x >0,若关于x 的⽅程f (x )=a 有4个不同的解x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则x 1+x 2x 4+1x 23x 4的取值范围是( )A .(-3,+∞)B .(-∞,3)C .[-3,3)D .(-3,3] 解析:选D 在同⼀坐标平⾯内画出函数y =f (x )的⼤致图象如图所⽰,结合图象可知,当且仅当a ∈(0,2]时,直线y =a 与函数y =f (x )的图象有4个不同的交点,即⽅程f (x )=a 有4个不同的解,此时有x 1+x 2=-4,|log 2x 3|=|log 2x 4|(0<x 3<1<x 4≤4),即有-log 2x 3=log 2x 4,x 3x 4=1,所以x 1+x 2x 4+1x 23x 4=x 4-4x 4(1<x 4≤4),易知函数y =x 4-4x 4在区间(1,4]上是增函数,因此其值域是(-3,3].4.若函数f (x )=e x -ax 2有三个不同的零点,则实数a 的取值范围是( )A.e 24,+∞ B.e 2,+∞ C.1,e 24 D.1,e 2 解析:选A 函数f (x )=e x -ax 2有三个不同的零点等价于函数y =e x 与y =ax 2的图象有三个不同的交点,则显然有a >0,且在(-∞,0)上两函数的图象有⼀个交点.当x >0时,设两函数图象在点(x 0,e x 0)处相切,则e x 0=2ax 0,e x 0=ax 20,解得?x 0=2,a =e 2,由图易得若两函数图象有两个不同的交点,则a >e 24,即实数a 的取值范围为e24,+∞.⼀、选择题1.(2018·贵阳检测)已知函数f (x )=ln(x 2-4x -a ),若对任意的m ∈R ,均存在x 0使得f (x 0)=m ,则实数a 的取值范围是( )A .(-∞,-4)B .(-4,+∞)C .(-∞,-4]D .[-4,+∞) 解析:选D 依题意得,函数f (x )的值域为R ,令函数g (x )=x 2-4x -a ,其值域A 包含(0,+∞),因此对⽅程x 2-4x -a =0,有Δ=16+4a ≥0,解得a ≥-4,即实数a 的取值范围是[-4,+∞). 2.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y =x +a 与函数y =f (x )的图象有两个不同的公共点,则实数a 的值是( )A .n (n ∈Z)B .2n (n ∈Z)C .2n 或2n -14(n ∈Z)D .n 或n -14(n ∈Z)解析:选C 依题意得,函数y =f (x )是周期为2的偶函数,画出函数的⼤致图象如图所⽰.在[0,2)上,由图象易得,当a =0或-14时,直线y =x +a 与函数y =f (x )的图象有两个不同的公共点,∵函数f (x )的周期为2,∴a 的值为2n 或2n -14(n ∈Z).3.(2018·洛阳第⼀次统考)若函数f (x )=ln x -ax 2+x 有两个零点,则实数a 的取值范围是( )A .(-∞,1)B .(0,1) C.-∞,1+e e 2 D.0,1+ee 2解析:选B 依题意,关于x 的⽅程ax -1=ln x x 有两个不等的正根.记g (x )=ln xx ,则g ′(x )=x 2,当00,g (x )在区间(0,e)上单调递增;当x >e 时,g ′(x )<0,g (x )在区间(e ,+∞)上单调递减,且g (e)=1e,当0y 0),则有a 1=1-ln x 0x 2,a 1x 0-1=ln x0x,由此解得x 0=1,a 1=1.在同⼀坐标系中画出直线y =ax -1(该直线过点(0,-1)、斜率为a )与函数g (x )的⼤致图象(图略),结合图象可知,要使直线y =ax -1与函数g (x )的图象有两个不同的交点,则a 的取值范围是(0,1).4.若f (x )=ln x +ax -1有且仅有⼀个零点,则实数a 的最⼩值为( )A .0B .-1e 2 C .-1 D .1解析:选B 由f (x )=0,得ln x =-ax +1,在同⼀坐标系中画出y =ln x 和y =-ax +1的图象如图所⽰,直线y =-ax +1的斜率k =-a ,且恒过(0,1)点.当k ≤0,即a ≥0时,只有⼀个交点,从⽽f (x )只有⼀个零点,当k >0,且直线y =-ax +1与y =ln x 相切于点P (x 0,ln x 0)时,切线⽅程为y -ln x 0=1x 0(x -x 0),将x =0,y =1代⼊得ln x 0=2,即x 0=e 2,k =1x 0=1e 2,所以a =-1e 2,所以当a ≥-1e 2时,直线y =-ax +1与y =ln x 的图象只有⼀个交点,即f (x )只有⼀个零点,故a 的最⼩值为-1e2.5.(2018·⽯家庄模拟)已知函数f (x )=e xx -kx (e 为⾃然对数的底数)有且只有⼀个零点,则实数k 的取值范围是( )A .(0,2) B.0,e4 C .(0,e) D .(0,+∞)解析:选B 由题意,知x ≠0,函数f (x )有且只有⼀个零点等价于⽅程e xx -kx =0只有⼀个根,即⽅程e x x 2=k 只有⼀个根,设g (x )=e x x 2,则函数g (x )=e xx2的图象与直线y =k 只有⼀个交点.因为g ′(x )=(x -2)e x x 3,由g ′(x )>0,得x >2或x <0;由g ′(x )<0,得04,且x →0时,g (x )→+∞;x →-∞时,g (x )→0;x →+∞时,g (x )→+∞,则g (x )的图象如图所⽰,由图易知04,故选B.6.(2018·兰州模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有⼀个零点,则实数λ的值是( )A.14B.18 C .-78 D .-38 解析:选C 因为函数y =f (2x 2+1)+f (λ-x )只有⼀个零点,所以⽅程f (2x 2+1)+f (λ-x )=0只有⼀个实数根.⼜函数f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),所以f (2x 2+1)+f (λ-x )=0?f (2x 2+1)=-f (λ-x )?f (2x 2+1)=f (x -λ)?2x 2+1=x -λ,所以⽅程2x 2-x +1+λ=0只有⼀个实数根,所以Δ=(-1)2-4×2×(1+λ)=0,解得λ=-78.7.(2018·长沙模拟)对于满⾜0a +b -ca的取值范围是( ) A .1,74 B .(1,2] C .[1,+∞) D .(2,+∞)解析:选D 依题意对⽅程ax 2+bx +c =0,有Δ=b 2-4ac >0,于是c24a ,从⽽a +b -c a >a +b -b 24a a =1+b a -14b a 2,对满⾜0a ,因为0<b ≤3a ,所以0为-14t 2+t +1∈(1,2],所以a +b -c a8.(2018·湘中名校联考)已知函数f (x )=-13x 3+ax 2+bx +c 有两个极值点x 1,x 2,若x 1关于x ⽅程[f (x )]2-2af (x )-b =0的实数根的个数不可能为( )A .2B .3C .4D .5 解析:选D 由题意,得f ′(x )=-x 2+2ax +b .因为x 1,x 2是函数f (x )的两个极值点,所以x 1,x 2是⽅程-x 2+2ax +b =0的两个实数根,所以由[f (x )]2-2af (x )-b =0,可得f (x )=x 1或f (x )=x 2.由题意,知函数f(x)在(-∞,x1),(x2,+∞)上单调递减,在(x1,x2)上单调递增,⼜x19.(2018·⽯家庄模拟)已知函数f(x)=e2x-ax2+bx-1,其中a,b∈R,e为⾃然对数的底数.若f(1)=0,f′(x)是f(x)的导函数,函数f′(x)在区间(0,1)内有两个零点,则a的取值范围是() A.(e2-3,e2+1) B.(e2-3,+∞) C.(-∞,2e2+2) D.(2e2-6,2e2+2) 解析:选A由f(1)=0,得e2-a+b-1=0,所以b=a-e2+1,⼜f′(x)=2e2x-2ax+b,令g(x)=2e2x-2ax+b,则g′(x)=4e2x-2a,因为x∈(0,1),所以4<4e2x<4e2.当a≥2e2时,g′(x)<0,函数g(x)在(0,1)内单调递减,故g(x)在(0,1)内⾄多有⼀个零点;当a≤2时,g′(x)>0,函数g(x)在(0,1)内单调递增,故g(x)在(0,1)内⾄多有⼀个零点;当212lna2,则g′(x)<0,若12lna2 0,所以函数g(x)在0,12lna2内单调递减,在?12lna2,1内单调递增,所以g(x)min=g12ln2=a-a lna2+b=2a-a lna2-e2+1.令h(x)=2x-x lnx2-e2+1=2x-x ln x+x ln 2-e2+1(20,h(x)为增函数,当x∈(2e,2e2)时,h′(x)<0,h(x)为减函数,所以h(x)max=h(2e)=2e-e2+1<0,即g(x)min<0恒成⽴,所以函数g(x)在(0,1)内有两个零点,则g(0)=2+a-e2+1>0,g(1)=2e2-2a+a-e2+1>0,解得e2-310.(2017·太原⼀模)设[x]表⽰不⼩于实数x的最⼩整数,如[2.6]=3,[-3.5]=-3.已知函数f(x)=([x])2-2[x],若函数F(x)=f(x)-k(x-2)+2在(-1,4]上有2个零点,则实数k的取值范围是() A.-52,-1∪[2,5) B.-43,-1∪[5,10) C.-1,-23∪[5,10) D.-43,-1∪[5,10) 解析:选C由题意知,f(x)=([x])2-2[x]=0,x∈(-1,0]∪(1,2],-1,x∈(0,1],3,x∈(2,3],8,x∈(3,4].令F(x)=0,得f(x)=k(x-2)-2,作出函数y=f(x)和y=k(x-2)-2的图象如图所⽰.3,所以实数k 的取值范围是-1,-23∪[5,10).11.已知函数f (x )=2x+1,x <0,12x 2-2x +1,x ≥0.⽅程[f (x )]2-af (x )+b =0(b ≠0)有6个不同的实数解,则3a +b 的取值范围是( )A .[6,11]B .[3,11]C .(6,11)D .(3,11) 解析:选D 作出函数f (x )的图象如图所⽰,对于⽅程[f (x )]2-af (x )+b =0,可令f (x )=t ,那么⽅程根的个数就是f (x )=t 1与f (x )=t 2的根的个数之和,结合图象可知,要使总共有6个根,需要⼀个⽅程有4个根,另⼀个⽅程有2个根,从⽽可知关于t 的⽅程t 2-at +b =0有2个根,分别位于区间(0,1)与(1,2)内,由根的分布得出约束条件b >0,1-a +b <0,4-2a +b >0,画出可⾏域如图所⽰,⽬标函数z =3a +b 经过?1-a +b =0,4-2a +b =0的交点A (3,2)时取得最⼤值11,经过B (1,0)时取得最⼩值3.故3a +b 的取值范围为(3,11).12.(2018·⼴东五校协作体第⼀次诊断)已知e 为⾃然对数的底数,若对任意的x 1∈[0,1],总存在唯⼀的x 2∈[-1,1],使得x 1+x 22e x 2-a =0成⽴,则实数a 的取值范围是( ) A .[1,e] B .(1,e] C.1+1e ,e D.1+1e ,e 解析:选C 令f (x 1)=a -x 1,则f (x 1)在x 1∈[0,1]上单调递减,且f (0)=a ,f (1)=a -1.令g (x 2)=x 22e x 2,则g ′(x 2)=2x 2e x 2+x 22e x 2=x 2e x 2(x 2+2),且g (0)=0,g (-1)=1e ,g (1)=e.若对任意的x 1∈[0,1],总存在唯⼀的x 2∈[-1,1],使得x 1+x 22e x 2-a =0成⽴,即f (x 1)=g (x 2),则f (x 1)=a -x 1的最⼤值不能⼤于g (x 2)的最⼤值,即f (0)=a ≤e ,因为g (x 2)在[-1,0]上单调递减,在(0,1]上单调递增,所以当g (x 2)∈0,1e 时,有两个x 2使得g (x 2).若存在唯⼀的x 2∈[-1,1],使得f (x 1)=g (x 2),则f (x 1)的最⼩值要⽐1e ⼤,所以f (1)=a -1>1e ,所以a >1+1e ,故实数a 的取值范围是1+1e ,e . ⼆、填空题13.若对任意的实数a ,函数f (x )=(x -1)ln x -ax +a +b 有两个不同的零点,则实数b 的取值范围是________.答案:(-∞,0)解析:由f (x )=(x -1)ln x -ax +a +b =0,得(x -1)ln x =a (x -1)-b . 设g (x )=(x -1)ln x ,h (x )=a (x -1)-b ,则g ′(x )=ln x -1x +1,因为g ′(x )=ln x -1x +1在(0,+∞)上是增函数,且g ′(1)=0,所以当0<x <1时,g ′(x )<0,当x >1时,g ′(x )>0,所以g (x )在区间(0,1)上是减函数,在区间(1,+∞)上是增函数,⼜g (1)=0,所以函数g (x )的⼤致图象如图所⽰.易知h (x )=a (x -1)-b 的图象是恒过点(1,-b )的直线,当-b >0,即b <0时,易知对任意的实数a ,直线h (x )=a (x -1)-b 与函数g (x )的图象始终有两个不同的交点,即函数f (x )=(x -1)ln x -ax +a +b 有两个不同的零点;当b =0时,若a =0,则h (x )=0,其图象与函数g (x )的图象只有⼀个交点,不满⾜;当-b<0,即b >0时,由图易知,不满⾜对任意的实数a ,直线h (x )=a (x -1)-b 与函数g (x )的图象始终有两个不同的交点.综上可知,b <0.14.已知函数f (x )=-x x +1,-1x ,0x -1x=5a 的解为正整数,则满⾜条件的实数a 的个数为________.答案:1解析:在同⼀坐标系中作出函数f (x )与g (x )的图象如图所⽰,结合图象可知,实数a 的取值范围是0,12.由x -1x =5a ,可得x 2-5ax -1=0,设h (x )=x 2-5ax -1,当x =1时,由h (1)=1-5a -1=0,可得a =0,不满⾜题意;当x =2时,由h (2)=4-10a -1=0,可得a =310,满⾜题意;当x =3时,由h (3)=9-15a -1=0,可得a =815,不满⾜题意.⼜函数y =x -1x 在(0,+∞)上单调递增,故满⾜条件的实数a 的个数为1.15.若函数f (x )=x 2+2x-a ln x (a >0)有唯⼀的零点x 0,且m答案:5解析:令y 1=x 2+2x ,y 2=a ln x (a >0),则y 1′=2x -2x 2,y 2′=ax(a >0).∵函数f (x )=x 2+2x -a ln x (a >0)有唯⼀的零点x 0,∴函数y 1=x 2+2x ,y 2=a ln x 的图象有公切点(x 0,y 0),则2x 0-2x 2=ax 0,x 20+2x 0=a ln xx 20+2x 0-2x 20-1x 0ln x 0=0. 构造函数g (x )=x 2+2x-2x 2-1x ln x (x >0),则g (1)=3,g (2)=4+1-2×4-12ln 2=5-7ln 2,欲⽐较5与7ln 2的⼤⼩,可⽐较e 5与27的⼤⼩,∵e 5>27,∴g (2)>0,⼜g (e)=e 2+2e -2e 2-1e =-e 2+4e <0,∴x 0∈(2,e),∴m =2,n =3,∴m +n =5.16.已知函数f (x )=x 2-x ln x -k (x +2)+2在12,+∞上有两个零点,则实数k 的取值范围为________.答案:1,910+ln 25解析:f (x )=x 2-x ln x -k (x +2)+2在12,+∞上有两个零点,即关于x 的⽅程x 2-x ln x +2=k (x +2)在12,+∞上有两个不相等的实数根.令g (x )=x 2-x ln x +2,所以当x ∈12,+∞时,直线y =k (x +2)与函数g (x )=x 2-x ln x +2的图象有两个不同的交点.设直线y =k 0(x +2)与函数g (x )=x 2-x ln x +2,x ∈12,+∞的图象相切于点(x 0,y 0),g ′(x )=2x -ln x -1,则有k 0=2x 0-ln x 0-1,k 0(x 0+2)=x 20-x 0ln x 0+2,由此解得x 0=1,k 0=1.令h (x )=g ′(x )=2x -ln x -1,则h ′(x )=2-1x ,且x ≥12,所以h ′(x )≥0,故h (x )在12,+∞上单调递增,h (x )≥h 12=ln 2>0,所以g (x )在12,+∞上单调递增,g 12=94+12ln 2,作出y =g (x )的⼤致图象,如图所⽰,当直线y =k (x +2)经过点12,94+12ln 2时,k =910+ln 25.⼜当直线y =k (x +2)与g (x )的图象相切时,k =1.结合图象可知,k 的取值范围是1,910+ln 25.。

含参导函数零点问题的几种处理方法

含参导函数零点问题的几种处理方法

含参导函数零点问题的几种处理方法杭州市余杭第二高级中学(浙江省杭州市余杭区人民大道1501号) 马先锋摘要:函数的导数也是一个函数,称为导函数。

导函数的零点决定着原函数的很多重要性质,如单调性,极值,最值等。

因此研究导函数的零点有着极其重要的意义,本文主要就含参导函数中零点的几种处理方法作一阐述。

导数进入中学数学教材之后,给传统的中学数学内容注入了生机与活力,它具有深刻的内涵与丰富的外延。

以函数为载体,以导数为工具,是近年高考中函数与导数交汇试题的显著特点和命题趋向。

导数在求函数的单调性及极、最值等方面有着重要的应用,而这些问题都离不开一个基本点——导函数的零点,因为导函数的零点,既是原函数单调区间的分界点,也可能是原函数的极值点或最值点,可以说如果能把握导数的零点,就可以抓住原函数的性质要点,因此,导函数的零点问题对研究函数与导数的综合问题意义重大。

但引入导数之后,高中阶段可处理的函数类型大大增加,特别是含有参数的函数问题,导函数的零点也变得更为复杂,有些函数的零点甚至是不易求出的,基于此,本文就含参数的导函数的零点问题,谈谈几种基本的处理方法。

方法一:直接求出,代入应用对于导函数为二次函数问题,可以用二次函数零点的基本方法来求。

(1)因式分解求零点例1 讨论函数)(12)21(31)(23R a x x a ax x f ∈+++-=的单调区间 解析:即求)('x f 的符号问题。

由)2)(1(2)12()('2--=++-=x ax x a ax x f 可以因式分解,(Ⅰ)当0=a 时,不等式即为02<+-x ,此时不等式的解集为),2(+∞(Ⅱ)当0>a 时不等式可以化为0)2)(1(<--x a x ,只需比较a1与2的大小 ①若210<<a ,则21>a ,则不等式的解集为)1,2(a②若21=a ,则不等式为0)2(2<-x ,不等式的解集为φ ③若21>a ,则21<a ,此时不等式的解集为)2,1(a(Ⅲ)当0<a 时,不等式可化为0)2)(1(>--x a x ,由于21<a ,故不等式的解集为),2()1,(+∞-∞ a 综上得:略(2)求根公式求零点例2 (2006全国Ⅰ文)设ax x x x f 22131)(23++-= (1)若函数)(x f 在)32(∞+,上存在单调递增区间,求a 的取值范围;(2)当20<<a 时,)(x f 在[1,4]上的最小值为316-,求)(x f 在该区间上的最大值 解析:(1)先求出带参数的增区间,令02)('2=++-=a x x x f ,无法因式分解,讨论a 81+=∆的符号,0≤∆时,无单调增区间,不合题意。

一类含参二次函数零点问题的解法

一类含参二次函数零点问题的解法
彝者 麦 二凳三 詈
结 合 ,此解 法 与初 中知 识 的结 合 较 为 紧 密 ,学 生容 易 理 解.但 对 与仅有 一个 零 点 的情 况 ,还 需进 一 步讨 论 , 容 易 因遗 漏而 出错 .
9 z一 1
在 [一1,1]上 有解 ·
因为n>o,设 === 1=鲁 ( ≠詈),则
■■ J—
例 1 (2014年 山东卷 )对 于 函数 厂( ),若存 在 常数 a≠ 0,使 得 z 取 定 义 域 内 的 每 一 个 值 ,都 有
“对称 函数 ”为 一^( )(z∈ ),Y—h(z)满 足 :对任 意 ∈ ,2个 点 ( , ( ))、( ,g( ))关 于 点 ( .厂(z))对
解 1) 有 2 个 不 同 零 点 时 ,需 满 足
f△> O,


1)当一 n ≤一1,即 o<n≤寺时 ,,(z)在[一1,1]
递增 .因 此 ,要 使 f( )在 [一 1,1]上 有 零 点 ,只 需
』I(厂 (_ 1) 一2 a-2—3__=。≤0’解得1≤ ≤5.而o< 一 2a+ 2— 3一a≥ 0, 。 。
解得
a≥
1.注 意

n> 1


n≥ 1.
【厂(一1)≥ 0, 又 因 为 n> 0,所 以 a≥ 5.
综上 ,所 求 a的取值 范 围是 [1,+。。). 3 分离 参数 法
2)有 1个 零 点时 ,有 2种情 况 :
通过 分 离参数 的方 法 ,把 问题 转化 为 利 用 构造 出
一 < 0,即 n> 时 ,厂(z)在 [一 1,

]上递 减 ,在 (一 1,1]上递 增.因此 ,要使 ,( )在

例析含参函数相关的零点问题

例析含参函数相关的零点问题

例析含参函数相关的零点问题福建省莆田第二中学(351131)谢新华[摘要]利用导数研究函数的零点问题时,已知函数零点的个数求参数问题是一类重要的题型,常见的处理方法有分离参数法、直接构造函数法、隔离构造函数法.通过导数研究函数的图像及性质,把零点问题化归转化为图像的交点问题,数形结合求得参数的值(范围),有时还需对参数的不同取值情况进行分类讨论.通过归类分析,让学生学会运用数学思想方法解决问题,提升学生的解题效率.[关键词]导数;零点;构造;图像[中图分类号]G 633.6[文献标识码]A[文章编号]1674-6058(2021)32-0027-02[例题1]设函数f (x )=ln x +mx,m ∈R ,若函数g (x )=f ′(x )-x3没有零点,求实数m 的取值范围.解析:因为f ′(x )=1x -m x 2,所以g (x )=1x -mx 2-x 3(x >0),由g (x )=0,得m =-x 33+x ,设h (x )=-x33+x (x >0),则h ′(x )=-x 2+1,令h ′(x )=0,得x =±1,当0<x <1时,h ′(x )>0,h (x )单调递增,当x >1时,h ′(x )<0,h (x )单调递减,所以当x =1时,h (x )取得最大值,且最大值为h (1)=23,h (x )无最小值,因为函数g (x )没有零点,所以直线y =m 与函数h (x )的图像没有公共点,所以实数m 的取值范围是()23,+∞.点评:已知函数零点的个数求参数的取值范围,其常见的转化方法是分离参数法,使得构造的函数中不含参数,避免了参数的分类讨论,应用数形结合思想把函数零点问题转化为水平直线y =m 与函数h (x )图像的交点个数问题来解决.变式:若函数f (x )=a e x -x -2a 有两个零点,则实数a 的取值范围是.解析1:(分离参数法)由f (x )=0,得a (e x -2)=x ,因为x ≠ln 2,所以a =xe x -2,设g (x )=x e x -2(x ≠ln 2),则g ′(x )=e x -2-x e x(e x -2)2,设h (x )=e x -2-x e x ,则h ′(x )=-x e x ,当x <0时,h ′(x )>0,h (x )单调递增,当x >0时,h ′(x )<0,h (x )单调递减,所以当x =0时,h (x )取得最大值,且最大值为h (0)=-1,所以h (x )<0,即g ′(x )<0,所以g (x )在(-∞,ln 2),(ln 2,+∞)上单调递减,又g (0)=0,x >ln 2时,g (x )>0,因为函数f (x )有两个零点,所以直线y =a 与函数g (x )的图像有两个公共点,所以实数a 的取值范围是(0,+∞).解析2:(直接构造函数法)因为f ′(x )=a e x -1,当a ≤0时,f ′(x )≤0,f (x )在R 上单调递减,至多一个零点,不符合题意,当a >0时,令f ′(x )<0,得x <-ln a ,令f ′(x )>0,得x >-ln a ,所以f (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增,所以f min (x )=f (-ln a )=1+ln a -2a ,令φ(a )=1+ln a -2a (a >0),φ′(a )=1a-2,令φ′(a )>0,得0<x <12;令φ′(a )<0,得x >12,所以φmax (a )=φ()12=-ln 2<0,即φ(a )<0,f (-ln a )<0,所以函数f (x )有两个零点,符号题意,综上所述,实数a 的取值范围是(0,+∞).[基金项目]本文系福建省教育科学“十三五”规划课题2020年度教育教学改革专项课题“学科素养视域下‘读思达’教学法的数学课堂应用研究”(项目编号:Fjjgzx20-077)的研究成果.数学·解题研究解析3:(隔离构造函数法)由f(x)=0,得a(e x-2)=x,因为a≠0,所以e x=1a x+2,因为函数f(x)有两个零点,所以直线y=1a x+2与函数y=e x的图像有两个公共点,结合图像易得实数a的取值范围是(0,+∞).点评:本题解析1利用分离参数法,使得构造的函数中不含参数,避免了参数的分类讨论,但构造的函数定义域改变了,函数不连续了,函数图像变得复杂了,研究时因容易忽略函数定义域或图像特征把握不准确导致错误.解析2利用直接构造函数法,通过导数研究函数的图像与性质,需要对参数的不同取值情况分类讨论,是常规思路,容易入题,但解题后半部分容易出现“卡壳”,不易得出最后结果.解析3利用隔离构造函数法,构造两个基本初等函数,比较熟悉,结合图像容易得出结论,是学生比较喜欢的方法,运用此法解答小题比较适合,在前两种方法无法求解时,也可以尝试通过此法探求结果.[参考文献][1]王文英,蒋晓东.利用导数研究函数的零点问题[J].中学数学教学参考,2019(7):49-53.[2]任冲.导数工具巧应用函数零点妙解决:以一道高考题为例[J].中学数学教学参考,2019(Z3):135-136.[3]张伟.导数与数形结合思想研究函数问题[J].数学学习与研究,2016(23):78.[4]陈蓬.导数视角下函数零点问题的多角度探究[J].中学数学,2016(13):62-64.(责任编辑陈昕)图6指数函数模型的改进可以变换底数以10为底,令z=lg y得表6,拟合结果如图7.表6温度x产卵数z210.8451231.0414251.3222271.3802291.8195322.0607352.5119图7也可以变换底数以2为底,令z=log zy得表7,拟合结果如图8.表7温度x产卵数z212.807233.459254.392274.585296.044326.845358.344图8教师可进一步延伸拓展,借助Excel添加趋势线,拟合更高次函数,如三次函数、对数函数等模型,拓宽学生的视野,体会数学源于生活又高于生活,学以致用,有效预防红铃虫,只要控制温度在20℃以下,35℃以上.数学模型没有最好,只有更好,逐步改进模型,才能更好地为我们的生活服务.[参考文献][1]周迎春.从不同视角看高中数学“线性回归分析”的两个结论[J].重庆师范大学学报(自然科学版),2019(4):131-136.[2]安国胜.探究数学核心素养的培养途径[J].课程教育研究,2019(27):129-130.[3]李思聪,张仕橙.注重建模思维引领,培养数学核心素养[J].数学教学通讯,2019(18):20-21.[4]郝晶杰.高中生数学建模素养调查研究[D].新乡:河南科技学院,2019.[5]郑叶群.如何把高中数学建模核心素养渗透于课堂教学[J].教育现代化,2019(23):253-254.[6]郭红霞.高中数学课堂中落实核心素养的培育策略[J].中学数学,2019(5):79-80.(责任编辑黄桂坚)(上接第8页)数学·解题研究。

专题13 函数的零点的问题(解析版)

专题13 函数的零点的问题(解析版)

专题13 函数的零点的问题一、题型选讲题型一 函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解. 例1、(2018南通、扬州、淮安、宿迁、泰州、徐州六市二调)设函数f(x)=⎩⎪⎨⎪⎧e -x -12,x>0,x 3-3mx -2,x ≤0(其中e 为自然对数的底数)有3个不同的零点,则实数m 的取值范围是________.例2、(2018扬州期末)已知函数f(x)=e x ,g(x)=ax +b ,a ,b ∈R . 若对任意实数a ,函数F (x )=f (x )-g (x )在(0,+∞)上总有零点,求实数b 的取值范围.例3、(2019苏州期末)已知函数f(x)=ax 3+bx 2-4a(a ,b ∈R ).(1) 当a =b =1时,求f (x )的单调增区间;(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求ba 的值;题型二 函数零点个数证明与讨论函数的零点:有“零点存在性定理”作为理论基础,可通过区间端点值的符号和函数的单调性确定是否存在零点。

例4、(2017南通一调)已知函数f (x )=ax 2-x -ln x ,a ∈R .(1) 当a =38时,求函数f (x )的最小值;(2) 若-1≤a ≤0,证明:函数f (x )有且只有一个零点; (3) 若函数f (x )有两个零点,求实数a 的取值范围.例5、(2016南通一调)已知函数f (x )=a +x ln x (a ∈R ).(1) 求f (x )的单调区间;(2) 试求f (x )的零点个数,并证明你的结论.题型三 函数零点问题的不等式的证明函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围以及证明零点方面的不等问题时,这些问题时要用到这三者的灵活转化。

数形结合法破解含参函数的零点问题

数形结合法破解含参函数的零点问题
'(
1)
可初步做 出 判 断,严 格 的 证 明 需 借 助 于 二 阶
导数。
(
责任编辑
徐利杰)
+∞ 上
2
单调 递 增,当 x→ - ∞ 时,
图4
x)
→+∞ ,其 图 像 如 图
g(
4 所示。 依 题 意 知,直 线 y =a (
x -1)与
几何意 义 是 过 点 (
1,
0)的 动
函 数 y =2
l
nx 的 图 像 在
例 3
x)→0,当 x → + ∞ 时,
g(
1
该 方 程 在 0,
上 无 解,其
x)的 图
g(
像有唯一的公共
对数的底数,
若 f(
1)=0,函 数 f (
x)在 区 间
点。因 为 两 条 函 数
解析:
由 f(
1)=e-a-b-1=0,得 b=
好 相 反,所 以 由 数
(
内有零点,
求 a 的取值范围。
0,
1)
e-a -1。 当 x ∈ (
0,
1)时,
x )=e f(
x
ax - (
e-a-1)
解题篇 经典题突破方法
高二数学 2022 年 7-8 月
数形结合法破解含参函数的零点问题
■ 河南省郑州中原一中实验学校
含参函数的零点问题 是 高 中 数 学 的 重 要
题型,
在考 试 中 常 常 处 于 小 题 甚 至 是 大 题 的
压轴位置,
其 一 般 形 式 为:
已 知 函 数 y=f(
x,
在区间I 上有 ※ 个(

数学-精品专题----七种零点问题

数学-精品专题----七种零点问题

题型一:零点存在定理法判断函数零点所在区间 (3)一、单选题 (3)二、多选题 (6)三、填空题 (9)四、解答题 (14)题型二:方程法判断零点个数 (16)一、单选题 (16)二、多选题 (18)三、填空题 (20)四、解答题 (22)题型三:数形结合法判段函数零点个数 (24)一、单选题 (24)二、多选题 (28)三、填空题 (31)四、解答题 (34)题型四:转化法判断函数零点个数 (39)一、单选题 (39)二、多选题 (42)三、填空题 (44)四、解答题 (46)题型五:零点存在定理与函数性质结合判断零点个数 (48)一、单选题 (48)二、多选题 (50)三、解答题 (53)题型六:利用函数零点(方程有根)求参数值或参数范围 (57)一、单选题 (57)二、多选题 (59)三、填空题 (61)四、解答题 (62)题型七:利用函数的交点(交点个数)求参数 (63)一、单选题 (63)二、多选题 (66)三、填空题 (68)四、解答题 (71)1.转化思想在函数零点问题中的应用方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.2.判断函数零点个数的常用方法(1)通过解方程来判断.(2)根据零点存在性定理,结合函数性质来判断.(3)将函数y=f(x)-g(x)的零点个数转化为函数y=f(x)与y=g(x)图象公共点的个数来判断.3.正弦型函数的零点个数问题,可先求出零点的一般形式,再根据零点的分布得到关于整数k的不等式组,从而可求相应的参数的取值范围.4.涉及含参的函数零点问题,利用导数分类讨论,研究函数的单调性、最值等,结合零点存在性定理,借助数形结合思想分析解决问题.5.函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.6.对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.题型一:零点存在定理法判断函数零点所在区间一、单选题【分析】结合对数函数、函数零点存在性定理等知识求得正确答案. 【详解】1133log 4log 10a =<=,3372,12b b =<<<,对于函数()()2ln 0f x x x x=->, ()f x 在()0,∞+上递增,()()22ln 210,e 10ef f =-<=->,所以()f x 存在唯一零点x c =,()2,e c ∈,使()0f c =,所以对于2ln c c=,有()2,e c ∈,所以a b c <<.故选:AA .3,4()B .4,5()C .5,6()D .8,9()【答案】B【分析】根据零点存在定理,先判断函数的单调性,再计算函数在端点处的函数值,即可得到答案.【详解】()12ln 3f x x x=-- ,由对数函数和幂函数的性质可知,函数在,()0x ∈+∞时为单调增函数,11(3)2ln332 1.0993033f =--≈⨯--<, 11(4)4ln2340.69330.478044f =--≈⨯--=-<,11(5)2ln532 1.60930.018055f =--≈⨯--=>,11(6)2ln632(ln 2ln3)2 1.7926630.4140f =--=+≈⨯--=>,因为()f x 在,()0x ∈+∞内是递增,故(8)0,(9)0f f >> ,函数是连续函数,由零点判断定理知,()f x 的零点在区间(4,5)内,故选:B .【分析】先根据题意解方程,解出5e 910k-=,在和端点值比较大小,由函数单调性和函数连续得到结果.【详解】将200,5,20A t L ===代入()()1e kt L t A -=-,解得:5e 910k-=,其中5e x y -=单调递减,而414e e --⎛⎫= ⎪⎝⎭,4910000e 106561-⎛⎫=< ⎪⎝⎭,而4y x -=在()0,∞+上单调递减,所以115204ee910-⨯-=<,结合单调性可知1113249<<e e 10e ---<,即1115551015209<0e e e 1-⨯-⨯-⨯<<,而050e 91e 10-⨯==>,其中5e xy -=为连续函数,故记忆率k 所在区间为1(0,)20. 故选:A【分析】根据零点存在性定理进行求解.【详解】易知()f x 在R 上单调递增且连续.由于()1440163f -=-<,()122043f -=-<,()111023f -=->,当0x >时,()0f x >,所以()02,1x ∈--.故选:B【分析】求出c 的值,利用零点存在定理得出31,2b ⎛⎫∈ ⎪⎝⎭,然后比较a 、b 、c 的大小关系,结合函数()f x 的单调性可得出结论.【详解】因为()f x 的定义域为()0,∞+,()1e 0xf x x'=+>,则函数()f x 在其定义域上为增函数,3e 16>,则32e 4>,则3233e ln 4022f ⎛⎫=+-> ⎪⎝⎭,因为()1e 40f =-<,由零点存在定理可知31,2b ⎛⎫∈ ⎪⎝⎭,由()2310g x x x '=--=可得1=x 2=x .当x <或x >时,()0g x '>x <<()0g x '<.所以,1c =<.因为2223log log 3log 422a =<=<=,所以,01cb a <<<<,故()()()f a f b fc >>.故选:A.6.(2022·安徽·安庆一中高三期末(理))函数2()log f x x x =+的零点所在的区间为( )【分析】依据函数零点存在定理去判断2()log f x x x =+的零点所在的区间即可. 【详解】2()log f x x x =+为(0,)+∞上的递增函数, 222111112log log 3log 03333332f ⎛⎫=+=-<-< ⎪⎝⎭=-,21111log 02222f ⎛⎫=+=-< ⎪⎝⎭,()22222251log log 353log 333333f ⎛⎫=+=-=- ⎪⎝⎭()221log 32log 2703=->()()22222333511log log 354log 3log log 04444443281f ⎛⎫=+=-+=-+=-+> ⎪⎝⎭,则函数2()log f x x x =+的零点所在的区间为12,23⎛⎫⎪⎝⎭故选:B二、多选题【分析】由题可得4()e x f x a x π-'=-,由()14f π=-可知,()04f π'=,进而可求1a =,然后再证明即得;再利用数形结合可得()'f x 在,2ππ⎛⎫⎪⎝⎭上存在唯一的零点,利用零点存在定理及三角函数的性质即得.【详解】∵4()e 1x f x a x π-⎛⎫=- ⎪⎝⎭,∵4()e x f x a x π-'=-+,又函数4()e 1x f x a x π-⎛⎫=-- ⎪⎝⎭在区间0,2π⎛⎫ ⎪⎝⎭的最小值为1-,∵函数在区间0,2π⎛⎫⎪⎝⎭上不单调,又44()e 1144f a ππππ-⎛⎫=-=- ⎪⎝⎭,∵4x π=时,函数在区间0,2π⎛⎫⎪⎝⎭上取得最小值,可得原条件的一个必要条件()04f π'=,∵44()e 1044f a a ππππ-'=-=-+=,即1a =,下面证明充分性:当1a =时,4()e 1xf x x π-=-,4()e xf x x π-'=-,令()4e xg x x π-=-,则()4os exx g x π-'=>,∵函数()'f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,又44(0)e 0,()e 02f f πππ-''=-<=->,∵函数()'f x 在0,2π⎛⎫⎪⎝⎭上存在唯一的零点4x π=,且在0,4π⎛⎫ ⎪⎝⎭上()0f x '<,在,42ππ⎛⎫ ⎪⎝⎭上()0f x '>,∵函数()f x 在区间0,2π⎛⎫⎪⎝⎭的最小值为()14f π=-,综上,1a =故A 正确;∵4()e xf x x π-'=-+,令4()e 0x f x x=π-'=-,得4e x x π-,由函数图象可知4e x ,y y x π-==在区间,2ππ⎛⎫⎪⎝⎭上只有一个交点,即存在唯一0,2x ππ⎛⎫∈ ⎪⎝⎭,使得040e x x π-,又3243()e 10,()e 04f >f ππππ--''=-+=-<,故03,4x ππ⎛⎫∈ ⎪⎝⎭,且当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0f x '>,当()0,x x π∈时,()0f x '<,∵在区间,2ππ⎛⎫⎪⎝⎭上,()f x 唯一的极大值点0x ,040000()e 11x f x x x x π-⎛⎫=-=- ⎪⎝⎭02sin 14x π⎛⎫=-- ⎪⎝⎭,∵03,4x ππ⎛⎫∈ ⎪⎝⎭,03,424x πππ⎛⎫-∈ ⎪⎝⎭,∵00()2sin 12114f x x π⎛⎫=--<-= ⎪⎝⎭.故CD 正确.故选:ACD.8.(2022·全国·高三专题练习)设函数()y f x =的定义域为R ,如果存在常数()0T T ≠,对于任意x ∈R ,都有()()f x T T f x +=⋅,则称函数()y f x =是“类周期函数”,T 为函数()y f x =的“类周期”.现有下面四个命题,正确的是( )A .函数()x f x -=3是“类周期函数”B .函数()3f x x =是“类周期函数”C .如果函数()cos f x x ω=是“类周期函数”,那么“k ωπ=,Z k ∈”D .如果“类周期函数”()y f x =的“类周期”为1-,那么它是周期为2的周期函数 【答案】ACD【分析】根据类周期函数的定义,分别进行判断即可.【详解】解:对于A ,若函数()xf x -=3是“类周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅,即33x T x T ---=⋅,即(3)30T x T ---⋅=,即30T T --=,令()3Tg T T -=-,因为()()1200110,11033g g =-=-<=-=>,且函数()g T 在0,1上连续,所以函数()3Tg T T -=-在0,1上存在零点,即方程30T T --=在0,1上有解,即存在常数()0T T ≠,对于任意x ∈R ,都有()()f x T T f x +=⋅,所以函数()x f x -=3是“类周期函数”,故A 正确;对于B ,若函数()3f x x =是“类周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅,即()33x T T x+=⋅,则()33x T T x+=,即1x T Tx x+=+对任意的x 恒成立,则0T =,矛盾,所以不存在常数()0T T ≠,对于任意x ∈R ,都有()()f x T T f x +=⋅,所以函数()3f x x =不是“类周期函数”,故B 错误.对于C ,若函数()cos f x x ω=是“类周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅,即cos()cos x T T x ωωω+=;故1T =或1T =-, 当1T =时,cos()cos x x ωωω+=,由诱导公式得2k ωπ=,k Z ∈;当1T =-时,cos()cos x x ωωω+=-,由诱导公式得()21k ωπ=+,k Z ∈;故“k ωπ=,k Z ∈”,故C 正确;对于D ,如果“类周期函数”()y f x =的“类周期”为1-, 则(1)()f x f x -=-,即(1)()((1))(1)f x f x f x f x -=-=--+=+;故它是周期为2的周期函数;故D 正确.9.(2021·江西·模拟预测)已知实数1m n <<,设方程()()()(1)()(1)0x m x n x m x x n x --+--+--=的两个实数根分别为1212,()x x x x <,则下列结论正确的是( )A .不等式()()()(1)()(1)0x m x n x m x x n x --+--+--<的解集为12(,)x xB .不等式()()()(1)()(1)0x m x n x m x x n x --+--+--<的解集可能为空集C .121x m x n <<<<D .121m x n x <<<< 【答案】AD【分析】构造二次函数()()()(1)()()()1x m x n x m x x n x x f --+--+--=,分析函数()f x 的图象特征即可判断作答.【详解】令()()()(1)()()()1x m x n x m x x n x x f --+--+--=,R x ∈, 因1m n <<,则函数()f x 的图象对称轴1(,1)3m n x m ++=∈,且()f x 在1(,)3m n ++-∞上递减,在1(,)3m n +++∞上递增,又()(1)()0m n f m m --=>,()(1)()0n m f n n --=<,(1)(0()1)1m f n -->=,于是得函数()f x 有两个零点1212,()x x x x <,且满足121m x n x <<<<,不等式()0f x <的解集为12(,)x x ,所以A 正确,B 不正确,C 不正确,D 正确.故选:AD三、填空题在ABC 中,函数y x =+若命题“x ∃∈若函数()f x 【答案】∵∵∵【分析】∵利用大边对大角和正弦定理可证;∵变形后利用基本不等式进行求解最大值;∵先把命题否定,得到对x R ∀∈,2(3)10ax a x +-+>恒成立,分0a =与0a ≠两种情况求出a的取值范围;∵先根据(1)2af =-得到32a b c =--,得到(2)f a c =-,接下来分0c >与0c ≤,利用零点存在性定理得到答案.【详解】在ABC 中,因为A B >,所以a b >,由正弦定理得:sin sin a bA B=,所以sin sin A B >,同理可证,当sin sin A B >时,A B >,故在ABC 中,A B >是sin sin A B >的充要条件,∵正确;因为1x <,所以10x -<,201x ,所以()221111111y x x x x ⎡⎤=-++=--++≤-⎢⎥--⎣⎦,当且仅当()211x x -=-,即1x =等号成立,所以函数2(1)1y x x x =+<-的最大值是1-∵错误;命题“x R ∃∈,使得2(3)10ax a x +-+≤”是假命题,则对x R ∀∈,2(3)10ax a x +-+>恒成立,当0a =时,310x -+>不恒成立,当0a ≠时,只需0Δ0a >⎧⎨<⎩,解得:19a <<,综上:若命题“x R ∃∈,使得2(3)10ax a x +-+≤”是假命题,则19a <<;∵正确;(1)2a b c a f ++==-,所以32ab c =--,因为(0)f c =,3(2)42422a f a b c a c c a c ⎛⎫=++=+--+=- ⎪⎝⎭,当0c >时,(0)0f c =>,因为0a >,所以(1)02af =-<,故()(0)10f f <,由零点存在性定理得:在区间()0,1上,至少存在一个零点,当0c ≤,(2)0f a c =->,()(2)10f f <,由零点存在性定理得:在区间()1,2上至少存在一个零点,综上:函数()f x 在区间(0,2)内必有零点,∵正确. 故答案为:∵∵∵11.(2022·全国·高三专题练习)已知函数()()2e x f x ax x =+-,且2a >-,()f x '为()f x 的导函数,下列命题:∵存在实数a ,使得导函数()f x '为增函数; ∵当0a >时,函数()f x 不单调;∵当21a -<≤-时,函数()f x 在R 上单调递减; ∵当1a =时,函数()f x 有极值.在以上命题中,正确的命题序号是______. 【答案】∵∵∵∵【分析】求()f x ',令0a =可判断∵;根据零点存性定理可判断022,0x a ⎛⎫∃∈-- ⎪⎝⎭使得()00f x '=,可判断∵;令()()g x f x '=,求()g x ',由()g x '的符号判断()g x 的单调性,可求得()0g x ≤恒成立即()0f x '<恒成立可判断∵;求()f x '的单调性,根据零点存在性定理可知()00,1x ∃∈,使得()00f x '=可判断∵,进而可得正确答案.【详解】由()()2e xf x ax x =+-可得()()2e 1x f x ax a '=++-,对于∵,若0a =时,()2e 1xf x '=-为增函数,故∵对;对于∵,若0a >时,2222e 10af a a --⎛⎫'--=--< ⎪⎝⎭,()010f a '=+>,022,0x a ⎛⎫∃∈-- ⎪⎝⎭,使得()00f x '=,所以函数()f x 不单调,故∵对;对于∵,令()()2e 1x g x ax a =++-,则()()22e xg x ax a '=++,当21a -<≤-时,由()0g x '>得22x a ⎛⎫<-+ ⎪⎝⎭,由()0g x '<得22x a ⎛⎫>-+ ⎪⎝⎭所以()g x 在2,2a ⎛⎫-∞-- ⎪⎝⎭上单调递增,在22,a ⎛⎫--+∞ ⎪⎝⎭上单调递减,从而()22max e1a g x a ⎛⎫-+ ⎪⎝⎭=--,要使220e 1a a ⎛⎫-+ ⎪⎝⎭-≤-,则令22t a ⎛⎫=-+ ⎪⎝⎭,则112t a =--,所以e 12t t ≤+,令()()e 1102t t m t t =---≤≤,()1e 2t m t '=-,则()m t 在11,ln 2⎛⎫- ⎪⎝⎭单调递减,在1ln ,02⎛⎫ ⎪⎝⎭单调递增,而()11110e 2m -=+-<,()00e 010m =--=所以()0m t ≤恒成立,从而()22max e10a g x a ⎛⎫-+ ⎪⎝⎭=--≤,即()0f x '≤恒成立,即()f x 在R 上单调减.故∵正确;对于∵,当1a =时,()()3e 1x f x x '=+-,()()4e x f x x ''=+,可知()()3e 1xf x x '=+-在(),4-∞-单调递减,在()4,-+∞单调递增,因为()020f '=>,()2110ef '-=-<,()00,1x ∃∈,使得()00f x '=,所以函数()f x 有极值,故∵对.综上所述:∵∵∵∵都正确,故答案为:∵∵∵∵. 12.(2021·福建·三明一中高三学业考试)已知函数()23x f x x =--的零点()()0,1x k k k Z ∈+∈,则k =__________.【答案】-3或2【分析】对函数()f x 求导,借助导数探讨其单调性,再用零点存在性定理分析计算即得.【详解】对函数()23x f x x =--求导得:()2ln 21x f x '=-,由()0f x '=得22log xe =,解得22log (log )x e =,当22log (log )x e <时,()0f x '<,当22log (log )x e >时,()0f x '>,于是得()f x 在22(,log (log ))e -∞上递减,在22(log (log ),)e +∞上递增,显然,13(3)0,(2)084f f -=>-=-<,则函数()f x 在区间(3,2)--上存在一个零点,又(2)10,(3)20f f =-<=>,即函数()f x 在区间(2,3)上存在一个零点,因函数()23x f x x =--的零点()()0,1x k k k Z ∈+∈,则3k =-或2k =,所以3k =-或2k =.故答案为:-3或2【分析】令21()()log 2x f x x =-,利用零点存在性定理可得a ∈,1(0,)2b ∈,从而可得12a b <- 【详解】令21()()log 2x f x x =-,则()f x 在(0,)+∞上单调递减,因为f (1)110022=-=>,111()log ()0222f =-=-<,21()log 2a a =,所以a ∈.122log b b =,0b >,21b ∴>,1(0,)2b ∴∈,∴12a b <- ∵:ln()a b -可能小于等于0,∴∵错误,∵:0b a -<,0221b a -∴<=,∴∵正确, ∵:0a b >>,∴11a b <,11a b∴->-,∴∵正确,∵:(1,2)a ∈,2log 0a ∴>, 1(0,)2b ∈,2log 0b ∴<,22log 0log a b ∴>>.∴∵正确,故答案为:∵∵∵.【分析】对于选项∵∵∵,直接代入求解即可判断;对于选项∵∵,先根据条件构造函数,判断函数的单调性,利用零点存在性定理判断即可.【详解】∵()224f x x x x =+-=,得240x x x +-=⇒=x =满足条件,故∵满足题意;∵()22,132,1x x f x x x ⎧≤⎪=⎨->⎪⎩,当1x ≤时,220x x x =⇒=或12x =;当1x >时,()2232321x x x x x -=⇒-=⇒=或3x =,即3x =;满足条件,故∵满足题意;∵()()21x f x e x x =+-=,令()2xg x e x =+-,易知()g x 为R 上的增函数,又()()010020,1120g e g e =+-<=+->,由零点存在性定理得()g x 在区间()0,1存在唯一的零点.故∵满足题意;∵()ln f x ax x a =--(01a <<),()ln ln 10ax x a x x a x a --=⇒+-+=, 令()()ln 1h x x a x a =+-+,又01a <<,则10a ->,易知()h x 为()0,∞+上的增函数, 又()()11131ln 12ln 20,1ln111044444h a a a h a a ⎛⎫=+-+=-++<=+-+=> ⎪⎝⎭,由零点存在性定理得()h x 在区间1,14⎛⎫⎪⎝⎭存在唯一的零点.故∵满足题意;∵()220f x x x x x=+=⇒=无实数解, 故∵满足题意;故答案为:∵∵∵∵.【点睛】本题主要考查了对布劳威尔不动点定理的理解,考查了零点存在性定理;考查学生的逻辑推理能力,运算求解能力.属于中档题.【分析】分别求出f (x )、g (x )零点所在区间,即可得到f (x +3)、g (x -4)的零点所在区间,结合题意,即可得到b -a 的最小值.【详解】∵f (x )=1+x -22x +33x ,∵'2()1f x x x =-+,∵'2213()1()024f x x x x =-+=-+>恒成立,∵f (x )=1+x -22x +33x 在R 上是单调递增函数.∵f (0)=1>0,f (-1)=506-<,∵f (x )在区间[-1,0]上存在唯一零点,∵f (x +3)在区间[-4,-3]上存在唯一零点;又∵g (x )=1-x +22x -33x ,∵'2()1g x x x =-+-,∵'2213()1()024g x x x x =-+-=---<恒成立,∵g (x )=1-x +22x -33x 在R 上是单调递减函数,∵g (2)=503-<,g (1)=106>,∵g (x )在区间[1,2]上存在唯一零点,∵g (x -4)在区间[5,6]上存在唯一零点,由F (x )=f (x +3)g (x -4)=0,得f (x +3)=0或g (x -4)=0,故函数F (x )的零点均在[-4,6]内,则b -a 的最小值为10.故答案为:10.【点睛】本题考查利用导数判断函数的单调性、函数零点与方程,考查分析理解,求值计算的能力,属中档题.四、解答题16.(2022·陕西西安·高三阶段练习(文))已知函数22()e x f x ax -=-(e 为自然对数的底数,R a ∈).(1)若1a =-,求证:()'f x 在区间()0,1内有唯一零点; (2)若()f x 在其定义域上单调递减,求a 的取值范围. 【答案】(1)证明见解析;(2)[0,2e].【分析】(1)把1a =-代入,求出()'f x 并探讨其单调性,再结合零点存在性定理判断作答. (2)利用给定单调性建立不等式,再分类分离参数,构造函数,讨论求解作答.(1)当1a =-时,()22e xf x x -=+,求导得:2()2e 2x f x x -'=-+,令2()2e 2x x x ϕ-=-+,则2()4e 20x x ϕ-'=+>,则函数()ϕx 在R 上单调递增,即函数()'f x 在R 上单调递增,而(0)20f '=-<,221(1)2e 22(1)0e f -'=-+=->,由函数零点存在性定理知,存在唯一0(0,1)x ∈,有0()0f x '=,所以()'f x 在区间()0,1内有唯一零点.(2)函数22()e x f x ax -=-的定义域是R ,依题意,R x ∀∈,2()2e 20x f x ax -'=--≤成立, 当0x =时,20-≤成立,R a ∈,当0x >时,2e x a x -≥-,令2e ()xg x x -=-,0x >,2221()0e x x g x x +'=>,即函数()g x 在(0,)+∞上单调递增,又当0x >时,()0g x <恒成立,于是得0a ≥,当0x <时,2e x a x -≤-,令2e ()xh x x -=-,0x <,2221()e x x h x x +'=,当12x <-时,()0h x '<,当102x -<<时,()0h x '>, 因此,()h x 在1(,)2-∞-上单调递减,在1(,0)2-上单调递增,当12x =-时,min 1()()2e 2h x h =-=,于是得2e a ≤,综上得:02e a ≤≤,所以a 的取值范围是[0,2e].【点睛】思路点睛:涉及函数不等式恒成立问题,可以探讨函数的最值,借助函数最值转化解决问题.f x 零点的个数;,求a 的取值范围答案见解析;(2)6a ≤【分析】(1)对()f x 求导有()()(1)e (0)xf x x x a x '=-->,再研究()e (0)xg x a x x -=>的单调性,结合()01f '=及零点存在性定理,讨论a 的范围判断f x 零点的个数.(2)讨论0a ≤、0e a <<、e a =、e a >,结合fx 的符号研究()f x 的单调性并结合(1)ef =求参数a 的范围.(1)()()()2e (1)(1)e (0)x xf x x x a x x x a x '=---=-->,令()e (0)x g x a x x -=>,则()(1)e 0x g x x '=+>,故()g x 在(0,)+∞上单调递增,而()01f '=, 当0a ≤时,e x x a =无解;当0e a <<时,由(0)0g a =-<,(1)e 0g a =->,故e x x a =有一个在(0,1)上的解;当e a =时,由(1)0g =,故e x x a =的解为1;当e a >时,由(1)e 0g a =-<,()(e 1)0a g a a -=>,故e x x a =有一个在(1,)+∞上的解; 综上,当0a ≤或e a =时,导函数f x 只有一个零点.当0e a <<或e a >时,导函数f x 有两个零点.(2)当0a ≤时,e 0x x a ->,则函数()f x 在1x =处取得最小值(1)e f =.当0a >时,由(1)知:()g x 在(0,)+∞上单调递增,则必存在正数0x 使得00e 0xx a -=.若e a >则01x >,在(0,1)上00e 0x x a -<,则()0f x '>,在0(1,)x 上00e 0x x a -<,则()0f x '>,在()0,x +∞上00e 0x x a ->,则()0f x '<,所以()f x 在(0,1)和()0,x +∞上单调递增,在()01,x 上单调递减,又(1)e f =,不合题意.若e a =则01x =,在(0,)+∞上0f x ,则()f x 在(0,)+∞上单调递增,又(1)e f =,不合题意.若0e a <<则001x <<,在0(0,)x 上00e 0x x a -<,则()0f x '>,在0(),1x 上00e 0x x a ->,则()0f x '<,在()1,+∞上00e 0x x a ->,则()0f x '>,所以()f x 在()00,x 和(1,)+∞上单调递增,在()0,1x 上单调递减,则(0)3(1)e 2a f f =-≥=,解得62e a ≤-,即062e a <≤-.综上,62e a ≤-.题型二:方程法判断零点个数一、单选题【分析】由奇偶性定义可判断出A 正确;令()0f x =可确定B 正确;根据()f x 定义域为R ,()112f =-,可知若最小值为12-,则1x =是()f x 的一个极小值点,根据()10f '≠可知C 错误;由0x =时,cos x π取得最大值,21x +取得最小值可确定D 正确. 【详解】对于A ,()f x 定义域为R ,()()()()22cos cos 11x xf x f x x x ππ--===+-+, ()f x ∴为偶函数,A 正确;对于B ,令()0f x =,即cos π0x ,()2x k k πππ∴=+∈Z ,解得:()12x k k =+∈Z , ()f x ∴有无数个零点,B 正确;对于C ,()112f =-,∴若()f x 的最小值为12-,则1x =是()f x 的一个极小值点,则()10f '=; ()()()222sin 2cos 1xx x xf x xππππ++'=-+,()2sin 2cos 11042f πππ+'∴==-≠,1x ∴=不是()f x 的极小值点,C 错误;对于D ,1cos 1x π-≤≤,211x +≥;则当cos 1x π=,211x +=,即0x =时,()f x 取得最大值1,D 正确.故选:C. 2.(2022·北京·模拟预测)已知函数()cos 2cos f x x x =+,且[]0,2πx ∈,则()f x 的零点个数为( ) A .1个 B .2个C .3个D .4个【答案】C【分析】解三角方程求得()f x 的零点即可解决【详解】由()()2cos 2cos 2cos cos 1cos 12cos 10x x x x x x +=+-=+-=可得cos 1x =-或1cos 2x =,又[]0,2πx ∈,则πx =,或π3x =,或5π3x =则()f x 的零点个数为3故选:C【分析】利用()()f x a f a x +=-知()f x 关于直线x a =对称的性质验证A ;求得3102f π⎛⎫=-≠ ⎪⎝⎭可判断B ;化简()sin (1cos )f x x x =+,令()0f x =,得()x k k Z π=∈,进而判断C ;利用导数研究函数的单调性可判断D.【详解】对于A ,由已知得11()sin()sin 2()sin sin 222f x x x x x πππ-=-+-=-,即()()π-≠f x f x ,故()f x 不关于2x π=对称,故A 错误;对于B ,331sin sin 310222f πππ⎛⎫=+=-≠ ⎪⎝⎭,故B 错误; 对于C ,利用二倍角公式知()sin (1cos )f x x x =+,令()0f x =得sin 0x =或cos 1x =-,即()x k k Z π=∈,所以该函数在区间[]0,10内有4个零点,故C 错误;对于D ,求导2()cos cos22cos cos 1f x x x x x '=+=+-,令cos x t =,由57,33x ππ⎡⎤∈⎢⎥⎣⎦,知1,12t ⎡⎤∈⎢⎥⎣⎦,即2()21g t t t =+-,利用二次函数性质知()0g t ≥,即()0f x '≥,可知()f x 在区间57,33x ππ⎡⎤∈⎢⎥⎣⎦上单调递增,故D 正确;故选:D.4.(2022·全国·高三专题练习)已知函数f(x)={|x |+2,x <1,x +2x ,x ≥1.,则函数()||y f x x =-零点个数为( ) A .0 B .1C .2D .3【答案】A【分析】当1x <时和1≥x 时,分别化简函数()||y f x x =-的解析式可直接判断零点的个数.【详解】当1x <时,22y x x =+-=,所以不存在零点;当1≥x 时,220t x x x x=+-=>,也不存在零点,所以函数()||y f x x =-的零点个数为0.故选:A.二、多选题【分析】根据函数解析式,结合函数性质,对每个选项进行逐一分析,即可判断和选择. 【详解】对A :()f x 的定义域为{}0x x ≠,A 错误; 对B :()()11x x f x f x x x-++-==-=--,且定义域关于原点对称,故()f x 是奇函数,B 正确;对C :当0x >时,()111x f x x x+==+,单调递减,C 正确; 对D :因为0x ≠,10x +>,所以()0f x =无解,即()f x 没有零点,D 错误.故选:BC .【分析】写出()f x 的分段函数形式,A 应用正余弦函数的性质判断()f x 的周期性,B 由已知可得12cos 2cos 21x x ==,则112x k π=,222x k π=(12,k k Z ∈),即可判断正误;根据解析式,应用特殊值法判断C 、D 的正误.【详解】将函数()f x 化作分段函数,即cos 2,sin cos ()cos 2,sin cos x x x f x x x x -≥⎧=⎨<⎩,A ,(2)[sin(2)cos(2)]sin(2)cos(2)()f x x x x x f x πππππ+=+++⋅+-+=,()f x 是周期为2π的函数,对;B ,由12()()2f x f x +=得12|()||()|1f x f x ==,则12cos 2cos 21x x ==, 此时112x k π=,222x k π=(12,k k Z ∈),可得1212()2k k x x π++=,对; C ,由解析式得(0)()12f f π==,()f x 在[,]22ππ-上不单调,错;D ,由解析式知3()()12f f ππ==-,即()()1g x f x =+在[0,2]π上至少有两个零点,错.故选:AB.7.(2022·全国·高三专题练习)若()f x 和()g x 都是定义在R 上的函数,且方程()f g x x =⎡⎤⎣⎦有实数解,则下列式子中可以为()g f x ⎡⎤⎣⎦的是( ) A .22x x + B .1x + C .cos x e D .ln(||1)x +【答案】ACD【分析】由方程()f g x x =⎡⎤⎣⎦有实数解可得(){}()g f g x g x =⎡⎤⎣⎦,再用x 替代()g x ,即 []()x g f x =有解,逐个判断选项即可得出答案.【详解】由方程()f g x x =⎡⎤⎣⎦有实数解可得(){}()g f g x g x =⎡⎤⎣⎦,再用x 替代()g x ,即 []()x g f x =有解.对于A ,22x x x =+,即20x x +=,方程有解,故A 正确; 对于B ,1x x =+,即01=,方程无解,故B 错误;对于C ,当cos ,x e x =令cos ()x h x e x =-,因为(0)0f e =>,1022f ππ⎛⎫=-< ⎪⎝⎭,由零点的存在性定理可知,()h x 在0,2π⎛⎫⎪⎝⎭上存在零点,所以方程有解,故选项C 正确;对于D ,当ln(||1)x x +=时,0x =为方程的解,所以方程有解,故选项D 正确.故选:ACD.【分析】对A :根据偶函数的定义即可作出判断;对B :由有界性0|cos |1x ≤≤,1sin ||1x -≤≤,且32x π=时sin |||cos |1x x +=-即可作出判断;对C :当[]0,2x π∈时,sin cos ,023()sin cos ,223sin cos ,22x x x f x x x x x x x πππππ⎧+≤⎪⎪⎪=-<⎨⎪⎪+<⎪⎩,可得函数()f x 有两个零点,根据偶函数的对称性即可作出判断;对D :当,2x ππ⎛⎫∈ ⎪⎝⎭时,()sin cos 4f x x x x π⎛⎫=-=- ⎪⎝⎭,利用三角函数的图象与性质即可作出判断.【详解】解:对A :因为()sin |||cos()|sin |||cos |()f x x x x x f x -=-+-=+=,所以()f x 是偶函数,故选项A 正确;对B :因为0|cos |1x ≤≤,1sin ||1x -≤≤,所以sin |||cos |1x x +≥-,而32x π=时sin |||cos |1x x +=-,所以()f x 的最小值为1-,故选项B 正确;对C :当[]0,2x π∈时,sin cos ,023()sin cos ,223sin cos ,22x x x f x x x x x x x πππππ⎧+≤⎪⎪⎪=-<⎨⎪⎪+<⎪⎩,令()0f x =,可得54=x π,74π,又由A 知函数()f x 为偶函数,所以函数()f x 在区间[]2,0π-上也有两个零点54π-,74π-,所以函数()f x 在区间[]2,2ππ-上有4个零点,故选项C 正确;对D :当,2x ππ⎛⎫∈ ⎪⎝⎭时,()sin cos 4f x x x x π⎛⎫=-=- ⎪⎝⎭,因为2x ππ<<,所以3444x πππ<-<,而sin y x =在,42ππ⎛⎫ ⎪⎝⎭上单调递增,在3,24ππ⎛⎫⎪⎝⎭上单调递减,故选项D 错误.故选:ABC.三、填空题【答案】42ω<<或22ω<≤.【分析】先求出零点的一般形式,再根据()f x 在区间(4π,23π)上恰有2个零点可得关于整数k 的不等式组,从而可求ω的取值范围.【详解】令()0f x =,则1sin 62x πω⎛⎫-= ⎪⎝⎭,故()1,66k x k k Z ππωπ-=+-∈,故()166kk x πππω+-+=,因为()f x 在区间(4π,23π)上恰有2个零点,所以存在整数k ,使得: ()()()()()()()123421116666213166663k k k k k k k k ππππππωωππππππππωω+++⎧+-+++-+⎪≤⎪⎪⎨⎪++-+++-+⎪<⎩<≤⎪,若k 为偶数,则()()()13233423k k k k πππωωπππωππω⎧+⎪+≤⎪⎪⎨⎪+++⎪<⎩<≤⎪, 整理得到:()444433733232k k k k ωω⎧+≤<+⎪⎪⎨⎛⎫⎪+<≤+ ⎪⎪⎝⎭⎩∵,因为0>ω,故0k ≥, 当2k ≥时,4394322k k +>+,故∵无解,当0k =时,有4437922ωω⎧≤<⎪⎪⎨⎪<≤⎪⎩即742ω<<.若k 为奇数,则()()()42313323k k k k πππππωωπππωω⎧++⎪≤<≤⎪⎪⎨⎪+++⎪<⎪⎩,整理得到:()444333102223k k k k ωω⎧⎛⎫≤<+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪+<≤+ ⎪⎪⎝⎭⎩∵,因为0>ω,故1k ≥-,当3k ≥时,3452k k >+,故∵无解,当1k =-时,有4433722ωω⎧-≤<⎪⎪⎨⎪<≤⎪⎩,无解.当1k =时,有284391322ωω⎧≤<⎪⎪⎨⎪<≤⎪⎩,故91322ω<≤.综上,742ω<<或91322ω<≤.故答案为:742ω<<或91322ω<≤. 【点睛】思路点睛:对于正弦型函数的零点个数问题,可先求出零点的一般形式,再根据零点的分布得到关于整数k 的不等式组,从而可求相应的参数的取值范围.【分析】根据m 的范围分类讨论f (x )的零点即可.【详解】∵m =0时,f (x )={x 2+3x,x ≤0,x −1,x >0,令f (x )=0,则x =0或x =-3或x =1,即f (x )有三个零点,满足题意;∵m ≠0时,令f (x )=0,则x >0时,101mx x +-=+,则21x m =-(*), x≤0时,230x x m ++=(**),显然x ≤0时的方程(**)最多有两个负根,而x >0时的方程(*)最多只有一正根,为了满足题意,则x >0时必有1根,则1-m >0,且根为x ∵m <1;x ≤0时方程必然有两个负根,则Δ094090004m m m m ⎧>->⎧⇒⇒<<⎨⎨>>⎩⎩, ∵0<m <1;综上所述,m ∵[)0,1.故答案为:[)0,1.四、解答题【分析】(1)求得11e f x ax a x =+-+,分0a =、0a <、0a >三种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间;(2)由()0f x =可得出20ax x a -+=,由102a <<结合判别式可判断出方程20ax x a -+=的根的个数,由此可证得结论成立.(1)解:函数()f x 的定义域为R ,()()()()2211e 11e x x f x ax a x a ax a x '⎡⎤=+-+-=+-+⎣⎦.当0a =时,则()()1e xf x x '=-+,由()0f x '<可得1x >-,由()0f x '>可得1x <-,此时函数()f x 的单调递增区间为(),1-∞-,单调递减区间为()1,-+∞; 当0a ≠时,由()0f x '=可得11=-x a或1x =-. ∵当0a <时,111a-<-,由()0f x '<可得11x a <-或1x >-,由()0f x '>可得111x a -<<-,此时函数()f x 的单调递减区间为1,1a ⎛⎫-∞- ⎪⎝⎭、()1,-+∞,单调递增区间为11,1a ⎛⎫-- ⎪⎝⎭;∵当0a >时,111a ->-,由()0f x '<可得111x a -<<-,由()0f x '>可得1x <-或11x a >-,此时函数()f x 的单调递增区间为(),1-∞-、11,a ⎛⎫-+∞ ⎪⎝⎭,单调递减区间为11,1a ⎛⎫-- ⎪⎝⎭.综上所述,当0a <时,函数()f x 的单调递减区间为1,1a ⎛⎫-∞- ⎪⎝⎭、()1,-+∞,单调递增区间为11,1a ⎛⎫-- ⎪⎝⎭; 当0a =时,函数()f x 的单调递增区间为(),1-∞-,单调递减区间为()1,-+∞;当0a >时,函数()f x 的单调递增区间为(),1-∞-、11,a ⎛⎫-+∞ ⎪⎝⎭,单调递减区间为11,1a ⎛⎫-- ⎪⎝⎭.(2)解:由()0f x =可得20ax x a -+=,因为102a <<,则()()21412120a a a ∆=-=-+>,即关于x 的方程20ax x a -+=有两个不等的实根, 所以,当102a <<时,()f x 在R 上有且仅有两个零点.【点睛】思路点睛:讨论含参函数的单调性,通常注意以下几个方面: (1)求导后看最高次项系数是否为0,须需分类讨论;(2)若最高次项系数不为0,通常是二次函数,若二次函数开口方向确定时,再根据判别式讨论无根或两根相等的情况;(3)再根据判别式讨论两根不等时,注意两根大小比较,或与定义域比较.【答案】(1)2个(2)存在,且a 的取值范围是0,7⎡⎤⎢⎥⎣⎦.【分析】(1)解方程()0f x =,即可得解;(2)由()00f =,分析可知当2x <且0x ≠时,由()0f x ≤可得()2310ax a +-≤,分0a =、0a <、0a >三种情况分析,结合一次函数的基本性质可得出关于实数a 的不等式,综合可求得实数a 的取值范围.(1)解:当3a =时,()()3221f x x x x x =+=+,令()0f x =,可得0x =或1x =-,此时函数()f x 有2个零点.(2)解:当(),2x ∈-∞时,由()()32111032f x ax a x =+-≤.当0x =时,对任意的R a ∈,()00f =,满足题意; 当2x <且0x ≠时,由()0f x ≤可得()2310ax a +-≤, 若0a =,则有30-≤,合乎题意; 若0a <,当3302ax a-<<时,()2310ax a +->, 则()2310ax a +-≤对任意的()(),00,2x ∈-∞⋃不可能恒成立,舍去; 若0a >,则有()4310a a +-≤,解得37a ≤,此时307a <≤.综上所述,当307a ≤≤时,当(),2x ∈-∞时,()0f x ≤恒成立. 题型三:数形结合法判段函数零点个数一、单选题1.(2022·安徽淮南·二模(文))已知函数,则下列关于函数的描述中,其中正确的是( ). ①当时,函数没有零点;②当时,函数有两不同零点,它们互为倒数; ③当时,函数有两个不同零点;④当时,函数有四个不同零点,且这四个零点之积为1. A .①② B .②③C .②④D .③④【答案】C【分析】画出函数图象即可判断①,令解方程即可判断③,将零点问题转化成函数图象交点的问题,利用数形结合即可判断②和④.【详解】当时,,函数图象如下图所示, ()1,0ln ,0x a x f x x x a x ⎧++<⎪=⎨⎪->⎩()f x 0a =()f x 02a <<()f x 2a =()f x 2a >()f x ()0f x =0a =()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩由此可知该函数只有一个零点,故①不正确; 当时,则函数的零点为和, ∵函数有两个不同零点,∴由函数的图象可知,解得, 当时,则函数的零点为和,此情况不存在有两不同零点,则函数有两不同零点时的取值范围是,设对应的两个零点为,,即或,解得,, 则,所以它们互为倒数,故②正确;当时,函数解析式为,令,解得,令,解得或,由此可知函数有三个零点,故③不正确; 当时,则函数的零点为和, ∵函数有四个不同零点,∴由函数的图象可知,解得, 当时,则函数的零点为和,此情况不存在有两不同零点;0a >()f x ()10x a x x+=-<()ln 0x a x =>()f x ()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩20a -<-<02a <<0a <()f x ()10x a x x+=-<()ln 0x a x =>()f x ()f x a 02a <<1x 2x 1ln x a =2ln x a =-1e a x =21e e aax -==121x x ⋅=2a =()12,0ln 2,0x x f x x x x ⎧++<⎪=⎨⎪->⎩()1200x x x++=<1x =-()ln 200x x -=>2e x =21e x =0a >()f x ()10x a x x+=-<()ln 0x a x =>()f x ()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩2a -<-2a >0a <()f x ()10x a x x+=-<()ln 0x a x =>()f x设对应的两个零点为,,,,即或,解得,, 当时,整理得,当时,, 则该方程存在两个不等的实数根和,由韦达定理得,所以,则故④正确; 故选:.2.(2022·河南安阳·模拟预测(文))已知函数,则关于的方程有个不同实数解,则实数满足( ) A .且 B .且 C .且 D .且【答案】C【分析】令,利用换元法可得,由一元二次方程的定义知该方程至多有两个实根、,作出函数的图象,结合题意和图象可得、,进而得出结果.【详解】令,作出函数的图象如下图所示:由于方程至多两个实根,设为和,由图象可知,直线与函数图象的交点个数可能为0、2、3、4,由于关于x 的方程有7个不同实数解,则关于u 的二次方程的一根为,则, 则方程的另一根为,直线与函数图象的交点个数必为4,则,解得. 所以且. 故选:C.1x 2x 3x 4x 1ln x a =2ln x a =-1e a x =21e e aax -==10x a x++=210x ax ++=2a >0∆>3x 4x 341x x ⋅=12341e 11e aax x x x =⋅⋅=C ()221xf x =--x ()()20f x mf x n ++=7,m n 0m >0n >0m <0n >01m <<0n =10m -<<0n =()u f x =20u mu n ++=1u 2u ()f x 10u =2u m =-()u f x =()u f x=20u mu n ++=1u u =2u u =1u u =()u f x =()()20f x mf x n ++=20u mu n ++=10u =0n =20u mu +=2u m =-2u u =()u f x =10m -<-<01m <<01m <<0n =3.(2022·安徽·模拟预测(文))已知函数,若有4个零点,则实数a 的取值范围是( ) A . B .C .D .【答案】A【分析】在同一坐标系中作出的图象,根据有4个零点求解. 【详解】解:令,得, 在同一坐标系中作出的图象,如图所示:由图象知:若有4个零点, 则实数a 的取值范围是, 故选:A4.(2022·河南河南·三模(理))函数的所有零点之和为( ) A .0 B .2 C .4 D .6【答案】B【分析】结合函数的对称性求得正确答案.【详解】令,得, 图象关于对称,在上递减. ,令,所以是奇函数,图象关于原点对称,所以图象关于对称,,在上递增, 所以与有两个交点,()2ln ,02,0x x f x x x x ⎧>=⎨--≤⎩()()g x f x a =-()0,1(]0,1[]0,1[)1,+∞(),y f x y a ==()()g x f x a =-()()0g x f x a =-=()f x a =(),y f x y a ==()()g x f x a =-()0,1()112e e 1x xf x x --=---()112e e 01x xf x x --=--=-112e e 1x x x ---=-()21g x x =-()1,0()(),1,1,-∞+∞()11e e ,x x h x --=-()()()()1e e ,e e x x x x H x h x H x H x --=+=--=-=-()H x ()h x ()1,0()10h =()1ee e x xh x -=-R ()h x ()g x两个交点关于对称,所以函数的所有零点之和为. 故选:B二、多选题5.(2022·广东·普宁市华侨中学二模)对于函数,下列结论中正确的是( )A .任取,都有B .,其中;C .对一切恒成立;D .函数有个零点; 【答案】ACD【分析】作出函数的图象.对于A :利用图象求出,即可判断;对于B :直接求出,即可判断;对于C :由,求得,即可判断; 对于D :作出和的图象,判断出函数有3个零点.【详解】作出函数的图象如图所示.所以.()1,0()112e e 1x xf x x --=---2sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩12,[1,)x x ∈+∞123()()2f x f x -≤11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭k ∈N ()2(2)()k f x f x k k N *=+∈[0,)x ∈+∞()ln(1)y f x x =--3sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩max min (),()f x f x 1511222222k f f f k ⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1()(2)2f x f x =-()2(2)k f x f x k =+()y f x =ln(1)y x =-()ln(1)y f x x =--sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩max min ()1,()1f x f x ==-对于A :任取,都有.故A 正确; 对于B :因为,所以.故B 错误;对于C :由,得到,即.故C 正确;对于D :函数的定义域为.作出和的图象如图所示:当时,;当时,函数与函数的图象有一个交点; 当时,因为,,所以函数与函数的图象有一个交点,所以函数有3个零点.故D 正确. 故选:ACD6.(2022·江苏·南京市宁海中学模拟预测)已知是定义在R 上的偶函数,且对任意,有,当时,,则( )A .是以2为周期的周期函数B .点是函数的一个对称中心12,[1,)x x ∈+∞()12max min 13()()()()122f x f x f x f x -≤-=--=1151111,,222222k f f f k +⎛⎫⎛⎫⎛⎫⎛⎫==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1112215112121222212kkf f f k ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎝⎭++++=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-1()(2)2f x f x =-1(2)()2kf x k f x ⎛⎫+= ⎪⎝⎭()2(2)kf x f x k =+()ln(1)y f x x =--()1,+∞()y f x =ln(1)y x =-2x =sin2ln10y π=-=12x <<()y f x =()ln 1y x =-2x >2111s 49422in 41f f π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭971ln 1ln 1224⎪->⎛⎫⎝>=⎭()y f x =()ln 1y x =-()ln(1)y f x x =--()f x x ∈R ()()11f x f x -=-+[]0,1x ∈()22f x x x =+-()f x ()3,0-()f x。

函数与导数重点题型01:含参函数单调性、极值、零点问题研究

函数与导数重点题型01:含参函数单调性、极值、零点问题研究

重点题型一:含参函数的单调性、极值、最值及零点问题【问题分析】含参函数的单调性、极值点及零点问题,在高考中考查频次非常高,主要考查利用分类讨论来研究函数单调性和由函数极值、最值及零点求解参数范围。

此类问题难度较大,经常出现在试卷T20或T21,属于高考压轴题型。

该题型主要考查考生的分类讨论思想、等价转化思想。

解决此类问题的本质就是确定函数定义域上的单调性,基本思想就是“分类讨论”,解题的关键就是参数“分界点”的确定。

所以,要解决好此类问题,首先要明确参数“分界点”,其次确定在参数不同的分段区间上函数的单调性,进而可以确定函数的极值点、最值及零点,达到解题目的。

图1-1 含参函数问题解题思路【知识回顾】图1-2 函数f (x )单调性、极值、最值及零点关系图特别提醒:1.函数f (x )单调性、极值、最值及零点必须在函数定义域内研究,所以解决问题之前,必须先确定函数的定义域。

2.函数f (x )的极值点为其导函数变号的点,亦即导函数f ′(x )的变号零点。

3.函数f (x )的极值点为函数单调区间的“分界点”,经过极大值点函数由增变减,经过极小值点函数由减变增。

函数f(x)的单调性函数f(x)的极值点导函数f ′(x)的变号零点函数f(x)的最值确定分界点有影响分类讨论函数单调性参数导函数f ′(x)值/f ′(x )=0的根函数f(x)4. 函数f (x )单调区间不能写成并集,也不能用“或”连接,只能用逗号“,”或“和”连接。

【“分界点”确认】参数对导函数f ′(x )的值符号有影响,就必须根据参数对导函数的影响确定参数“分界点”,然后在进行分类讨论函数的单调性。

常见的“分界点”确认方法如下: 1.观察法:解决问题的过程中,我们会发现导函数形式比较简单的情况下,我们可以通过观察直接确定参数的“分界点”,例如:当导函数f ′(x )的值与y =x 2+a 函数有关,可以直接观察得到:当a ≥0时,y ≥0;当a <0时,y =0有两个根x 1=−√−a,x 2=√−a,当x ∈(−∞,−√−a)∪(√−a,+∞)时,y >0,当x ∈(−√−a,√−a)时,y <0.所以我们可以根据常见函数的性质及其之间的不等关系,通过直接观察确定“分界点”,常见函数性质及其之间的关系如下: ①x 2≥0 (x ∈R ), 完全平方式不小于0 ②tanx >x >sinx (0<x <π2)③e x ≥x +1 (x ∈R ),仅当x =0时,等号成立e x =x +1 ④lnx ≤x −1 (x >0),仅当x =1时,等号成立lnx =x −1 ⑤lnx <x <e x (x >0) ⑥a x >0 (x ∈R )2.由二次函数引发的“分界点”当函数f (x )求导后,导函数f ′(x )值符号由一个含参的二次函数(二次三项式)决定,一般可以从两个方面进行“分界点”的确定:(1)通过二次函数(一元二次方程)的∆判别式进行“分界点”的确定. 对于一个二次函数y =ax 2+bx +c (a ≠0): ① {a >0∆≤0⟹y ≥0或{a <0∆≤0⟹y ≤0.② {a >0∆>0⟹二次函数有两个零点(或二次方程y =0有两个不同实根)x 1,x 2(x 1<x 2),x 在两根之外函数大于0,两根之内函数小于0.③ {a <0∆>0⟹二次函数有两个零点(或二次方程y =0有两个不同实根)x 1,x 2(x 1<x 2),x 在两根之外函数小于0,两根之内函数大于0. 特别提醒:当二次函数有两个零点时,需要确定两个零点是否在函数定义域之内,若不在需要舍弃. (2)由二次函数零点分布(一元二次方程实根分布)进行“分界点”确定设x 1,x 2(x 1<x 2)是二次函数y =ax 2+bx +c (a >0)的两个零点(一元二次方程ax 2+bx +c =0(a >0)的两个根),则x 1,x 2的分布情况与二次函数系数之间的关系如下(k,k 1,k 2∈R,k 1<k 2):零点分布函数图像等价条件x 1<x 2<k{∆>0f (k )>0−b 2a<kk <x 1<x 2{∆>0f (k )>0−b 2a>kx 1<k <x 2f (k )<0k 1<x 1<x 2<k 2{∆>0f (k 1)>0f (k 2)>0k 1<−b 2a<k2 x 1,x 2中仅有一个在(k 1,k 2)内\f (k 1)∙f (k 2)<0或f (k 1)=0,k 1<−b2a <k 1+k 22或f (k 2)=0,k 1+k 22<−b2a <k 2或{∆=0k 1<−b 2a<k 2当二次函数定义域受限,可以根据上表情况进行“分界点”确认,进而进行分类讨论。

谈导数中含参函数零点的取点方法

谈导数中含参函数零点的取点方法

谈导数中含参函数零点的取点方法孙培培(江苏省江阴高级中学,214400) 导数是每年高考的必考内容,也是高中的重点和难点.对于常规的函数的零点问题,学生容易处理,如:二次函数、简单的复合函数.对于一些复杂的函数,尤其是含参的零点问题,是教学的重点和难点,也是每年高考的热点话题.零点问题思路比较清晰,研究函数的单调性和极值,然后利用零点存在性定理判断是否有零点.如何找到两个点使其函数值异号,是解决零点问题的关键,也是学生的难点.现介绍笔者总结的找点方法.新课程标准对学生的能力提出更高的要求,不仅要求学生掌握基础知识和基本技能,对学生的能力也提出更高的要求.高考导数试题突出对学生发现问题、提出问题、分析问题以及解决问题的能力考查.1 分而治之其实质就是找0<ac<bd的充分条件0<a<b,0<c<{d.例1 设函数f(x)=e2x-alnx,讨论f(x)的导函数f′(x)的零点个数.解:f′(x)=2e2x-ax.由函数解析式的结构特征知道,当a≤0时,f′(x)>0恒成立,此时无零点.所以当a>0时,f″(x)=4e2x+ax2>0恒成立,即f′(x)在(0,+∞)单调递增,且f′(a)=2e2a-1>0.由函数的性质知道f′(x)在(a,+∞)无零点,函数f′(x)如果有零点,只有可能出现在(0,a)这一个区间内,如何找这一点成为解决本题的关键.因为f′(x)=2e2a-1>0,所以要找一个点使得该点处的函数值小于0.使2e2x<ax即可,即2e2x<λ·aλx(λ>0),只需e2x<λ,2<aλx{.(找不等式成立的充分条件)所以x<12lnλ,x<a2{λ,可以取λ=2,即x<12ln2,x<a{4时,一定有2e2x-ax<0.即当x0满足0<x0<a4且x0<12ln2时,有f′(x0)<0.总结:本题的关键由2e2x<ax到2e2x<λ·aλx变形(类似待定系数法),即找不等式成立的充分条件e2x<λ,2<aλ{x(分而治之).此种方法适用的形式多样,用放缩法或者特殊点不能解决时,可以选择这种方法.链接高考:(2016全国一卷)已知函数f(x)=(x-2)ex+a(x-1)2有两个零点.(1)求a的取值范围;(2)略.解:(1)f′(x)=(x-1)ex+2a(x-1)=(x-1)(ex+2a).1°当a=0时,f(x)只有一个零点1(不满足题意);2°当-e2<a<0时,f′(x)有两个零点1和ln(-2a)且ln(-2a)<1.x(-∞,ln(-2a))ln(-2a)(ln(-2a),1)1(1,+∞)f′(x)+0-0+f(x)极大值极小值 当x∈(-∞,1)时,f(x)<0恒成立,无零点.所以函数f(x)在(1,+∞)至多有一个零点(不满足题意);3°当a<-e2时,f′(x)有两个零点1和ln(-2a)·58·且ln(-2a)>1.x(-∞,1)1(1,ln(-2a))ln(-2a)(ln(-2a),+∞)f′(x)+0-0+f(x)极大值极小值 当x∈(-∞,1)时,f(x)<0恒成立,无零点.因为函数f(x)在区间(1,ln(-2a))上单调递减,所以f(x)<0恒成立,无零点.所以函数f(x)在(ln(-2a),+∞)至多有一个零点(不满足题意);4°当a=-e2时,函数f(x)在R上单调递增,最多有一个零点(不满足题意);5°当a>0时,f′(x)有一个零点1.x(-∞,1)1(1,+∞)f′(x)-0+f(x)极大值 所以函数f(x)min=f(1)=-e<0.因为f(2)=a>0,所以在区间(1,2)上有一个零点.下面证明在(-∞,1)有一个零点,即在(-∞,1)找到一个点使得其函数值大于0.即(2-x)ex<a(x-1)2,2-x<(x-1)2,ex<{a解得x<槡1-52,x<ln{a.所以只需x0<lna且x0<槡1-52时有f(x0)>0,所以函数f(x)在(x0,1)有一个零点.综上:a>0.2 放缩法顾名思义,放缩法即函数值大了放小,函数值小了放大.例2 (2020烟台测试)已知函数f(x)=1+lnxx-a(a∈R).(1)略;(2)设g(x)=(x-1)2ex,讨论方程f(x)=g(x)实数根的个数.解:(1)略;(2)题目等价为h(x)=f(x)-g(x)=1+lnxx-(x-1)2ex-a零点的个数,所以f′(x)=-lnxx2-(x-1)(x+1)ex.令f′(x)=0,得x=1.x(0,1)1(1,+∞)f′(x)+0-f(x)极大值 f(x)max=f(1)=1-a.1°当a=1时,有一个零点;2°当a>1时,无零点;3°当a<1时,f(x)max=f(1)=1-a>0.现证明函数h(x)在(0,1)和(1,+∞)各有一个零点.当x∈(0,1)时,lnx+1x<1,1<ex<e.因为要找到点的函数值小于零,在选择不等号的方向时要注意.所以h(x)<1-(x-1)2-a.令1-(x-1)2-a=0即可,解得x=1-1-槡a.所以当x0=1-1-槡a时,h(x0)<0.即在区间(1-1-槡a,1)上h(x)有一个零点;当x∈(1,+∞)时,lnx+1x<1,e<ex,所以h(x)<1-e(x-1)2-a.令1-e(x-1)2-a=0,解得x=1+1-a槡e.所以当x0=1+1-a槡e时,h(x0)<0,即在区间1,1+1-a槡()e上h(x)有一个零点.总结:本题综合考查了指数函数和对数函数,关于对数函数和对数函数的放缩方法很多,常见的有lnx≤x-1,lnx>1-1x,ex≥x+1,ex≥ex,这种放缩方法为切线放缩法,放缩之后可以把超越方程转化为一般方程(一元一次方程或一元二次方程),对于指定区间的放缩可以利用函数值域的有界性进行解决.链接高考:(2016全国一卷)已知函数f(x)=(x-2)ex+a(x-1)2有两个零点.(1)求a的取值范围.上述通过分而治之解决的,本题还可以通过放缩法解决,当x<1时,0<ex<e,所以(x-2)ex+·68·a(x-1)2>e(x-2)+a(x-1)2,即可以通过寻找e(x-2)+a(x-1)2的解集即可.3 利用单调性即根据函数的单调性判断函数值的符号.例3 已知函数f(x)=x2+xsinx+cosx.(1)略;(2)若曲线y=f(x)与直线y=b有两个不同的交点,求b的取值范围.解:(2)题目等价为函数g(x)=f(x)-b=x2+xsinx+cosx-b有两个零点,所以g′(x)=x(2+cosx).令g′(x)=0,得x=0.x(-∞,0)0(0,+∞)g′(x)-0+g(x)极小值 所以g(x)min=g(0)=1-b,要使函数g(x)有两个零点,必有1-b<0,即b>1.下面证明函数g(x)在区间(-∞,0)和(0,+∞)各有一个零点.令h(b)=b2+bsinb+cosb-b.所以h′(b)=b(1+cosb)+b-1>0.所以h(b)在(1,+∞)单调递增.所以h(b)>h(1)=sin1+cos1>0(利用函数的单调性).∴g(b)>0.所以函数g(x)在(0,b)有且只有一个零点.因为函数g(x)为偶函数,所以在(-b,0)有且只有一个零点.综上:b>1.应用链接:讨论函数f(x)=kx2-lnx(k∈R)的零点的个数.f′(x)=2kx-1x=2kx2-1x.1°当k=0时,f(x)有一个零点;2°当k<0时,f(x)单调递减且f(1)=k<0,f(ek)=k(e2k-1)>0,所以f(x)有一个零点;3°当k>0时,x0,12槡()k12槡k12槡k,+()∞f′(x)-0+f(x) 所以f(x)min=f12槡()k=12+12ln2k.若12+12ln2k=0,即k=12e时,有一个零点;若12+12ln2k>0,即k>12e时,无零点;若12+12ln2k<0,即k<12e,函数f(x)在区间0,12槡()k和12槡k,+()∞各有一个零点:f(k)=k3-lnk>0(有解析式的特征及变量范围),所以f(x)在区间k,12槡()k有一个零点;f1()k=1k+lnk,所以f′(x)=k-1k2<0,即f(k)单调递减,且f(k)>f12()e=2e-ln2e>0(利用函数的单调性),所以f(x)在区间12槡k,1()k有一个零点.总结:对于一些不好判断符号的,我们可以先找一个满足条件的x0,根据已知的范围讨论f(x0)在已知区间上的单调性,根据单调性判断f(x0)的符号即可.本题还涉及到对于一些特殊函数,可以从解析式特征及变量范围直接得出其符号,这也是处理函数零点的方法以及缩小参数范围的方法.随着学生对导数的继续深入学习,学生对导数有了更深入的理解,学生的能力得到进一步提升,对导数的态度也有了很大的转变,学生的心情可以说是一波三折,好奇(解决函数问题很好用)———恐惧(对其复杂的变形以及分类讨论问题)———好玩(原来导数不是那么可怕,有一定的规律可循,有成就感了).用导数解决一些函数问题确实很方便,如恒成立(存在性)问题,复杂函数的单调性讨论极值最值问题,但是学生对于用导数解决零点问题还是束手无策.学生做选择和填空题数形结合得心应手,但是解答题就欠妥了.学生谈点色变,畏惧找点的过程.平常讲过一些特殊的取点方法,如遇到对数取en、遇到指数可以取lna(a>0),但是指对同时出现,学生就一头雾水.笔者就自己的体会简单介绍几种找点的方法,一道题目可以有多种方法,不能孤立的去看待任何一种方法.·78·。

高考数学函数零点问题3类题型4种方法讲解!你觉得零点问题难吗?

高考数学函数零点问题3类题型4种方法讲解!你觉得零点问题难吗?

高考数学函数零点问题3类题型4种方法讲解!你觉得零点问题难吗?函数零点问题的4种解题方法一、依据概念化为方程求根对于函数y=f(x),我们把f(x)=0使的实数x叫做函数y=f(x)的零点,因此,该方法就是将函数的零点问题转化为方程f(x)=0的问题来解答。

二、由数到形实现零点交点的互化函数y=f(x)的零点,即函数y=f(x)的图像与x轴的交点的横坐标。

因此,求函数的零点问题可转化为函数y=f(x)图像与x轴的交点的横坐标,或将方程f(x)=0整理成f1(x)=f2(x)形式,然后在同一直角坐标系下,画出两函数的图像,交点的横坐标即为函数的零点,交点的个数即为函数的零点个数。

注:在解题中,若遇到函数形式复杂难以作图时,则不妨先整理表达式,一般以所涉及的函数能作其图像为整理要求。

接着在同一坐标系下,规范作图,然后确定交点的位置或个数,特别在部分区间上是否存在交点,要细心对待,有时还需计算相关的函数值(函数值的趋势)来确定是否有交点。

三、依存定理凭号而论如果函数y=f(x)在区间[a,b]上的图像时联系不断的一条曲线,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点。

即存在c∈(a,b),使得f(c)=0。

通常将此论述称为零点存在性定理。

因此,该解题策略就是将函数零点分布问题转化为判断不等式f(a)f(b)<0是否成立。

四、借助单调确定问题如果函数y=f(x)在区间[a,b]上的图像时连续不断的一条具有单调性曲线,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有唯一零点,即存在唯一的c∈(a,b),使得f(c)=0。

通常将此论述称为零点唯一性定理。

因此,该策略解题需要考虑两个条件:条件一是f(a)f(b)<0是否成立;条件二是否具有单调性。

题型一:已知零点个数求参数范围题型二:求零点所在区间题型三:求零点个数。

高考常考题- 函数的零点问题(含解析)

高考常考题- 函数的零点问题(含解析)

函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。

例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.例3、【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例4、(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞例5、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4-例6、【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞ B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞例7、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0例8、(2020·浙江学军中学高三3月月考)已知函数2(4),53()(2),3x x f x f x x ⎧+-≤<-=⎨-≥-⎩,若函数()()()1g x f x k x =-+有9个零点,则实数k 的取值范围是( )A .1111,,4664⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .1111,,3553⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .11,64⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭例9、(2020届浙江省杭州市第二中学高三3月月考)已知函数()()2,22,2,x f x f x x ≤<=-≥⎪⎩()2g x kx =+,若函数()()()F x f x g x =-在[)0,+∞上只有两个零点,则实数k 的值不可能为A .23- B .12-C .34-D .1-二、达标训练1、(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( ) A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,22、【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3、(2020届浙江省“山水联盟”高三下学期开学)已知,a b ∈R ,函数(),0(),0x x a e ax x f x x x ⎧++≤=⎨>⎩,若函数()y f x ax b =--恰有3个零点,则( ) A .1,0a b >>B .1,0a b ><C .1,0a b <>D .1,0a b <<4、(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a=-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( ) A .12BC .2e D5、(2020届山东师范大学附中高三月考)已知函数(01)()2(1)x f x x x⎧<≤⎪=⎨>⎪⎩,若方程()f x x a =-+有三个不同的实根,则实数a 的取值范围是________.6、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

含参函数求零点个数问题

含参函数求零点个数问题

所以这种方式先在演草纸上试一下,看硬分离出的函数是否简洁,再决定是否应用该方 式。当然,这种方式还经常会碰到端点出极值不可求问题,这样就要借助罗必塔法则来就极 值最值了。
(二) 分离成两个函数,其中一个含参一个不含参(软分离)
y = f (x)(含参数m)
令原函数等于
0,对函数进行化简,分离成两个函数,
形式)
Ⅰ 证明:
;(对 lnx 来说,我们需要记住几个特殊的切线,并且要求会证明,方便
我们在后面做题的时候实现快速做题或者提供灵感和答案)
Ⅱ 若 ,讨论函数 的零点个数.
【参考答案】 Ⅰ 证明:设函数
,
,,

,得 ,当
时,
;当 时,
,
所以函数在区间 内是增函数,在区间
内是减函数,所以
,即

Ⅱ 解法一:借助已知的结论: x2 − x ≥ x −1 ≥ ln x ,可以得到,当 a=1 时有一个交点,a>1

y
= g(x)
,其中一个
要含参数,一个不含参数,讨论两个函数在参数的作用下有交点个数的情况。
软分离的好处就是分离出的两个函数可以根据需要进行选择,能够选择出相对熟悉,易求 导、求解的函数来处理问题,难点就是两个函数的切点很多时候是方程好列解难求。
在这种分离函数的时候,含参的函数最好是直线(含参的话就是平行线或过定点的旋转直 线),这样就可以通过求切线的方式找出边界值。
(一) 直接分离出参数(硬分离)
y = m(参数)
这种分离是把参数完完全全的分离出来,变成

y
=
f
(x)
的形式。由于 y=m 是一条平行
于 x 轴的直线,所以对 f (x) 图像的要求就不是很高(只要求单调性和渐进线,不要求函数图

浅析高考中的函数零点问题中求参数范围

浅析高考中的函数零点问题中求参数范围

浅析高考中的函数零点问题中求参数范围摘要:函数零点是高考考查的一个热点问题,尤其是与零点有关的参数取值范围问题,是近年来高考考查的热点问题.零点问题渗透了数学思想与数学能力的考查,较好地反映了学生分析和解决问题的能力.本文对一道经典的含参的零点试题进行分析,寻求已知函数零点个数求参数问题的解题策略.关键词:零点含参函数方程分离变量新课标下的高考越来越注重对学生的综合素质的考察,函数的零点问题便是一个考察学生综合素质的很好途径,它主要涉及到基本初等函数的图象,渗透着转化、化归、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用。

关于函数的零点问题高中所涉及的主要知识点归纳如下:根据函数零点的定义:对于函数,把使成立的实数叫做函数的零点。

方程有实数根函数的图象与轴有交点的横坐标函数有零点。

围绕三者之间的关系,在高考数学中函数的零点的个数问题转化成利用导数结合图像的变动将两个函数的图像的交点问题。

零点的存在性定理:如果函数在区间上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点。

既存在,使得,这个也就是方程的根。

近几年的数学高考中频频出现零点问题,其形式逐渐多样化,其中常见的一种已知函数的零点的个数求参数的取值范围问题,本文以一道经典例题探讨处理此类问题的常用方法.例题:已知有唯一零点,求实数取值的集合.法一:(完全分离变量)分析:根据函数有零点方程有实数根函数的图象与轴有交点的横坐标,围绕三者之间的关系,我们可以函数的零点问题转化为两个函数交点问题.常常通过分离变量的方法来求参数的范围.讨论如下:有唯一正零点有唯一正根。

当,可知使得此时无正零点。

(舍)当,即,,设在减,增,所以点评:已知函数零点的个数,求参数范围常用分离变量,但此方法缺点在于新构建的函数g(x)在原来的定义域范围内不连续,若学生往往考虑不到这一点,容易丢了的范围。

如何避免出现以上情况,我们可以对构造函数稍作修改。

谈含参函数零点问题的解题策略

谈含参函数零点问题的解题策略

谈含参函数零点问题的解题策略摘要:含参函数零点问题一直是高考热点和难点,全国卷中常常均导数压轴题形式出现,对大部分学生而言有一定的难度。

本文主要针对此类问题举例说明两种方法:直接法和参变分离法,让学生有迹可循,进而达到落实数学核心素养的目的。

关键词:直接法参变分离法导数零点问题含参函数导数及其应用一直是高考的重点与难点,尤其是含参函数的零点问题[1-3],一般以基本初等函数为载体,考察函数的单调性,函数的零点存在性定理及指数函数、幂函数、对数函数的增长速度,难度较大,解题时要熟练运用导数与函数单调性的关系,注重函数与方程化归、分类讨论及数形结合等思想方法的应用。

针对导数压轴题中的含参函数零点问题,本文将用两道例题来说明两种常用方法:直接法和参变分离法,例一是已知零点情形求参数范围,例二是直接求解函数零点个数,其中例一选自2018年全国卷理科Ⅱ卷21题第二问,例二选自2018年广一模理科21题第一问。

直接法是通过对参量进行分类讨论直接分析所求函数的单调性、极值、最值和极限,大致确定函数的图象进而分析函数的零点个数。

参变分离法则是利用函数与方程思想把参数和变量进行分离,得到一个不含参的函数和常函数,通过分析不含参函数的大概走势,进而确定不含参函数与常函数交点个数,从而解决原函数的零点问题。

在采用这两种方法求解时,我们利用极限思想降低计算复杂度。

虽然在高中数学没有涉及极限的计算方法,但是人教A版选修2-2中提到了极限的思想,所以我们根据指数函数、幂函数、对数函数增长速度来求一些简单函数的极限来确保函数在某些区间满足零点存在性定理。

本文将通过对这两道例题讨论分析说明两种求解方法,让学生有迹可循,进而达到落实数学核心素养的目的。

例1(2018全国理科Ⅱ卷21)已知函数.若在只有一个零点,求.方法一:直接法解析:当时,不满足题意.当时,,令令 .当时,即当,单调递增,又即在单调递增,又不满足题意.当时,即当,当时,单调递减;当时,单调递增.当时,即单调递增,不满足题意.当时,即又时,增长速度远远大于增长速度,所以,又使得又增长速度远远大于增长速度,所以在只有一个零点,又,解得方法二:参变分离法解析:在只有一个零点,即方程在只有一个解,即方程在只有一个解.即函数和函数在只有一个交点.当时,单调递减;当时,单调递增. ,又时,增长速度远远大于增长速度,所以,所以函数和函数在只有一个交点, =例2(2018广一模理科21)已知函数 .讨论的导函数零点的个数;解析:定义域为方法一:直接法令,故在上单调递增,,又当时,有且只有一个零点,所以当时,即时,只有一个零点;当时,即时,有两个零点.当时,没有零点,只有一个零点.所以当或时,只有一个零点;当或时,有两个零点.方法二:参变分离法方程在解的个数,即方程在解的个数,即函数和函数在交点个数.在单调递增,,又当时,和有且只有一个交点,故当时,即时,只有一个零点;当时,即时,有两个零点.当时,和没有交点,只有一个零点.所以当或时,只有一个零点;当或时,有两个零点.通过上述两个例题的详细解析,我们可以直观感受到两种方法的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的含参零点问题根据函数的零点情况,讨论参数的范围是高考的重点和难点.对于此类题目,我们常利用零点定理、数形结合、函数单调性与分离参数等思想方法来求解.[典例] (2014·全国卷Ⅰ)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围为( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1) [答案] B [思路点拨]本题的实质是函数f (x )存在唯一的零点x 0∈(0,+∞),因此可利用其代数特征转化为方程有唯一的正根来构思解析,也可以从零点本身的几何特征入手,将其转化为曲线的交点问题来突破,还可以利用选项的唯一性选取特例求解.[方法演示]法一 单调性法:利用函数的单调性求解由已知得,a ≠0,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x =0或x =2a.当a >0时,x ∈(-∞,0),f ′(x )>0;x ∈⎝⎛⎭⎫0,2a ,f ′(x )<0;x ∈2a ,+∞,f ′(x )>0.所以函数f (x )在(-∞,0)和2a ,+∞上单调递增,在0,2a 上单调递减,且f (0)=1>0,故f (x )有小于零的零点,不符合题意.当a <0时,x ∈-∞,2a ,f ′(x )<0;x ∈2a ,0,f ′(x )>0;x ∈(0,+∞),f ′(x )<0.所以函数f (x )在-∞,2a 和(0,+∞)上单调递减,在2a ,0上单调递增,所以要使f (x )有唯一的零点x 0且x 0>0,只需f 2a>0,即a 2>4,解得a <-2. 法二 数形结合法:转化为直线与曲线的位置关系求解由ax 3-3x 2+1=0可知x ≠0,可得ax =3-1x 2,作出y =3-1x 2的图象如图所示,转动直线y =ax ,显然a >0时不成立;当a <0,直线y =ax 与左边的曲线相切时,设切点为t,3-1t 2,其中t <0,则切线方程为y-3-1t 2=2t 3(x -t ).又切线过原点,则有0-3-1t 2=2t3(0-t ),解得t =-1(t =1舍去),此时切线的斜率为-2,由图象可知a <-2符合题意.法三 数形结合法:转化为两曲线的交点问题求解令f (x )=0,得ax 3=3x 2-1.问题转化为g (x )=ax 3的图象与h (x )=3x 2-1的图象存在唯一的交点,且交点横坐标大于零.当a =0时,函数g (x )的图象与h (x )的图象存在两个的交点; 当a >0时,如图(1)所示,不合题意;当a <0时,由图(2)知,可先求出函数g (x )=ax 3与h (x )=3x 2-1的图象有公切线时a 的值.由g ′(x )=h ′(x ),g (x )=h (x ),得a =-2.由图形可知当a <-2时,满足题意.法四 分离参数法:参变分离,演绎高效易知x ≠0,令f (x )=0,则a =3x -1x 3,记g (x )=3x -1x 3,g ′(x )=-3x 2+3x 4=-3(x 2-1)x 4,可知g (x )在(-∞,-1)和(1,+∞)上单调递减,在(-1,0)和(0,1)上单调递增,且g (-1)=-2,画出函数大致图象如图所示,平移直线y =a ,结合图象,可知a <-2.法五 特例法:巧取特例求解取a =3,则f (x )=3x 3-3x 2+1.由于f (0)=1,f (-1)<0,从而f (x )在(-∞,0)上存在零点,排除A 、C. 取a =-43,则f (x )=-43x 3-3x 2+1.由于f (0)=1,f ⎝⎛⎭⎫-32<0,从而f (x )在(-∞,0)上存在零点,排除D ,故选B.[解题师说]函数的含参零点问题是高考热门题型,既能很好地考查函数、导数、方程与不等式等基础知识,又能考查分类讨论、数形结合、转化与化归等思维能力,所以此类题往往能较好地体现试卷的区分度.由本题的五种方法,可知破解含参零点问题常有“三招”. 第一招当我们无法通过等价转化的思想将原问题转化为相对容易的问题时,我们带参讨论要根据题设要求直接研究函数的性质.由于函数含有参数,通常需要合理地对参数的取值进行分类,并逐一求解.(如本题解法一)第二招 数形结合由两个基本初等函数组合而得的超越函数f (x )=g (x )-h (x )的零点个数,等价于方程g (x )-h (x )=0的解的个数,亦即g (x )=h (x )的解的个数,进而转化为基本初等函数y =g (x )与y =h (x )的图象的交点个数.(如本题解法二和解法三)第三招 分离参数 通过将原函数中的变参量进行分离后变形成g (x )=l (a ),则原函数的零点问题化归为与x 轴平行的直线y =l (a )和函数g (x )的图象的交点问题.(如本题解法四)[应用体验]1.(2017·全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A .-12 B.13 C.12 D .1解析:选C 法一:由函数f (x )有零点,得x 2-2x +a (e x -1+e -x +1)=0有解,即(x -1)2-1+a (e x -1+e-x +1)=0有解,令t =x -1,则上式可化为t 2-1+a (e t +e -t )=0,即a =1-t 2e t +e -t . 令h (t )=1-t 2e t +e -t ,易得h (t )为偶函数,又由f (x )有唯一零点得函数h (t )的图象与直线y =a 有唯一交点,则此交点的横坐标为0,所以a =1-02=12,故选C. 法二:由f (x )=0⇔a (e x -1+e -x +1)=-x 2+2x .e x -1+e-x +1≥2e x -1·e-x +1=2,当且仅当x =1时取“=”.-x 2+2x =-(x -1)2+1≤1,当且仅当x =1时取“=”. 若a >0,则a (e x -1+e-x +1)≥2a ,要使f (x )有唯一零点,则必有2a =1,即a =12.若a ≤0,则f (x )的零点不唯一. 综上所述,a =12.2.设m ∈N ,若函数f (x )=2x -m 10-x +10存在整数零点,则符合条件的m 的个数为( )A .2B .3C .4D .5解析:选C 令f (x )=0,得m =2x +1010-x . 又m ∈N ,因此有⎩⎪⎨⎪⎧10-x >0,2x +10≥0,解得-5≤x <10,x∈Z ,∴0<10-x ≤15.当2x +10=0,即x =-5时,m =0;当2x +10≠0时,要使m ∈N ,则需10-x ∈N ,当10-x =1,即x =9时,m =28;当10-x =2,即x =6时,m =11;当10-x =3,即x =1时,m =4,所以符合条件的m 的个数为4.3.设函数f (x )=⎩⎪⎨⎪⎧12x 2+2x +2,x ≤0,|log 2x |,x >0,若关于x 的方程f (x )=a 有4个不同的解x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则x 1+x 2x 4+1x 23x 4的取值范围是( )A .(-3,+∞)B .(-∞,3)C .[-3,3)D .(-3,3] 解析:选D 在同一坐标平面内画出函数y =f (x )的大致图象如图所示,结合图象可知,当且仅当a ∈(0,2]时,直线y =a 与函数y =f (x )的图象有4个不同的交点,即方程f (x )=a 有4个不同的解,此时有x 1+x 2=-4,|log 2x 3|=|log 2x 4|(0<x 3<1<x 4≤4),即有-log 2x 3=log 2x 4,x 3x 4=1,所以x 1+x 2x 4+1x 23x 4=x 4-4x 4(1<x 4≤4),易知函数y =x 4-4x 4在区间(1,4]上是增函数,因此其值域是(-3,3].4.若函数f (x )=e x -ax 2有三个不同的零点,则实数a 的取值范围是( )A.⎝⎛⎭⎫e 24,+∞ B.⎝⎛⎭⎫e 2,+∞ C.⎝⎛⎭⎫1,e 24 D.⎝⎛⎭⎫1,e 2 解析:选A 函数f (x )=e x -ax 2有三个不同的零点等价于函数y =e x 与y =ax 2的图象有三个不同的交点,则显然有a >0,且在(-∞,0)上两函数的图象有一个交点.当x >0时,设两函数图象在点(x 0,e x 0)处相切,则⎩⎪⎨⎪⎧e x 0=2ax 0,e x 0=ax 20,解得⎩⎪⎨⎪⎧x 0=2,a =e 24,由图易得若两函数图象有两个不同的交点,则a >e 24,即实数a 的取值范围为⎝⎛⎭⎫e24,+∞.一、选择题1.(2018·贵阳检测)已知函数f (x )=ln(x 2-4x -a ),若对任意的m ∈R ,均存在x 0使得f (x 0)=m ,则实数a 的取值范围是( )A .(-∞,-4)B .(-4,+∞)C .(-∞,-4]D .[-4,+∞) 解析:选D 依题意得,函数f (x )的值域为R ,令函数g (x )=x 2-4x -a ,其值域A 包含(0,+∞),因此对方程x 2-4x -a =0,有Δ=16+4a ≥0,解得a ≥-4,即实数a 的取值范围是[-4,+∞). 2.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y =x +a 与函数y =f (x )的图象有两个不同的公共点,则实数a 的值是( )A .n (n ∈Z)B .2n (n ∈Z)C .2n 或2n -14(n ∈Z)D .n 或n -14(n ∈Z)解析:选C 依题意得,函数y =f (x )是周期为2的偶函数,画出函数的大致图象如图所示.在[0,2)上,由图象易得,当a =0或-14时,直线y =x +a 与函数y =f (x )的图象有两个不同的公共点,∵函数f (x )的周期为2,∴a 的值为2n 或2n -14(n ∈Z).3.(2018·洛阳第一次统考)若函数f (x )=ln x -ax 2+x 有两个零点,则实数a 的取值范围是( )A .(-∞,1)B .(0,1) C.⎝⎛⎭⎫-∞,1+e e 2 D.⎝⎛⎭⎫0,1+ee 2解析:选B 依题意,关于x 的方程ax -1=ln x x 有两个不等的正根.记g (x )=ln xx ,则g ′(x )=1-ln xx 2,当0<x <e 时,g ′(x )>0,g (x )在区间(0,e)上单调递增;当x >e 时,g ′(x )<0,g (x )在区间(e ,+∞)上单调递减,且g (e)=1e,当0<x <1时,g (x )<0.设直线y =a 1x -1与函数g (x )的图象相切于点(x 0,y 0),则有⎩⎨⎧a 1=1-ln x 0x 2,a 1x 0-1=ln x0x,由此解得x 0=1,a 1=1.在同一坐标系中画出直线y =ax -1(该直线过点(0,-1)、斜率为a )与函数g (x )的大致图象(图略),结合图象可知,要使直线y =ax -1与函数g (x )的图象有两个不同的交点,则a 的取值范围是(0,1).4.若f (x )=ln x +ax -1有且仅有一个零点,则实数a 的最小值为( )A .0B .-1e 2 C .-1 D .1解析:选B 由f (x )=0,得ln x =-ax +1,在同一坐标系中画出y =ln x 和y =-ax +1的图象如图所示,直线y =-ax +1的斜率k =-a ,且恒过(0,1)点.当k ≤0,即a ≥0时,只有一个交点,从而f (x )只有一个零点,当k >0,且直线y =-ax +1与y =ln x 相切于点P (x 0,ln x 0)时,切线方程为y -ln x 0=1x 0(x -x 0),将x =0,y =1代入得ln x 0=2,即x 0=e 2,k =1x 0=1e 2,所以a =-1e 2,所以当a ≥-1e 2时,直线y =-ax +1与y =ln x 的图象只有一个交点,即f (x )只有一个零点,故a 的最小值为-1e2.5.(2018·石家庄模拟)已知函数f (x )=e xx -kx (e 为自然对数的底数)有且只有一个零点,则实数k 的取值范围是( )A .(0,2) B.⎝⎛⎭⎫0,e24 C .(0,e) D .(0,+∞)解析:选B 由题意,知x ≠0,函数f (x )有且只有一个零点等价于方程e xx -kx =0只有一个根,即方程e x x 2=k 只有一个根,设g (x )=e x x 2,则函数g (x )=e xx2的图象与直线y =k 只有一个交点.因为g ′(x )=(x -2)e x x 3,由g ′(x )>0,得x >2或x <0;由g ′(x )<0,得0<x <2,所以函数g (x )在(-∞,0)上为增函数,在(0,2)上为减函数,在(2,+∞)上为增函数,g (x )的极小值为g (2)=e 24,且x →0时,g (x )→+∞;x →-∞时,g (x )→0;x →+∞时,g (x )→+∞,则g (x )的图象如图所示,由图易知0<k <e 24,故选B.6.(2018·兰州模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A.14B.18 C .-78 D .-38 解析:选C 因为函数y =f (2x 2+1)+f (λ-x )只有一个零点,所以方程f (2x 2+1)+f (λ-x )=0只有一个实数根.又函数f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),所以f (2x 2+1)+f (λ-x )=0⇔f (2x 2+1)=-f (λ-x )⇔f (2x 2+1)=f (x -λ)⇔2x 2+1=x -λ,所以方程2x 2-x +1+λ=0只有一个实数根,所以Δ=(-1)2-4×2×(1+λ)=0,解得λ=-78.7.(2018·长沙模拟)对于满足0<b ≤3a 的任意实数a ,b ,函数f (x )=ax 2+bx +c 总有两个不同的零点,则a +b -ca的取值范围是( ) A .1,74 B .(1,2] C .[1,+∞) D .(2,+∞)解析:选D 依题意对方程ax 2+bx +c =0,有Δ=b 2-4ac >0,于是c <b24a ,从而a +b -c a >a +b -b 24a a =1+b a -14⎝⎛⎭⎫b a 2,对满足0<b ≤3a 的任意实数a ,b 恒成立.令t =ba ,因为0<b ≤3a ,所以0<t ≤3. 因为-14t 2+t +1∈(1,2],所以a +b -c a>2.8.(2018·湘中名校联考)已知函数f (x )=-13x 3+ax 2+bx +c 有两个极值点x 1,x 2,若x 1<f (x 1)<x 2,则关于x 方程[f (x )]2-2af (x )-b =0的实数根的个数不可能为( )A .2B .3C .4D .5 解析:选D 由题意,得f ′(x )=-x 2+2ax +b .因为x 1,x 2是函数f (x )的两个极值点,所以x 1,x 2是方程-x 2+2ax +b =0的两个实数根,所以由[f (x )]2-2af (x )-b =0,可得f (x )=x 1或f (x )=x 2.由题意,知函数f(x)在(-∞,x1),(x2,+∞)上单调递减,在(x1,x2)上单调递增,又x1<f(x1)<x2,依题意作出简图,如图所示,结合图形可知,方程[f(x)]2-2af(x)-b=0的实根个数不可能为5,故选D.9.(2018·石家庄模拟)已知函数f(x)=e2x-ax2+bx-1,其中a,b∈R,e为自然对数的底数.若f(1)=0,f′(x)是f(x)的导函数,函数f′(x)在区间(0,1)内有两个零点,则a的取值范围是() A.(e2-3,e2+1) B.(e2-3,+∞) C.(-∞,2e2+2) D.(2e2-6,2e2+2) 解析:选A由f(1)=0,得e2-a+b-1=0,所以b=a-e2+1,又f′(x)=2e2x-2ax+b,令g(x)=2e2x-2ax+b,则g′(x)=4e2x-2a,因为x∈(0,1),所以4<4e2x<4e2.当a≥2e2时,g′(x)<0,函数g(x)在(0,1)内单调递减,故g(x)在(0,1)内至多有一个零点;当a≤2时,g′(x)>0,函数g(x)在(0,1)内单调递增,故g(x)在(0,1)内至多有一个零点;当2<a<2e2时,若0<x<12lna2,则g′(x)<0,若12lna2 <x<1,则g′(x)>0,所以函数g(x)在⎝⎛⎭⎫0,12lna2内单调递减,在⎝⎛⎭⎫12lna2,1内单调递增,所以g(x)min=g12lna2=a-a lna2+b=2a-a lna2-e2+1.令h(x)=2x-x lnx2-e2+1=2x-x ln x+x ln 2-e2+1(2<x<2e2),则h′(x)=-ln x+1+ln 2,当x∈(2,2e)时,h′(x)>0,h(x)为增函数,当x∈(2e,2e2)时,h′(x)<0,h(x)为减函数,所以h(x)max=h(2e)=2e-e2+1<0,即g(x)min<0恒成立,所以函数g(x)在(0,1)内有两个零点,则⎩⎪⎨⎪⎧g(0)=2+a-e2+1>0,g(1)=2e2-2a+a-e2+1>0,解得e2-3<a<e2+1. 综上所述,a的取值范围为(e2-3,e2+1).10.(2017·太原一模)设[x]表示不小于实数x的最小整数,如[2.6]=3,[-3.5]=-3.已知函数f(x)=([x])2-2[x],若函数F(x)=f(x)-k(x-2)+2在(-1,4]上有2个零点,则实数k的取值范围是() A.-52,-1∪[2,5) B.-43,-1∪[5,10) C.-1,-23∪[5,10) D.-43,-1∪[5,10) 解析:选C由题意知,f(x)=([x])2-2[x]=⎩⎪⎨⎪⎧0,x∈(-1,0]∪(1,2],-1,x∈(0,1],3,x∈(2,3],8,x∈(3,4].令F(x)=0,得f(x)=k(x-2)-2,作出函数y=f(x)和y=k(x-2)-2的图象如图所示.若函数F (x )=f (x )-k (x -2)+2在(-1,4]上有2个零点,则函数y =f (x )和y =k (x -2)-2的图象在(-1,4]上有2个交点,结合图象可得,k P A =5,k PB =10,k PO =-1,k PC =-23,所以实数k 的取值范围是-1,-23∪[5,10).11.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <0,⎪⎪⎪⎪12x 2-2x +1,x ≥0.方程[f (x )]2-af (x )+b =0(b ≠0)有6个不同的实数解,则3a +b 的取值范围是( )A .[6,11]B .[3,11]C .(6,11)D .(3,11) 解析:选D 作出函数f (x )的图象如图所示,对于方程[f (x )]2-af (x )+b =0,可令f (x )=t ,那么方程根的个数就是f (x )=t 1与f (x )=t 2的根的个数之和,结合图象可知,要使总共有6个根,需要一个方程有4个根,另一个方程有2个根,从而可知关于t 的方程t 2-at +b =0有2个根,分别位于区间(0,1)与(1,2)内,由根的分布得出约束条件⎩⎪⎨⎪⎧b >0,1-a +b <0,4-2a +b >0,画出可行域如图所示,目标函数z =3a +b 经过⎩⎪⎨⎪⎧1-a +b =0,4-2a +b =0的交点A (3,2)时取得最大值11,经过B (1,0)时取得最小值3.故3a +b 的取值范围为(3,11).12.(2018·广东五校协作体第一次诊断)已知e 为自然对数的底数,若对任意的x 1∈[0,1],总存在唯一的x 2∈[-1,1],使得x 1+x 22e x 2-a =0成立,则实数a 的取值范围是( ) A .[1,e] B .(1,e] C.⎝⎛⎦⎤1+1e ,e D.⎣⎡⎦⎤1+1e ,e 解析:选C 令f (x 1)=a -x 1,则f (x 1)在x 1∈[0,1]上单调递减,且f (0)=a ,f (1)=a -1.令g (x 2)=x 22e x 2,则g ′(x 2)=2x 2e x 2+x 22e x 2=x 2e x 2(x 2+2),且g (0)=0,g (-1)=1e ,g (1)=e.若对任意的x 1∈[0,1],总存在唯一的x 2∈[-1,1],使得x 1+x 22e x 2-a =0成立,即f (x 1)=g (x 2),则f (x 1)=a -x 1的最大值不能大于g (x 2)的最大值,即f (0)=a ≤e ,因为g (x 2)在[-1,0]上单调递减,在(0,1]上单调递增,所以当g (x 2)∈⎝⎛⎦⎤0,1e 时,有两个x 2使得f (x 1)=g (x 2).若存在唯一的x 2∈[-1,1],使得f (x 1)=g (x 2),则f (x 1)的最小值要比1e 大,所以f (1)=a -1>1e ,所以a >1+1e ,故实数a 的取值范围是⎝⎛⎦⎤1+1e ,e . 二、填空题13.若对任意的实数a ,函数f (x )=(x -1)ln x -ax +a +b 有两个不同的零点,则实数b 的取值范围是________.答案:(-∞,0)解析:由f (x )=(x -1)ln x -ax +a +b =0,得(x -1)ln x =a (x -1)-b . 设g (x )=(x -1)ln x ,h (x )=a (x -1)-b ,则g ′(x )=ln x -1x +1,因为g ′(x )=ln x -1x +1在(0,+∞)上是增函数,且g ′(1)=0,所以当0<x <1时,g ′(x )<0,当x >1时,g ′(x )>0,所以g (x )在区间(0,1)上是减函数,在区间(1,+∞)上是增函数,又g (1)=0,所以函数g (x )的大致图象如图所示.易知h (x )=a (x -1)-b 的图象是恒过点(1,-b )的直线,当-b >0,即b <0时,易知对任意的实数a ,直线h (x )=a (x -1)-b 与函数g (x )的图象始终有两个不同的交点,即函数f (x )=(x -1)ln x -ax +a +b 有两个不同的零点;当b =0时,若a =0,则h (x )=0,其图象与函数g (x )的图象只有一个交点,不满足;当-b<0,即b >0时,由图易知,不满足对任意的实数a ,直线h (x )=a (x -1)-b 与函数g (x )的图象始终有两个不同的交点.综上可知,b <0.14.已知函数f (x )=⎩⎪⎨⎪⎧-x x +1,-1<x ≤0,x ,0<x ≤1,与g (x )=a (x +1)的图象在(-1,1]上有2个交点,若方程x -1x=5a 的解为正整数,则满足条件的实数a 的个数为________. 答案:1解析:在同一坐标系中作出函数f (x )与g (x )的图象如图所示,结合图象可知,实数a 的取值范围是⎝⎛⎦⎤0,12.由x -1x =5a ,可得x 2-5ax -1=0,设h (x )=x 2-5ax -1,当x =1时,由h (1)=1-5a -1=0,可得a =0,不满足题意;当x =2时,由h (2)=4-10a -1=0,可得a =310,满足题意;当x =3时,由h (3)=9-15a -1=0,可得a =815,不满足题意.又函数y =x -1x 在(0,+∞)上单调递增,故满足条件的实数a 的个数为1.15.若函数f (x )=x 2+2x-a ln x (a >0)有唯一的零点x 0,且m <x 0<n (m ,n 为相邻整数),则m +n =________.答案:5解析:令y 1=x 2+2x ,y 2=a ln x (a >0),则y 1′=2x -2x 2,y 2′=ax(a >0).∵函数f (x )=x 2+2x -a ln x (a >0)有唯一的零点x 0,∴函数y 1=x 2+2x ,y 2=a ln x 的图象有公切点(x 0,y 0),则⎩⎨⎧2x 0-2x 2=ax 0,x 20+2x 0=a ln x⇒x 20+2x 0-2⎝⎛⎭⎫x 20-1x 0ln x 0=0. 构造函数g (x )=x 2+2x-2⎝⎛⎭⎫x 2-1x ln x (x >0),则g (1)=3,g (2)=4+1-2×⎝⎛⎭⎫4-12ln 2=5-7ln 2,欲比较5与7ln 2的大小,可比较e 5与27的大小, ∵e 5>27,∴g (2)>0,又g (e)=e 2+2e -2⎝⎛⎭⎫e 2-1e =-e 2+4e <0,∴x 0∈(2,e),∴m =2,n =3, ∴m +n =5.16.已知函数f (x )=x 2-x ln x -k (x +2)+2在12,+∞上有两个零点,则实数k 的取值范围为________.答案:⎝⎛⎦⎤1,910+ln 25解析:f (x )=x 2-x ln x -k (x +2)+2在⎣⎡⎭⎫12,+∞上有两个零点,即关于x 的方程x 2-x ln x +2=k (x +2)在⎣⎡⎭⎫12,+∞上有两个不相等的实数根.令g (x )=x 2-x ln x +2,所以当x ∈⎣⎡⎭⎫12,+∞时,直线y =k (x +2)与函数g (x )=x 2-x ln x +2的图象有两个不同的交点.设直线y =k 0(x +2)与函数g (x )=x 2-x ln x +2,x ∈⎣⎡⎭⎫12,+∞的图象相切于点(x 0,y 0),g ′(x )=2x -ln x -1,则有⎩⎪⎨⎪⎧k 0=2x 0-ln x 0-1,k 0(x 0+2)=x 20-x 0ln x 0+2,由此解得x 0=1,k 0=1.令h (x )=g ′(x )=2x -ln x -1,则h ′(x )=2-1x ,且x ≥12,所以h ′(x )≥0,故h (x )在⎣⎡⎭⎫12,+∞上单调递增,h (x )≥h ⎝⎛⎭⎫12=ln 2>0,所以g (x )在⎣⎡⎭⎫12,+∞上单调递增,g ⎝⎛⎭⎫12=94+12ln 2,作出y =g (x )的大致图象,如图所示,当直线y =k (x +2)经过点⎝⎛⎭⎫12,94+12ln 2时,k =910+ln 25.又当直线y =k (x +2)与g (x )的图象相切时,k =1.结合图象可知,k 的取值范围是⎝⎛⎦⎤1,910+ln 25.。

相关文档
最新文档