第二章 随机变量及其概率分布
概率论与数理统计教案第2章 随机变量及其分布
概率论与数理统计教学教案 第2章 随机变量及其分布授课序号01教 学 基 本 内 容一.随机变量1. 随机变量:设E 是随机试验,样本空间为S ,如果对随机试验的每一个结果ω,都有一个实数()X ω与之对应,那么把这个定义在S 上的单值实值函数()X X ω=称为随机变量.随机变量一般用大写字母,,X Y Z ,…表示.2.随机变量的两种常见类型:离散型随机变量和连续型随机变量. 二.分布函数1. 分布函数:设X 是一个随机变量,x 是任意实数,称函数{}(),F x P X x x =≤-∞<<∞为随机变量X 的分布函数,显然,()F x 是一个定义在实数域R 上,取值于[0,1]的函数.2.几何意义:在数轴上,将X 看成随机点的坐标,则分布函数()F x 表示随机点X 落在阴影部分(即X x ≤)内的概率,如下图.3.对任意的实数,,()a b c a b <,都有:授课序号02(,)B n p ,其中在二项分(1,)B p X 服从(0-1)分布是二项分布的特例,简记0,1,2,...,其中λ为大于()P λ.在一次试验中出现的概率为(12,kk nnC p p -.)说明:泊松定理表明,泊松分布为二项分布的极限分布,即在试验次数很大,而n np 不太大时,()G p.)说明:几何分布描述的是试验首次成功的次数次才取得第一次成功,前)超几何分布:若随机变量X的分布律为H n N(,,件不合格,从产品中不放回)超几何分布与二项分布之间的区别:超几何分布是不放回抽取,二项分布是放回抽取,因此,二项两个分布之间也有联系,当总体的容量授课序号03(,)U a b .内的任一个子区间()E λ.1,0,xe x λ-⎧->⎪⎨⎪⎩其它.)定理:(指数分布的无记忆性)设随机变量()E λ,则对于任意的正数{}{P X s t t P X >+>=为连续型随机变量,若概率密度为2(,N μσ处取到最大值,并且对于同样长度(iii )当参数μ固定时,σ的值越大,()f x 的图形就越平缓;σ的值越小,()f x 的图形就越尖狭,由此可见参数σ的变化能改变图形的形状,称σ为形状参数.(iv )当参数σ固定时,随着μ值的变化,()f x 图形的形状不改变,位置发生左右平移,由此可见参数μ的变化能改变图形的位置,称μ为位置参数.(4)标准正态分布(0,1)XN(i )概率密度221(),2x x e x ϕπ-=-∞<<∞(ii )分布函数221(),.2t xx e dt x π--∞Φ=-∞<<∞⎰(iii )根据概率密度()x ϕ的对称性,有()1().x x Φ-=-Φ (5)定理:(标准化定理)若2(,)XN μσ,则(0,1).X Z N μσ-=(6)标准化定理的应用:设,,()x a b a b <为任意实数,则(){}{}{}(),X x x x F x P X x P P Z μμμμσσσσ----=≤=≤=≤=Φ{}{}()().a X b b a P a X b P μμμμμσσσσσ-----<≤=<≤=Φ-Φ6.“3σ”法则:设2(,)XN μσ,则{33}(3)(3)2(3)10.997,P X μσμσ-<<+=Φ-Φ-=Φ-≈即正态分布2(,)N μσ的随机变量以99.7%的概率落在以μ为中心、3σ为半径的区间内,落在区间以外的概率非常小,可以忽略不计,这就是“3σ”法则. 三.例题讲解例1.车流中的“时间间隔”是指一辆车通过一个固定地点与下一辆车开始通过该点之间的时间长度.设X 表示在大流量期间,高速公路上相邻两辆车的时间间隔,X 的概率密度描述了高速公路上的交通流量规律,其表达式为:0.15(0.5)0.15,0.5,()0,x e x f x --⎧≥⎪=⎨⎪⎩其它.概率密度()f x 的图形如下图,求时间间隔不大于5秒的概率.例2.设随机变量X 表示桥梁的动力荷载的大小(单位:N ),其概率密度为13,02;()880,x x f x ⎧+≤≤⎪=⎨⎪⎩其它.求:(1)分布函数()F x ;(2)概率{1 1.5}P X ≤≤及{1}P X >.例3.某食品厂生产一种产品,规定其重量的误差不能超过3克,即随机误差X 服从(-3,3)上的均匀分布.现任取出一件产品进行称重,求误差在-1~2之间的概率.例4.设随机变量X 在(1,4)上服从均匀分布,对X 进行三次独立的观察,求至少有两次观察值大于2的概率.例5.设随机变量X 表示某餐馆从开门营业起到第一个顾客到达的等待时间(单位:min ),则X 服从指数分布,其概率密度为0.40.4,0,()0,xex f x -⎧>⎪=⎨⎪⎩其它.求等待至多5分钟的概率以及等待3至4分钟的概率.例6.汽车驾驶员在减速时,对信号灯做出反应所需的时间对于帮助避免追尾碰撞至关重要.有研究表明,驾驶员在行车过程中对信号灯发出制动信号的反应时间服从正态分布,其中μ=1.25秒,σ=0.46秒.求驾驶员的制动反应时间在1秒至1.75秒之间的概率?如果2秒是一个非常长的反应时间,那么实际的制动反应时间超过这个值的概率是多少?例7.设某公司制造绳索的抗断强度服从正态分布,其中μ=300千克,σ=24千克.求常数a ,使抗断强度以不小于95%的概率大于a .授课序号0450。
概率论课件第二章
例1. 抛硬币试验中S {H,T}, 样本点H与T不是数量。
例2. 测试灯泡寿命试验, S={e}={t|t≥0},样本点本身 是数量。
定义 : 设随机试验E的样本空间是S,若 X : S R为单值实范数,则称X为随机变量 (random variable, 简记为r.v.) 。
2. 特例: (1,) 是参数为的指数分布. (=1) 3. 伽玛函数的性质: (i) (+1)= ();
1 (iii)( ) . 2
(ii) 对于正整数n, (n+1)=n!;
§5. 随机变量的函数的分布
一、 X为离散型r.v. 例1.设X具有以下的分布律,求Y=(X-1)2分布律: X -1 0 1 2 pk 0.2 0.3 0.1 0.4
(二) 贝努利试验
(二项分布)
定 义 : 设 试 验E只 有 两 个 可 能 结 果 A与 A , 且 P( A ) p ( 0 p 1), 将 试 验E独 立 重 复 地 进 行 n次 , 这 样 的 试 验 称 为 贝 努 利 试 验.
设X是n重贝努利试验中事件A发生的次数, 则X 是一个随机变量, 于是
§4. 连续型随机变量及其概率密度
F(x) , 存在非负函 1.定义 : 对于r.v.X的分布函数 数f(x) , 使对于任意的实数 x, 有
则称X为连续型r.v.f(x)称为X概率密度函数, 简称概率密度. 连续型r.v.的分布函数是连续函数.
F(x ) f(t)dt
x
2.概率密度 f(x)的性质:
25
标准正态分布的上分位点:
设X ~ N(0,1), 若z 满足条件
概率论与数理统计图文课件最新版-第2章-随机变量及其分布
函数 f ( x),使得对于任意实数 x 有:
x
F ( x) f (t)dt ( P( X x))
则称 X 为连续型变量,f ( x)为 X 的概率密度函数 注 ▲ 连续型随机变量与离散型随机变量的区别
离散型: P( X xk ) 0 连续型:P( X xk ) 0
机
多,而且还不能一 一列
变 连续型随机变量 量
举,而是充满一个区间
例如,“电视机的寿命”,实际中
常 遇到的“测量误差”等等.
概率统计
第二章知识结构图
随机变量
离散型随 机变量
连续型随 机变量
分布律
分布 函数
函数的 分布
概率 密度
分布 函数
函数的 分布
定义 常用分布
概率统计
定义 常用分布
第四节 连续型随机变量及其概率密度
0 x 0
则称 X 为服从参数 的指数分布.
概率统计
二 . 连续型随机变量的分布函数
定义: 若定义在 (, )上的可积函数 f ( x)
满足: (1). f ( x) 0
(2). f ( x)dx 1
f (x)确定了 分布函数F(x),
则称 F ( x)
x
f ( x)dx
f (x)是F(x)的 导函数, F(x)是f (x)的一
(2) 某段时间内候车室的旅客数目为 X , 则它也是一个随机变量,它可以取 0 及一切 自然数。X 是定义在样本空间,则:
S e {人数 人数 0}
X X (e)的值域RX [0, )
概率统计
二. 随机变量的分类 离散型随机变量
第二章随机变量及其分布
第二章 随机变量及其概率分布§2.1 一维离散型随机变量一、基本概念★知识点精讲1.一维离散型随机变量的分布及分布律(1)离散型随机变量:若随机变量X 只取有限多个或可列无限多个值,则称X 为离散型随机变量。
(2)分布律: ,2,1,}{===k p x X P k k或(3)性质:① ,2,1,0=≥k p k ②∑∞==11k k p2.常用的离散型分布 (1)0-1分布),1(p B分布律 :X 0 1 P p -1 p 其中 p 为事件A 出现的概率,0<p<1. (2)二项分布),(p n B在n 重伯努利试验中,每次试验事件A 出现的概率为p ,X 表示在n 次试验中事件A 出现的次数,X 的分布律为:n k p p C k X P k n k kn,,2,1,0,)1(}{ =-==- 当n 充足大时,随机变量X 也服从np =λ的泊松分布。
(3)泊松分布)(λP 分布律为: ,2,1,0,!}{===-k e k k X P kλλ3.离散型随机变量函数的分布设X 为离散型随机变量,其概率分布为则)(X f Y =的概率分布为:(1)当),2,1)(( ==i x f y i i 的各值i y 互不相等时,Y 的概率分布为:(2)当),2,1)(( ==i x f y i i 的各值i y 不是互不相等时,应把相等的值分别合并,并相对应地将其概率相加。
例如j i y y =,则Y 的概率分布为:★ 题型归纳及解题技巧例1.设随机变量X则k=( ) A.0.1 B.0.2 C.0.3D.0.4 解:选D。
因为∑==11k k p ,故11.03.02.0=+++k ,得4.0=k 。
例2.设离散型随机变量X 的分布律为 (关于离散型随机变量概率求法)则P{-1<X ≤1}=( )A .0.3B .0.4C .0.6D .0.7解:选AP{-1<X ≤1}=P{X=1}=0.3例3.已知随机变量X 的分布律为则A.0.2B.0.7C.0.55D.0.8 解:选B。
概率论与数理统计随机变量及其分布
问题三 随机变量的一些例子
在随机试验中,试验结果很多本身就由数量表示 每天进入教室的人数X 某个时间段吃饭排队的人数X 电灯泡使用的寿命T 而在另一些随机试验中,比如检查一个产品是否合格,此时样本空间
S={合格品,不合格品},若用1对应合格品,-1对应不合格品,这 样就都有唯一确定的实数与之对应。
P { 而a 且 Xx i所 成b } 的 任P 何{ a 事 x i 件 b { 的X 概 率x 都i} 能} 够a 求 x i出 b 来p i,
2.2 离散型随机变量及其概率
分P {X 布 I} P {Xxi} p i
xi I
xi I
2.2 离散型随机变量及其概率分布
3 常用离散分布 两点分布(0-1分布):若一个随机变量X只有两个可能
1.随机变量的引入
从上面的例子可以看出随机试验的结果都可用一个实数 来表示,这个数随着试验的结果不同而变化,它是样本
点的函数,这个函数就是我们要引入的随机变量。
2 随机变量的定义
随机变量:设随机试验的样本空间为S,称定义在样本空间S 上的实值函数X=X( )为随机变量。
随机变量的表示: 常用大写字母X,Y,Z或希腊字母
时,
b(k,n, pn)=
lim
讲课本n 例6,例7
l i m k
n
Cnkpnk(1pn)nk
e k!
2.3 随机变量的分布函数
随 机 变( 量 的 分布x函数)
定义1 设X是一个随机变量,称F(x)=P{X≤x} 为X的分布函数。有时记作X~F(x) 这个概率具有什么特点呢? 具有累积性 这个概率与x有关,不同的x此累积概率的值也不同。 注:①X是数轴上随机点的坐标,则分布函数F(x)的值就表示X落在区间
第二章随机变量及其概率分布(概率论)
当 x ≥ 1 时,F ( x) = P( X ≤ x) =P( X = 0) + P( X = 1) =1 ⎧0 x < 0
所以 F ( x) = ⎪⎨0.3 0 ≤ x < 1. ⎪⎩1 1 ≤ x
⎧0 x < 0 分布函数为 F ( x) = ⎪⎨0.3 0 ≤ x < 1
⎪⎩1 1 ≤ x
分布函数图形如下
F(x) 1 0.3
x 01
3
例 设X的概率分布律如下,求X的分布函数. X012 P 0.4 0.35 0.25
解
⎧0
x<0
F
(
x)
=
⎪⎪ ⎨
⎪
0.4 0.75
0≤ x<1 1≤ x<2
⎪⎩ 1
x≥2
由此可见
(1)离散型随机变量的分布函数是分段函数,分 段区间是由X的取值点划分成的左闭右开区间; (2)函数值从0到1逐段递增,图形上表现为阶梯 形跳跃递增; (3)函数值跳跃高度是X取值区间中新增加点的 对应概率值.
z 泊松在数学方面贡献很多。最突出的是1837 年在提出泊松分布。
z 除泊松分布外,还有许多数学名词是以他的 名字命名的,如泊松积分、泊松求和公式、 泊松方程、泊松定理。
当一个随机事件,以固定的平均瞬时速率 λ随机独立地出现时,那么这个事件在单 位时间(面积或体积)内出现的次数或个数 就近似地服从泊松分布。
解: 依题意, X可取值 0, 1, 2, 3.
设 Ai ={第i个路口遇红灯}, i=1,2,3
路口3
路口2
P(X=0)= P(A1)=1/2,
路口1
X=该汽车首次停下时通过的路口的个数. 设 Ai={第i个路口遇红灯}, i=1,2,3
概率论课件:第二章随机变量及其概率分布
π 3π ⎞ ⎛ π 0 ⎟ 22.设随机变量 X 的分布律为 ⎜ 2 2 ⎟ ,求 Y 的分布律: ⎜ ⎝ 0.3 0.2 0.4 0.1 ⎠
(1) Y = ( 2 X − π ) ;
2
(2) Y = cos( 2 X − π ). ⎧2 x , 0 < x < 1 f ( x) = ⎨ ⎩0 , 其它
它意味着第 i 次( i ≥ k )成功,且 i − 1 次试验中成功 k − 1 次,设这两个事件分别为A1 ,A2,
则A = A 1 A 2 , 且P(A) = P(A 1 A 2 ) = P(A 1 )P(A 2 )(A 1与A 2 独立 ), 而 P(A 1 ) = p,
1 k −1 1 k −1 i − k P( A2 ) = Cik−− ⋅ q i −1−( k −1) = Cik−− q . 1 p 1 ⋅ p
, ( 2,6),
, (6,1),
例如(6,1) , (6,6)} .这里,
8
5 36
9
4 36
10
3 36
11
2 36
12
1 36
PK
1 36
2 36
3 36
4 36
5 36
6 36
概率 P{X = k }, k = 0,1,2,3.
2、分析: 显然 X 服从离散型概率分布,而且 X 的可能取值为 0,1,2,3.问题归结为求
∴ X 的分布律为:
P{X = 0} = P ( A1 ) = 1 / 2; P{X = 1} = P ( A1 A2 ) = 1 / 2 2 ; P{X = 2} = P ( A1 A2 A3 ) = 1 / 2 3 ;
X Pi
概率统计 第二章 随机变量及其分布
引入适当的随机变量描述下列事件: 例1:引入适当的随机变量描述下列事件: 个球随机地放入三个格子中, ①将3个球随机地放入三个格子中,事件 A={有 个空格} B={有 个空格} A={有1个空格},B={有2个空格}, C={全有球 全有球} C={全有球}。 进行5次试验, D={试验成功一次 试验成功一次} ②进行5次试验,事件 D={试验成功一次}, F={试验至少成功一次 试验至少成功一次} G={至多成功 至多成功3 F={试验至少成功一次},G={至多成功3次}
例2
xi ∈( a ,b )
∑
P( X = xi )
设随机变量X的分布律为 设随机变量X
0 1 2 3 4 5 6 0.1 0.15 0.2 0.3 0.12 0.1 0.03
试求: 试求:
P( X ≤ 4), P (2 ≤ X ≤ 5), P ( X ≠ 3)
0.72 0.7
F ( x) = P{ X ≤ x} =
k : xk ≤ x
∑p
k
离散型随机变量的分布函数是阶梯函数, 离散型随机变量的分布函数是阶梯函数 分布函数的跳跃点对应离散型随机变量的 可能取值点,跳跃高度对应随机变量取对应 可能取值点 跳跃高度对应随机变量取对应 值的概率;反之 反之,如果某随机变量的分布函数 值的概率 反之 如果某随机变量的分布函数 是阶梯函数,则该随机变量必为离散型 则该随机变量必为离散型. 是阶梯函数 则该随机变量必为离散型
X
x
易知,对任意实数a, 易知,对任意实数 b (a<b), P {a<X≤b}=P{X≤b}-P{X≤a}= F(b)-F(a) ≤ = ≤ - ≤ = -
P( X > a) = 1 − F (a)
概率论与数理统计第二章随机变量及其分布
设随机变量X服从参数为 分布,即 例2.3.1.设随机变量 服从参数为 的0-1分布 即: 设随机变量 服从参数为0.3的 分布 X P 0 1 ,求X的分布函数 求 的分布函数 的分布函数.
i
0.3 0.7
解:(1) 当x<0时,F(x)=P{X≤x}= 时
∑P{X = x }=0 (2)当0≤x<1时,F(x)=P{X≤x}= ∑P{X = x } =P{x=0}=0.3 当 时 (3)当1≤x时,F(x)=P{X≤x}= ∑P{X = x } 当 时
xi ≤x xi ≤x i xi ≤x i
=P{X=0}+P{X=1}=1 F(x) 分布函数图形如下 1 0.3 0 1 x
3.离散型随机变量 的分布函数的性质 离散型随机变量X的分布函数的性质 离散型随机变量 (1)分布函数是分段函数 分段区间是由 的取值点划分成的 分布函数是分段函数,分段区间是由 分布函数是分段函数 分段区间是由X的取值点划分成的 左闭右开区间; 左闭右开区间 (2)函数值从 到1逐段递增 图形上表现为阶梯形跳跃递增 函数值从0到 逐段递增 图形上表现为阶梯形跳跃递增; 逐段递增,图形上表现为阶梯形跳跃递增 函数值从 (3)函数值跳跃高度是 取值区间中新增加点的对应概率值 函数值跳跃高度是x取值区间中新增加点的对应概率值 函数值跳跃高度是 取值区间中新增加点的对应概率值; F(x) (4)分布函数是右连续的 分布函数是右连续的; 分布函数是右连续的 1 (5) P{X=xi}=F(xi)-F(xi-0) 0.3
记为 X~B(n,p)
m P X = m) = Cn pm(1− p)n−m (
m=0,1,2,...,n
随机变量X所服从的分布称为二项分布,n为实验次数 注:(1)随机变量 所服从的分布称为二项分布 为实验次数 随机变量 所服从的分布称为二项分布 为实验次数; (2)该实验模型称为 次独立重复实验模型或 重Bernoulli实验模型 该实验模型称为n次独立重复实验模型或 实验模型; 该实验模型称为 次独立重复实验模型或n重 实验模型 (3)若A和Ac是n重Bernoulli实验的两个对立结果 成功”可以指二 若 和 实验的两个对立结果,“成功 重 实验的两个对立结果 成功” 者中任意一个,p是 成功”的概率 者中任意一个 是“成功”的概率. 例如:一批产品的合格率为 有放回地抽取 有放回地抽取4次 每次一件 每次一件, 例如 一批产品的合格率为0.8,有放回地抽取 次,每次一件 取得合格 一批产品的合格率为 品件数X,以及取得不合格品件数 服从分布为二项分布 品件数 以及取得不合格品件数Y服从分布为二项分布 以及取得不合格品件数 服从分布为二项分布, X对应的实验次数为 对应的实验次数为n=4, “成功”即取得合格品的概率为 成功” 对应的实验次数为 成功 即取得合格品的概率为p=0.8,
概率论与数理统计第2章随机变量及其分布
1 4
)0
(
3 4
)10
C110
(
1 4
)(
3 4
)9
0.756.
(2)因为
P{X
6}
C160
(
1)6 4
(
3 4
)4
0.016
,
即单靠猜测答对 6 道题的可能性是 0.016,概率很小,所
以由实际推断原理可推测,此学生是有答题能力的.
二项分布 b(n, p) 和 (0 1) 分布 b(1, p ) 还有一层密切关
P{X 4} P(A1 A2 ) P(A1)P(A2 ) 0.48 ,
P{X 6} P(A1A2 ) P(A1)P(A2 ) 0.08 , P{X 10} P(A1A2 ) P(A1)P(A2 ) 0.32 , 即 X 的分布律为
X 0 4 6 10
P 0.12 0.48 0.08 0.32
点 e, X 都有一个数与之对应. X 是定义在样本空间 S 上的
一个实值单值函数,它的定义域是样本空间 S ,值域是实数
集合 {0,1,2},使用函数记号将 X写成
0, e TT , X=X (e) 1, e HT 或TH ,
2, e HH.
▪
例2.2 测试灯泡的寿命.
▪
样本空间是 S {t | t 0}.每一个灯泡的实际使用寿命可
(2)若一人答对 6 道题,则推测他是猜对的还是有答 题能力.
解 设 X 表示该学生靠猜测答对的题数,则
X
~
b(10,
1) 4
.
(1) X 的分布律为
P{X
k}
C1k0
(
1)k 4
(
3 4
概率论 第二章 随机变量与概率分布
解 (1)X的分布函数为
0,
x 1
F
(
x)
1313,
1 2
5 6
,
1 x 1 1 x 2
1
1
1
1,
2 x
3 2 6
解 (2)P{0 X 2} F (2) F (0) 1 1 2 ,
33 P{0 X 2} P{0 X 2} P{X 2} 21 1.
a-b ab
2
0 1
x
2
解得:a=1/2 b=1/
X的密度为: f(x) = F(x) =
1 (1+ x2 )
(-<x<)
P{X2>1}=1-P{-1X 1}
=1-{F(1)-F(-1)}=1/ 2
例6. 设随机变量X的密度函数为:
ke-3x x>0
事件:{取到2白、1黑}={X=2}={Y=1}
4. 随机变量的分类 通常分为两类:
所有取值可以逐 个一一列举
离散型随机变量
随 机 变 量
全部可能取值不仅
如“取到次品的个数”,无穷多,而且还不能
一一列举,而是充满
“收到的呼叫数”等. 满一个或几个区间.
连续型随机变量 非离散型随机变量
非离散型非连续型
§4. 连续型随机变量的概率密度 1. 定义:对于随机变量X的分布函数F(x), 如果存在非负函数f(x),使对于任意实数x有:
F( x) x f (t)dt
则称X为连续型随机变量;称f(x)为X的概率 密度函数。简称概率密度。
概率密度的性质:
(1). f(x)0;
(2).
f
(
x)dx
概率论与数理统计-第二章-随机变量及其分布函数ppt课件
表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]
②
pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32
随机变量及其概率分布
考试内容
随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布
连续型随机变量的概率密度常见随机变量的概率分布随机变量函数的概率分布
考试要求
1.理解随机变量及其概率分市的概念.理解分布函数F(x)=P{X≤x}(-∞<x<+∞)的概念及性质,并会计算与随机变量相联系的事件的概率。
理解各种分布的背景和主要特征;
注意随机变量和随机事件的转化〔等价性〕。
7、函数分布
离散型:已知 的分布列为
,
的分布列( 互不相等)如下:
,
若有某些 相等,则应将对应的 相加作为 的概率。
例2.23:已知随机变量 的分布列为
,
其中 。求 的分布列。
解:
连续型:先利用X的概率密度 写出Y的分布函数, ,再利用变上下限积分的求导公式求出 。
具有如下性质:
1° 的图形是关于 对称的;
2°当 时, 为最大值;
若 ,则 的分布函数为
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为
。
是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)= 。
标准化公式及其应用:〔正态分布的概率计算一定要化为标准正态分布〕
一、主要内容讲解
1、分布函数
设 为随机变量, 是任意实数,则函数
称为随机变量X的分布函数,本质上是一个累积函数。
可以得到X落入区间 的概率。分布函数 表示随机变量落入区间(–∞,x]内的概率。
分布函数具有如下性质:
1° ;
2° 是单调不减的函数,即 时,有 ;
3° , ;
概率论第二章第四节
分布函数
密度函数
则称X为连续性随机变量,其中函数f (x)称为X的
概率密度函数, 简称概率密度.
连续型随机变量的分布函数一定是连续函数.
3
x
2. 密度函数的性质
用这两条性质判断 F( x) f (t)dt
是否为连续型随机
1
f (x) 0 ;
变量的密度函数
(非负性)
y
f (x)
2 f ( x)dx 1 ; (归一性)
0
3
2
1 2
kx2
3 0
2 x
1 4
x
2
4
3
9 2
k
1 4
,
令 9k 1 1 k 1.
24
6
9
(2)
x
求X的分布函数,F(x) f
0,
x0,
x xdx , 0 x 3
(t )dt
,
f
(
x)
206x,,2x
,
0 x3, 3 x4,
其他.
F ( x)
06
3xdx
x
x
(2 )d x ,
0
0,
o
x 0, 1 ex ,
x 0, 0,
x
x 0,
x 0.
18
(3) 指数分布的背景 电子元件的寿命; 生物的寿命; 电话的通话时间; ……
“寿命”服从指数分 布
指数分布广泛 应用于可靠性 理论和排队论
19
指数分布的重要性质 :“无记忆性”.
对于任意s, t 0 , 有 P{X s t X s} P{(X s t) ( X s)}
证明 Z X 的分布函数为
概率论第二章
将 p = 0.5 代入,得
1 0 X ~ 0 .5 0.25 2 0.125 3 0 .0625 0 .0625 4
下面,重点介绍三种离散型随机变量的概率分 布。 (一)0-1分布 分布 若X 的分布律为 k 1− k P { X = k } = p (1 − p ) , k = 0 ,1 或者 0 1 X p pk 1− p 则称随机变量 X 服从参数为 的0-1分布 参数为p的 分布. 参数为 如果试验的结果只有两个:成功与失败,并且成 功的概率为p,则成功的次数 X 服从参数为p的0-1 分布。
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
= 1 − (0.99) − 20(0.01)(0.99) = 0.0169 设A为“四个人中至少有一个人来不及维修”这 一事件,则有
20 19
P( A) ≥ P{ X ≥ 2} = 0.0169
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
= 1 − (0.98)
400
− 400(0.02)(0.98)
399
直接计算上式比较麻烦,为此需要一个近似计算 公式。我们先引入一个重要的分布。
(三) 泊松分布 三 泊松分布(Poisson Distribution) 如果随机变量 X 的分布律为:
例6 社会上定期发行某种奖券,中奖率为p.某人 每次购买一张奖券,如果没有中奖则下次继续购买1 张,直至中奖为止.求该人购买次数的分布律. 解 设该人购买的次数为X ,则X的可能取值为
1, 2 , L .
{X = 1} 表示第一次购买就中奖,其概率为p.
概率论第二章
三。几种常用的离散型分布 (一)二项分布
B ( n, p )
在贝努里试验中,如果每次试验事件 发生的概率为 发生的概率为P, 在贝努里试验中,如果每次试验事件A发生的概率为 ,即
P ( A) = p,0 < p < 1, q = 1 − p
并设随机变量X表示在 次试验中事件 发生的次数 并设随机变量 表示在n次试验中事件 发生的次数, 表示在 次试验中事件A发生的次数 则称X服从二项分布,记作 则称 服从二项分布,记作X~ B ( n, 服从二项分布 其分布列为: p ) ,其分布列为: k k n−k 。 ) P{ X = k} = Cn p (1 − p) , k = 0,1,..., n (2。3) 特别, 特别,当n=1时,X~ B (1, 时
G ( p)
在贝努里试验中,如果每次试验事件 发生的概率为 发生的概率为P, 在贝努里试验中,如果每次试验事件A发生的概率为 ,即
P ( A) = p,0 < p < 1, q = 1 − p
并设随机变量X表示事件 首次发生的试验次数 则称X 并设随机变量 表示事件A首次发生的试验次数,则称 表示事件 首次发生的试验次数, 服从几何分布, 其分布列为: 服从几何分布, 几何分布 记作 X ~ G ( p ) ,其分布列为:
0 3 3 解:P ( X = 0) = C2 C3 / C5 = 1 / 10,
1 3 P( X = 1) = C2C32 / C5 = 6 / 10, 2 1 3 P( X = 2) = C2 C3 / C5 = 3 / 10,
通式为: 通式为:
2
k 3 3 P( X = k ) = C2 C3 − k / C5 , k = 0,1,2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 随机变量及其概率分布教学目的与要求1. 熟练掌握一维离散型随机变量及其分布的概念,会求一维离散型随机变量的分布列;2. 熟练掌握一维随机变量分布函数的概念与性质;3. 熟悉一维离散型随机变量的分布函数与分布列的关系; 3. 理解一维连续型随机变量分布函数与分布密度的概念及其关系;4. 熟记常见的几种分布的表达形式.6. 熟悉随机变量函数的分布函数与分布密度的计算公式. 教学重点 一维离散型、连续型随机变量及其分布 教学难点 随机变量函数的分布 教学方法 讲解法 教学时间安排第11-12学时 第一节 随机变量第四节 随机变量的分布函数第13-16学时 第二节 离散型随机变量 第三节 连续型随机变量 第17-18学时 第五节 随机变量函数的分布习题辅导教学内容第一节 随机变量一、随机变量在上一章所讲的有些随机试验的样本空间中基本事件是用数值描述的,这就提示我们,无论什么随机试验,如果用一个变量的不同取值来描述它的全部可能结果,样本空间的表达及其相应的概率就显得更明了、更简单.事实上,这种想法是可以的,为此,引入一个新概念.定义2.1 设E 维随机试验,()ωΩ=为其样本空间,若对任意的ω∈Ω,有唯一的实数与之对应,且对{},x R x ξ∀∈≤为事件,则称()ξω为随机变量.这样,事件可通过随机变量的取值来表示,随机变量,(),(),b a b ξξξ≤<≤L 等都表示为事件,其中,a b 表示任意实数.即用随机变量的各种取值状态和取值范围来表示随机事件.二、分布函数的定义与性质定义2.2 定义在样本空间Ω上,取值于实数域的函数()ξω,称为是样本空间Ω上的(实值)随机变量,并称 ()(()),(,)F x P x x ξω=≤∈-∞∞是随机变量()ξω的概率分布函数.简称为分布函数. 分布函数的性质:(1)单调性 若12,x x <则12()()F x F x ≤; (2)()lim ()0x F F x →-∞-∞==()lim ()1x F F x →+∞+∞==(3)右连续性 (0)()F x F x +=反过来,任一满足这三个性质的函数,一定可以作为某个随机变量的分布函数.因此,满足这三个性质的函数通常都称为分布函数. 由分布函数还可以下列事件的概率:{()}1(){()}(0){()}1(0){()}()(0)P x F x P x F x p x F x P x F x F x ξωξωξωξω>=-<=-≥=--==--由此可见,形如12121212{()},{()},{()},{()}x x x x x x x x ξωξωξωξω≤≤<<<≤≤<这些事件以及它们经过有限次或可列次并、交、差以后的概率,都可以由()F x 算出来,所以()F x 全面地描述了随机变量()ξω的统计规律.第二节 离散型随机变量一、离散型随机变量的概念及其分布定义 2.2 定义在样本空间Ω上,取之于实数域R ,且只取有限个或可列个值的变量()ξξω=,称作是一维(实值)离散型随机变量,简称为离散型随机变量.称()i i P x p ξ==, 1,2,i =L为随机变量()ξω的概率分布列,也称为分布律,有时就简称为分布.离散型随机变量()ξω的分布列常常习惯地把它们写成表格的形式或矩阵形式:1212ii x x x Pp p p ξLLL L由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0,1,2,;i p i ≥=L (2)11ii p∞==∑反过来,任意一个具有以上两个性质的数列{}i p 都有资格作为某一个随机变量的分布列.二、一维离散型随机变量的分布函数如果()ξω是一个离散型随机变量,它们的分布列为1212ii x x x Pp p p ξLLL L那么()ξω的分布函数为 ()(())(())i ix xF x P x P x ξωξω<=<==∑因为事件()()i ia x ba b a ξξ≤≤≤≤==U 右端的事件是两两互不相容的,于是由概率的可列可加性有()()i i a x bP a b P a ξξ≤≤≤≤==∑由此可知,()ξω取各种值的概率都可以由它的分布列通过计算而得到,这件事实常常说成是:分布列全面地描述了离散型随机变量的统计规律.三、常见的离散型随机变量及其分布1、两点分布 设离散型随机变量ξ的的分布列为11P P ⎛⎫⎪-⎝⎭其中01P <<,则称ξ服从两点分布,亦称ξ服从(0—1)分布,简记为~(ξ0—1)分布. 显然,两点分布具有离散型随机变量的两个性质.两点分布可用来描述一切只有两种可能结果的随机试验.例如,掷一枚均匀硬币是出正面还是反面;产品质量是否合格;卫星的一次发射是否成功等试验. 2、二项分布 若离散型随机变量ξ的分布列为(),0,1,2,,k k n kn p k C p q k n ξ-===L其中01,1p q p <<=-,则称ξ服从参数为,n p 的二项分布,简称ξ服从二项分布,记为~(;,).b k n p ξ易验证 0()0,()1nk k n k n nk P k Cp q p q ξ-==≥=+=∑显然,当n =1时,二项分布就化为两点分布.可见两点分布是二项分布的特例.二项分布是离散型随机变量概率分布中重要的分布之一,它以n 重贝努里试验为背景,具有广泛的应用.例如,质量管理中,不合格产品数n p 控制图和不合格率p 控制图的绘制;一些抽样检验方案的制定,都是以二项分布为理论依据的.3、泊松(Poisson )分布 设离散型随机变量ξ的所有可能取值为0,1,2,L ,且取各个值的概率为 (),0,1,2,,!k e P k k k λλξ-===L其中0λ>为常数,则称ξ服从参数为λ的泊松分布,记为~(;)P k ξλ.易验证(1)()0,0,1,2,;(2)()1!kk P k k P k e k λξλξ∞-==>====∑∑L泊松分布是重要的离散型随机变量的概率分布之一,有广泛的应用.例如,来到某售票口买票的人数;进入商店的顾客数;布匹上的疵点数;纱锭上棉纱断头次数;放射性物质放射出的质点数;热电子的发射数;显微镜下在某观察范围内的微生物数;母鸡的产蛋量等,这些随机变量都可利用泊松分布.定理2.1 (泊松定理)在n 重贝努里试验中,事件A 在一次试验中出现的概率为n p (与试验总数n 有关)如果当n →∞时,(0n np λλ→>常数),则有 0lim (;,),0,1,2,!kn x b k n p e k k λδλ-→==L4、几何分布 设ξ是一个无穷次贝努里试验序列中事件A 首次发生时所需的试验次数,且可能的值为1,2,L ,而取各个值的概率为 11()(1),1,2..k k P k p p q p k ξ--==-==L其中01,1p q p <<=-,则称ξ服从几何分布.记为~(,)g k p ξ.易验证111(1)()0,1,2,(2)1k k k P k pq k pqξ-∞-===>==∑L上面讨论了几种常见的离散型随机变量的分布.两点分布、二项分布、泊松分布、几何分布都是以贝努里试验为背景.即在一次试验中事件A 要么出现,要么不出现.而试验的次数是不同的,两点分布的次数为1,二项分布的次数是n ,泊松分布是无穷,随机变量k ξ=的取值从0到试验的次数.由此可见,两点分布是二项分布的特例,泊松分布是二项分布的地推广.注意几何分布k ξ=的取值从1开始到无穷.在应用中,一定要分清该问题属于哪一种类型,准确灵活地应用. 作业 1, 2, 3, 4, 6, 8。
第三节 连续型随机变量及其分布一、连续型随机变量及其分布的概念与性质定义2.3 若()ξω是随机变量,()F x 是它的分布函数,如果存在函数()f x ,使对任意的x ,有 ()()xF x f t dt -∞=⎰(*)则称()ξω为连续型随机变量,相应的()F x 为连续型分布函数.同时称()f x 是()ξω的概率密度函数或简称为密度函数.由分布函数的性质即可验证任一连续型分布的密度函数()f x 具有下述性质:(1)()0(2)()1f x f x dx ∞-∞≥=⎰反过来,任意一个R 上的函数()f x ,如果具有以上两个性质,即可由(*)式定义一个分布函数()F x .由(*)式可知,连续型随机变量的分布函数是连续函数.给定随机变量ξ的概率密度函数()f x ,由(*)式可求出分布函数()F x .这说明连续型随机变量的概率密度函数也完全刻画了随机变量的概率分布.且由概率密度函数可()f x 直接求出ξ落在任意区间[,]a b 内的概率.事实上,如果随机变量()ξω的密度函数为()f x ,则对任意的1212,()x x x x <,有 211221(())()()()x x P x x F x F x f t dt ξω<≤=-=⎰(**)这一结果有很简单的几何意义:()ξω落在12[,)x x 中的概率,恰好等于在区间12[,)x x 上由曲线()y f x =形成的曲边梯形的面积(如图3.4中的影阴部分),而()1f x dx ∞-∞=⎰式表明,整个曲线()y f x =以下,x 轴以上的面积为1. 由(**)式还可以证明,连续型随机变量()ξω取单点值的概率为零,也就是说对任意的x ,(())0P x ξω==,于是有 12122(())(())(())P x x P x x P x ξωξωξω≤≤=≤<+= 2112(())()x x P x x f y dy ξω=≤<=⎰(***)如果()f x 在某一范围内的数值比较大,则由(***)式与(**)式可知,随机变量落在这个范围内的概率也比较大,这意味着()f x 的确具有“密度”的性质,所以称它为概率密度函数.此外由()()xF x f t dt -∞=⎰式可知,对()f x 的连续点必有()'()()dF x F x f x dx== 二、常见的几种连续型随机变量及其分布 1、 均匀分布若随机变量()ξω的概率密度函数为1()0a xb f x b a⎧≤≤⎪=-⎨⎪⎩其他时,则称随机变量()p x 服从[,]a b 上的均匀分布.显然()f x 的两条性质满足.其分布函数为0()1x a x a F x a x b b a x b<⎧⎪-⎪=≤≤⎨-⎪>⎪⎩这正是上一节讲过的引例.均匀分布可用来描述在某个区间上具有等可能结果的随机试验的统计规律性.例如,在数值计算中,假定只保留到小数点后一位,以后的数字按四舍五入处理,则小数点后第一位小数所引起的误差,一般可认为在[0.5,0.5]上服从均匀分布.在一个较短的时间内,考虑某一股票的价格ξ在[,]a b 内波动的情况,若区间[,]a b 较短,切无任何信息可利用,这时可近似认为ξ~[,]U a b .2、 指数分布若随机变量ξ的密度函数为,0()0,0x e x f x x λλ-⎧>=⎨≤⎩ 其中:0λ>为常数,则称ξ服从参数为λ的指数分布,记为()~E ξλ。