2011年江西中考数学试卷及答案(高清扫描)
2011江西中考数学试题
江西省年初中毕业暨中等学校招生考试一、选择题(本大题共个小题,每小题分,共分) .下列各数中,最小的是( ). . . .- . -.根据年第六次全国人口普查主要数据公报,江西省常住人口约为万人.这个数据可以用科学计数法表示为( ). . ×人 . ×人 . ×人 . ×人.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中的实物的俯视图是( ). .下列运算正确的是( ).. ·5 -(-) .3a -2a .已知一次函数的图象经过第一、二、三象限,则的值可以是( )..- .- . ..已知是方程-的一个根,则方程的另一个根是( ). .- .-.如图,在下列条件中,不能..证明△≌△的是( ). , .∠∠,.∠∠,∠∠ . ∠∠,.时钟在正常运行时,分针每分钟转动°,时针每分钟转动°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为(度),运行时间为(分),当时间从︰开始到︰止,与 之间的函数图象是( ).二、填空题(本大题共小题,每小题分,共分) .计算:--. .因式分解:. .函数中,自变量的取值范围是 . .方程组的解是 ..如图,在△中,点是△的内心,则∠∠∠度..将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案.设菱形中较小角为度,平行四边形中较大角为度,则与的关系式是 .(度) (分).(度) (分).(度) (分).(度) (分). . . . .第题第题图甲 图乙 第题.如图,△是由△绕着某点旋转得到的,则这点的坐标是. .如图所示,两块完全相同的含°角的直角三角板叠放在一起,且∠ °.有以下四个结论:①⊥ ②△≌△ ③为的中点 ④︰,其中正确结论的序号是 .三、(本大题共小题,每小题分,共分) .先化简,再求值:,其中.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛. ()请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.()若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率..如图,四边形为菱形,已知(),(-).()求点的坐标;()求经过点的反比例函数解析式.四、(本大题共小题,每小题分,共分).有一种用来画圆的工具板(如图所示),工具板长21cm ,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm ,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm ,最小圆的右侧距工具板右侧边缘1.5cm ,相邻两圆的间距均相等. ()直接写出其余四个圆的直径长; ()求相邻两圆的间距. .如图,已知⊙的半径为,弦的长为,点为弦所对优弧上任意一点(,两点除外).第题第题第题()求∠的度数;()求△面积的最大值. (参考数据:,,.)五、(本大题共小题,每小题分,共分).图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形,当点到(或)的距离大于或等于⊙的半径时(⊙是桶口所在圆,半径为),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙,是,其余是线段),是的中点,桶口直径 34cm ,5cm ,∠ ∠ °.请通过计算判断这个水桶提手是否合格.(参考数据:≈,°≈,°≈.).以下是某省年教育发展情况有关数据:全省共有各级各类学校所,其中小学所,初中所,高中所,其它学校所;全省共有在校学生万人,其中小学万人,初中万人,高中万人,其它万人;全省共有在职教师万人,其中小学万人,初中万人,高中万人,其它万人.请将上述资料中的数据按下列步骤进行统计分析.()整理数据:请设计一个统计表,将以上数据填入表格中.()描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整. ()分析数据:①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比在职教师数︰在校学生数)②根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可) ③从扇形统计图中,你得出什么结论?(写出一个即可)图丙图甲图乙年全省教育发展情况统计表 全省各级各类学校所数扇形统计图六、(本大题共小题,每小题分,共分).将抛物线:沿轴翻折,得抛物线,如图所示.()请直接写出抛物线的表达式.()现将抛物线向左平移个单位长度,平移后得到的新抛物线的顶点为,与轴的交点从左到右依次为,;将抛物线向右也平移个单位长度,平移后得到的新抛物线的顶点为,与轴交点从左到右依次为,.①当,是线段的三等分点时,求的值;②在平移过程中,是否存在以点,,,为顶点的四边形是矩形的情形?若存在,请求出此时的值;若不存在,请说明理由.备用图.某数学兴趣小组开展了一次活动,过程如下:设∠(°<<°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线,上.活动一:如图甲所示,从点开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直. (1A为第根小棒)数学思考:()小棒能无限摆下去吗?答: .(填“能”或“不能”)()设1A2A.①度;②若记小棒-1A的长度为(为正整数,如1A,3A,…),求出此时,的值,并直接写出(用含的式子表示).图甲活动二:如图乙所示,从点开始,用等长的小棒依次向右摆放,其中1A为第一根小棒,且.数学思考:()若已经摆放了根小棒,则,,;(用含的式子表示)()若只能..摆放根小棒,求的范围.图乙参考答案及评分意见一、选择题(本大题共个小题,每小题分,共分). . . . . . . . 二、填空题(本大题共个小题,每小题分,共分). .... .(或) .(,).①②③④三、(本大题共个小题,每小题各分,共分) .解:原式. ………………分 当时,原式…………分.解:()方法一 画树状图如下:所有出现的等可能性结果共有种,其中满足条件的结果有种.∴(恰好选中甲、乙两位同学). ………分 方法二 列表格如下:甲 乙 丙 丁甲 甲、乙 甲、丙 甲、丁乙 乙、甲 乙、丙 乙、丁丙 丙、甲 丙、乙 丙、丁丁 丁、甲 丁、乙 丁、丙所有出现的等可能性结果共有种,其中满足条件的结果有种. ∴(恰好选中甲、乙两位同学). ………………分 ()(恰好选中乙同学). ………………分 .解:() ∵, ∴∴.在菱形中,, ∴, ∴. …………分()∵∥,, ∴. 设经过点的反比例函数解析式为.把代入中,得:, ∴,∴. ……分四、(本大题共个小题,每小题分,共分).解:()其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm.………………分 ()依题意得,, ……………分 ∴∴. ………………分答:相邻两圆的间距为. ………………分 .解:() 解法一甲 乙 丙 丁 丙 甲 乙 丁 乙 甲 丙 丁 丁甲 乙 丙第一次 第二次图丙连接,,过作⊥于点. ∵⊥,,∴. …分 在△中,,∵,∴,∴,∴. ……分解法二连接并延长,交⊙于点,连接.∵是直径,∴,. 在△中,,∴,∴.………………分() 解法一因为△的边的长不变,所以当边上的高最大时,△的面积最大,此时点落在优弧的中点处. ………………分 过作⊥于,延长交⊙于点,则为优弧的中点.连接,,则,.在△中,∵,∴,∴△.答:△面积的最大值是.………………分解法二因为△的边的长不变,所以当边上的高最大时,△的面积最大,此时点落在优弧的中点处. ………………分过作⊥于,延长交⊙于点,则为优弧的中点.连接,,则.∵, ∴△是等边三角形. ………………分在△中,∵,∴,∴△.答:△面积的最大值是.………………分 五、.解法一连接,过点作⊥于点.………………分 在△中,,,∴ ∠, ∴∠°,……分∴∠∠-∠°-°°.………分又 ∵,……………分∴在△中,.…分∴水桶提手合格. ……………分 解法二 连接,过点作⊥于点. ……………分在△中,,,∴ ∠,∴∠°. ………………分 要使≥,只需∠≥∠, ∵∠∠-∠°-°°>°,……分∴水桶提手合格. ………………分.解:()年全省教育发展情况统计表……………分 () ……………分()①小学师生比︰, 初中师生比≈︰, 高中师生比︰, ∴小学学段的师生比最小. ………分②如:小学在校学生数最多等. ………分 ③如:高中学校所数偏少等. ………分六、.解:(). ………………分 ()①令,得:, 则抛物线与轴的两个交点坐标为(),().∴(,),(,).同理可得:(,),(,).当时,如图①,,∴. ……分 当时,如图②,, ∴. …………分或时,,是线段的三等分点.②存在. ………………分 方法一学校所数 (所) 在校学生数 (万人) 教师数 (万人)小学 初中 高中 其它 合计全省各级各类学校所数扇形统计图小学其它图②图①理由:连接、、、.依题意可得:.即,关于原点对称,∴.∵,∴,关于原点对称,∴,∴四边形为平行四边形. ………………分要使平行四边形为矩形,必需满足,即,∴.∴当时,以点,,,为顶点的四边形是矩形. …………分方法二理由:连接、、、. 依题意可得:.即,关于原点对称,∴.∵,∴,关于原点对称,∴,∴四边形为平行四边形. ………………分∵,,,若,则,∴.此时△是直角三角形,且∠°.∴当时,以点,,,为顶点的四边形是矩形.…………分.解: (1)能.………………分(2)① °. ………………分②方法一∵1A2A,1A⊥2A,∴1A,.又∵2A⊥3A,∴1A∥3A.同理:3A∥5A,∴∠∠2A∠4A∠6A,∴3A,5A∴3A,A 3A. ………………分3∵3A,∴5A.………………分方法二∵1A2A,1A⊥2A,∴1A,.又∵2A⊥3A,∴1A∥3A.同理:3A∥5A.∴∠2A3A∠4A5A°,∠2A4A∠46A,∴△2A3A∽△4A5A,∴,∴. ………………分………………分(3)………………分………………分………………分(4)由题意得:∴. ………………分个人整理,仅供交流学习--------------------------------------------------------------------------------------------------------------------。
江西省南昌市2011年中考数学试卷---解析版
江西省南昌市2011年初中毕业暨中等学校招生考试一、选择题(本大题共12个小题,每小题3分,共36分)每小题只有一个正确选项.1.下列各数中,最小的是().A. 0B. 1C.-1D.考点:实数大小比较.专题:计算题.分析:根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.解答:解:∵四个答案中只有C,D为负数,∴应从C,D中选;∵|-1|<|- |,∴- <-1.故选:D.点评:本题考查实数的概念和实数大小的比较,很多学生对数没有一个整体的概念,对实数的范围模糊不清,以至出现0是最小实数这样的错误答案2.根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人.这个数据可以用科学计数法表示为().A. 4.456×107人B. 4.456×106人C. 4456×104人D. 4.456×103人考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将4456万用科学记数法表示为4456万=4.456×107.故选:A.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值3.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是().考点:简单组合体的三视图.分析:俯视图是从上面看,可以看到上面杯子的底,是圆形,可以看到两杯子的口,也是圆形.解答:解:从上面看,看到两个圆形,故选:C.点评:此题主要考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.下列运算正确的是().A.a+b=abB. a2·a3=a5C.a2+2ab-b2=(a-b)2D.3a-2a=1考点:同底数幂的乘法;合并同类项.专题:存在型.分析:分别根据合并同类项、同底数幂的乘法及完全平方公式对各选项进行解答即可.解答:解:A、a与b不是同类项,不能合并,故本选项错误;B、由同底数幂的乘法法则可知,a2•a3=a5,故本选项正确;C、a2+2ab-b2不符合完全平方公式,故本选项错误;D、由合并同类项的法则可知,3a-2a=a,故本选项错误.故选B.点评:本题考查的是合并同类项、同底数幂的乘法及完全平方公式,熟知以上知识是解答此题的关键5.下列各数中是无理数的是()A.考点:无理数.B.C. D.A.图甲图乙第3题分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A 、∵ =20,∴ 是有理数,故本选项错误; B 、∵ =2,∴ 是有理数,故本选项错误;C 、∵ = ,∴ 是无理数,故本选项正确;D 、∵ =0.2,∴ 是有理数,故本选项错误.故选C .点评:本题考查的是无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数6.把点A (-2,1)向上平移2个单位,再向右平移3个单位后得到B ,点B 的坐标是( ). A.(-5,3) B.(1,3) C.(1,-3) D.(-5,-1) 考点:坐标与图形变化-平移. 专题:应用题.分析:根据平移的基本性质,向上平移a ,纵坐标加a ,向右平移a ,横坐标加a ;解答:解:∵A (-2,1)向上平移2个单位,再向右平移3个单位后得到B , ∴1+2=3,-2+3=1; 点B 的坐标是(1,3). 故选B .点评:本题考查了平移的性质,①向右平移a 个单位,坐标P (x ,y )⇒P (x+a ,y ),①向左平移a 个单位,坐标P (x ,y )⇒P (x-a ,y ),①向上平移b 个单位,坐标P (x ,y )⇒P (x ,y+b ),①向下平移b 个单位,坐标P (x ,y )⇒P (x ,y-b ).7.不等式8-2x >0的解集在数轴上表示正确的是( ).考点:在数轴上表示不等式的解集;解一元一次不等式. 专题:计算题. 分析:先根据不等式的基本性质求出此不等式的解集,在数轴上表示出来,再找出符合条件的选项即可.解答:解:移项得,-2x >-8, 系数化为1得,x <4.在数轴上表示为: 故选C .点评:本题考查的是解一元一次不等式及在数轴上表示不等式的解集,解答此类题目时要注意实心圆点与空心圆点的区别8. 已知一次函数y =x +b 的图象经过第一、二、三象限,则b 的值可以是( ). A .-2 B.-1 C. 0 D. 2 考点:一次函数图象与系数的关系. 专题:探究型.分析:根据一次函数的图象经过第一、二、三象限判断出b 的符号,再找出符合条件的b 的可能值即可.解答:解:∵一次函数的图象经过第一、二、三象限, ∴b >0,∴四个选项中只有2符合条件.故选D .点评:本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b (k ≠0)中,当b <0时,函数图象与y 轴相交于负半轴.9.已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是( ). A .1 B.2 C.-2 D.-1 第7题A.B.4C. D.专题:计算题.分析:根据根与系数的关系得出x1x2= =-2,即可得出另一根的值.解答:解:∵x=1是方程x2+bx-2=0的一个根,∴x1x2= =-2,∴1×x2=-2,则方程的另一个根是:-2, 故选C .点评:此题主要考查了一元二次方程根与系数的关系,得出两根之积求出另一根是解决问题的关键. 10.如图,在下列条件中,不能..证明△ABD ≌△ACD 的是( ). A.BD =DC , AB =AC B.∠ADB =∠ADC ,BD =DC C.∠B =∠C ,∠BAD =∠CAD D. ∠B =∠C ,BD =DC考点:全等三角形的判定.专题:证明题.分析:两个三角形有公共边AD ,可利用SSS ,SAS ,ASA ,AAS 的方法判断全等三角形.解答:解:∵AD=AD ,A 、当BD=DC ,AB=AC 时,利用SSS 证明△ABD ≌△ACD ,正确;B 、当∠ADB=∠ADC ,BD=DC 时,利用SAS 证明△ABD ≌△ACD ,正确;C 、当∠B=∠C ,∠BAD=∠CAD 时,利用AAS 证明△ABD ≌△ACD ,正确;D 、当∠B=∠C ,BD=DC 时,符合SSA 的位置关系,不能证明△ABD ≌△ACD ,错误.故选D .点评:本题考查了全等三角形的几种判定方法.关键是根据图形条件,角与边的位置关系是否符合判定的条件,逐一检验11.下列函数中自变量x 的取值范围是x >1的是( ).A.y =B.y =C.y =D.y =考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,逐一检验.解答:解:A 、二次根式和分式有意义,x-1>0,解得x >1,符合题意; B 、二次根式有意义,x-1≥0,解得x ≥1,不符合题意;C 、二次根式和分式有意义,x ≥0且 -1≠0,解得x ≥0且x ≠1,不符合题意;D 、二次根式和分式有意义1-x >0,解得x <1,不符合题意.故选A .点评:本题考查了函数自变量的取值范围.当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数为非负数 12.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y (度),运行时间为t (分),当时间从12︰00开始到12︰30止,y 与 t 之间的函数图象是(A ).二、填空题(本大题共4小题,每小题3分,共12分) 13.计算:-2-1=__________. 考点:有理数的减法.专题:计算题.分析:本题需先根据有理数的减法法则,判断出结果的符号,再把绝对值合并即可. 解答:解:-2-1=-3故答案为:-3y (度)A.(度)) B.度)C.(度)D.14.因式分解:x 3-x =______________.考点:提公因式法与公式法的综合运用.分析:本题可先提公因式x ,分解成x (x2-1),而x2-1可利用平方差公式分解. 解答:解:x3-x ,=x (x2-1),=x (x+1)(x-1).点评:本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底15.如图,在△ABC 中,点P 是△ABC 的内心,则∠PBC +∠PCA +∠PAB =__________度. 考点:三角形的内切圆与内心.专题:计算题.分析:根据三角形的内心的定义知内心是三角形三角平分线的交点,根据三角形内角和定理可以得到题目中的三个角的和.解答:解:∵点P 是的△ABC 的内心,∴PB 平分∠ABC ,PA 平分∠BAC ,PC 平分∠ACB ,∴∠PBC+∠PCA+∠PAB=90°,故答案为:90°点评:本题考查了三角形的内心的性质,解题的关键是正确的理解三角形的内心的定义,是三角形三内角的平分线的交点. 16.如图所示,两块完全相同的含30°角的直角三角板叠放在一起,∠DAB =30°,有以下四个结论:①AF ⊥BC②△ADG ≌△ACF ③O 为BC 的中点 ④AG ︰DE=4,其中正确结论的序号是 ①②③④ . .三、(本大题共2小题,每小题5分,共10分) 17.先化简,再求值:2()11a a a a a+÷--,其中 1.a =考点:分式的化简求值;二次根式的化简求值.专题:计算题.分析:将括号里先通分,除法化为乘法,化简,再代值计算.解答:解:原式=( - )÷a= × = , 当a= +1时, 原式= = = .点评:本题考查了分式的化简代值计算,二次根式的化简.关键是按照分式混合运算的步骤解题.18.解方程组:2122.x y x y y -=-⎧⎨-=-⎩,∴1,1.x y =⎧⎨=⎩考点:解二元一次方程组.专题:计算题.分析:由于两方程中x 的系数相等,故可先用加减法,再用代入法求解. 解答:解: ,①-②,得-y=-3+2y ,∴y=1.(2分)ACBP 第15题ADC B EOGF第16题∴(5分)故答案为:.点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.四、(本大题共2小题,每小题6分,共12分)19.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛. (1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率. 解:(1)所有出现的等可能性结果共有12种,其中满足条件的结果有2种. ∴P (恰好选中甲、乙两位同学)=16.甲 乙 丙 丁 甲 甲、乙 甲、丙 甲、丁 乙 乙、甲 乙、丙 乙、丁 丙 丙、甲 丙、乙 丙、丁 丁 丁、甲 丁、乙 丁、丙所有出现的等可能性结果共有12种,其中满足条件的结果有2种. ∴P (恰好选中甲、乙两位同学)=16. ………………4分(2) P (恰好选中乙同学)=13.20.如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0). (1)求点D 的坐标;(2)求经过点C 的反比例函数解析式.(1) ∵(0,4),(3,0)A B -, ∴3,4,O B O A == ∴5AB =. 在菱形ABC D 中,5ADAB ==, ∴1OD =, ∴()0,1D -. (2)∵BC ∥AD , 5BC AB ==, ∴()3,5C --.设经过点C 的反比例函数解析式为k yx=.把()3,5--代入k yx=中,得:53k -=-, ∴15k =,∴15yx=. …………6分五、(本大题共2小题,每小题7分,共14分) 21.有一种用来画圆的工具板(如图所示),工具板长21cm ,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm ,其余圆的直径从左到右依次递减0.2cm. 最大圆的左侧距工具板左侧边缘1.5cm ,最小圆的右侧距工具板右侧边缘1.5cm ,相邻两圆的间距d 均相等. (1)直接写出其余四个圆的直径长; (2)求相邻两圆的间距. 甲 乙丙 丁丙 甲乙 丁乙 甲丙 丁丁甲乙 丙第一次 第二次(1)其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm. ………………2分(2)依题意得,4 1.5 1.53 2.8 2.6 2.4 2.221d +++++++=, ………………5分 ∴41621d+=, ∴54d =. ………………6分答:相邻两圆的间距为54cm. ………………7分22.如图,已知⊙O 的半径为2,弦BC的长为A 为弦BC 所对优弧上任意一点(B ,C 两点除外). (1)求∠BAC 的度数; (2)求△ABC 面积的最大值.(参考数据:sin 602=,cos 302=,tan 303=)(1) 解法一连接OB ,OC ,过O 作OE ⊥BC 于点E .∵OE ⊥BC ,BC=∴BE EC == ………………1分 在Rt △OBE 中,OB =2,∵sin 2B E B O E O B∠==,∴60B O E∠=, ∴120B O C∠=, ∴∠解法二连接BO 并延长,交⊙O 于点D ,连接CD . ∵90D C B=.在Rt △DBC 中,sin 42BC BD CBD∠===, ∴∠60B DC =.(2) 解法一因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,1302BAE BAC ∠=∠=. 在Rt △ABE 中,∵30BEBAE =∠=,∴3tan 303BE AE ===, ∴S △ABC =132⨯= 答:△ABC 面积的最大值是 ………………7分解法二因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC . ∵60B A C∠=, ∴△ABC 是等边三角形.在Rt △ABE 中,∵30BE BAE =∠=,∴3tan 303BE AE ===,∴S △ABC =132⨯=五、(本大题共2小题,每小题8分,共16分)23.图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形.当点O到BC(或DE)的距离大于或等于⊙O的半径时(⊙O是桶口所在圆,半径为OA),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F,C-D是 C D,其余是线段),O是AF的中点,桶口直径AF=34cm,AB=FE=5cm,∠ABC =∠FED =149°.请通过计算判断这个水桶提手是否合格.(参考数据:314≈17.72,tan73.6°≈3.40,sin75.4°≈0.97.)解法一连接OB,过点O作OG⊥BC于点G. ………………1分在Rt△ABO中,AB=5,AO=17,∴ta n∠ABO =17 3.45AOAB==,∴∠ABO=73.6°,………………3分∴∠GBO=∠ABC-∠ABO=149°-73.6°=75.4°. ………………4分又∵17.72OB==≈,………………5分∴在Rt△OBG中,sin17.720.9717.1917O G O B O BG=⨯∠=⨯≈>. ……………7分∴水桶提手合格.……………8分解法二:连接OB,过点O作OG⊥BC于点G. ……………1分在Rt△ABO中,AB=5,AO=17,∴ta n∠ABO=17 3.45AOAB==,∴∠ABO=73.6°. ………………3分要使OG≥OA,只需∠OBC≥∠ABO,∵∠OBC=∠ABC-∠ABO=149°-73.6°=75.4°>73.6°,……7分∴水桶提手合格.………………8分图丙C DE C图甲DC图乙C DE24.以下是某省2010年教育发展情况有关数据:全省共有各级各类学校25000所,其中小学12500所,初中2000所,高中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其它11万人.请将上述资料中的数据按下列步骤进行统计分析.(1)整理数据:请设计一个统计表,将以上数据填入表格中.(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整.(3)分析数据:①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比=在职教师数︰在校学生数) ②根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可) ③从扇形统计图中,你得出什么结论?(写出一个即可)扣……………5分(3)①小学师生比=1︰22, 初中师生比≈1︰16.7, 高中师生比=1︰15,∴小学学段的师生比最小. ………6分②如:小学在校学生数最多等. ………7分 ③如:高中学校所数偏少等. ………8分说明:(1)第①题若不求出各学段师生比不扣分;(2)第②、③题叙述合理即给分.六、(本大题共2小题,每小题10分,共20分)25.如图所示,抛物线m :y =ax 2+b (a <0,b >0)与x 轴于点A 、B (点A 在点B 的左侧),与y 轴交于点C .将抛物线m 绕点B 旋转180°,得到新的抛物线n ,它的顶点为C 1,与x 轴的另一个交点为A 1.(1)当a =-1,b =1时,求抛物线n 的解析式;(2)四边形AC 1A 1C 是什么特殊四边形,请写出结果并说明理由; (3)若四边形AC 1A 1C 为矩形,请求出a ,b 应满足的关系式. (所) 在校学生数 (万人) 教师数 (万人) 小学 12500 440 20 初中 2000 200 12 高中 450 75 5 其它 10050 280 11 合计 25000 995 48 高中 1.8%2010年全省教育发展情况统计表全省各级各类学校所数扇形统计图解:(1)当1,1ab =-=时,抛物线m的解析式为:21y x =-+.令0x=,得:1y =. ∴C (0,1).令0y=,得:1x =±.∴A (-1,0),B (1,0)∵C 与C 1关于点B 中心对称,∴抛物线n 的解析式为:()222143yx x x =--=-+ ………4分(2)四边形AC 1A 1C 是平行四边形. ………5分 理由:∵C 与C 1、A 与A 1都关于点B 中心对称,∴11,AB BA BC BC ==,∴四边形AC 1A 1C 是平行四边形. ………8分(3)令0x =,得:y b =. ∴C (0,b ).令0y=,得:2ax b +=, ∴x=,∴(0),0)A B , (9)分∴ABBC ==.要使平行四边形AC 1A 1C 是矩形,必须满足AB BC=,∴ ∴24b b b a a⎛⎫⨯-=- ⎪⎝⎭,∴3ab=-.∴,a b 应满足关系式3ab =-.26.某数学兴趣小组开展了一次活动,过程如下: 设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB ,AC 上. 活动一:如图甲所示,从点A 1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A 1A 2为第1根小棒. 数学思考:(1)小棒能无限摆下去吗?答: .(填“能”或“不能”) (2)设AA 1=A 1A 2=A 2A 3=1.①θ=_________度; ②若记小棒A 2n -1A 2n 的长度为a n (n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,…) 求出此时a 2,a 3的值,并直接写出a n (用含n 的式子表示). BA 4A 6a 3活动二:如图乙所示,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2=AA 1. 数学思考:(3)若已经摆放了3根小棒,θ1 =_________,θ2=________, θ3=________;(用含θ的式子表示) (4)若只能..摆放4根小棒,求θ的范围.解: (1)能. ………………1分 (2)① 22.5°. ………………2分 ②方法一∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3, ∴A 1A 3AA 3=1+.又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠AA 2A 1=∠AA 4A 3=∠AA 6A 5,∴AA 3=A 3A 4,AA 5=A 5A 6 ∴a 2=A 3A 4=AA 3=1+ a 3=AA 3+ A 3A 5=a 2+ A 3A 5.∵A 3A 52, ∴a 3=A 5A 6=AA 5=)2221a +=. ………………4分方法二∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1+.又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6.∴∠A 2A 3A 4=∠A 4A 5A 6=90°,∠A 2A 4A 3=∠A 4 A 6A 5, ∴△A 2A 3A 4∽△A 4A 5A 6,∴2231a a a =,∴a 3=2221)1a =. ………………4分)11n n a -= ………………5分(3)12θθ= 23θθ= 34θθ=(4)由题意得:490,590,θθ⎧<⎪⎨≥⎪⎩∴1822.5θ≤<.A 1A 2AB C图乙A 3 A 41θ 2θ3θ θ。
江西省2011年中等学校招生统一考试数学样卷(四)
2011年江西省中考数学样卷(四)说明:本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟. 一、选择题(本大题共8小题,每小题3分,共24分) 1. 2-的相反数是( ) A .12-B .12C .2-D .2 2.温家宝总理在2010年3月5日的十一届全国人大第三次会议的政府工作报告中指出, 就业形势依然严峻,中央财政拟投入433亿元用于促进就业.433亿用科学记数法表示应为( )A .8103.43⨯ B .91033.4⨯C .101033.4⨯D . 1110433.0⨯3.某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是( )A.31,31B.32,31C.31,32D.32,35 4.不等式组10,2x x ->⎧⎨<⎩的解集是( )A .x >1B .x <2C .1<x <2D .0<x <25.若分式2242x x x--的值为零,则x 的值为( )A. 一2B. 2C. 0D.一2或26.将矩形纸片ABCD 对折, 使点B 与点D 重合,折痕为EF ,连结BE ,则与线段BE 相等的线段条数(不包括BE ,不添加辅助线)有 ( )A. 1B.2C.3D. 4P AOB第7题ABCDEF 第6题7.如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,45AOB ∠=︒,点P (P 与O 不重合)在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点, 设点P 所表示的实数为x ,则x 的取值范围是( C ) A .或01<≤-x 10≤<x B .20≤<xC .2002≤<<≤-x x 或 D . 2>x8.如图,平面直角坐标系中,在边长为1的菱形ABCD 的边 上有一动点P 从点A 出发沿A B C D A →→→→匀速运动一周,则点P 的纵坐标y 与点P 走过的路程S 之间的函数关系用图象表示大致是( )二、填空题 (本大题共8小题,每小题3分,共24分) 9.分解因式=-x 12x 33_ _ _.10. 一元二次方程x x =22的解是 . 11.)30cos 30(tan 60sin ︒-︒︒= .12.如图,直线AB 分别与x 轴、y 轴交于点A (0,3)和点B (-1,0),求直线AB 的 解析式:第8题A B C D图2图1xyOAB -1 313.如图,小明将一张正方形包装纸,剪成图1所示形状,用它包在一个棱长为10dm 的正方体的表面(不考虑接缝),如图2所示.小明所用正方形包装纸的边长至少为 ________________dm .14.二次函数162-+=x x y 的最小值为 .15.一个边长为4㎝的等边三角形ABC 与⊙O 等高,如图放置, ⊙O 与BC 相切于点C , ⊙O 与AC 相交于点E ,则CE 的长为 ㎝.16.已知扇形的圆心角为︒60,半径为1,将它沿着箭头方向无滑动滚动到B A O '''位置, ①点O 到O '的路径是1OO 21O O O O '2; ②点O 到O '的路径是1OO 21O O O O '2; ③点O 在1O 2O 段上运动路线是线段21O O ; ④点O 到O '的所经过的路径长为.34π 以上命题正确的是 . 三、(本大题共3小题,每小题6分,共18分) 17.解分式方程 26111x x x -=+-.⌒ ⌒ ⌒ A B CEO 第15题OAB1O 2O1B2AB 'O 'A '第16题18.在平面直角坐标中,直角三角板,30︒=∠C cm AB 6=,将直角顶点A 放在点(3,1)处,AC ∥轴x ,求经过点C 的反比例函数的解析式.19. 把4张普通扑克牌;方块3,红心6,黑桃10,红心6,洗匀后正面朝下放在桌面上.(1)从中随机抽取一张牌是黑桃的概率是多少?(2)从中随机抽取一张,再从剩下的牌中随机抽取另一张. 请用表格或树状图表示抽取的两张牌牌面数字所有可能出现的结果,并求抽出一对6的概率.yA B CxO第18题四、(本大题共2小题,每小题8分,共16分)20. 为了调查某校全体初中生的视力变化情况,统计了每位初中生连续三年视力检查的结果(如图1),并统计了2010年全校初中生的视力分布情况(如图2、3).(1) 从图1提供的信息用统计知识,预测2011年全校学生的视力在4.9及以下的学生人数(从一个角度预测即可.........); (2)根据3幅图中提供的信息补全图2与图3;(3)学校计划在2011年加强用眼健康方面的教育.并通过治疗, 要求2010年视力在4.9及以下的部分假性近视的学生,视力达到5.0及以上.使2011年学校视力的达标率(视力在5.0及以上就算达标)上升10%,求这个学校在2011年视力好转、达标的假性近视学生的人数.图1图 22010年全校初中生视力分布情况统计图40%21.一张长方形桌子有6个座位. (1) 按甲方式将桌子拼在一起.3张桌子拼在一起共有 个座位,n 张桌子拼在一起共有 个座位; (2) 按乙方式将桌子拼在一起.3张桌子拼在一起共有 个座位,m 张桌子拼在一起共有 个座位; (3)某食堂有A ,B 两个餐厅,现有200张这样的长方形桌子,计划把这些桌子全放在两个餐厅,每个餐厅都要放有桌子.将a 张桌子放在A 餐厅,按甲方式每6张拼成1张大桌子;将其余桌子都放在B 餐厅,按乙方式每4张桌子拼成1张大桌子,若两个餐厅一共有790个座位,问A ,B 两个餐厅各有多少个座位?………甲方式:………乙方式:五、(本大题共2小题,每小题9分,共18分)22.如图, ⊙O的半径为4㎝,AB是⊙O的直径,BC切⊙O于点B ,且BC=4㎝,当点P在⊙O上运动时,是否存在点P,使得△PBC为等腰三角形,若存在,有几个符合条件的点P,并分别求出点P到线段BC的距离;若不存在,请说明理由.AoB C(第22题)23.已知直线b a ⊥于O ,现将矩形ABCD 和矩形EFGH ,如图1放置,直线BE 分别交直线b a ,于M N ,.(1)当矩形ABCD≌矩形EFGH 时,(如图1) BM 与 NE 的数量关系是 ; (2)当矩形ABCD 与矩形EFGH 不全等,但面积相等时,把两矩形如图2,3那样放置,问在这两种放置的情形中,(1)的结论都还成立吗?如果你认为都成立,请你利用图3给予证明,若认为BM 与 NE 的有不同的数量关系,先分别写出其数量关系式,再证明.(1) BM= NE(2) 如图2,3那样放置(1)中的结论都成立,证明: 如图3,在矩形ABCD 和矩形EFGH 中,FN∥EH, ,∠FNE=∠BEA,∠EFN=∠A=90° ∴△EFN∽△BAE,同理:△BCM∽△EAB∴EF EN AB BE =…………①, BC BMHE EB=………………② ①÷②得, EF HE EN EBAB BC BE BM⨯⨯=⨯⨯又∵EF×HE=AB×BC, ∴EN EBBE BM⨯⨯=1, ∴ EN=BM六、(本大题共2小题,每小题10分,共20分)24. 经过原点和G (4,0)的两条抛物线x b x a y 1211+=,x b x a y 2222+=,顶点分别为B A ,,且都在第1象限,连结BA 交x 轴于T ,且3==AT BA . (1) 分别求出抛物线1y 和2y 的解析式;(2) 点C 是抛物线2y 的x 轴上方的一动点,作x CE ⊥轴于E ,交抛物线1y 于D,试判断CD和DE 的数量关系,并说明理由;(3) 直线m x =,交抛物线1y 于M ,交抛物线2y 于N ,是否存在以点T B N M ,,,为顶点的四边形是平行四边形,若存在,求出m 的值;若不存在,说明理由..2y 1y 4 G25.平面内两条直线1l ∥2l ,它们之间的距离等于a .一块正方形纸板ABCD 的边长也等 于a .现将这块硬纸板如图所示放在两条平行线上.(1)如图1,将点C 放置在直线2l 上, 且1l AC ⊥于O , 使得直线1l 与AB 、AD 相交于E 、F ,证明:AEF ∆的周长等于a 2;请你继续完成下面的探索:(2)如图2,若绕点C 转动正方形硬纸板ABCD ,使得直线1l 与AB 、AD 相交于E 、F , 试问AEF ∆的周长等于a 2还成立吗?并证明你的结论;(3)如图3,将正方形硬纸片ABCD 任意放置,使得直线1l 与AB 、AD 相交于E 、F ,直线2l 与BC 、CD 相交于G ,H ,设∆AEF 的周长为1m ,∆CGH 的周长为2m ,试问1m ,2m 和a 之间存在着什么关系?试证明你的结论.1l2lABCDE F图2AC图31l2lBDEFGH1l2lABCDE F图1O参考答案及评分意见一、选择题(本大题共8小题,每小题3分,共24分) 1. D 2. C 3.A 4. C 5. A 6. B 7. C 8. B 二、填空题(本大题共8小题,每小题3分,共24分) 9. 3x(x+2)(x-2) 10. 01=x ,212=x 11. 41-; 12. y=3x+3 13. 22014.-10 15.3 16. ③④三、(本大题共3小题,每小题6分,共18分)17. 解:方程两边乘以)1(1-+x x )( 得)1)(1(6)1(-+=--x x x x ……………………………………2分 整理得16-=-x解得 x =-5. ……………………………………5分 经检验: x =-5是原方程的解.∴原方程的解是x =-5. …………………………………………6分18.解:因为,30︒=∠C 6=AB ,所以36=AC ……………………………2分 所以点)1,37(C ……………………………3分后抽取的牌牌面数字先抽取的牌牌面数字5554443332225432开始设经过点C 的反比例函数的解析式xk y =. 所以137k=,即37=k . ………………………………………………5分 所以经过点C 的反比例函数的解析式xy 37=.………………………………………6分19. 解(1)从中随机抽取一张牌是黑桃的概率为41………………………2′ (2)抽取的两张牌牌面数字所有可能出现的结果用表格表示如下:3 6 10 63 (3,6) (3,10) (3,6)6 (6,3)(6,10) (6,6)10 (10,3) (10,6)(10,6)6(6,3) (6,6) (6,10)也可树状图表示如下:所有可能出现的结果 (3,6) (3,10) (3,6) (6,3) (6,10) (6,6) (10,3) (10,6) (10,6) (6,3) (6,6) (6,10)……………………………4′ 由表格(或树状图)可以看出,抽取的两张牌可能出现的结果有12种,它们出现的可能性相等,而两张牌牌面数字都是6的结果有2种,后抽取的牌 牌面数字∴P (抽取的是一对6 )=61122=. ……………………………6分四、(本大题共2小题,每小题8分,共16分.)20. (1)①从平均人数的角度预测,2011年全校学生的视力在4.9以下的学生有500人; ②从人数的最大值与最小值的平均值预测,2011年全校学生的视力在4.9以下的学生有550人;③从人数的中位数角度预测,2011年全校学生的视力在4.9以下的学生有450人;. ④从人数的平均增长数预测, (3)800+3300800-=32966,约967人. 2011年全校学生的视力在4.9以下的学生有约967人. 等等. …………………2分 (2)学生总数800÷40%=2000(人),………………………………………3分 视力5.0:=200060030%, 30%×︒360=︒108; 视力5.1: 2000-800-600-200=400(人),=200040020%, 20%×︒360=︒72; 视力5.2以上:=200020010%, 10%×︒360=︒36.………………………………………5分(3)设到达正常视力的假性近视学生的人数为x 人. 依题意得: 2000200400600++ +10%=2000200400600x+++ ………………7分解得:200=x答: 到达正常视力的假性近视学生的人数为200人. …………………8分21.(1)10 ,42+n ; ………………………………………………2分 (2)14,24+m ; …………………………………………4分 (3)按甲种方式每6张拼一张能有:2×6+4=16(个), 按乙种方式每4张拼一张能有:4×4+2=18(个), 根据,790420018616=-⨯+⨯a a ……………………………………6分 解得:.60=a ……………………………………7分A 餐厅:160616=⨯a(个), B 餐厅:=-⨯420018a630(个). ……………………………………8分 五、(本大题共2题,每小题9分,共18分) 22.解: 假设存在点P,使得为△PBC 等腰三角形, 当BC BP =时,可得OB BP OP ==, 则△1OBP 为等边三角形. ∴.,301︒=∠BG P1P2P过1P 作BC G P ⊥1于G , ∵.224211===BP G P ∴1P 到BC 距离为2cm .………………2分当BC CP =时, ∵22CP OP OB BC ===,︒=∠90OBC , ∴四边形2OBCP 为正方形. ∴.4,9022cm C P BCP =︒=∠ ∴2P 到BC 距离为4cm . ………………5分 当BP CP =时,作BC 的垂直平分线交⊙O 于P . ∵BC K P ⊥3, ∴321224222233==-=-=OM OP M P (㎝)∴,4323+=K P ∴3P 到线段BC 距离为432+ (㎝). …………………………7分∵23OP K P ⊥,∴3243==M P M P (㎝). ∴3244-=K P (㎝).∴4P 到线段BC 距离为324- ( ㎝). ………………………………………9分∴存在4个点P 满足条件,P 到BC 的距离分别为,4,2cm cm ,)432(cm +cm .)324(-.23. (1) BM= NE…………………………………………………2分 (2) 如图2,3那样放置(1)中的结论都成立,………………4分证明: 如图3,在矩形ABCD 和矩形EFGH 中,FG∥EH, ,∠FNE=∠BEA,∠EFN=∠A=90° ∴△EFN∽△BAE,同理:△BCM∽△EAB……………………………6分∴EF EN AB BE =………①, BC BM HE EB=…………② ①÷②得, EF HE EN EBAB BC BE BM⨯⨯=⨯⨯又∵EF×HE=AB×BC, ∴EN EBBE BM⨯⨯=1,∴ EN=BM ………………………………………9分六、(本大题共2小题,每小题10分,共20分) 24.(1) ∵,3==AT BA∴A (2,3),B (2,6). …………………………………………………………1分∵x b x a y 1211+=过A (2,3)和).0,4(G 依题意得:⎩⎨⎧=+=+.0416,3241111b a b a解得⎪⎩⎪⎨⎧=-=.3,4311b a∴.34321x x y +-= …………………………………………………………2分 同理.62322x x y +-= …………………………………………………………3分(2).EF CD = …………………………………………………………4分 证明;设40,<<=t t OE . ∵D 在.34321x x y +-=上, ∴=DE .3432t t +-………………………………………………………5分 ∵C 在x x y 62322+-=上,∴=CE t t 6232+-.∴=-=DE CE CD (t t 6232+-)—(t t 3432+-)=t t 3432+-.∴.DE CD = ……………………………………………7分 (3) 由于MN∥BT,当假设存在四边形BTNM 为平行四边形时,则.MN BT ==6. ∵)623,(),343,(22m m m N m m m M +-+-∴=MN .343)623()343(222m m m m m m -=+--+-依题意,得: 23634m m =-. …………………………………………9分 2334m m -=-6, 此方程无解, 2334m m -=6, 解之得:∴.322±=m …………………………………………10分 ∴存在322±=m 使得以点T B N M ,,,为顶点的四边形是平行四边形. 25.(1)证法一:,2,2,2a a AO AO AF AE AO EF -==== ……………………2分则.2222a AO AO EF AF AE =+=++…………………………………………3分 证法二:连结.,FC EC∵1l AC ⊥,∴.︒=∠=∠90COE B . 又∵,,EC EC a CO BC ===∴.OCE BCE ∆≅∆ ……………………………………………2分 ∴.EO BE =同理FD OF =.∴ .2a AD AB EF AF AE =+=++ ……………………………………………3分 (1) 如图4,过C 作EF CM ⊥于M , 则.90︒=∠=∠EMC B∵,,EC EC a CM BC ===∴MCE BCE ∆≅∆ …………………4分 同理CDF CMF ∆≅∆得.,DF MF ME BE ==…………………5分∴ .2a AD AB EF AF AE =+=++ ………………6分 (3)a m m 221=+证明:如图5将21,l l 分别同时向下平移相同的距离,则4l 和3l 的距离还是a ,使得4l 经过点C , 3l 交AB 于M ,交AD 于N . ……………………………………………7分1l2lABCDE F图4M由(2)的证明知,2a AN MN AM =++过F 作FK ∥AB 交MN 于K . ∴四边形EMKF 为平行四边形.∴,,EM FK MK EF == ………………………………………8分 ∵作FQ MN ⊥于Q ,P GH CP 于⊥.则.CP FQ = ∵FK ∥AB , ∴.AMN FKQ ∠=∠作BJ ∥MN , ∴.ABJ AMN ∠=∠ ∵︒=∠+∠90CBJ ABJ ,,CGP BGT CBJ ∠=∠=∠.90︒=∠+∠GHC CGP∴.GHC FKQ ∠=∠∴FQK ∆≌CPH ∆∴.,PH KQ CH FK == ……………………9分 同理.,GP NQ GC FN == ∴.GH KN =则.2a MN AN AM KNMK FN AF EM AE GH CH GC EF AF AE =++=+++++=+++++………………………………………10分4lAC1l2lBDEF G HMNK图53lQ P TJ。
2011年江西省中考数学试题及答案
2011年江西省中考数学试题及答案一、选择题(本大题共8个小题,每小题3分,共24分) 1.下列各数中,最小的是( ).A. 0B. 1C.-1D.2.根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人.这个数据可以用科学计数法表示为( ).A. 4.456×107人B. 4.456×106人C. 4456×104人D. 4.456×103人3.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中的实物的俯视图是( ).4.下列运算正确的是( ).A.a +b =abB. a 2·a 3=a 5C.a 2+2ab -b 2=(a -b )2D.3a -2a =15.已知一次函数y =x +b 的图象经过第一、二、三象限,则b 的值可以是( ). A .-2 B.-1 C. 0 D. 26.已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是( ). A .1 B.2 C.-2 D.-17.如图,在下列条件中,不能..证明△ABD ≌△ACD 的是( ). A.BD =DC , AB =AC B.∠ADB =∠ADC ,BD =DCC.∠B =∠C ,∠BAD =∠CADD. ∠B =∠C ,BD =DC 8.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y (度),运行时间为t (分),当时间从12︰00开始到12︰30止,y 与 t 之间的函数图象是( ).二、填空题(本大题共8小题,每小题3分,共24分) 9.计算:-2-1=__________.10.因式分解:x 3-x =______________.11.函数y =x 的取值范围是 .12.方程组25,7x y x y +=⎧⎨-=⎩的解是 .y (度)A.(度)B.度)C.度)D. B. C. D.A. ACBP第13题第7题图甲图乙 第3题13.如图,在△ABC 中,点P 是△ABC 的内心,则∠PBC +∠PCA +∠PAB =__________度.14.将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案.设菱形中较小角为x 度,平行四边形中较大角为y 度,则y 与x 的关系式是 .15.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是__________. 16.如图所示,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB =30°.有以下四个结论:①AF ⊥BC ②△ADG ≌△ACF ③O 为BC 的中点 ④AG ︰DE4,其中正确结论的序号是 .三、(本大题共3小题,每小题6分,共18分) 17.先化简,再求值:2()11a aa a a+÷--,其中 1.a =18.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.19.如图,四边形ABCD 为菱形,已知A (0,4),B (-(1)求点D 的坐标;(2)求经过点C 的反比例函数解析式.x y第14题 AD CBEOG F 第16题第15题四、(本大题共2小题,每小题8分,共16分)20.有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.21.如图,已知⊙O的半径为2,弦BC的长为A为弦BC所对优弧上任意一点(B,C两点除外).(1)求∠BAC的度数;(2)求△ABC面积的最大值.(参考数据:3sin60=,3cos30=,3tan30=.)五、(本大题共2小题,每小题9分,共18分)22.图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形,当点O 到BC(或DE)的距离大于或等于⊙O的半径时(⊙O是桶口所在圆,半径为OA),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F,C-D是CD,其余是线段),O是AF的中点,桶口直径AF=34cm,AB=FE=5cm,∠ABC =∠FED =149°.请通过计算判断这个水桶提手是否合格.2,tan73.6°≈3.40,sin75.4°≈0.97.)23.以下是某省2010年教育发展情况有关数据:图丙C DC图甲DC图乙全省共有各级各类学校25000所,其中小学12500所,初中2000所,高中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其它11万人.请将上述资料中的数据按下列步骤进行统计分析.(1)整理数据:请设计一个统计表,将以上数据填入表格中.(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整.(3)分析数据:①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比=在职教师数︰在校学生数) ②根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可)③从扇形统计图中,你得出什么结论?(写出一个即可)六、(本大题共2小题,每小题10分,共20分)24.将抛物线c 1:y=2+x 轴翻折,得抛物线c 2,如图所示. (1)请直接写出抛物线c 2的表达式. (2)现将抛物线c 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线c 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .①当B ,D 是线段AE 的三等分点时,求m 的值;②在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.2010年全省教育发展情况统全省各级各类学校所数扇形统计图设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB ,AC 上. 活动一:如图甲所示,从点A 1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直. (A 1A 2为第1根小棒) 数学思考:(1)小棒能无限摆下去吗?答: .(填“能”或“不能”) (2)设AA 1=A 1A 2=A 2A 3=1. ①θ=_________度;②若记小棒A 2n -1A 2n 的长度为a n (n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,…), 求出此时a 2,a 3的值,并直接写出a n (用含n 的式子表示).活动二:如图乙所示,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第一根小棒,且A 1A 2=AA 1. 数学思考: (3)若已经摆放了3根小棒,则θ1 =_________,θ2=________, θ3=________;(用含θ 的式子表示)(4)若只能..摆放4根小棒,求θ的范围.yxO备用图A 1A 2 AB C图乙A 3 A 41θ2θ3θ A 1A 2A BCA 3 A 4 A 5 A 6 a 1a 2 a 3图甲参考答案及评分意见一、选择题(本大题共8个小题,每小题3分,共24分)1.D 2.A 3.C 4.B 5.D 6.C 7.D 8.A二、填空题(本大题共8个小题,每小题3分,共24分)9. 3- 10.()()11x x x +- 11.1x ≤ 12.4,3x y =⎧⎨=-⎩13. 90 14.2180y x -=(或1902y x =+) 15.(0,1) 16.①②③④ 三、(本大题共3个小题,每小题各6分,共18分) 17.解:原式=2111111a a a a a a a a a ⎛⎫-÷=⨯=⎪----⎝⎭. ………………3分当1a 时,原式==…………6分18.解:(1)方法一 画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P (恰好选中甲、乙两位同学)=16.方法二 列表格如下: 甲 乙 丙丁甲 甲、乙 甲、丙 甲、丁乙 乙、甲 乙、丙 乙、丁 丙丙、甲 丙、乙 丙、丁 丁 丁、甲 丁、乙 丁、丙所有出现的等可能性结果共有12种,其中满足条件的结果有2种. ∴P (恰好选中甲、乙两位同学)=16. ………………4分(2)P (恰好选中乙同学)=13. ………………6分19.解:(1) ∵(0,4),(3,0)A B -, ∴3,4,OB OA == ∴5AB =.在菱形ABCD 中,5AD AB ==, ∴1OD =, ∴()0,1D -. …………3分(2)∵BC ∥AD , 5BC AB ==, ∴()3,5C --.设经过点C 的反比例函数解析式为ky x=.把()3,5--代入k y x=中,得:53k -=-, ∴15k =,∴15y x=. ……6甲 乙 丙 丁 丙 甲 乙 丁 乙 甲 丙 丁 丁 甲 乙 丙 第一次 第二次四、(本大题共2个小题,每小题8分,共16分)20.解:(1)其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm.………………4分(2)依题意得,4 1.5 1.53 2.8 2.6 2.4 2.221d +++++++=, (6)分∴41621d += ∴54d =. ………………7分答:相邻两圆的间距为54cm. ………………8分21.解:(1) 解法一连接OB ,OC ,过O 作OE ⊥BC 于点E . ∵OE ⊥BC ,BC=∴BE EC =…1分在Rt△OBE 中,OB =2,∵sin BE BOE OB ∠=,∴60BOE ∠=, ∴120BOC ∠=,∴1602BAC BOC ∠=∠=. ……4分 解法二连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD =4,90DCB ∠=. 在Rt△DBC中,sin BC BDC BD ∠==, ∴60BDC ∠=,∴60BAC BDC ∠=∠=.………………4分(2) 解法一因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,1302BAE BAC ∠=∠=.在Rt△ABE中,∵30BE BAE ∠=,∴3tan 303BEAE ===,∴S △ABC=132⨯=.答:△ABC 面积的最大值是………………8分 解法二因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC .∵60BAC ∠=, ∴△ABC 是等边三角形. ………………6分图丙CD在Rt△ABE 中,∵30BE BAE =∠=,∴3t an 303BEAE ===,∴S△ABC=132⨯=.答:△ABC 面积的最大值是………………8分五、22.解法一连接OB ,过点O 作OG ⊥BC 于点G .………………1分 在Rt△ABO 中,AB =5,AO =17,∴ tan ∠ABO =173.45AO AB==, ∴∠ABO =73.6°,……4∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°.………又 ∵17.72OB =≈,……………6分∴在Rt△OBG 中,sin 17.720.9717.1917OG OB OBG =⨯∠=⨯≈>.…8分∴水桶提手合格. ……………9分解法二 连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt△ABO 中,AB =5,AO =17,∴ tan ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°. ………………4分 要使OG ≥OA ,只需∠OBC ≥∠ABO ,∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°, (8)分∴水桶提手合格. ………………9分23.解:(1)2010年全省教育发展情况统计表……………3分 (2) ……………6分(3)①小学师生比=1︰22, 初中师生比≈1︰16.7, 高中师生比=1︰15,∴小学学段的师生比最小.………7分②如:小学在校学生数最多等. ………8分 ③如:高中学校所数偏少等. ………9分六、24.解:(1)2y =. ………………2分(2)①令20,得:121,1x x =-=,则抛物线c 1与x 轴的两个交点坐标为(-1,0),(1,0).∴A (-1-m ,0),B (1-m ,0).同理可得:D (-1+m ,0),E (1+m ,学校所数 (所) 在校学生数 (万人) 教师数 (万人) 小学 12500 440 20 初中 2000 200 12 高中 450 75 5 其它10050 280 11 合计25000 995 48全省各级各类学校所数扇形统计图0).当13AD AE =时,如图①,()()()()111113m m m m -+---=+---⎡⎤⎣⎦,∴12m =. ……4分当13AB AE =时,如图②,()()()()111113m m m m ----=+---⎡⎤⎣⎦, ∴2m =. …………6分12m =或2时,B ,D 是线段AE 的三等分点.②存在. ………………7分方法一理由:连接AN 、NE 、EM 、MA .依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称, ∴OM ON =.∵()()1,0,1,0A m E m --+, ∴A ,E 关于原点O 对称, ∴OA OE =, ∴四边形ANEM 为平行四边形. ………………8分要使平行四边形ANEM 为矩形,必需满足OM OA =,即()2221m m +=--, ∴1m =.∴当1m =时,以点A ,N ,E ,M 为顶点的四边形是矩形. (10)分方法二理由:连接AN 、NE 、EM 、MA .依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称, ∴OM ON =.∵()()1,0,1,0A m E m --+, ∴A ,E 关于原点O 对称, ∴OA OE =, ∴四边形ANEM 为平行四边形. ………………8分∵222(1)4AM m m =-+++=,2222(1)444ME m m m m =+++=++, 222(11)484AE m m m m =+++=++,若222AM ME AE +=,则224444484m m m m +++=++,∴1m =. 此时△AME 是直角三角形,且∠AME =90°.∴当1m =时,以点A ,N ,E ,M 为顶点的四边形是矩形. (10)分25.解: (1)能. ………………1分 (2)① 22.5°. ………………2分 ②方法一∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠AA 2A 1=∠AA 4A 3=∠AA 6A 5, ∴AA 3=A 3A 4,AA 5=A 5A 6∴a 2=A 3A 4=AA 3=1,a 3=AA 3+ A 3A 5=a 2+ A 3A 5. ………………3分∵A 3A 52, ∴a 3=A 5A 6=AA 5=)2221a =. ………………4分方法二∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6.∴∠A 2A 3A 4=∠A 4A 5A 6=90°,∠A 2A 4A 3=∠A 4 A 6A 5,∴△A 2A 3A 4∽△A 4A 5A 6,∴2231a a a =,∴a 3=2221)1a =. ………………4分)11n n a -= ………………5分(3)12θθ= ………………6分23θθ= ………………7分34θθ= ………………8分(4)由题意得:490,590,θθ⎧<⎪⎨≥⎪⎩∴1822.5θ≤<. ………………10分。
江西省南昌市2011年初中毕业暨中等学校招生考试数学试题卷
江西省南昌市2011年初中毕业暨中等学校招生考试数学试题卷一、 选择题1.下列各数中,最小的是( ) A .0 B .1 C .—1 D .2-答案: D试题解析:考查了实数大小的比较 注:2.根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人,这个数据可以 用科学计数法表示为()A .74.45610⨯人 B .64.45610⨯人 C .44.45610⨯人 D .34.45610⨯人答案: A试题解析:考查了科学记数法 注:3.将两个大小相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( )答案: C试题解析:考查了三视图中的俯视图 注:4.下列运算正确的是( )A. ab b a =+B.532a a a =⋅C. 222)(2b a b ab a -=-+ D 123=-a a答案: B试题解析:考查了整式的运算 注:5.下列各数中是无理数的是()A. 400B. 4C. 4.0 D 04.0答案: C试题解析:考查了无理数的概念和二次根式运算 注:6.把点A(—2,1)向上平移2个单位长度再向右平移3个单位长度后得到点B ,点B 的坐标是() A. (—5,3) B.(1,3) C.(1,—3) D.(—5,—1)答案: B试题解析:考查了图形变换之一平移在平面坐系内的点的坐标变化 注:7.不等式028>-x 的解集在数轴上表示正确的是( )答案: C试题解析:考查了不等式的解法及解集的表示方法 注:8.已知一次函数b x y +=的图象经过第一、二、三象限,则b 的值可以是( ) A. —2 B. —1 C. 0 D. 2答案: D试题解析:考查了一次函数中系数与图象之关系 注:9.已知1x =是方程220x bx +-=的一个根,则方程的另一个根是( ) A. 1 B.2 C. —2 D.—1答案: C试题解析:考查了一元二次方程解的意义(根与系数的关系)及解法 注:10.如图,在下列条件中,不能证明ABD ACD ∆≅∆的是( ) A.,BD DC AB AC == B. ,ADB ADC BD DC ∠=∠= C. ,B C BAD CAD ∠=∠∠=∠ D. ,B C BD DC ∠=∠=答案: D试题解析:考查了三角形全等的判定 注:11.下列函数中自变量x 的取值范围是x>1的是( ) A. 11y x =- B. 1y x =- C. 11y x =- D. 11y x=- 答案: A试题解析:考查了函数有意义时自变量取值 注:12.时钟在正常运行时,分针每分钟转动6︒,时针每分钟转动0.5︒。
2011年江西省中考数学试题(含答案)
机密★2011年6月19日江西省2011年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共8个小题,每小题3分,共24分)每小题只有一个正确选项.1.下列各数中,最小的是().A. 0B. 1C.-1D.2.根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人.这个数据可以用科学计数法表示为().A. 4.456×107人B. 4.456×106人C. 4456×104人D. 4.456×103人3.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中的实物的俯视图是().4.下列运算正确的是().A.a+b=abB. a2·a3=a5C.a2+2ab-b2=(a-b)2D.3a-2a=15.已知一次函数y=x+b的图象经过第一、二、三象限,则b的值可以是( ).A .-2 B.-1 C. 0 D. 26.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是( ).A .1 B.2 C.-2 D.-17.如图,在下列条件中,不能..证明△ABD≌△ACD的是().A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD. ∠B=∠C,BD=DC8.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y(度),运行时间为t(分),当时间从12︰00开始到12︰30止,y与t之间的函数图象是().y(度(度度度B.C. D.A.第7题图甲图乙第3题二、填空题(本大题共8小题,每小题3分,共24分)9.计算:-2-1=__________.10.因式分解:x3-x=______________.11.函数y=x的取值范围是.12.方程组25,7x yx y+=⎧⎨-=⎩的解是.13.如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠P AB=__________度.14.将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案.设菱形中较小角为x度,平行四边形中较大角为y度,则y与x的关系式是.15.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是__________.16.如图所示,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB=30°.有以下四个结论:①AF⊥BC ②△ADG≌△ACF ③O为BC的中点④AG︰DE4,其中正确结论的序号是..三、(本大题共3小题,每小题6分,共18分)17.先化简,再求值:2()11a aaa a+÷--,其中 1.a=18.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛. (1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.19.如图,四边形ABCD为菱形,已知A(0,4),B(-3,0). (1)求点D的坐标;(2)求经过点C的反比例函数解析式.A CBP第13题xy第14题AD CB EOG F第16题第15题C DC DC四、(本大题共2小题,每小题8分,共16分)20.有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.21.如图,已知⊙O的半径为2,弦BC的长为A为弦BC所对优弧上任意一点(B,C两点除外).(1)求∠BAC的度数;(2)求△ABC面积的最大值.(参考数据:sin60=,cos30 ,tan30=)五、(本大题共2小题,每小题9分,共18分)22.图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形,当点O到BC(或DE)的距离大于或等于⊙O的半径时(⊙O是桶口所在圆,半径为OA),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F,C-D是 CD,其余是线段),O是AF的中点,桶口直径AF=34cm,AB=FE=5cm,∠ABC =∠FED =149°.请通过计算判断这个水桶提手是否合格.2,tan73.6°≈3.40,sin75.4°≈0.97.)23.以下是某省2010年教育发展情况有关数据:全省共有各级各类学校25000所,其中小学12500所,初中2000所,高中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其它11万人.请将上述资料中的数据按下列步骤进行统计分析.(1)整理数据:请设计一个统计表,将以上数据填入表格中.(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整. (3)分析数据:①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比=在职教师数︰在校学生数)②根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可)③从扇形统计图中,你得出什么结论?(写出一个即可)2010年全省教育发展情况统计表全省各级各类学校所数扇形统计图六、(本大题共2小题,每小题10分,共20分)24.将抛物线c1:y=2x轴翻折,得抛物线c2,如图所示.(1)请直接写出抛物线c2的表达式.(2)现将抛物线c1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线c2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.①当B,D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.yxO备用图25.某数学兴趣小组开展了一次活动,过程如下:设∠BAC=θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.活动一:如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直. (A1A2为第1根小棒)数学思考:(1)小棒能无限摆下去吗?答:.(填“能”或“不能”)(2)设AA1=A1A2=A2A3=1.①θ=_________度;②若记小棒A2n-1A2n的长度为a n(n为正整数,如A1A2=a1,A3A4=a2,…),求出此时a2,a3的值,并直接写出a n(用含n的式子表示).活动二:如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第一根小棒,且A1A2=AA1.数学思考:(3)若已经摆放了3根小棒,则θ1 =_________,θ2=________,θ3=________;(用含θ的式子表示)(4)若只能..摆放4根小棒,求θ的范围.A1A2BC图乙A3A41θ2θ3θA1A2ABC A3A4A5A6a1a2a3图甲·机密2011年6月19日江西省2011年中等学校招生考试数学试题卷参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.一、选择题(本大题共8个小题,每小题3分,共24分)1.D 2.A 3.C 4.B 5.D 6.C 7.D 8.A二、填空题(本大题共8个小题,每小题3分,共24分)9. 3-10.()()11x x x+-11.1x≤12.4,3xy=⎧⎨=-⎩13. 9014.2180y x-=(或1902y x=+)15.(0,1)16.①②③④说明:(1)第11题中若写成“1x<”的,得2分;(2)第16题,填了1个或2个序号的得1分,填了3个序号的得2分.三、(本大题共3个小题,每小题各6分,共18分)17.解:原式=2111111a a aaa a a a a⎛⎫-÷=⨯=⎪----⎝⎭. ………………3分当1a=时,原式==………………6分18.解:(1)方法一画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=16. ………………4分甲乙丙丁丙甲乙丁乙甲丙丁丁甲乙丙第一次第二次方法二列表格如下:甲 乙 丙 丁甲 甲、乙 甲、丙甲、丁乙 乙、甲 乙、丙 乙、丁丙丙、甲 丙、乙 丙、丁丁 丁、甲 丁、乙 丁、丙所有出现的等可能性结果共有12种,其中满足条件的结果有2种. ∴P (恰好选中甲、乙两位同学)=16. ………………4分(2)P (恰好选中乙同学)=13. ………………6分19.解:(1) ∵(0,4),(3,0)A B -, ∴3,4,OB OA == ∴5AB =.在菱形ABCD 中,5AD AB ==, ∴1OD =, ∴()0,1D -. …………3分(2)∵BC ∥AD , 5BC AB ==, ∴()3,5C --.设经过点C 的反比例函数解析式为ky x=. 把()3,5--代入k y x=中,得:53k -=-, ∴15k =,∴15y x =. ……6分四、(本大题共2个小题,每小题8分,共16分)20.解:(1)其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm.………………4分(2)依题意得,4 1.5 1.53 2.8 2.6 2.4 2.221d +++++++=, ……………6分 ∴41621d += ∴54d =. ………………7分 答:相邻两圆的间距为54cm. ………………8分21.解:(1) 解法一连接OB ,OC ,过O 作OE ⊥BC 于点E .∵OE ⊥BC ,BC =∴BE EC == ………………1分 在Rt △OBE 中,OB =2,∵sin BE BOE OB ∠==, ∴60BOE ∠= , ∴120BOC ∠= ,∴1602BAC BOC ∠=∠= . ………………4分解法二连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD =4,90DCB ∠= .在Rt △DBC中,sin BC BDC BD ∠==, ∴60BDC ∠= ,∴60BAC BDC ∠=∠= .………………4分(2) 解法一因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,1302BAE BAC ∠=∠= .在Rt △ABE中,∵30BE BAE =∠= ,∴3tan 30BEAE ===,∴S △ABC=132⨯=答:△ABC面积的最大值是 ………………8分 解法二因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC .∵60BAC ∠= , ∴△ABC 是等边三角形. ………………6分在Rt △ABE中,∵30BE BAE =∠= ,∴3tan 30BEAE ==,∴S △ABC=132⨯=.答:△ABC面积的最大值是 ………………8分五、(本大题共2个小题,每小题9分,共18分). 22.解法一连接OB ,过点O 作OG ⊥BC 于点G . ………………1分 在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°,………………4分 ∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°. ………………5分 又∵17.72OB =, ………………6分 ∴在Rt △OBG 中,sin 17.720.9717.1917OG OB OBG =⨯∠=⨯≈>. ……………8分∴水桶提手合格. ……………9分 解法二祺祺之缘 第 10 页 共 13 页 图丙CDE 连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°. ………………4分 要使OG ≥OA ,只需∠OBC ≥∠ABO , ∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°,……8分 ∴水桶提手合格. ………………9分23.解:(1)2010年全省教育发展情况统计表(说明:“合计”栏不列出来不扣分) ……………3分(2)……………6分 (3)①小学师生比=1︰22, 初中师生比≈1︰16.7, 高中师生比=1︰15,∴小学学段的师生比最小. ………7分②如:小学在校学生数最多等. ………8分 ③如:高中学校所数偏少等. ………9分说明:(1)第①题若不求出各学段师生比不扣分;(2)第②、③题叙述合理即给分. 六、(本大题共2个小题,每小题10分,共20分) 学校所数 (所) 在校学生数 (万人) 教师数(万人)小学12500 440 20 初中2000 200 12 高中450 75 5 其它10050 280 11 合计25000 995 48 全省各级各类学校所数扇形统计图祺祺之缘 第 11 页 共 13 页24.解:(1)2y =………………2分(2)①令20,得:121,1x x =-=,则抛物线c 1与x 轴的两个交点坐标为(-1,0),(1,0).∴A (-1-m ,0),B (1-m ,0).同理可得:D (-1+m ,0),E (1+m ,0). 当13AD AE =时,如图①, ()()()()111113m m m m -+---=+---⎡⎤⎣⎦, ∴12m =. ………………4分 当13AB AE =时,如图②,()()()()111113m m m m ----=+---⎡⎤⎣⎦, ∴2m =. ………………6分∴当12m =或2时,B ,D 是线段AE 的三等分点.②存在.………………7分 方法一理由:连接AN 、NE 、EM 、MA .依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称, ∴OM ON =.∵()()1,0,1,0A m E m --+, ∴A ,E 关于原点O 对称, ∴OA OE =, ∴四边形ANEM 为平行四边形. ………………8分 要使平行四边形ANEM 为矩形,必需满足OM OA =,即()2221m m +=--, ∴1m =.∴当1m =时,以点A ,N ,E ,M 为顶点的四边形是矩形. …………10分 方法二祺祺之缘 第 12 页 共 13 页理由:连接AN 、NE 、EM 、MA . 依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称, ∴OM ON =.∵()()1,0,1,0A m E m --+, ∴A ,E 关于原点O 对称, ∴OA OE =, ∴四边形ANEM 为平行四边形. ………………8分∵222(1)4AMm m =-+++=,2222(1)444ME m m m m =+++=++,222(11)484AE m m m m =+++=++, 若222AM ME AE +=,则224444484m m m m +++=++,∴1m =. 此时△AME 是直角三角形,且∠AME =90°.∴当1m =时,以点A ,N ,E ,M 为顶点的四边形是矩形. …………10分25.解: (1)能. ………………1分 (2)① 22.5°. ………………2分 ②方法一∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠AA 2A 1=∠AA 4A 3=∠AA 6A 5,∴AA 3=A 3A 4,AA 5=A 5A 6∴a 2=A 3A 4=AA 3=1a 3=AA 3+ A 3A 5=a 2+ A 3A 5.………………3分∵A 3A 52,∴a 3=A 5A6=AA 5=)2221a =. ………………4分 方法二∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6.∴∠A 2A 3A 4=∠A 4A 5A 6=90°,∠A 2A 4A 3=∠A 4 A 6A 5,∴△A 2A 3A 4∽△A 4A 5A 6,∴2231a a a =,∴a 3=2221)1a =. ………………4分)11n n a -= ………………5分(3)12θθ= ………………6分 23θθ= ………………7分34θθ= ………………8分(4)由题意得:490, 590,θθ⎧<⎪⎨≥⎪⎩∴1822.5θ≤<. ………………10分祺祺之缘第 13 页共 13 页。
2011年南昌市中考数学试卷答案
·机密2011年6月19日江西省南昌市2011年中等学校招生考试数学试题卷参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.一、选择题(本大题共12个小题,每小题3分,共36分)1.D 2.A 3.C 4.B 5.C 6.B7.C 8.D9. C 10. D 11. A 12. A二、填空题(本大题共4个小题,每小题3分,共12分)13. 3-14.()()11x x x+-15. 90 16.①②③④说明:第16题填了1个或2个序号的得1分,填了3个序号的得2分.三、(本大题共2个小题,每小题各5分,共10分)17.解:原式=2111111a a aaa a a a a⎛⎫-÷=⨯=⎪----⎝⎭. ………………3分当1a=时,原式==………………5分18.解:①-②,得32y y-=-+,∴1y=.………………2分把1y=代入①得1x=. ………………4分∴1,1.xy=⎧⎨=⎩………………5分四、(本大题共2个小题,每小题各6分,共12分)19.解:(1)方法一画树状图如下:甲乙丙丁丙甲乙丁乙甲丙丁丁甲乙丙第一次第二次所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P (恰好选中甲、乙两位同学)=16. ………………4分方法二列表格如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种. ∴P (恰好选中甲、乙两位同学)=16. ………………4分(2) P (恰好选中乙同学)=13. ………………6分20.解:(1) ∵(0,4),(3,0)A B -, ∴3,4,OB OA == ∴5AB =.在菱形ABCD 中,5AD AB ==, ∴1OD =, ∴()0,1D -. ………………3分(2)∵BC ∥AD , 5BC AB ==, ∴()3,5C --. 设经过点C 的反比例函数解析式为ky x=. 把()3,5--代入k y x=中,得:53k -=-, ∴15k =,∴15y x =. …………6分五、(本大题共2个小题,每小题7分,共14分)21.解:(1)其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm. ………………2分(2)依题意得,4 1.5 1.53 2.8 2.6 2.4 2.221d +++++++=, ………………5分 ∴41621d +=, ∴54d =. ………………6分 答:相邻两圆的间距为54cm. ………………7分22.解:(1) 解法一连接OB ,OC ,过O 作OE ⊥BC 于点E .∵OE ⊥BC ,BC =∴BE EC == ………………1分 在Rt △OBE 中,OB =2,∵sin BE BOE OB ∠==, ∴60BOE ∠= , ∴120BOC ∠= ,∴1602BAC BOC ∠=∠= . ………………4分解法二连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD =4,90DCB ∠= .在Rt △DBC中,sin BC BDC BD ∠==, ∴60BDC ∠= ,∴60BAC BDC ∠=∠= .………………4分(2) 解法一因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,1302BAE BAC ∠=∠= .在Rt △ABE中,∵30BE BAE =∠= ,∴3tan 30BEAE ==,∴S △ABC=132⨯=.答:△ABC面积的最大值是 ………………7分 解法二因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC .∵60BAC ∠= , ∴△ABC 是等边三角形.在Rt △ABE中,∵30BE BAE =∠= ,∴3tan 30BEAE ===,∴S △ABC=132⨯=.答:△ABC面积的最大值是 ………………7分六、(本大题共2个小题,每小题8分,共16分). 23.解法一连接OB ,过点O 作OG ⊥BC 于点G . ………………1分 在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°,………………3分 ∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°. ………………4分 又∵17.72OB ==≈, ………………5分 ∴在Rt △OBG 中,sin 17.720.9717.1917OG OB OBG =⨯∠=⨯≈>. ……………7分∴水桶提手合格. ……………8分 解法二:连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°. ………………3分 要使OG ≥OA ,只需∠OBC ≥∠ABO , ∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°,……7分 ∴水桶提手合格. ………………8分24.解:(1)2010年全省教育发展情况统计表(说明:“合计”栏不列出来不扣分) ……………3分(2)……………5分 (3)①小学师生比=1︰22,全省各级各类学校所数扇形统计图图丙 C D初中师生比≈1︰16.7, 高中师生比=1︰15,∴小学学段的师生比最小. ………6分②如:小学在校学生数最多等. ………7分 ③如:高中学校所数偏少等. ………8分说明:(1)第①题若不求出各学段师生比不扣分;(2)第②、③题叙述合理即给分. 七、(本大题共2个小题,每小题10分,共20分)25.解:(1)当1,1a b =-=时,抛物线m 的解析式为:21y x =-+. 令0x =,得:1y =. ∴C (0,1).令0y =,得:1x =±. ∴A (-1,0),B (1,0)∵C 与C 1关于点B 中心对称,∴抛物线n 的解析式为:()222143y x x x =--=-+ ………4分(2)四边形AC 1A 1C 是平行四边形. ………5分 理由:∵C 与C 1、A 与A 1都关于点B 中心对称, ∴11,AB BA BC BC ==,∴四边形AC 1A 1C 是平行四边形. ………8分(3)令0x =,得:y b =. ∴C (0,b ).令0y =,得:20ax b +=, ∴x =,∴(A B , ………9分∴AB BC === 要使平行四边形AC 1A 1C 是矩形,必须满足AB BC =,∴ ∴24b b b a a ⎛⎫⨯-=- ⎪⎝⎭, ∴3ab =-.∴,a b 应满足关系式3ab =-. ………10分26.解: (1)能. ………………1分 (2)① 22.5°. ………………2分 ②方法一∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠AA 2A 1=∠AA 4A 3=∠AA 6A 5, ∴AA 3=A 3A 4,AA 5=A 5A 6∴a 2=A 3A 4=AA 3=1+ ………………3分 a 3=AA 3+ A 3A 5=a 2+ A 3A 5.∵A 3A 52,∴a 3=A 5A 6=AA 5=)2221a =. ………………4分方法二 ∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6.∴∠A 2A 3A 4=∠A 4A 5A 6=90°,∠A 2A 4A 3=∠A 4 A 6A 5,∴△A 2A 3A 4∽△A 4A 5A 6,∴2231a a a =,∴a 3=2221)1a =. ………………4分)11n n a -=………………5分(3)12θθ= ………………6分23θθ= ………………7分34θθ= ………………8分(4)由题意得:490,590,θθ⎧<⎪⎨≥⎪⎩∴1822.5θ≤< . ………………10分。
江西省2011年中考数学试题及答案b卷
机密★2011年6月22日江西省2011年初中毕业暨中等学校招生考试数学试题卷(B卷)说明:1.本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共8个小题,每小题3分,共24分)每小题只有一个正确选项.1.下列各数中,最小的是().A. 0.1B. 0.11C.0.02D.0.122.根据2010年第六次全国人口普查主要数据公报,广东省常住人口约为10430万人.这个数据可以用科学计数法表示为().A. 1.043×108人B. 1.043×107人C.1.043×104人D. 1043×105人3.如图,是一个实物在某种状态下的三视图,与它对应的实物图应是().4.下列运算不.正确的是().A.-(a-b)=-a + bB. a2·a3=a6C.a2-2ab+b2=(a-b)2D.3a-2a=a5.已知一次函数y=-x+b的图象经过第一、二、四象限,则b的值可以是( ).A .-2 B.-1 C. 0 D. 26.已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是().A .(1,0) B.(2,0) C.(-2,0) D.(-1,0)7. 一组数据:2,3,4,x中若中位数与平均数相等,则数x不.可能是()A.1B.2C.3D.58. 如图,将矩形ABCD对折,得折痕PQ,再沿MN翻折,使点C 恰好落在折痕PQ上的点C′处,点D落在D′处,其中M是BC的中点.连接AC′,BC′,则图中共有等腰三角形的个数是().A .1 B.2 C.3 D.4 ABD′PCDMNEC′QF第8题二、填空题(本大题共8小题,每小题3分,共24分) 9. 计算:(-2)2-1=__________. 10. 分式方程xx 112=-的解是__________.11. 在⊙O 中,点B 在⊙O 上,四边形AOCB 是矩形,对角线AC 的长为5,则⊙O的半径长为 .12. 试写一个..有两个不相等实根的一元二次方程: 13. 因式分解:3a+12a 2+12a 3= . 14.如图,在△A BC 中,A B =AC ,∠A =80°,E ,F ,P 分别是A B ,A C ,BC 边上一点,且BE =BP ,CP =CF ,则∠EPF = 度.15.一块直角三角板放在两平行直线上,如图所示,∠1+∠2=___________度.16. 在直角坐标系中,已知A (1,0)、B (-1,-2)、C (2,-2)三点坐标,若以 A 、B 、C 、D 为顶点的四边形是平行四边形,那么点D 的坐标可以是 .(填序号,多填或填错得0分,少填酌情给分) ①(-2,0) ②(0,-4) ③(4,0) ④(1,-4) .三、(本大题共3小题,每小题6分,共18分) 17.先化简,再求值:2211()11a a a a++÷--,其中2a =第11题11 2第15题18.解不等式组:{215,3 5.x x ->-+<-19.如图,在△ABO 中,已知A (0,4),B (-2,0), D 为线段AB 的中点. (1)求点D 的坐标;(2)求经过点D 的反比例函数解析式.四、(本大题共2小题,每小题8分,共16分)20. 某学校决定:每周一举行的升旗仪式,若遇下雨或其它恶劣天气,学生就在教室内参加升旗活动. 针对这一决定,校学生会在学生中作了一个抽样调查,调查问卷中有三个选项:A 、赞成;B 、不赞成;C 、无所谓.参加调查的学生共300人,调查结果用条形统计图表示﹙如图所示﹚.(1)①请补全条形统计图; ②还可以用哪类统计图表示调查结果?(2)据此推测,全校2100位学生中,持“无所谓”观点的学生有多少? (3)针对持B,C 两种观点的学生,你有什么建议?21.某教室的开关控制板上有四个外形完全相同的开关,其中两个分别控制A 、B 两盏电灯,另两个分别控制C 、D 两个吊扇.已知电灯、吊扇均正常,且处于不工作状态,开关与电灯、电扇的对应关系未知.(1)若四个开关均正常,则任意按下一个开关,正好一盏灯亮的概率是多少?(2)若其中一个控制电灯的开关坏了,则任意按下两个开关,正好一盏灯亮和一个扇转的概率是多少?请用树状图法或列表法加以说明.开关开关开关开关开关控制板3060 90 120 150 180 210学生数/位调查选项 A B C五、(本大题共2小题,每小题9分,共18分) 22.如图,将△ABC 的顶点A 放在⊙O 上,现从AC 与⊙O 相切于点A (如图1)的位置开始,将△ABC 绕着点A 顺时针旋转,设旋转角为α(0°<α<120°),旋转后AC ,AB 分别与⊙O 交于点E ,F ,连接EF (如图2). 已知∠BAC =60°,∠C =90°,AC =8,⊙O 的直径为8.(1)在旋转过程中,有以下几个量:①弦EF 的长 ② EF的长 ③∠AFE 的度数 ④点O 到EF 的距离.其中不变的量是 (填序号);(2)当BC 与⊙O 相切时,请直接写出α的值,并求此时△AEF 的面积.23.小明家需要用钢管做防盗窗,按设计要求需要用同种规格、每根长6米的钢管切割成长0.8m 的钢管及长2.5m 的钢管.﹙余料作废﹚ (1)现切割一根长6m 的钢管,且使余料最少.问能切出长0.8米及2.5米的钢管各多少根? (2)现需要切割出长0.8米的钢管89根,2.5米的钢管24根.你能用23根长6m 的钢管完成切割吗?若能,请直接写出切割方案;若不能,请说明理由. 六、(本大题共2小题,每小题10分,共20分) 24.已知:抛物线2(2)ya x b=-+ (0)ab <的顶点为A ,与x 轴的交点为B ,C (点B 在点C的左侧).(1)直接写出抛物线对称轴方程;(2)若抛物线经过原点,且△ABC 为直角三角形,求a ,b 的值;(3)若D 为抛物线对称轴上一点,则以A ,B ,C ,D 为顶点的四边形能否为正方形?若能,请写出a ,b 满足的关系式;若不能,说明理由.25.某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨:定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形.结论:在探讨过程中,有三位同学得出如下结果:甲同学:在钝角、直角、不等边锐角三角形中分别存在____个、________个、AO 备用图A BCO图1AB COE F 图2________个大小不同的内接正方形.乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大.丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.任务:(1)填充甲同学结论中的数据; (2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明; (3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明(如图,设锐角△ABC 的三条边分别为,,,a b c 不妨设a b c >>,三条边上的对应高分别为,,a b c h h h ,内接正方形的边长分别为,,a b c x x x .若你对本小题证明有困难,可直接用“111abca hb hc h <<+++”这个结论,但在证明正确的情况下扣1分).·机密2011年6月22日江西省2011年中等学校招生考试数学试题卷(B 卷)参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8个小题,每小题3分,共24分)1.C 2.A 3.A 4.B 5.D 6.C 7.B 8.C二、填空题(本大题共8个小题,每小题3分,共24分)9.3 10.1x =- 11.5 12.如:2450x x +-= 13. ()2312a a +14.50 15.90° 16.①②③三、(本大题共3个小题,每小题各6分,共18分) 17.解:原式=()()()()21111111a a a a a a a⎡⎤++-⨯⎢⎥+-+-⎢⎥⎣⎦=211a -. ………………3分当2a =时, 原式=1121=-.………………6分18.解:由①得3x >, ………………2分 由②得 8x>, ………………4分∴原不等式组的解集是8x >. ………………6分19.解:(1) ∵(0,4),(2,0)A B -, ∴2,4O B O A ==. 过点D 作D E ⊥x 轴于点E ,则122DEOA ==,112BE OB ==,∴OE =1, ∴()1,2D -. …………3分 (2)设经过点D 的反比例函数解析式为k yx=.把()1,2-代入k yx=中,得:21k =-, ∴2k =-,∴2yx=-. ……6分四、(本大题共2个小题,每小题8分,共16分)20.解:(1)①图略. ………………2分 ②还可以用扇形统计图表示调查结果.………………4分(2)全校2100位学生中,持“无所谓”观点的学生有302100210300⨯=(人).………………6分(3)答案合理、上进即可. ………………8分 21.解: (1)P (正好一盏灯亮)=2142=. ………………2分(2)不妨设控制灯A 的开关坏了.画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有4种.A B C D C A B DB A C D D A BC 第一次 第二次 3060 90 120150180210学生数/位调查选项A BC∴P (正好一盏灯亮和一个扇转)=41123=. ………………6分方法二列表格如下:AB C DAA 、B A 、C A 、 DB B 、AB 、C B 、D C C 、A C 、BC 、D D D 、A D 、B D 、C所有出现的等可能性结果共有12种,其中满足条件的结果有4种. ∴P (正好一盏灯亮和一个扇转)=41123=. ………………6分(3) P (正好一盏灯亮和一个扇转)=41123=. ………………8分五、(本大题共2个小题,每小题9分,共18分). 22.解:(1)①,②,③.(多填或填错得0分,少填酌情给分) …………3分 (2)α=90°. …………5分 依题意可知,△ACB 旋转90°后AC 为⊙O 直径,且点C 与点E 重合,因此∠AFE =90°. …………6分 ∵AC =8,∠BAC =60°, ∴AF =142AC =,EF =43, …………8分∴S △AEF =1443832⨯⨯=. …………9分23.解:(1)若只切割1根长2.5米的钢管,则剩下3.5米长的钢管还可以切割长0.8米的钢管4根,此时还剩余料0.3米;若切割2根长2.5米的钢管,则剩下1米长的钢管还可以切割长0.8米的钢管1根,此时还剩余料0.2米;∴当切割2根长2.5米的钢管、1根长0.8米的钢管时,余料最少. …………5分(2)用22根长6m 的钢管每根切割1根长2.5米的钢管,4根长0.8米的钢管;用1根长6m 的钢管切割2根长2.5米的钢管,1根长0.8米的钢管;…………9分 或用12根长6m 的钢管每根切割2根长2.5米的钢管,1根长0.8米的钢管;用11根长6m 的钢管每根切割7根长0.8米的钢管. …………9分六、(本大题共2个小题,每小题10分,共20分) 24.解:(1)抛物线对称轴方程:2x=.………2分(2)设直线2x=与x轴交于点E ,则E (2,0).A BC (E )OF∵抛物线经过原点, ∴B (0,0),C (4,0). ………3分 ∵△ABC 为直角三角形,根据抛物线的对称性可知AB AC=,∴AE BE EC ==, ∴A (2,-2)或(2,2).当抛物线的顶点为A (2,-2)时,()222y a x =--,把(0,0)代入,得:12a=,此时,2b=-. ………5分当抛物线的顶点为A (2,2)时,()222y a x =-+,把(0,0)代入,得:12a=-,此时,2b =.∴12a=,2b =-或12a=-,2b=. ………7分(3)依题意,B 、C 关于点E 中心对称,当A,D 也关于点E 对称,且BE AE =时, 四边形ABDC 是正方形. ∵()0,A b , ∴AE b =, ∴()2,0B b -,把()2,0B b -代入()22y a x b=-+,得 2ab b +=,∵0b≠, ∴1ab =-.………10分25.解: (1)1,2,3. ………………3分 (2)乙同学的结果不正确. ………………4分例如:在R t △ABC 中,∠B =90°,1,ABBC ==则2AC =.如图①,四边形DEFB 是只有一个顶点在斜边上的内接正方形.设它的边长为a ,则依题意可得:111a a -=,∴12a=.如图②,四边形DEFH 两个顶点都在斜边上的内接正方形.设它的边长为b ,则依题意可得:22222b b -=,∴23b=.∴ab>. ………………7分(3)丙同学的结论正确.设△ABC 的三条边分别为,,,a b c 不妨设a b c >>,三条边上的对应高分别为,,a b c h h h ,内接正方形的边长分别为,,a b c x x x .O xyA B CEA BCD EF图①ABCD E FH图②依题意可得:a a aax h x ah -=, ∴a aaah x a h =+.同理 b bbbh x b h =+.∵()()()22112()2a b a b a bababb a a b ah bh S S x x S a h b h a h b h a h b h Sb h a h a h b h -=-=-=-++++++=+--++=()()222a b SS S b a a h b h b a ⎛⎫+-- ⎪++⎝⎭=()221()()a b SS b a a h b h ab ⎛⎫∙-- ⎪++⎝⎭ =()21()()a a b h Sb a a h b h b ⎛⎫∙-- ⎪++⎝⎭ 又∵,a b a h b <<, ∴()10a h b a b ⎛⎫--< ⎪⎝⎭,∴a b x x <,即22a bx x <.∴在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小. ………………10分。
2011年江西省中考数学试题B卷(含答案)
机密★2011年6月22日江西省2011年初中毕业暨中等学校招生考试数学试题卷(B卷)说明:1.本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共8个小题,每小题3分,共24分)每小题只有一个正确选项.1.下列各数中,最小的是().A. 0.1B. 0.11C.0.02D.0.122.根据2010年第六次全国人口普查主要数据公报,广东省常住人口约为10430万人.这个数据可以用科学计数法表示为().A. 1.043×108人B. 1.043×107人C.1.043×104人D. 1043×105人3.如图,是一个实物在某种状态下的三视图,与它对应的实物图应是().4.下列运算不.正确的是().A.-(a-b)=-a + bB. a2·a3=a6C.a2-2ab+b2=(a-b)2D.3a-2a=a5.已知一次函数y=-x+b的图象经过第一、二、四象限,则b的值可以是( ).A .-2 B.-1 C. 0 D. 26.已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是().A .(1,0) B.(2,0) C.(-2,0) D.(-1,0)7. 一组数据:2,3,4,x中若中位数与平均数相等,则数x不.可能是()A.1B.2C.3D.58. 如图,将矩形ABCD对折,得折痕PQ,再沿MN翻折,使点C 恰好落在折痕PQ上的点C′处,点D落在D′处,其中M是BC的中点.连接AC′,BC′,则图中共有等腰三角形的个数是(). ABD′PCDMNEC′QFA .1 B.2 C.3 D.4二、填空题(本大题共8小题,每小题3分,共24分) 9. 计算:(-2)2-1=__________. 10. 分式方程xx 112=-的解是__________. 11. 在⊙O 中,点B 在⊙O 上,四边形AOCB 是矩形,对角线AC 的长为5,则⊙O的半径长为 . 12. 试写一个..有两个不相等实根的一元二次方程: 13. 因式分解:3a+12a 2+12a 3= . 14.如图,在△A BC 中,A B =AC ,∠A =80°,E ,F ,P 分别是A B ,A C ,BC 边上一点,且BE =BP ,CP =CF ,则∠EPF = 度.15.一块直角三角板放在两平行直线上,如图所示,∠1+∠2=___________度.16. 在直角坐标系中,已知A (1,0)、B (-1,-2)、C (2,-2)三点坐标,若以 A 、B 、C 、D 为顶点的四边形是平行四边形,那么点D 的坐标可以是 .(填序号,多填或填错得0分,少填酌情给分) ①(-2,0) ②(0,-4) ③(4,0) ④(1,-4) . 三、(本大题共3小题,每小题6分,共18分) 17.先化简,再求值:2211()11a a a a++÷--,其中a =第11题第15题18.解不等式组:{215,3 5.x x ->-+<-19.如图,在△ABO 中,已知A (0,4),B (-2,0), D 为线段AB 的中点. (1)求点D 的坐标;(2)求经过点D 的反比例函数解析式. 四、(本大题共2小题,每小题8分,共16分)20. 某学校决定:每周一举行的升旗仪式,若遇下雨或其它恶劣天气,学生就在教室内参加升旗活动. 针对这一决定,校学生会在学生中作了一个抽样调查,调查问卷中有三个选项:A 、赞成;B 、不赞成;C 、无所谓.参加调查的学生共300人,调查结果用条形统计图表示﹙如图所示﹚. (1)①请补全条形统计图; ②还可以用哪类统计图表示调查结果?(2)据此推测,全校2100位学生中,持“无所谓”观点的学生有多少? (3)针对持B,C 两种观点的学生,你有什么建议?21.某教室的开关控制板上有四个外形完全相同的开关,其中两个分别控制A 、B 两盏电灯,另两个分别控制C 、D 两个吊扇.已知电灯、吊扇均正常,且处于不工作状态,开关与电灯、电扇的对应关系未知.(1)若四个开关均正常,则任意按下一个开关,正好一盏灯亮的概率是多少?(2)若其中一个控制电灯的开关坏了,则任意按下两个开关,正好一盏灯亮和一个扇转的学生数/位调查选项五、(本大题共2小题,每小题9分,共18分) 22.如图,将△ABC 的顶点A 放在⊙O 上,现从AC 与⊙O 相切于点A (如图1)的位置开始,将△ABC 绕着点A 顺时针旋转,设旋转角为α(0°<α<120°),旋转后AC ,AB 分别与⊙O 交于点E ,F ,连接EF (如图2). 已知∠BAC =60°,∠C =90°,AC =8,⊙O 的直径为8.(1)在旋转过程中,有以下几个量:①弦EF 的长 ② EF的长 ③∠AFE 的度数 ④点O 到EF 的距离.其中不变的量是 (填序号); (2)当BC 与⊙O 相切时,请直接写出α的值,并求此时△AEF 的面积.23.小明家需要用钢管做防盗窗,按设计要求需要用同种规格、每根长6米的钢管切割成长0.8m 的钢管及长2.5m 的钢管.﹙余料作废﹚ (1)现切割一根长6m 的钢管,且使余料最少.问能切出长0.8米及2.5米的钢管各多少根? (2)现需要切割出长0.8米的钢管89根,2.5米的钢管24根.你能用23根长6m 的钢管完成切割吗?若能,请直接写出切割方案;若不能,请说明理由.六、(本大题共2小题,每小题10分,共20分) 24.已知:抛物线2(2)y a x b =-+ (0)ab <的顶点为A ,与x 轴的交点为B ,C (点B 在点C 的左侧).(1)直接写出抛物线对称轴方程;(2)若抛物线经过原点,且△ABC 为直角三角形,求a ,b 的值;(3)若D 为抛物线对称轴上一点,则以A ,B ,C ,D 为顶点的四边形能否为正方形?若能,请写出a ,b 满足的关系式;若不能,说明理由.25.某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨:定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形.结论:在探讨过程中,有三位同学得出如下结果:备用图B图1图2甲同学:在钝角、直角、不等边锐角三角形中分别存在____个、________个、________个大小不同的内接正方形.乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大.丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.任务:(1)填充甲同学结论中的数据;(2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明;(3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明(如图,设锐角△ABC 的三条边分别为,,,a b c 不妨设a b c >>,三条边上的对应高分别为,,a b c h h h ,内接正方形的边长分别为,,a b c x x x .若你对本小题证明有困难,可直接用“111a b ca hb hc h <<+++”这个结论,但在证明正确的情况下扣1分).·机密2011年6月22日江西省2011年中等学校招生考试数学试题卷(B 卷)参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8个小题,每小题3分,共24分)1.C 2.A 3.A 4.B 5.D 6.C 7.B 8.C 二、填空题(本大题共8个小题,每小题3分,共24分)9.3 10.1x =- 11.5 12.如:2450x x +-= 13. ()2312a a + 14.50 15.90° 16.①②③ 三、(本大题共3个小题,每小题各6分,共18分) 17.解:原式=()()()()21111111a a a a a a a⎡⎤++-⨯⎢⎥+-+-⎢⎥⎣⎦=211a -. ………………3分当a = 原式=1121=-. ………………6分 18.解:由①得 3x >, ………………2分由②得 8x >, ………………4分 ∴原不等式组的解集是8x >. ………………6分19.解:(1) ∵(0,4),(2,0)A B -, ∴2,4OB OA ==.过点D 作D E ⊥x 轴于点E ,则122DE OA ==,112BE OB ==,∴OE =1, ∴()1,2D -. …………3分 (2)设经过点D 的反比例函数解析式为ky x=.把()1,2-代入kyx=中,得:21k=-,∴2k=-,∴2yx=-. ……6分四、(本大题共2个小题,每小题8分,共16分)20.解:(1)①图略. ………………2分②还可以用扇形统计图表示调查结果.………………4分(2)全校2100位学生中,持“无所谓”观点的学生有302100210300⨯=(人).………………6分(3)答案合理、上进即可.………………8分21.解:(1)P(正好一盏灯亮)=2142=. ………………2分(2)不妨设控制灯A的开关坏了.画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有4种.∴P(正好一盏灯亮和一个扇转)=41123=. ………………6分方法二列表格如下:A B C DA A、B A、C A、DB B、A B、C B、DC C、A C、B C、DD D、A D、B D、C所有出现的等可能性结果共有12种,其中满足条件的结果有4种.∴P(正好一盏灯亮和一个扇转)=41123=. ………………6分(3) P(正好一盏灯亮和一个扇转)=41123=. ………………8分五、(本大题共2个小题,每小题9分,共18分).22.解:(1)①,②,③.(多填或填错得0分,少填酌情给分)…………3分(2)α=90°. …………5分ABCDCABDBACDDA B C 第一次第二次学生数/位调查选项依题意可知,△ACB 旋转90°后AC 为⊙O 直径,且点C 与点E 重合,因此∠AFE =90°. …………6分 ∵AC =8,∠BAC =60°,∴AF =142AC =,EF= …………8分∴S △AEF=142⨯⨯ …………9分23.解:(1)若只切割1根长2.5米的钢管,则剩下3.5米长的钢管还可以切割长0.8米的钢管4根,此时还剩余料0.3米;若切割2根长2.5米的钢管,则剩下1米长的钢管还可以切割长0.8米的钢管1根,此时还剩余料0.2米;∴当切割2根长2.5米的钢管、1根长0.8米的钢管时,余料最少. …………5分(2)用22根长6m 的钢管每根切割1根长2.5米的钢管,4根长0.8米的钢管;用1根长6m 的钢管切割2根长2.5米的钢管,1根长0.8米的钢管;…………9分 或用12根长6m 的钢管每根切割2根长2.5米的钢管,1根长0.8米的钢管;用11根长6m 的钢管每根切割7根长0.8米的钢管. …………9分六、(本大题共2个小题,每小题10分,共20分)24.解:(1)抛物线对称轴方程:2x =. ………2分(2)设直线2x =与x 轴交于点E ,则E (2,0).∵抛物线经过原点, ∴B (0,0),C (4,0). ………3分 ∵△ABC 为直角三角形,根据抛物线的对称性可知AB AC =,∴AE BE EC ==, ∴A (2,-2)或(2,2).当抛物线的顶点为A (2,-2)时,()222y a x =--,把(0,0)代入,得:12a =,此时,2b =-. ………5分当抛物线的顶点为A (2,2)时,()222y a x =-+,把(0,0)代入,得:12a =-,此时,2b =.∴12a =,2b =-或12a =-,2b =. ………7分(3)依题意,B 、C 关于点E 中心对称,当A,D 也关于点E 对称,且BE AE =时, 四边形ABDC 是正方形. ∵()0,A b , ∴AE b =, ∴()2,0B b -,把()2,0B b -代入()22y a x b =-+,得 20ab b +=,∵0b ≠, ∴1ab =-. ………10分25.解: (1)1,2,3. ………………3分 (2)乙同学的结果不正确. ………………4分 例如:在R t △ABC 中,∠B =90°,1,AB BC ==则AC = 如图①,四边形DEFB 是只有一个顶点在斜边上的内接正方形.设它的边长为a ,则依题意可得:111a a -=,∴12a =.如图②,四边形DEFH 两个顶点都在斜边上的内接正方形.设它的边长为b ,b =,∴b =. ∴a b >. ………………7分(3)丙同学的结论正确.设△ABC 的三条边分别为,,,a b c 不妨设a b c >>,三条边上的对应高分别为,,a b c h h h ,内接正方形的边长分别为,,a b c x x x . 依题意可得:a a a a x h x a h -=, ∴a a aah x a h =+.同理 bb b bh x b h =+. ∵()()()22112()2a b a b a b a b a bb a a b ah bh S S x x S a h b h a h b h a h b h Sb h a h a h b h -=-=-=-++++++=+--++=()()222a b S S S b a a h b h b a ⎛⎫+-- ⎪++⎝⎭ =()221()()a b S S b a a h b h ab ⎛⎫∙-- ⎪++⎝⎭=()21()()aa b h S b a a h b h b ⎛⎫∙-- ⎪++⎝⎭ 又∵,a b a h b <<, ∴()10ah b a b⎛⎫--< ⎪⎝⎭, ∴a b x x <,即22a b x x <.∴在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小. ………………10分A BCD EF图①ABCD FH图②。
2011年南昌中考数学试题(含答案)
江西省南昌市2011年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有六个大题,26个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共12个小题,每小题3分,共36分)每小题只有一个正确选项. 1.下列各数中,最小的是( ).A. 0B. 1C.-1D. -22.根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人.这个数据可以用科学计数法表示为( ).A. 4.456×107人B. 4.456×106人C. 4456×104人D. 4.456×103人 3.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).4.下列运算正确的是( ). A.a +b =ab B. a 2·a 3=a 5 C.a 2+2ab -b 2=(a -b )2 D.3a -2a =15.下列各数中是无理数的是( )A.400B.4C.0.4D.0.046.把点A (-2,1)向上平移2个单位,再向右平移3个单位后得到B ,点B 的坐标是( ). A.(-5,3) B.(1,3) C.(1,-3) D.(-5,-1)7.不等式8-2x >0的解集在数轴上表示正确的是( ).8. 已知一次函数y =x +b 的图象经过第一、二、三象限,则b 的值可以是( ). A .-2 B.-1 C. 0 D. 29.已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是( ). A .1 B.2 C.-2 D.-1 10.如图,在下列条件中,不能..证明△ABD ≌△ACD 的是( ). A.BD =DC , AB =AC B.∠ADB =∠ADC ,BD =DC C.∠B =∠C ,∠BAD =∠CAD D. ∠B =∠C ,BD =DC 11.下列函数中自变量x 的取值范围是x >1的是( ). A.11y x =- B.1y x =- C.11y x =- D.11y x=-12.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y (度),运行时间为t (分),当时间从12︰00开始到12︰30止,y 与 t 之间的函数图象是( ).30 O 180 y (度) t (分) 165 A. 30 O 180 y (度) t (分) B.30 O 180 y (度) t (分) 195 C. 30 O180 y (度)t (分) D.B.C. D. A. 第7题图甲 图乙 第3题0 2 4 6 A.0 2 4 6 B. 0 2 4 6 C. 0 2 4 6 D.二、填空题(本大题共4小题,每小题3分,共12分) 13.计算:-2-1=__________.14.因式分解:x 3-x =______________. 15.如图,在△ABC 中,点P 是△ABC 的内心,则∠PBC +∠PCA +∠PAB =__________度. 16.如图所示,两块完全相同的含30°角的直角三角板叠放在一起,∠DAB =30°,有以下四个结论:①AF ⊥BC ②△ADG ≌△ACF ③O 为BC 的中点 ④AG ︰DE =3:4,其中正确结论的序号是 ..三、(本大题共2小题,每小题5分,共10分) 17.先化简,再求值:2()11a a a a a+÷--,其中2 1.a =+18.解方程组:2122.x y x y y -=-⎧⎨-=-⎩,四、(本大题共2小题,每小题6分,共12分)19.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛. (1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.20.如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0).(1)求点D 的坐标;(2)求经过点C 的反比例函数解析式.五、(本大题共2小题,每小题7分,共14分) 21.有一种用来画圆的工具板(如图所示),工具板长21cm ,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm ,其余圆的直径从左到右依次递减0.2cm. 最大圆的左侧距工具板左侧边缘1.5cm ,最小圆的右侧距工具板右侧边缘1.5cm ,相邻两圆的间距d 均相等.(1)直接写出其余四个圆的直径长; (2)求相邻两圆的间距.22.如图,已知⊙O 的半径为2,弦BC 的长为23,点A 为弦BC 所对优弧上任意一点(B ,C21 1.5 1.5 d 3A B C O x yD A C BP 第15题AD CB EO G F 第16题两点除外). (1)求∠BAC 的度数; (2)求△ABC 面积的最大值. (参考数据:3sin 602=,3cos 302=,3tan 303=.)五、(本大题共2小题,每小题8分,共16分)23.图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形.当点O 到BC (或DE )的距离大于或等于⊙O 的半径时(⊙O 是桶口所在圆,半径为OA ),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A -B -C -D -E -F ,C -D 是 C D ,其余是线段),O 是AF 的中点,桶口直径AF =34cm ,AB =FE =5cm ,∠ABC =∠FED =149°.请通过计算判断这个水桶提手是否合格.(参考数据:314≈17.72,tan73.6°≈3.40,sin75.4°≈0.97.)24.以下是某省2010年教育发展情况有关数据: 全省共有各级各类学校25000所,其中小学12500所,初中2000所,高中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其它11万人.请将上述资料中的数据按下列步骤进行统计分析.(1)整理数据:请设计一个统计表,将以上数据填入表格中.(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整. (3)分析数据:①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比=在职教师数︰在校学生数) ②根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可) ③从扇形统计图中,你得出什么结论?(写出一个即可)图丙A BCD E F O34 B C A O图甲F ED BC A O 图乙DEF 高中 1.8%AB CO 2010年全省教育发展情况统计表六、(本大题共2小题,每小题10分,共20分)25.如图所示,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x 轴的另一个交点为A1.(1)当a=-1,b=1时,求抛物线n的解析式;(2)四边形AC1A1C是什么特殊四边形,请写出结果并说明理由;(3)若四边形AC1A1C为矩形,请求出a,b应满足的关系式.CBAC1A1xy O26.某数学兴趣小组开展了一次活动,过程如下: 设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB ,AC 上. 活动一:如图甲所示,从点A 1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A 1A 2为第1根小棒. 数学思考:(1)小棒能无限摆下去吗?答: .(填“能”或“不能”) (2)设AA 1=A 1A 2=A 2A 3=1.①θ=_________度; ②若记小棒A 2n -1A 2n 的长度为a n (n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,…) 求出此时a 2,a 3的值,并直接写出a n (用含n 的式子表示).活动二:如图乙所示,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2=AA 1.数学思考:(3)若已经摆放了3根小棒,θ1 =_________,θ2=________, θ3=________;(用含θ的式子表示) (4)若只能..摆放4根小棒,求θ的范围.数学参考答案A 1A 2 AB C图乙A 3 A 41θ 2θ3θ θA 1 A 2A B C A 3 A 4A 5 A 6 a 1 a 2 a 3图甲θ一、选择题(本大题共12个小题,每小题3分,共36分)1.D 2.A 3.C 4.B 5.C 6.B7.C 8.D 9. C 10. D 11. A 12. A 二、填空题(本大题共4个小题,每小题3分,共12分)13. 3- 14.()()11x x x +- 15. 90 16. ①②③④说明:第16题填了1个或2个序号的得1分,填了3个序号的得2分. 三、(本大题共2个小题,每小题各5分,共10分) 17.解:原式=2111111a aa a a a a a a ⎛⎫-÷=⨯=⎪----⎝⎭. ………………3分当21a =+时, 原式=112.22112==+-………………5分18.解:①-②,得 32yy-=-+,∴1y =.………………2分把1y =代入①得 1x =. ………………4分∴1,1.x y =⎧⎨=⎩ ………………5分四、(本大题共2个小题,每小题各6分,共12分) 19.解:(1)方法一画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P (恰好选中甲、乙两位同学)=16. ………………4分方法二列表格如下:甲乙丙 丁 甲甲、乙甲、丙甲、丁乙乙、甲乙、丙乙、丁丙丙、甲 丙、乙丙、丁丁丁、甲 丁、乙丁、丙所有出现的等可能性结果共有12种,其中满足条件的结果有2种. ∴P (恰好选中甲、乙两位同学)=16. ………………4分甲 乙 丙 丁 丙 甲 乙 丁 乙 甲 丙 丁 丁甲 乙 丙第一次第二次(2) P (恰好选中乙同学)=13. ………………6分 20.解:(1) ∵(0,4),(3,0)A B -, ∴3,4,O B O A == ∴5AB =.在菱形ABC D 中,5AD AB ==, ∴1OD=, ∴()0,1D -. ………………3分(2)∵BC ∥AD , 5BC AB ==,∴()3,5C --.设经过点C 的反比例函数解析式为k yx=.把()3,5--代入k yx=中,得:53k -=-, ∴15k =,∴15yx=. …………6分五、(本大题共2个小题,每小题7分,共14分)21.解:(1)其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm. ………………2分 (2)依题意得,4 1.5 1.53 2.8 2.6 2.4 2.221d +++++++=, ………………5分 ∴41621d+=, ∴54d =. ………………6分答:相邻两圆的间距为54cm. ………………7分22.解:(1) 解法一连接OB ,OC ,过O 作OE ⊥BC 于点E .∵OE ⊥BC ,BC =23,∴3BE EC ==. ………………1分 在Rt △OBE 中,OB =2,∵3sin 2B E B O E O B∠==,∴60B O E ∠=, ∴120B O C∠=,∴1602BACBOC ∠=∠=. ………………4分解法二连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD =4,90D C B ∠= . 在Rt △DBC 中,233sin 42BC BD CBD∠===,∴60B D C ∠= ,∴60B A C B D C ∠=∠= .………………4分(2) 解法一因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,1302BAEBAC ∠=∠=.在Rt △ABE 中,∵3,30BE BAE =∠=,∴33tan 3033BE AE ===,∴S △ABC =1233332⨯⨯=.答:△ABC 面积的最大值是33. ………………7分 解法二因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分ABCOEABCODABC OE过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC .∵60B A C ∠= , ∴△ABC 是等边三角形. 在Rt △ABE 中,∵3,30BE BAE =∠= , ∴33tan 3033BE AE ===,∴S △ABC =1233332⨯⨯=.答:△ABC 面积的最大值是33. ………………7分六、(本大题共2个小题,每小题8分,共16分). 23.解法一连接OB ,过点O 作OG ⊥BC 于点G . ………………1分 在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =17 3.45AO AB==,∴∠ABO =73.6°,………………3分∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°. ………………4分 又 ∵2251731417.72OB =+=≈, ………………5分 ∴在Rt △OBG 中,sin 17.720.9717.1917O G O B O BG =⨯∠=⨯≈>. ……………7分 ∴水桶提手合格. ……………8分 解法二:连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =17 3.45AO AB==,∴∠ABO =73.6°. ………………3分 要使OG ≥OA ,只需∠OBC ≥∠ABO , ∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°,……7分∴水桶提手合格. ………………8分学校所数 (所) 在校学生数 (万人) 教师数 (万人)小学 12500 440 20初中200020012图丙AB C DEF O 34 G24.解:(1)2010年全省教育发展情况统计表(说明:“合计”栏不列出来不扣分) ……………3分(2)……………5分(3)①小学师生比=1︰22,初中师生比≈1︰16.7, 高中师生比=1︰15,∴小学学段的师生比最小. ………6分②如:小学在校学生数最多等. ………7分 ③如:高中学校所数偏少等. ………8分说明:(1)第①题若不求出各学段师生比不扣分;(2)第②、③题叙述合理即给分. 七、(本大题共2个小题,每小题10分,共20分)25.解:(1)当1,1a b =-=时,抛物线m 的解析式为:21y x =-+.令0x =,得:1y =. ∴C (0,1).令0y =,得:1x =±. ∴A (-1,0),B (1,0)∵C 与C 1关于点B 中心对称,∴抛物线n 的解析式为:()222143yx x x =--=-+ ………4分(2)四边形AC 1A 1C 是平行四边形. ………5分 理由:∵C 与C 1、A 与A 1都关于点B 中心对称, ∴11,AB BA BC BC ==,∴四边形AC 1A 1C 是平行四边形. ………8分(3)令0x =,得:y b =. ∴C (0,b ).令0y=,得:20ax b +=, ∴b xa=±-,∴(,0),(,0)b b A B aa---, ………9分∴2222,b b ABBC O C O B b aa=-=+=-.要使平行四边形AC 1A 1C 是矩形,必须满足AB BC=,高中 450 75 5 其它 10050 280 11 合计 25000 995 48 高中 1.8%全省各级各类学校所数扇形统计图 小学 50% 其它 40.2% 初中 8%∴22b b b aa-=-, ∴24b b b a a⎛⎫⨯-=- ⎪⎝⎭,∴3ab =-.∴,a b 应满足关系式3ab =-. ………10分26.解: (1)能. ………………1分 (2)① 22.5°. ………………2分 ②方法一∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3, ∴A 1A 3=2,AA 3=12+.又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠AA 2A 1=∠AA 4A 3=∠AA 6A 5, ∴AA 3=A 3A 4,AA 5=A 5A 6∴a 2=A 3A 4=AA 3=12+, ………………3分 a 3=AA 3+ A 3A 5=a 2+ A 3A 5.∵A 3A 5=2a 2,∴a 3=A 5A 6=AA 5=()222221a a +=+. ………………4分 方法二 ∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3=2,AA 3=12+.又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6.∴∠A 2A 3A 4=∠A 4A 5A 6=90°,∠A 2A 4A 3=∠A 4 A 6A 5,∴△A 2A 3A 4∽△A 4A 5A 6, ∴2231a a a =,∴a 3=222(21)1a =+. ………………4分()121n n a -=+ ………………5分(3)12θθ= ………………6分23θθ= ………………7分34θθ= ………………8分(4)由题意得:490,590,θθ⎧<⎪⎨≥⎪⎩∴1822.5θ≤<. ………………10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.如图,△DEF是由绕着某点施转得到的,则这点的坐标是•
16.如图所示•两块完全相同的含30。角的直角三角板叠放在一起,且厶DAB =3O°:4i以下四个
结论:①AF丄BC②厶ADGmMCF③O为〃C的中点®AG:D£=VT:4,其中正确结
论的序号是.(错填得0分,少填酌情给分)
式子表示)
(4)若只能摆放4根小棒,求0的范围.
• •
(2)设.4仏=4/日HR.
1度;
记小棒几山的长度为为正整数,如"2S,"戶如…),求岀此时血心的 值,并直接写出久(用含n的式子聂示).
图甲
活动二:
如图乙所示,从点右开始,用等长的小様依次向右摆放,其中仙2为第1根小駅且“尸
AA,.
数学思考:
(3)若巳经向右摆放了3根小标,则& =,址=也=;(用含$的
(1 )请直接写岀撷物线C2的表达式.
(2)现将葩物线c.向左半移m个单位长度,平移后得到的新雄物线的頂点为M,与工轴的交 点从左到右依次为A,〃;将拋协线“向右也平移m个单位长度,平移后得到的新拋物 线的顶点为冲・与工轴交点从左到右依次为D,E.
1当B,D是线段AE的三等分点时,求m的值;
2在平移过程中,是否存在以点A ,N,E,M为顶点的四边形是矩形的情形?若存在,请求 岀此时/n的值;若不存在,请说明理由.
备用图
25.某数学兴趣小组开展了一次活动,过程如下:
设乙ZMCW(0°“<90。)•现把小棒依次攫放在两射线AB,AC之间,并使小棒两瑞分别落在 两射线上.
活动一:
如图甲所示,从点山开始,依次向右摆放小样,使小俸与小梅在端点处互相垂直,“2为笫1根小律.
数学思考:
(1)小權能无限摆下去吗?答:.(填“能••或“不能J
请将上述资料中的数据按下列步暖进行统计分析・
(1)6理数男:请设计-个统计农,将以上数据填入表格中•
(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图•请将它补充完褻
(3)分析数据:
1分析统计表中的相关数据•小学.初中、高中三个学段的师生比,最小的是哪个学段?请 克接写出•(师生比二在职教师数:在校学生数)
江西省2011年中等学校招生考试
数学试题卷
说明注本菲共冇六个大题.25个小题,全乐满分120分易试时同120分仲.
2•本卷分为试题菲和签题莓■签案要求写在答题卷上,不得在试题思上作答,否则不给分•一、选择题(本大题共8个小頻,毎小题3分■共24分)毎小題只有一个正确选项・
1.下列各数中,最小的是().
A.OB.1C-lD.-VT
2.根掘20】0年第六次全国人口昔査土要数粥公报,江西省常住人口约为4456万人•这个数据
可以用科学计数法表示为().
A. 4.456X107人B. 4.456X106人C. 4456x10*人D. 4.45&10人
3•将两个大小完全相同的杯子(如图甲)栓放在一起(如图乙)•则图乙中实物的俯视图是()・
0如图,四边形朋CD为菱形,已知*(0,4),8(・3,0).
(1)求点。的坐标;
(2)求经过点C的反比例函数解析式.
■、(本大題共2小題,毎小题8分■共16分)
20.有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个 圆(孔),其中址大圆的直径为3cm,其余圆的述径从左到右依次递减0.2cm.最大圆的左侧 距工具板左侧边缘1.5cm,最小同的右侧距工具板右伺边集1.5cm,相邻两圆的间距d均 相第.
(參考数据:<314 «17.72 jan73.6°3.40,sin75.4°«0.97.)
23.以下是某省2010年教育发展情况有关数据:
全省共有各级备类于校25000所■其中小学12500所■初中2000所,离中450所■其它 学校10050所;全老共右在校学生995万人,其中小学440万人,初中200万人,高中75万 人,其它280万人;全省共冇在职教师48万人,其中小学20万人,初中12万人,髙中5万 人,其它11万人
2根据统计衷中的相关数抿,你还能从其它他度分析猖出什么结论吗?(写岀一个即可)
3从扇形统计图中,你得出什么结论?(马出一个即可)
20104育发展球况蜒计表
仝省參级$矣学校所敦扇形统计图
六.(本大遞共2小題,每小题10分,共20分)
24•務抛物线6:尸・VTH+\/T沿H轴簡折,得抛物线C2,如图所示.
9.计算:-2-1=,
10.因式分解:£-«=.
11.函数尸中,自变圮工的取值范圈堆.
(2x图,在△/4BC中,点P是ZUBC的内心,則厶PBC+ZPG4+乙刃也度.
14.将完全相同的平行四边形和完全相同的菱形孃嵌成如图所示的图案•设菱形中较小角为*度,
三、(本大題共3小題,毎小題6分,共18分)
17-先化氐再求值:(寻+甘)耳具中-VT+1.
18.甲.乙.丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;
(2)若已确定甲打第一场•再从其余三位同学中随机选取一位,求恰好选中乙同学的慨率.
(1)直接写出其余四个圆的直轻长;
(2)求相邻两圆的间距.
21.如图,已知O0的半径为2,戎BC的长为2VT,点*为弦BC所对优弧上任意一点(8,C两 点除外).
(1)求乙B4C的度数;
(2)求△人BC面积的履大值.
(參考數据:sin60°=耳M,00830°=^^,曲30°=呂工.)
22.图甲是亠个水桶梗史示意图,水桶提手结构的平面图是轴对称图形•当点0到BC(或DE)的距离大于或尊于00的半独时(00是确口所在圆,半轻为提手才能从图甲的位置转到图乙 的位置.这样的提手才合格.现用金属材料做了一个水桶提丰(如图丙A-B~C-D~EJ:C・D飛⑦,其余是线段),0是佔的中点,桶口玄径请通 过计算判断这个水桶握手是否合絡•