七年级数学上册1.3有理数的加减法教学课件人教版
合集下载
1.3.1(1) 有理数的加法法则-七年级数学上册课件(人教版)
有理数的加法法则:
确定类型
定符号
绝对值
同号
相同符号
学科网
异号(绝对值 取绝对值较大
不相等) 的加数的符号
相加 相减
异号(互为相 反数)
结果是0
与0相加
仍是这个数
知识梳理
当堂训练
有理数的加法
查漏补缺
1.两个有理数的和为零,则这两个有理数一定( D )
A.都是零 B.至少有一个是零 C.一正一负 D.互为相反数
(1)当a、b同号时,求a+b的值;
(2)当a、b异号时,求a+b的值.
解:∵|a|=8,|b|=2,∴a=±8,b=±2.
(1)∵a、b同号,∴a=8,b=2或a=-8,b=-2. ∴a+b=8+2=10,或a+b=-8+(-2)=-10.
(2)∵a、b异号, ∴a=8,b=-2或a=-8,b= 2. ∴a+b=8+(-2)=6,或a+b=-8+2=-6.
西
东
-3 -2 -1 0 1 2 3 4
解:小狗两次一共向西走了(3-2)米.用算式表示为:-3+(+2)=-(3-2)
【问题4】如果小狗先向西行走2米,再继续向东行走3米,则小
狗两次一共向哪个方向行走了多少米?
西
东
-3 -2 -1 0 1 2 3 4 解:小狗两次一共向东走了(3-2)米.用算式表示为:-2+(+3)=+(3-2)
典型例题
知识要点
01 有理数的加法法则 02 有理数加法的应用
精讲精练
知识点二
有理数加法的应用
典型例题
【例3】足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,
确定类型
定符号
绝对值
同号
相同符号
学科网
异号(绝对值 取绝对值较大
不相等) 的加数的符号
相加 相减
异号(互为相 反数)
结果是0
与0相加
仍是这个数
知识梳理
当堂训练
有理数的加法
查漏补缺
1.两个有理数的和为零,则这两个有理数一定( D )
A.都是零 B.至少有一个是零 C.一正一负 D.互为相反数
(1)当a、b同号时,求a+b的值;
(2)当a、b异号时,求a+b的值.
解:∵|a|=8,|b|=2,∴a=±8,b=±2.
(1)∵a、b同号,∴a=8,b=2或a=-8,b=-2. ∴a+b=8+2=10,或a+b=-8+(-2)=-10.
(2)∵a、b异号, ∴a=8,b=-2或a=-8,b= 2. ∴a+b=8+(-2)=6,或a+b=-8+2=-6.
西
东
-3 -2 -1 0 1 2 3 4
解:小狗两次一共向西走了(3-2)米.用算式表示为:-3+(+2)=-(3-2)
【问题4】如果小狗先向西行走2米,再继续向东行走3米,则小
狗两次一共向哪个方向行走了多少米?
西
东
-3 -2 -1 0 1 2 3 4 解:小狗两次一共向东走了(3-2)米.用算式表示为:-2+(+3)=+(3-2)
典型例题
知识要点
01 有理数的加法法则 02 有理数加法的应用
精讲精练
知识点二
有理数加法的应用
典型例题
【例3】足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,
人教版七年级数学上册:1.3有理数的加减法 课件 (共29张PPT)
解:
气温下降5℃,记为-5 ℃.
7+(-5)= 2( ℃) 0+(-5)= - 5(℃)
答:两天后该市的最高气温约为2 ℃,最低气温 约为-5 ℃.
用“>”或“<”填空: (1) 如果a>0,b>0,那么a+b____0; > (2) 如果a<0,b<0,那么a+b____0 ; < > (3) 如果a>0,b<0,|a|>|b|,那么a+b____0; (4) 如果a<0,b>0, |a|<|b|,那么a+b____0; >
§1.3.1
问题:
小矮人在森林里的一条东西方向 的道路上,先走了3米,又走了2米, 能否确定他现在位于原来位置的哪 个方向,与原来位置相距多少米?
不妨规定向东为正,向西为负。
1.先向东运动3米 再向东运动2米
(+3) + (+2) = +5
0
3
5
2.先向西运动3米 再向西运动2米
(-3)
+
(-2) = -5
; (-5)+(+3) =- 2
;
变换题型了
2:在括号里填上适当的符号,使下列式子成立: _ + )=0 (1)(__5)+( ___5 _ (2)( __7 )+(- 5)=-12
打开这一扇门, 你会有所发现
+ )=+1 (3)(-10)+( __11 _ _ (4)(__2.5)+(__2.5 )=-5
-5
-3
0
找规律
同号
(+3)+(+2)=+5 + + + (-3)+( -2)=-5 - -
人教版七年级数学上册教学有理数的加法优质PPT
东
-1
0原处 1
2
3
4
5
6
7
8
+3
+4
悟空两次一共向东行走了7千米.
写成算式为:( +3 )+(+4)= + 7
新课导入
情境导入
情景2:如果悟空从原点出发,先向西行走3千米,再继续向西
行走5千米,则悟空两次一共向哪个方向行走了多少千米?
-8
东
-8
-7
-6
-5
-4
-3
-2
-1
0
1
-5
-3
悟空两次行走一共向西行走了8千米. 写成算式为:( -3)+(-5 )= -8
新课讲解
思考二
如果悟空先向西行走3千米,接着向东行走5千米,则悟空两 次行走一共向 东 走了 2 千米. (规定向东为正)
+2
东
-5
-4
-3
-3 -2
-1
0
1
2
3
4
+5
写成算式为:
人教版七年级数学上册教学有理数的 加法优 质PPT
( -3 )+( +5 ) = +2
人教版七年级数学上册教学有理数的 加法优 质PPT
有 理
同号两数相加,取相同的符号,并把绝对值相加;
数 加
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,
法
并用较大的绝对值减去较小的绝对值;
法
则
互为相反数的两数相加得0;
一个数同0相加,仍得这个数
1、先判断题的类型(同号`异号) ; 2、再确定和的符号; 3、后进行绝对值的加减运算。
1.3.1 有理数的加法(第1课时)(教学课件)-2023-2024学年七年级数学上册同步备课系列
【详解】(1)解:26+(-32)+(-15)+34+(-38)+(-20)=45(吨) 答:经过3天,仓库里的面粉减少了. (2)280-(-45)=325(吨) 答:3天前仓库里有面粉325吨. (3)(26+32+15+34+38+20)×6 =165×6 =990(元) 答:这3天要付990元的装卸费.
【详解】解:(-10)-(+4)+(-7)-(-3)=-10-4-7+3, 故选B.
【点睛】本题考查化简多重符号,解题的关键是掌握化简方法,即:一 个数前面有偶数个负号,结果为正.一个数前面有奇数个负号,结果为 负.0前面无论有几个负号,结果都为0.
知识点三 有理数加法的实际应用
典例精析
【例3】手机支付给生活带来便捷,如图是王老师某日微信账单的收支 明细(正数表示收入,负数表示支出,单位:元),王老师当天微信 收支的最终结果是( ) A.收入25元 B.支出17元 C.支出1元 D.支出9元
【详解】解:由题意,得: -17+25+(-9)=-1; ∴王老师当天微信收支的最终结果是支 出1元; 故选C.
练一练
1.如图,小明在某运动APP中,设定了每天的步数目标为8000步.该 APP用目标线上方或下方的柱状图表示每天超过或少于目标数的步数, 如14日,小明少于目标数的步数为500步,则从13日到16日这四天中小 明一共走的步数为( ) A.27200 B.32000 C.35800 D.36800
课堂总结
有理数的加法法则:
确定类型
定符号
绝对值
同号
相同符号
学科网
异号(绝对值 取绝对值较大
人教版七年级上册数学习题课件:第一章 1.3 有理数的加减法(共30张PPT)
百年学典·广东学导练·数学·七年级·上册·配人教版
第一章 有理数
1.3 有理数的加减法
第3课时 有理数的减法(一)
易错核心知识循环练
1. (10分)有理数-8, ,-(-0.3),+1,-|-
2|,0,-(+5)中负数的个数为 ( B )
A. 2个 B. 3个
C. 4个 D. 5个
2. (10分)已知字母a,b表示有理数,如果a+b=0,
核心知识当堂测
1. (10分)一个数加上-12得-5,那么这个数为
( B) A. 17 B. 7
C. -17
D. -7
2. (10分)甲、乙、丙三地的海拔高度分别为20m,
-15m和-10m,那么最高的地方比最低的地方高
( C) A. 10m
B. 15m
C. 35m
D. 5m
3. (10分)计算:-2-(-4)=______2______.
百年学典·广东学导练·数学·七年级·上册·配人教版
第一章 有理数
1.3 有理数的加减法
第4课时 有理数的减法(二)
易错核心知识循环练
1. (10分)计算1-(-2)的正确结果是( D )
A. -2
B. -1
C. 1
D. 3
2. (10分)比-1小2 015的数是( C )
A. -2 014
B. 2 016
百年学典·广东学导练·数学·七年级·上册·配人教版
第一章 有理数
1.3 有理数的加减法
第1课时 有理数的加法(一)
易错核心知识循环练
1. (10分)在-
,-1,0,-|-4|,-(+3),
+(-1),-|0-8|这几个有理数中,负数有( A )
人教版数学七年级上册1 第3课时课件
16
思维训练
• 17.我们知道:在研究和解决数学问题时,当问题所给对象不能进行 统一研究时,我们就需要根据数学对象的本质属性的相同点和不同点, 将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结 果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思 想”.这一数学思想用处非常广泛,我们经常用这种方法解决问题.例如: 我们在讨论|a|的值时,就会对a进行分类讨论,当a≥0时,|a|=a;当 a<0时,|a|=-a.现在请你利用这一思想解决下列问题:
9
8.计算:
(1)10-(+10);
解:原式=10+-10=0.
(3)7.2-(-4.3); 解:原式=7.2+4.3=11.5. (5)(-2.5)--14; 解:原式=-2.5+14= -2.5+0.25=-2.25.
(2)-13-12; 解:原式=-13+-12=-13+12=-56. (4)0-(-2020); 解:原式=0+2020=2020. (6)312-(-2.5). 在数轴上的位置如图所示,下列说法正确的是
A.a-b>0
B.a-b<0
C.|a|<|b|
D.b-a<0
12.【易错题】若|x|=7,|y|=5,且 x+y>0,那么 x-y 的值是
A.-2 或-12
B.2 或-12
C.-2 或 12
D.2 或 12
(B ) (D )
12
13.计算: (1)-5-6; 解:原式=11. (3)20-(-7)-|-2|; 解:原式=25.
14
• 15.若a,b,c是有理数,|a|=3,|b|=10,|c|=5,且a,b异号,b, c同号,求a-b-(-c)的值.
• 解:因为|a|=3,|b|=10,|c|=5,所以a=±3,b=±10,c=±5. 因为a,b异号,b,c同号,所以当a=3,b=-10,c=-5时,a-b- (-c)=3-(-10)-[-(-5)]=8;当a=-3,b=10,c=5时,a-b- (-c)=-3-10-(-5)=-8.综上,a-b-(-c)的值为8或-8.
思维训练
• 17.我们知道:在研究和解决数学问题时,当问题所给对象不能进行 统一研究时,我们就需要根据数学对象的本质属性的相同点和不同点, 将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结 果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思 想”.这一数学思想用处非常广泛,我们经常用这种方法解决问题.例如: 我们在讨论|a|的值时,就会对a进行分类讨论,当a≥0时,|a|=a;当 a<0时,|a|=-a.现在请你利用这一思想解决下列问题:
9
8.计算:
(1)10-(+10);
解:原式=10+-10=0.
(3)7.2-(-4.3); 解:原式=7.2+4.3=11.5. (5)(-2.5)--14; 解:原式=-2.5+14= -2.5+0.25=-2.25.
(2)-13-12; 解:原式=-13+-12=-13+12=-56. (4)0-(-2020); 解:原式=0+2020=2020. (6)312-(-2.5). 在数轴上的位置如图所示,下列说法正确的是
A.a-b>0
B.a-b<0
C.|a|<|b|
D.b-a<0
12.【易错题】若|x|=7,|y|=5,且 x+y>0,那么 x-y 的值是
A.-2 或-12
B.2 或-12
C.-2 或 12
D.2 或 12
(B ) (D )
12
13.计算: (1)-5-6; 解:原式=11. (3)20-(-7)-|-2|; 解:原式=25.
14
• 15.若a,b,c是有理数,|a|=3,|b|=10,|c|=5,且a,b异号,b, c同号,求a-b-(-c)的值.
• 解:因为|a|=3,|b|=10,|c|=5,所以a=±3,b=±10,c=±5. 因为a,b异号,b,c同号,所以当a=3,b=-10,c=-5时,a-b- (-c)=3-(-10)-[-(-5)]=8;当a=-3,b=10,c=5时,a-b- (-c)=-3-10-(-5)=-8.综上,a-b-(-c)的值为8或-8.
人教版初中七年级上册数学课件 《有理数的加减法》课件(第一课时有理数加法)
2、若|a|+|b|=0,则a=(),b=()
分析:因为|a|=3,|b|=2,所以a=3或-3,b=2或-2,而且a、b异号,因此当a=3时b-2,当a=-3时b=2,则a+b=1或-1。
分析:因为|a|+|b|=0,所以|a|=|b|=0,所以a=b=0
知识点拓展
3、若a>0,b<0, |a|<|b|,则a+b()0
0.
则a+b=
有理数加法法则
计算下列各题:
(1)(-10)+(-1); (2)125+(-15); (3)29+(-29); (4)0+(-8); (5)(-25)+(-7); (6)(-5)+13; (7)(-23)+0; (8) (-45)+15.
-32
-11
-8
0
+110
+8
-23
-30
概念理解
探究
例:计算27+(-15)+24+(+12
解:27+(-15)+24+(-6)+12 =27+24+12+(-15)+(-6) =[27+24+12]+[(-15)+(-6)] =63+(-21) =42
加法交换律
加法结合律
概念理解
问题1:5箱苹果称后重量如下图,问5箱苹果一共多少千克?
4、若|a-2|+|b+3|=0,则a=(),b=()
分析:由题目内容可知,有理数异号相加,结果的符号与绝对值较大的符号相同,所以a+b<0
分析:与问题2类似。
知识点拓展
分析:因为|a|=3,|b|=2,所以a=3或-3,b=2或-2,而且a、b异号,因此当a=3时b-2,当a=-3时b=2,则a+b=1或-1。
分析:因为|a|+|b|=0,所以|a|=|b|=0,所以a=b=0
知识点拓展
3、若a>0,b<0, |a|<|b|,则a+b()0
0.
则a+b=
有理数加法法则
计算下列各题:
(1)(-10)+(-1); (2)125+(-15); (3)29+(-29); (4)0+(-8); (5)(-25)+(-7); (6)(-5)+13; (7)(-23)+0; (8) (-45)+15.
-32
-11
-8
0
+110
+8
-23
-30
概念理解
探究
例:计算27+(-15)+24+(+12
解:27+(-15)+24+(-6)+12 =27+24+12+(-15)+(-6) =[27+24+12]+[(-15)+(-6)] =63+(-21) =42
加法交换律
加法结合律
概念理解
问题1:5箱苹果称后重量如下图,问5箱苹果一共多少千克?
4、若|a-2|+|b+3|=0,则a=(),b=()
分析:由题目内容可知,有理数异号相加,结果的符号与绝对值较大的符号相同,所以a+b<0
分析:与问题2类似。
知识点拓展
人教版七年级数学上册课件:1.3.1有理数的加法法则
两次运动后小球从起点向右运动了2米,写成算式就是:
(+5)+(-3)=+2
-5 -4 -3 -2 -1 0 1 2 3 4 5
-5 -4 -3 -2 -1 0 1 2 3 4 5
如果小球先向右运动了3米,又向左运动了5米,两次运动后小球从起点向___运动了____米.
+3
-5
-2
左
2
(+3)+(-5)=-2
从以上两个算式中你发现了什么?
异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
-5 -4 -3 -2 -1 0 1 2 3 4 5
4.若│x│= 3,│y│= 2,且x>y,则x+y的值为( )
C
D
(1)(-0.6)+(-2.7); (2)3.7+(-8.4); (3)3.22+1.78; (4)7+(-3.3).
5.计算
答案:(1)-3.3 (2)-4.7 (3)5 (4)3.7
一个数同零相加,仍得这个数。
有理数加法的分类 5 + 3 = 8 (-5)+(-3) = -8 5 + (-3) = 2 3 + (-5) = -2 5 + (-5) = 0 (-5) + 5 = 0 5 + 0 = 5 (-5) + 0 = -5
1.3 有理数的加减法
第一章 有理数
第1课时 有理数的加法法则
1.3.1 有理数的加法
1、下列各组数中,哪一个数的绝对值大? (1) 5和3;(2) -5和3;(3) 5和-3;(4) -5和-3。 2、小兰第一次前进了5米,接着按同一方向 又前进了-2米;小兰两次一共前进了几米? 你能列出算式吗?
(+5)+(-3)=+2
-5 -4 -3 -2 -1 0 1 2 3 4 5
-5 -4 -3 -2 -1 0 1 2 3 4 5
如果小球先向右运动了3米,又向左运动了5米,两次运动后小球从起点向___运动了____米.
+3
-5
-2
左
2
(+3)+(-5)=-2
从以上两个算式中你发现了什么?
异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
-5 -4 -3 -2 -1 0 1 2 3 4 5
4.若│x│= 3,│y│= 2,且x>y,则x+y的值为( )
C
D
(1)(-0.6)+(-2.7); (2)3.7+(-8.4); (3)3.22+1.78; (4)7+(-3.3).
5.计算
答案:(1)-3.3 (2)-4.7 (3)5 (4)3.7
一个数同零相加,仍得这个数。
有理数加法的分类 5 + 3 = 8 (-5)+(-3) = -8 5 + (-3) = 2 3 + (-5) = -2 5 + (-5) = 0 (-5) + 5 = 0 5 + 0 = 5 (-5) + 0 = -5
1.3 有理数的加减法
第一章 有理数
第1课时 有理数的加法法则
1.3.1 有理数的加法
1、下列各组数中,哪一个数的绝对值大? (1) 5和3;(2) -5和3;(3) 5和-3;(4) -5和-3。 2、小兰第一次前进了5米,接着按同一方向 又前进了-2米;小兰两次一共前进了几米? 你能列出算式吗?
人教版七年级数学上册 《有理数的加减法》PPT教育课件(第二课时有理数减法)
人教版七年级数学上册 《有理数的加减法》PPT教育课件(第二课时有理 数减法)
科 目:数学
适用版本:人教版
适用范围:【教师教学】
人教版 数学(初中)(七年级 上)
第一章 有理数
1.3 有理数的加减法
1.3.2 有理数减法
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
第十三页,共十九页。
课堂测试 例4、若│a│=8,│b│=3,且a<b,求a-b.
解:因为│a│=8,│b│=3
所以a=+8和-8,b=+3或-3 而a<b,所以a=-8,b=3或-3 a-b=-11或-5
第十四页,共十九页。
课堂测试 例5:、计算:(-10)+(+2)-(-4)-(+6)
(-10)+(+2)-(-4)-(+6) =(-10)+(+2)+(+4)+(-6) =(-10)+(-6)+(+2)+(+4) =[(-10)+(-6)]+[(+2)+(+4)]
0-7=
-7
7-0=
7
7和-7是什么关系呢?
结论:小数减去大数,等于大数减去小数的相反数.
即:小数-大数=-(大数-小数)
第十二页,共十九页。
课堂测试 例3、填空: (1)温度3℃比-8 ℃高 11 ;℃ (2)温度-9 ℃比-1 ℃低 8 ℃; (3)海拔-20m比-30m高 10;m (4)从海拔22m到-10m,下降了 3;2m
科 目:数学
适用版本:人教版
适用范围:【教师教学】
人教版 数学(初中)(七年级 上)
第一章 有理数
1.3 有理数的加减法
1.3.2 有理数减法
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
第十三页,共十九页。
课堂测试 例4、若│a│=8,│b│=3,且a<b,求a-b.
解:因为│a│=8,│b│=3
所以a=+8和-8,b=+3或-3 而a<b,所以a=-8,b=3或-3 a-b=-11或-5
第十四页,共十九页。
课堂测试 例5:、计算:(-10)+(+2)-(-4)-(+6)
(-10)+(+2)-(-4)-(+6) =(-10)+(+2)+(+4)+(-6) =(-10)+(-6)+(+2)+(+4) =[(-10)+(-6)]+[(+2)+(+4)]
0-7=
-7
7-0=
7
7和-7是什么关系呢?
结论:小数减去大数,等于大数减去小数的相反数.
即:小数-大数=-(大数-小数)
第十二页,共十九页。
课堂测试 例3、填空: (1)温度3℃比-8 ℃高 11 ;℃ (2)温度-9 ℃比-1 ℃低 8 ℃; (3)海拔-20m比-30m高 10;m (4)从海拔22m到-10m,下降了 3;2m
新人教版七年级数学上册《有理数的加法》精品课件
关闭
,运用“同号结合法”进行
计算; (2)114=1.25 与(-1.25)互为相反数,互为相反数的两个数先相加,同时把分母相同的两
个数相加,可使运算简便.
关闭
(1)原式=[(+5)+(+10)]+[(-18)+(-3)]=(+15)+(-21)=-6;
(2)原式=
1
1 4
+
(-1.25)
+
3
3 7
温是( )
A.11 ℃
B.4 ℃
C.18 ℃
D.-11 ℃
关闭
B
答答案案
1
2
3
4
5
6
7
8
4.下列变形中,运用运算律正确的是( )
A.2+(-1)=1+2
B.3+(-2)+5=(-2)+3+5
C.[6+(-3)]+5=[6+(-5)]+3
D.13+(-2)+
+2
3
=
1+2
33
+(+2)
关闭
B
答答案案
谢谢观赏
You made my day!
我们,还在路上……
+
+2
4 7
+(-2.5)=0+6+(-2.5)=3.5.
分析
解
一二
2.有理数加法的实际应用 【例 2】 某电动车厂本周计划每天生产电动车 400 辆,由于人 数和操作的原因,每天实际生产量分别为 405 辆、393 辆、397 关辆闭、 410 辆在、 计算3本91周辆的总、产3量85时辆,可和以将4每05天辆的产. 量直接相加,但由于一些数较大,计算起来关闭 况比 的.较 产烦 量((11琐 .))把用,所超正以过可、计借划负助生星数第产期(表1量)问示的一 的车每增辆天减数二情的记况为实得三正际到,低增生于四减计产量划量,然生五后与产求量计出六的划总车的生辆增日数产减记量量为,的最负后,增可求得减出下情总表: (2)该厂本周增实减际共+生5 产-7多少-3辆电+1动0 车-?9 -15 +5
人教版七年级数学上册有理数的减法法则第课时课件
解:因为
7 8
8 9
=
7 8
8 9
63 72
64 72
1 72
0,
所以 7 8 . 89
总结
两分数大小非常接近时,常用作差法比较大小, 对于任意两个有理数a、b有: (1)a-b>0⇔a>b; (2)a-b=0⇔a=b; (3)a-b<0⇔a<b.
当堂练习
5.求出下列每对数在数轴上对应点之间的距离及 这两数的差:
由表中数据分析 :本周内气温最高是多少? 气温最低是多少?哪天的温差最大?温差最大是多少?
当堂练习
导引:温差最大即温度差的绝对值最大. 解:本周内气温最高是11 ℃, 气温最低是-13 ℃,周日的温差最大, 温差最大是11-(-1)=12(℃).
课堂小结
1.有理数的减法法则: 减去一个数,等于加上这个数的相反数. 即 a -b = a +(-b)
2.计算(口答):
(1)6-9;
(2)(+4)-(-7);
(3)(-5)-(-8) ;
(4)(-4)-9;
(5)0-(-5);
(6)0-5.
答案:1.(1)3.2 -0.8 (2)-47 2.(1)-3 (2)11 (3)3 (4)-13
(5)5 (6)-5
当堂练习
3.已知│a│= 5,│b│= 3,且a>0,b<0,a-b= 8 .
-5℃高多少摄氏度吗?用式子如何
表示?
5―(―5)=10
问题2: 5+(+5) = ? 结论:由上面两个式子我们不难得 出: 5―(―5) = 5+(+5)
讲授新课
问题3:用上面的方法考虑: 0―(―3)=_3__,0+(+3)=_3__; 1―(―3)=_4__,1+(+3)=__4__; ―5―(―3)=_-_2_,―5+(+3)=-_2__.
人教版七年级数学上册1.3有理数的加法 (共20张PPT)
有理数加法法则: 1.同号两数相加,取相同符号,并 把绝对值相加. 2.绝对值不相等的异号两数相加取 绝对值较大的加数的符号,并用较大的绝 对值减去较小的绝对值,互为相反数的两 个数相加得0. 3.一个数同0相加,仍得这个数.
例1 计算:
(1)(3) (9) (2)(4.7) 3.9 解: (1) (3) (9) (3 9) 12 (2)(4.7) 3.9 (4.7 3.9) 0.8
例2 足球循环赛中,红队胜黄队4:1, 黄队胜蓝队1:0,蓝队胜红队1:0,计算各 队的净胜球数. 解:每个队的进球总数记为正数,失球 总数记为负数,这两数的和为这队的净胜球 数. 红队共进4球,失2球,所以红队的净 胜球数为:(4) (2) (4 2) 2 黄队共进 2 球,失 4 球,净胜球数为 (2) (4) = 2. 蓝队共进 1 球,失 1 球,净胜球数为 (1) (1) = 0 .
再计算总计超过多少千克:
905.4 90 10 5.4
例4 10袋小麦称后记录如图所示(单位:kg).10袋小 麦一共多少千克?如果每袋小麦以90 kg为标准,10袋小麦总 计超过多少千克或不足多少千克?
91
91
91.5
89
91.2
解法2:每袋小麦超过90 kg 的千克数记作正数,不足的千克 数记作负数.10袋小麦对应的数分别为 1,1, , , 1.5 1,1.2 1.3, 1.3, 1.2, 1.8,1.1. 1 1 1.5 (1) 1.2 1.3 (1.3) (1.2) 1.8 1.1
5 (5) 0
⑤
从算式①②可以看出:符号相同的两个数相加, 结果的符号不变,绝对值 相加. 从算式③④可以看出:符号相反的两个数相加, 结果的符号与绝对值 较大的加数的符号相同,并用 较大的绝对值 减去较小的绝对值. 从算式⑤可以看出:互为相反数的两个数相加, 结果为 0 . 从算式⑥可以看出:一个数同0相加,仍 得 这个数. 如果物体第1s向右(向左)运动5m,第2s 原地不动,2s后物体从起点向右(或向左)运动 了5m. 写成算式就是: 50 5 (或 (5) 0 5) ⑥
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 有理数的加减法 (第2课时)
1
•本节课学习有理数的加法运算律. •学习目标: 1.理解并掌握有理数加法的交换律和结合律,并 能运用交换律和结合律化简有理数的加法运算; 2.通过探索、归纳、猜想和验证,体验加法运算 律的形成过程,并能运用运算律解决简单的实际 问题.
2
有理数的加法交换律和结合律的探索与运用.
9
教科书第20页 2.计算:
(1) 1(1)1(1) 23 6
(2) 31(23)53(82) 4 54 5
10
例 10袋小麦称后记录如图所示(单位:kg)
(1)10袋小麦一共多少kg?
在计算中我们可以
(2)如果每袋小麦以90 kg为使用标哪准些,运1算0袋律小? 麦总计超过多少千克或不足多少kg?
4
你能用精炼的语言表述这一结论吗? 你能把该规律用字母表示吗?
有理数加法中,两个数相加,交换加数的 位置,和不变.
)(4),8(5)(4)
(1)两个式子的结果有什么关系?说说你的猜想. (2)再换几个数试一试,你的猜想是否还成立呢? (3)请用精炼的语言把你得到的结论概括出来. (4)你能用字母把这个规律表示出来吗?
3
① 30+(-20) ② (-5)+(-13) ③ (-37)+16
(-20)+30 (-13)+(-5) 16+(-37)
(1)比较以上各组两个算式的结果有什么关系? 每组两,个算式有什么特征?
(2)小学学的加法交换律在有理数的加法中还适用吗?
(3)请你再换几个加数,试一试,看一看所得的结果 如何?
13
教科书习题1.3第2题,第5题.
14
6
有理数的加法中,三个数相加,先把前两 个数相加,或者先把后两个数相加,和不变.
加法结合律:
(a b ) c a (b c )
7
例2 计算 16+(-25)+24+(-35) 怎样使计算 简化的?根 据是什么?
8
教科书第20页 1.计算: (1)23+(-17)+6+(-22) (2)(-2)+3+1+(-3)+2+(-4)
11
1.本节课我们学习了哪些加法运算律?
12
2.我们在哪些情况下考虑使用加法运算律呢?
①互为相反数的两个数先相加——相反数结合法; ②符号相同的两个数先相加——同号结合法; ③分母相同的数先相加——同分母结合法; ④几个数相加得到整数,先相加——凑整法; ⑤整数与整数,小数与小数相加——同形结合法.
1
•本节课学习有理数的加法运算律. •学习目标: 1.理解并掌握有理数加法的交换律和结合律,并 能运用交换律和结合律化简有理数的加法运算; 2.通过探索、归纳、猜想和验证,体验加法运算 律的形成过程,并能运用运算律解决简单的实际 问题.
2
有理数的加法交换律和结合律的探索与运用.
9
教科书第20页 2.计算:
(1) 1(1)1(1) 23 6
(2) 31(23)53(82) 4 54 5
10
例 10袋小麦称后记录如图所示(单位:kg)
(1)10袋小麦一共多少kg?
在计算中我们可以
(2)如果每袋小麦以90 kg为使用标哪准些,运1算0袋律小? 麦总计超过多少千克或不足多少kg?
4
你能用精炼的语言表述这一结论吗? 你能把该规律用字母表示吗?
有理数加法中,两个数相加,交换加数的 位置,和不变.
)(4),8(5)(4)
(1)两个式子的结果有什么关系?说说你的猜想. (2)再换几个数试一试,你的猜想是否还成立呢? (3)请用精炼的语言把你得到的结论概括出来. (4)你能用字母把这个规律表示出来吗?
3
① 30+(-20) ② (-5)+(-13) ③ (-37)+16
(-20)+30 (-13)+(-5) 16+(-37)
(1)比较以上各组两个算式的结果有什么关系? 每组两,个算式有什么特征?
(2)小学学的加法交换律在有理数的加法中还适用吗?
(3)请你再换几个加数,试一试,看一看所得的结果 如何?
13
教科书习题1.3第2题,第5题.
14
6
有理数的加法中,三个数相加,先把前两 个数相加,或者先把后两个数相加,和不变.
加法结合律:
(a b ) c a (b c )
7
例2 计算 16+(-25)+24+(-35) 怎样使计算 简化的?根 据是什么?
8
教科书第20页 1.计算: (1)23+(-17)+6+(-22) (2)(-2)+3+1+(-3)+2+(-4)
11
1.本节课我们学习了哪些加法运算律?
12
2.我们在哪些情况下考虑使用加法运算律呢?
①互为相反数的两个数先相加——相反数结合法; ②符号相同的两个数先相加——同号结合法; ③分母相同的数先相加——同分母结合法; ④几个数相加得到整数,先相加——凑整法; ⑤整数与整数,小数与小数相加——同形结合法.