5年高考2及山东新课标真题解析几何选填题理科
近五年解析几何全国新课标2卷高考题
近五年解析几何全国新课标2卷高考题1.2010理科(12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B) 22145x y -= (C) 22163x y -= (D)22154x y -= 2. 2011(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )33. 2011(14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为2。
过1F 的直线L 交C 于,A B 两点,且2ABF V 的周长为16,那么C 的方程为 。
4. 2012(4)设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点, ∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 455. 2012(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =;则C 的实轴长为( )()A ()B ()C 4 ()D 86. 2013.11、设抛物线)0(22≥=p px y 的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )(A )x y 42= 或x y 82= (B )x y 22= 或x y 82= (C )x y 42= 或x y 162= (D )x y 22= 或x y 162=7. 2014.10.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )A.B.C. 6332D. 948. 201316.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是_______9. 2010文科(5)中心在远点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为 (A (B C (D10. 2011.(4).椭圆221168x y +=的离心率为 A. 13 B. 12 C. 3 D. 211. 2011(9)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直。
解析几何近五年高考题
近五年山东理科高考题-解析几何部分汇编一、选择填空题2010山东理(16)已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线1:-=x y l 被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为 2013山东理(9)过点(3,1)作圆1)1(22=+-y x 作圆的两条切线切点 为A ,B ,则直线AB ( )(A )032=-+y x (B )032=--y x (C )034=--y x (D )034=-+y x 2011山东理(9)已知双曲线22221(0b 0)x y a ab-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -= B .22145x y -= C .22136x y -= D .22163x y -=2012山东理(10)已知椭圆2222:1(0)x y C a b a b +=>>.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为(A )22182x y += (B )221126x y += (C )221164x y += (D )221205x y += 2013山东理(11)抛物线211:(0)2C y x p p=>的焦点与双曲线222:13x C y -=的右焦点的连线交1C 于第一象限的点M ,若1C 在点M 处的切线平行于2C 的一条渐近线,则=p63 (B )83 (C )332 (D )334二、解答题2010山东理(21)如图,已知椭圆)0(12222>>=+b a by a x 的离心率为22,以该椭圆上的点和椭圆的左、右焦点21,F F 为顶点的三角形的周长为)12(4+,一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于项点的任一点,直线1PF 和2PF 与椭圆的交点分别为A 、B 和C 、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF的斜率分别为1k 、2k ,证明:121=⋅k k ; (Ⅲ)是否存在常数λ,使得CD AB CD AB ⋅=+λ恒成立?若存在,求λ的值;若不存在,请说明理由.2011山东理(22)已知动直线l 与椭圆C: 22132x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积OPQ S ∆其中O 为坐标原点. (Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在点D,E,G ,使得2ODE ODG OEG S S S ∆∆∆===?若存在,判断△DEG 的形状;若不存在,请说明理由.2012山东理(21)在平面直角坐标系xOy 中,F 是抛物线2:2(0)C x py p =>的焦点,M 是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34. (Ⅰ)求抛物线C 的方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(Ⅲ)若点M 直线1:4l y kx =+与抛物线C 有两个不同的交点,A B ,l 与圆Q 有两个不同的交点,D E ,求当122k ≤≤时,22AB DE +的最小值. 2013山东理(22) 椭圆()2222:+10x y C a b a b=>>的左、右焦点分别是12F F ,,离心率为,过F 且垂直于x 轴的直线被椭圆C 截得的线段长为.(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12PF PF ,,设∠12F P F 的角平分线 P M 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线,使得与椭圆C 有且只有一个公共点.设直线12PF PF ,的斜率分别为12,k k ,若k ≠0,试证明1211k k +为定值,并求出这个定值。
近五年解析几何高考题
解析几何(理科专用)——山东省历年高考理科试题规律与分析(一)2011年山东理科:(8)已知双曲线()2222100x y a ,b ab-=>>的两条渐近线均和圆C :x 2+y 2-6x+5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 (A )22154xy-= (B )22145xy-= (C )22136xy-= (D )22163xy-=(22)(本小题满分14分) 已知直线l 与椭圆C: 22132xy+=交于P ()1x y ⋅.Q ()1x y ⋅两不同点,且△OPQ的面积2S =,其中Q为坐标原点。
(Ⅰ)证明2212x x +和2212y y +均为定值(Ⅱ)设线段PQ 的中点为M ,求OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在点D,E,G ,使得S △ODE =S △ODG =S △OEG 若存在,判断△DEG 的形状;若不存在,请说明理由。
(二)2010年山东理科:(10)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≤+-≥+-,08,10105,02y x y x y x 则目标函数y x z 43-=的最大值和最小值分别为( )(A )3,-11 (B )-3,-11 (C )11,-3 (D )11,3(16)已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线1:-=x y l 被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为 。
(21)(本小题满分12分) 如图,已知椭圆)0(12222>>=+b a by ax 的离心率为22,以该椭圆上的点和椭圆的左、右焦点21,F F 为顶点的三角形的周长为)12(4+,一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于项点的任一点,直线1PF 和2PF 与椭圆的交点分别为A 、B 和C 、D 。
(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明:121=⋅k k ;(Ⅲ)是否存在常数λ,使得CD AB CD AB ⋅=+λ恒成立?若存在,求λ的值;若不存在,请说明理由。
解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)
专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。
山东近5年高考理科试题及答案
2011年普通高等学校招生全国统一考试(山东卷)理 科 数 学参考公式:柱体的体积公式:v sh =,其中s 表示柱体的底面积,h 表示柱体的高. 圆柱的侧面积公式:s cl =,其中c 是圆柱的底面周长,l 是圆柱的母线长. 球的体积公式V=343V R π=, 其中R 是球的半径. 球的表面积公式:24S R π=,其中R 是球的半径.用最小二乘法求线性回归方程系数公式1221ˆˆˆ,ni ii nii x y nx ybay bx xnx==-⋅==--∑∑ . 如果事件A B 、互斥,那么()()()P A B P A P B +=+.第Ⅰ卷(共60分)一、选择题:本大题共l2小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{}{}260,13M x x x N x x =+-<=≤≤,则M N =(A )[1,2) (B )[1,2] (C )( 2,3] (D )[2,3] (2)复数22iz i-=+(i 为虚数单位)在复平面内对应的点所在象限为 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (3)若点(),9a 在函数3xy =的图象上,则tan6a π的值为 (A )0 (B )3(C )1 (D(4)不等式5310x x -++≥的解集是(A )[-5,7] (B)[-4,6] (C)(-∞,-5]∪[7,+∞) (D )(-∞,-4]∪[6,+∞) (5)对于函数(),y f x x R =∈,“()y f x =的图像关于y 轴对称”是“()y f x =是奇函数”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 (6)若函数()sin f x x ω= (0ω>)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A )3 (B )2 (C )32 (D )23正(主)视图俯视图(7)某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 (A )63.6万元 (B )65.5万元 (C )67.7万元 (D )72.0万元(8)已知双曲线22221x y a b-=(0,0a b >>)的两条渐近线均和圆C :22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A )22154x y -= (B )22145x y -=(C )22136x y -= (D )22163x y -=(9)函数2sin 2xy x =-的图象大致是(A )(B )(C )(D )(10)已知()f x 是最小正周期为2的周期函数,且当02x ≤<时,()3f x x x =-,则函数()y f x =的图像在区间[0,6]上与x 轴的交点个数为(A )6(B )7(C )8(D )9(11)右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱, 其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如下图; ③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是(A )3 (B )2 (C )1 (D )0(12)设1,A 2,A 3,A 4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=(R λ∈),1412A A A A μ= (R μ∈),且112λμ+=,则称3,A 4A 调和分割1,A 2A ,已知点()(),0,,0C c D d(,c d R ∈)调和分割点()()0,0,1,0A B ,则下面说法正确的是 (A)C 可能是线段AB 的中点 (B)D 可能是线段AB 的中点(C)C ,D 可能同时在线段AB 上 (D) C ,D 不可能同时在线段AB 的延长线上第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右图所示的程序框图,输入2,l =3,5m n ==,则输出的y 的值是 68 .(14)若6x ⎛- ⎝⎭展开式的常数项为60,则常数a 的值为 4 .(15)设函数()2xf x x =+(x >0),观察:()()12xf x f x x ==+ ()()()2134xf x f f x x ==+ ()()()32f x f f x ==78xx +()()()43f x f f x ==1516xx +……根据以上事实,由归纳推理可得:当*n N ∈且2n ≥时,()()()1n n f x ff x -== .()212n nxx -+ (16)已知函数()log (01)a fx x x b a a =+-≠>,且当,234a b <<<<时,函数()f x 的零点*0(,1),,=x n n n N n ∈+∈则 2 .三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A-2cosC 2c-a=cos B b. (Ⅰ)求sin sin CA的值; (Ⅱ)若1cos 4B =2b =,求ABC ∆的面积S .(Ⅰ)sin 2sin CA =(Ⅱ)4S = (18)(本小题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立. (Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ. (Ⅰ)0.55 (Ⅱ)1.6(19)(本小题满分12分)在如图所 示的几何体中,四边形ABCD为平行四边形,90ACB ∠=︒,EA ⊥平面ABCD ,EF ∥AB , FG ∥BC ,EG ∥AC ,2AB EF =.(Ⅰ)若M 是线段AD 的中点,求证:GM ∥平面ABFE ; (Ⅱ)若2AC BC AE ==,求二面角A BF C --的大小. 3π(20)(本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:(1)ln nn n n b a a =+-,求数列{}n b 的前n 项和n S .(Ⅰ)123n n a -= (Ⅱ)()()3ln 31213ln 3ln 212nn n n n S n n ⎧+-⎪⎪=⎨-⎪---⎪⎩为偶数为奇数(21)(本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >千元.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r . (Ⅰ)()2160=42,02y c r r rππ-+<≤ (Ⅱ)()'328220,022c y r r r c π-⎛⎫=-<< ⎪-⎝⎭3200,02r r m c -===>- 则()()()'22282c y r m r rm m rπ-=-++ABDEFGM(1)902,,2m c <<>',0;r m y == ()'0,,0;r m y ∈<所以,r m =是极小值点,也是最小值点C (2)当92,32m c ≥<≤时,当()0,2r ∈,'0;y <函数单调递减,所以,2r =是函数最小值点。
2024年高考真题分类专项(解析几何)(学生版)
2024年高考真题分类专项(解析几何)一、单选题1.(2024年北京高考数学真题)圆22260x y x y +-+=的圆心到直线20x y -+=的距离为( )A B .2C .3D .2.(2024年天津高考数学真题)双曲线22221()00a x y a b b >-=>,的左、右焦点分别为12.F F P、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=3.(2024年新课标全国Ⅱ卷数学真题)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( ) A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)4.(2024年高考全国甲卷数学(文)真题)已知直线20ax by a b +-+=与圆2241=0C x y y ++-:交于,A B 两点,则AB 的最小值为( )A .2B .3C .4D .65.(2024年高考全国甲卷数学(理)真题)已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为( )A.4 B .3C .2D6.(2024年高考全国甲卷数学(理)真题)已知b 是,a c 的等差中项,直线0ax by c 与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( ) A .1B .2C .4D.二、多选题7.(2024年新课标全国Ⅱ卷数学真题)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( ) A .l 与A 相切B .当P ,A ,B三点共线时,||PQ = C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个8.(2024年新课标全国Ⅱ卷数学真题)设计一条美丽的丝带,其造型可以看作图中的曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足:横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A .2a =- B.点在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+三、填空题9.(2024年上海夏季高考数学真题)已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 .10.(2024年北京高考数学真题)抛物线216y x =的焦点坐标为 .11.(2024年北京高考数学真题)若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为 .12.(2024年天津高考数学真题)圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为 .13.(2024年新课标全国Ⅱ卷数学真题)设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为 .四、解答题14.(2024年上海夏季高考数学真题(网络回忆版))已知双曲线222Γ:1,(0),y x b b-=>左右顶点分别为12,A A ,过点()2,0M -的直线l 交双曲线Γ于,P Q 两点. (1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标. (3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.15.(2024年北京高考数学真题)已知椭圆E :()222210x y a b a b +=>>,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D . (1)求椭圆E 的方程及离心率; (2)若直线BD 的斜率为0,求t 的值.16.(2024年天津高考数学真题)已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △. (1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.17.(2024年新课标全国Ⅱ卷数学真题)已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.18.(2024年高考全国甲卷数学(理)真题)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.。
5年高考2及山东新课标真题概率与统计选填题理科
高考真题(2016-2020)(新课标理科与山东卷)概率统计与计数原理选择填空题1.【2020年全国1卷理科05】某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,⋯,20)得到下面的散点图:由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bx B.y=a+bx2C.y=a+b e x D.y=a+blnx3.【2020年全国2卷理科03】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名5.【2020年山东卷03】6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种6.【2020年山东卷05】某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%9.【2019年全国新课标2理科05】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差13.【2018年新课标2理科08】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.11818.【2017年新课标2理科06】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种22.【2016年新课标2理科05】如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.923.【2016年新课标2理科10】从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n构成n个数对(x1,y1),(x2,y2)…(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nm B.2nmC.4mnD.2mn37.【2020年全国2卷理科14】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.39.【2019年全国新课标2理科13】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.42.【2017年新课标2理科13】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次.X表示抽到的二等品件数,则DX=.。
解析几何历年高考真题试卷--带详细答案
解析几何高考真题一、单选题(共11题;共22分)1.(2020·新课标Ⅲ·理)设双曲线C :x 2a 2−y 2b 2=1 (a>0,b>0)的左、右焦点分别为F 1 , F 2 , 离心率为 √5 .P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a=( ) A. 1 B. 2 C. 4 D. 82.(2020·新课标Ⅲ·理)设O 为坐标原点,直线x=2与抛物线C :y 2=2px(p>0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A. ( 14 ,0)B. ( 12 ,0) C. (1,0) D. (2,0) 3.(2020·新课标Ⅱ·理)设O 为坐标原点,直线 x =a 与双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于 D,E 两点,若 △ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8 C. 16 D. 32 4.(2020·天津)设双曲线 C 的方程为x 2a 2−y 2b 2=1(a >0,b >0) ,过抛物线 y 2=4x 的焦点和点 (0,b) 的直线为l .若C 的一条渐近线与 l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( ) A.x 24−y 24=1 B. x 2−y 24=1 C.x 24−y 2=1 D. x 2−y 2=15.(2019·天津)已知抛物线 的焦点为F ,准线为l.若与双曲线x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于点A 和点B , 且 |AB|=4|OF| (O 为原点),则双曲线的离心率为( ) A. √2 B. √3 C. 2 D. √56.(2020·北京)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作 PQ ⊥l 于Q ,则线段 FQ 的垂直平分线( ).A. 经过点OB. 经过点PC. 平行于直线 OPD. 垂直于直线 OP7.(2019·天津)已知抛物线 y 2=4x 的焦点为 F ,准线为 l ,若 l 与双曲线 x 2a 2−y 2b 2=1 (a >0,b >0) 的两条渐近线分别交于点 A 和点 B ,且 |AB|=4|OF| ( O 为原点),则双曲线的离心率为( )A. √2B. √3C. 2D. √5 8.(2019·全国Ⅲ卷理)双曲线 C:x 24−y 22=1 的右焦点为F,点P 在C 的一条渐近线上,O 为坐标原点,若|PO|=|PF|,则△PFO 的面积为( )A. 3√24B. 3√22C. 2√2D. 3√29.已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)的右焦点为F .短轴的一个端点为M ,直线l:3x-4y=0交椭圆E 于A,B两点.若|AF+BF|=4,点M 到直线l 的距离不小于45 , 则椭圆E 的离心率的取值范围是( )A. (0,√32] B. (0,34] C. [√32.1) D. [34,1)10.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b , e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b , e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 211.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加(m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b,e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b,e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 2二、填空题(共5题;共6分)12.(2020·新课标Ⅰ·理)已知F 为双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的右焦点,A 为C 的右顶点,B 为C上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________.13.(2019·江苏)在平面直角坐标系 xOy 中,P 是曲线 y =x +4x (x >0) 上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 14.(2019·浙江)已知椭圆x 29+y 25=1 的左焦点为F ,点P 在椭圆且在x 轴上方,若线段PF 的中点在以原点O 为圆心,|OF|为半径的圆上,则直线PF 的斜率是________ 15.(2018·北京)已知椭圆 M:x 2a 2+y 2b 2=1(a >b >0) ,双曲线 N:x 2m 2−y 2n 2=1 . 若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________16.(2017·江苏)在平面直角坐标系xOy 中,双曲线x 23﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 , 则四边形F 1PF 2Q 的面积是________.三、解答题(共9题;共85分)17.(2020·新课标Ⅲ·理)已知椭圆 C:x 225+y 2m 2=1(0<m <5) 的离心率为√154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线 x =6 上,且 |BP|=|BQ| , BP ⊥BQ ,求 △APQ 的面积.18.(2020·新课标Ⅱ·文)已知椭圆C 1:x 2a 2+y 2b 2=1 (a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD|= 43 |AB|. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.19.(2020·新课标Ⅰ·理)已知A 、B 分别为椭圆E :x 2a 2+y 2=1 (a>1)的左、右顶点,G 为E 的上顶点,AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =8 ,P 为直线x=6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.20.(2020·新高考Ⅱ)已知椭圆C : x 2a 2+y 2b 2=1(a >b >0) 过点M (2,3),点A 为其左顶点,且AM 的斜率为 12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.21.(2019·天津)设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,左顶点为A,顶点为B.已知√3|OA|=2|OB|(O为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为p,圆C同时与x轴和直线l 相切,圆心C在直线x=4上,且OC∥AP,求椭圆的方程.22.(2019·全国Ⅲ卷文)已知曲线C:y= x22,D为直线y= −12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.23.(2019·全国Ⅲ卷理)已知曲线C: y=x22,D为直线y=- 12的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.24.(2019·全国Ⅱ卷文)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点。
通用版五年高考2024_2025高考数学真题专题归纳专题18解析几何综合含解析理
52 5. 5 25
9
由于
DAC
0,
2
,所以 cos
DAC
1 sin2 DAC 11 5 . 25
所以 tan DAC sin DAC 2 . cos DAC 11
【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题.
6.(2024·江苏卷)在平面直角坐标系 xOy 中,已知椭圆 E : x2 y2 1 的左、右焦点分别 43
(2)证明:设 P6, y0 ,
则直线
AP 的方程为:
y
y0 6
0
3
x
3
,即:
y
y0 9
x 3
1
联立直线
AP
的方程与椭圆方程可得:
x2 9
y2
1
,整理得:
y
y0 9
x 3
y02 9
x2
6 y02 x
9 y02
81
0
,解得:
x
3
或
x
3y02 27 y02 9
将x
3y02 27 代入直线 y02 9
3
4 y0 3 y02
x
3 2
故直线
CD
过定点
3 2
,
0
【点睛】本题主要考查了椭圆的简洁性质及方程思想,还考查了计算实力及转化思想、推理
论证实力,属于难题.
2.(2024·新课标Ⅱ)已知椭圆
C1:
x a
2 2
y2 b2
1(a>b>0)的右焦点
F 与抛物线 C2 的焦点重
合,C1 的中心与 C2 的顶点重合.过 F 且与 x 轴垂直的直线交 C1 于 A,B 两点,交 C2 于 C,D 两 点,且|CD|= 4 |AB|.
(通用版)五年高考(-)高考数学真题专题归纳 专题05 平面解析几何(含解析)理-人教版高三全册数学
【答案】D
【解析】由题可知,抛物线的焦点为 ,所以直线 的方程为 ,即直线的斜率为 ,
又双曲线的渐近线的方程为 ,所以 , ,因为 ,解得 .
11.(2020·某某卷)已知点O(0,0),A(–2,0),B(2,0).设点P满足|PA|–|PB|=2,且P为函数y= 图像上的点,则|OP|=( )
①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);
②曲线C上任意一点到原点的距离都不超过 ;
③曲线C所围成的“心形”区域的面积小于3.
其中,所有正确结论的序号是
A.①B.②
C.①②D.①②③
【答案】C
【解析】由 得, , ,
所以 可取的整数有0,−1,1,从而曲线 恰好经过(0,1),(0,−1),(1,0),(1,1), (−1,0),(−1,1),共6个整点,结论①正确.
【答案】
【解析】由已知可得 ,
,∴ .
设点 的坐标为 ,则 ,
又 ,解得 ,
,解得 ( 舍去),
的坐标为 .
12.【2019年高考全国Ⅰ卷理数】已知双曲线C: 的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若 , ,则C的离心率为____________.
【答案】2
【解析】如图,由 得 又 得OA是三角形 的中位线,即 由 ,得 ∴ , ,
A. B. C. D.
【答案】D
【解析】圆的方程可化为 ,点 到直线 的距离为 ,所以直线 与圆相离.依圆的知识可知,四点 四点共圆,且 ,所以 ,而 ,
当直线 时, , ,此时 最小.
∴ 即 ,由 解得, .
所以以MP为直径的圆的方程为 ,即 ,
两圆的方程相减可得: ,即为直线AB的方程.
2005年高考理科数学(山东卷)试题和答案
2005山东卷试题及答案第Ⅰ卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么 ()()(B P A P B A P +=+如果事件A 、B 相互独立,那么 )(B A P ⋅=()(B P A P ⋅一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是最符合题目要求的(1)2211(1)(1)i ii i -++=+-(A )i (B) i - (C) 1 (D) 1- (2)函数1(0)xy x x-=≠的反函数的图象大致是(A ) (B) (C) (D) (3)已知函数sin()cos(),1212y x x ππ=--则下列判断正确的是(A )此函数的最小正周期为2π,其图象的一个对称中心是(,0)12π(B) 此函数的最小正周期为π,其图象的一个对称中心是(,0)12π(C) 此函数的最小正周期为2π,其图象的一个对称中心是(,0)6π(D) 此函数的最小正周期为π,其图象的一个对称中心是(,0)6π(4)下列函数中既是奇函数,又是区间[]1,1-上单调递减的是(A )()sin f x x = (B) ()1f x x =-+ (C) 1()()2x x f x a a -=+ (D) 2()2x f x ln x-=+ (5)如果(3n x 的展开式中各项系数之和为128,则展开式中31x的系数是 (A )7 (B) 7- (C) 21 (D)21-(6)函数2110,sin(),()0.,x x x f x x e π--<<⎧=⎨≥⎩若(1)()2,f f a +=则a 的所有可能值为(A ) 1 (B) 2-(C) 1,2- (D) 1,2(7)已知向量,a b ,且2,56,72,AB a b BC a b CD a b =+=-+=-则一定共线的(A ) A、B 、D (B) A 、B 、C (C) B 、C 、D (D)A 、C 、D (8)设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度075东经0120,则甲、乙两地球面距离为(A (B)6R π(C)56R π(D) 23R π (9)10张奖券中只有3张有奖,5个人购买,每人1张,至少有1人中奖的概率是(A )310 (B) 112 (C) 12 (D)1112(10)设集合A 、B 是全集U 的两个子集,则A B Ø是)A B U =U (C(A ) 充分不必要条件 (B) 必要不充分条件(C) 充要条件 (D)既不充分也不必要条件 (11)01,a <<下列不等式一定成立的是(A )(1)(1)log (1)log (1)2a a a a +--++> (B) (1)(1)log (1)log (1)a a a a +--<+(C) (1)(1)(1)(1)log (1)log (1)log (1)log (1)a a a a a a a a +-+--++<-++ (D) (1)(1)(1)(1)log (1)log (1)log (1)log (1)a a a a a a a a +-+---+>--+(12)设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A 、B ,点P 为椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为 (A ) 1 (B) 2 (C) 3 (D)4第Ⅱ卷(共100分)二、填空题:本大题共4小题, 每小题4分,共16分,把答案填在题中横线上(13)2222lim (1)n n nn C C n -→∞+=+__________(14)设双曲线22221(0,0)x y a b a b-=>>的右焦点为F,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ∆是直角三角形,则双曲线的离心率_______e =(15)设,x y 满足约束条件5,3212,03,0 4.x y x y x y +≤⎧⎪+≤⎪⎨≤≤⎪⎪≤≤⎩则使得目标函数65z x y =+的值最大的点(,)x y 是_______(16)已知m 、n 是不同的直线,,αβ是不重合的平面,给出下列命题: ①若//,,,m n αβαβ⊂⊂则//m n②若,,//,//,m n m n αββ⊂则//αβ③若,,//m n m n αβ⊥⊥,则//αβ④m 、n 是两条异面直线,若//,//,//,//,m m n n αβαβ则//αβ上面命题中,真命题的序号是____________(写出所有真命的序号)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤(17)(本小题满分12分)已知向量(cos ,sin )m θθ=和(2sin ,cos ),(,2)n θθθππ=-∈,且825m n +=,求cos()28θπ+的值 \(18) (本小题满分12分)袋中装有罴球和白球共7个,从中任取2个球都是白球的概率为17.现有甲、乙两人从袋中轮流摸取1个球,甲先取,乙后取,然后甲再取取后不放回,直到两人中有一人取到白球时即终止ξ表示取球终止时所需的取球次数.(Ⅰ)求袋中原有白球的个数; (Ⅱ)求随机变量ξ的概率分布; (Ⅲ)求甲取到白球的概率(19) (本小题满分12分)已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,m n R ∈0m <. (Ⅰ)求m 与n 的关系表达式; (Ⅱ)求()f x 的单调区间;(Ⅲ)当[1,1]x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m,求m 的取值范围(20) (本小题满分12分)如图,已知长方体1111ABCD A B C D -,12,1AB AA ==,直线BD 与平面11AA B B 所成的角为030,AE 垂直BD 于,E F 为11A B 的中点.(Ⅰ)求异面直线AE 与BF 所成的角;(Ⅱ)求平面BDF 与平面1AA B 所成二面角(锐角)的大小; (Ⅲ)求点A 到平面BDF 的距离(21) (本小题满分12分)已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈ (I )证明数列{}1n a +是等比数列; (II )令212()n n f x a x a x a x =+++,求函数()f x 在点1x =处的导数(1)f '并比较2(1)f '与22313n n -的大小(22) (本小题满分14分)已知动圆过定点,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.(I )求动圆圆心C 的轨迹的方程;(II )设A 、B 是轨迹C 上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当,αβ变化且αβ+为定值(0)θθπ<<时,证明直线AB 恒过定点,并求出该定点的坐标12005山东卷试题及答案参考答案(13)32(14 (15)()2,3) (16)③④ (17)(本小题满分12分)考查知识点:(三角和向量相结合) 解法一:(cos sin sin ),m n θθθθ+=-+(cos m n θ+===)=由已知825m n +=,得7cos()425πθ+=又2cos()2cos ()1428πθπθ+=+-所以 2cos ()2825θπ+= ∵ 592,8288πθπππθπ<<∴<+< ∴ cos()285θπ+=解法二:2222m n m m n n +=+⋅+22||||2m n m n =++⋅222[cos sin )sin cos ]θθθθ=+++4sin )θθ=+-4(1cos())4πθ=++28cos ()28θπ=+由已知825m n +=,得 4|cos()|285θπ+=∵ 592,8288πθπππθπ<<∴<+<,∴ cos()028θπ+<∴ cos()285θπ+=(18) (本小题满分12分)(考查知识点:概率及分布列) 解:(1)设袋中原有n 个白球,由题意知:2271(1)(1).767762n C n n n n C --===⨯⨯ 所以(1)6n n -=,解得3(n =舍去2)n =-,即袋中原有3个白球(Ⅱ)由题意,ξ的可能妈值为1,2,3,4,5.3(1)7p ξ==: 432(2)767p ξ⨯===⨯: 4336(3)76535p ξ⨯⨯===⨯⨯ 43233(4)765435p ξ⨯⨯⨯===⨯⨯⨯: 432131(5)7654335p ξ⨯⨯⨯⨯===⨯⨯⨯⨯所以,取球次数ξ的分布列为:(Ⅲ)因为甲先取,所以甲只有可能在第1次、第3次和第5次取球,记“甲取到白球”的事件为A ,则 ()p A P =(“1ξ=”,或“3ξ=”,或“5ξ=”). 因为事件“1ξ=”、“3ξ=”、“5ξ=”两两互斥,所以36122()(1)(3)(5)7353535P A P P P ξξξ==+=+==++=(19) (本小题满分12分)(考查知识点:函数结合导数) (Ⅰ)解:2()36(1)f x mx m x n '=-++.因为1x =是()f x 的一个极值点,所以(1)0f '=,即36(1)0m m n -++=. 所以3n m =+(Ⅱ)解:由(Ⅰ)知22()36(1)363(1)(1)f x mx m x m m x x m ⎡⎤'=-+++=--+⎢⎥⎣⎦当0m <时,有211>+,当x 变化时()f x 与()f x '的变化如下表:由上表知,当0m <时,()f x 在(,1)m -∞+单调递减,在(1,1)m+单调递增, 在(1,)+∞单调递减(Ⅲ)解法一:由已知,得()3f x m '>,即22(1)20mx m x -++>.0m <.∴222(1)0x m x m m-++<.即[]2122(1)0,1,1x x x m m-++<∈-. (*)设212()2(1)g x x x m m=-++,其函数图象的开口向上.由题意(*)式恒成立, ∴22(1)0120(1)010g m mg ⎧-<+++<⎧⎪⇒⎨⎨<⎩⎪-<⎩ 434,310m m ⎧<-⎪⇒⇒-<⎨⎪-<⎩又0m <.∴403m -<< 即m 的取值范围是43m -<< 解法二:由已知,得()3f x m '>,即23(1)(1)3m x x m m ⎡⎤--+>⎢⎥⎣⎦,0m <. 2(1)1(1)1x x m ⎡⎤∴--+<⎢⎥⎣⎦. (*)1 1x =时. (*)式化为01<怛成立.0m ∴<. 02 1x ≠时[]1,1,210x x ∈-∴-≤-<.(*)式化为21(1)1x m x <--- . 令1t x =-,则[)2,0t ∈-,记1()g t t t=- ,则()g t 在区间[)2,0-是单调增函数min 13()(2)222g t g ∴=-=--=--. 由(*)式恒成立,必有234,23m m <-⇒-<又0m <.304m ∴-<<.综上01、02知43m -<<(20) (本小题满分12分)(考查知识点:立体几何) 解法一:(向量法)在长方体1111ABCD A BC D -中,以AB 所在直线为x 轴,AD 所在直线为y 轴,1AA 所在直线为z 轴建立空间直角坐标系如图.由已知12,1AB AA ==,可得(0,0,0),(2,0,0),(1,0,1)A B F .又AD ⊥平面11AA B B ,从面BD 与平面11AA B B 所成的角即为030DBA <=又2,,1,AB AE BD AE AD =⊥==从而易得1(2E D(Ⅰ)13(,,0),(22AE BF ==-cos ,AE BF AEBF AE BF∴<>=1-==即异面直线AE 、BF 所成的角为(Ⅱ)易知平面1AA B 的一个法向量(0,1,0)m =设(,,)n x y z =是平面BDF 的一个法向量.(BD =- 由n BF n BD ⎧⊥⎪⎨⊥⎪⎩ 00n BF n BD ⎧=⎪⇒⎨=⎪⎩ 020x x xy -+=⎧⎪⇒⎨=⎪⎩x z y =⎧⎪⇒=取(1,3,1)n =∴3cos ,515m n m n m n <>===⨯ 即平面BDF 与平面1AA B 所成二面角(锐角)大小为5(Ⅲ)点A 到平面BDF 的距离,即AB 在平面BDF 的法向量n 上的投影的绝对值所以距离||cos ,d AB AB n =<>||||||AB n AB AB n=||||5AB n n ===所以点A 到平面BDF 解法二:(几何法)(Ⅰ)连结11B D ,过F 作11B D 的垂线,垂足为K ,∵1BB 与两底面ABCD ,1111A B C D 都垂直,∴11111111FB BB FK B D FB B B D BB B ⊥⎫⎪⊥⇒⊥⎬⎪⋂=⎭1平面BDD 又111AE BB AE BD AE B BB BD B ⊥⎫⎪⊥⇒⊥⎬⎪⋂=⎭1平面BDD 因此//FK AE <∴BFK <为异面直线BF 与AE 所成的角连结BK ,由FK ⊥面11BDD B 得FK BK ⊥, 从而 B K F ∆为Rt ∆在 1Rt B KF ∆和111Rt B D A ∆中,由11111AD FK B F B D =得1111111122ADAB A D B FFK B D BD====又BF ∴cos FK BFK BK <==1∴异面直线BF与AE所成的角为4(Ⅱ)由于AD⊥面tAA B由A作BF的垂线AG,垂足为G,连结DG,由三垂线定理知BG⊥∴AGD<即为平面BDF与平面1AA B所成二面角的平面角且90DAG<=,在平面1AA B中,延长BF与1AA;交于点S∵F为11A B的中点1111//,,22A F AB A F AB=,∴1A、F分别为SA、SB的中点即122SA A A AB===,∴Rt BAS∆为等腰直角三角形,垂足G点实为斜边SB的中点F,即F、G重合易得12AG AF SB===Rt BAS∆中,AD=∴tanADAGDAG<===∴arctan3AGD<=,即平面BDF于平面1AA B所成二面角(锐角)的大小为3(Ⅲ)由(Ⅱ)知平面AFD是平面BDF与平面1AA B所成二面角的平面角所在的平面∴面AFD BDF⊥面在Rt ADF∆中,由A作AH⊥DF于H,则AH即为点A到平面BDF的距离由AH DF=AD AF,得AD AFAHDF===B1B1所以点A 到平面BDF(21) (本小题满分12分)(考查知识点:数列)解:由已知*15()n n S S n n N +=++∈可得12,24n n n S S n -≥=++两式相减得()1121n n n n S S S S +--=-+即121n n a a +=+从而()1121n n a a ++=+当1n =时21215S S =++所以21126a a a +=+又15a =所以211a =从而()21121a a +=+故总有112(1)n n a a ++=+,*n N ∈又115,10a a =+≠从而1121n n a a ++=+即数列{}1n a +是等比数列;(II )由(I )知321n n a =⨯- 因为212()n n f x a x a x a x =+++所以112()2n n f x a a x na x -'=+++从而12(1)2n f a a na '=+++=()()23212321(321)n n ⨯-+⨯-++⨯-=()232222n n +⨯++⨯-()12n +++=()1(1)31262n n n n ++-⋅-+ 由上()()22(1)23131212n f n n n '--=-⋅-()21221n n --= ()()1212121(21)n n n n -⋅--+=12(1)2(21)n n n ⎡⎤--+⎣⎦①当1n =时,①式=0所以22(1)2313f n n '=-; 当2n =时,①式=-120<所以22(1)2313f n n '<-当3n ≥时,10n ->又()011211nn n n n n n n C C C C -=+=++++≥2221n n +>+所以()()12210n n n ⎡⎤--+>⎣⎦即①0>从而2(1)f '>22313n n -(22) (本小题满分14分)(考查知识点:圆锥曲线) 解:(I )如图,设M 为动圆圆心,,02p ⎛⎫⎪⎝⎭为记为F ,过点M 作直线2px =-的垂线,垂足为N ,由题意知:MF MN=即动点M 到定点F 与定直线2px =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中,02p F ⎛⎫⎪⎝⎭为焦点,2p x =-为准线,所以轨迹方程为22(0)y px P =>;(II )如图,设()()1122,,,A x y B x y ,由题意得12x x ≠(否则αβπ+=)且12,0x x ≠所以直线AB 的斜率存在,设其方程为y kx b =+,显然221212,22y y x x p p==,将y kx b =+与22(0)y px P =>联立消去x ,得2220ky py pb -+=由韦达定理知121222,p pby y y y k k+=⋅=① (1)当2πθ=时,即2παβ+=时,tan tan 1αβ⋅=所以121212121,0y y x x y y x x ⋅=-=,221212204y y y y p-=所以2124y y p = 由①知:224pbp k=所以2.b pk = 因此直线AB 的方程可表示为2y kx Pk =+, 即(2)0k x P y +-=所以直线AB 恒过定点()2,0p - (2)当2πθ≠时,由αβθ+=,得tan tan()θαβ=+=tan tan 1tan tan αβαβ+-=122122()4p y y y y p+- 将①式代入上式整理化简可得:2tan 2pb pkθ=-,所以22tan p b pk θ=+, 此时,直线AB 的方程可表示为y kx =+22tan p pk θ+即2(2)0tan p k x p y θ⎛⎫+--= ⎪⎝⎭所以直线AB 恒过定点22,tan p p θ⎛⎫- ⎪⎝⎭所以由(1)(2)知,当2πθ=时,直线AB 恒过定点()2,0p -,当2πθ≠时直线AB 恒过定点22,tan p p θ⎛⎫- ⎪⎝⎭。
2005年高考.山东卷.理科数学试题精析详解
f
(x)
ln
2 2
x x
【思路点拨】本题考查函数的奇偶性和增减性,可根据其定义逐个淘汰.
【正确解答】选项 A: f (x) 1 (a x a x) f (x) ,是偶函数,排除; 2
选项 B: f (x) | x 1| ,是非奇非偶函数,排除;
选项 C: f (x) sin(x) sin x f (x) ,是奇函数,在[1,1] 上单调递增,排除;
【解后反思】本题是求同一经度上,两点间的球面距离,比较简
O1
单,而求在同一纬度上的点 A、B 间的球面距离必须构建基本图 A
B
形:三棱锥 O AO1B ,其中 OO1 纬度面 AOB,AO=OB=R
(R 为地球的半径),O1AO O1BO 是北纬度角,AO1B 是
A、B 两点所在经度的夹角(劣弧), AOB 即是要所求 A、B 两
y
y
y
y
o1
x
-1 o
x
o1
x
-1 o
x
(A)
(B)
(C)
(D)
[答案] B
【思路点拨】本题考查反函数的概念及函数的图象。利用互为反函数图象间的关系,考查识
图(或作图)能力,可采用直接法,即求出原函数的反函数,并画出图象.
【正确解答】 y 1 x (x 0) 的反函数为 y 1 (x 1) 它的图象是将函数 y 1 的图
CD
BD
2a
4b
,因为
AB
a
2b
,且有一个共点
B
所以
A、B、
D 三点共线.选 A
第 3页 (共 20页)
【解后反思】一般地,
a,
b
(
五年高考新课标理科数学试题分类汇编(2011-2015)(答案详解版)
· 1 ·五年高考分类汇编§1. 集合及其运算1.(2015·1)已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}2.(2014·1)设集合M ={0, 1, 2},N ={}2|320x x x -+≤,则MN =( )A .{1}B .{2}C .{0,1}D .{1,2}3.(2013·1)已知集合M ={x|(x -1)2 < 4, x ∈R },N ={-1,0,1,2,3},则M ∩ N =( )A .{0, 1, 2}B .{-1, 0, 1, 2}C .{-1, 0, 2, 3}D .{0, 1, 2, 3}4.(2012·1)已知集合A ={1, 2, 3, 4, 5},B ={(x ,y )| x ∈A , y ∈A , x -y ∈A },则B 中所含元素的个数为( )A. 3B. 6C. 8D. 10§2. 复数计算1.(2015·2)若a 为实数且(2+ai )(a -2i ) = -4i ,则a =( )A .-1B .0C .1D .22.(2014·2)设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A .- 5B .5C .- 4 + iD .- 4 - i3.(2013·2)设复数z 满足(1i)2i z -=,则z =( )A .1i -+B .1i --C .1i +D .1i -4.(2012·3)下面是关于复数iz +-=12的四个命题中,真命题为( )P 1: |z |=2, P 2: z 2=2i , P 3: z 的共轭复数为1+i , P 4: z 的虚部为-1 .A. P 2,P 3B. P 1,P 2C. P 2,P 4D. P 3,P 4 5.(2011·1)复数212ii+-的共轭复数是( ) A .35i -B .35i C .i -D .i§3. 简易逻辑1.(2011·10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题中真命题是( )12:+10,3P πθ⎡⎫>⇔∈⎪⎢⎣⎭a b 22:1,3P πθπ⎛⎤+>⇔∈⎥⎝⎦a b3:10,3P πθ⎡⎫->⇔∈⎪⎢⎣⎭a b 4:1,3P πθπ⎛⎤->⇔∈ ⎥⎝⎦a bA . P 1,P 4B .P 1,P 3C .P 2,P 3D .P 2,P 4§4. 平面向量1.(2014·3)设向量a,b满足10|a b|+=,6|a b|-=,则a b⋅=()A.1 B.2 C.3 D.52.(2015·13)设向量a,b不平行,向量λ+a b与2+a b平行,则实数λ= ____________.3.(2013·13)已知正方形ABCD的边长为2,E为CD的中点,则AE BD⋅=_______. 4.(2012·13)已知向量a,b夹角为45º,且1=||a,102=-||ba,则=||b .§5. 程序框图1.(2015·8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”. 执行该程序框图,若输入a,b分别为14,18,则输出的a =()A.0 B.2 C.4 D.142.(2014·7)执行右面程序框图,如果输入的x,t均为2,则输出的S= ()A.4 B.5 C.6 D.73.(2013·6)执行右面的程序框图,如果输入的10N=,那么输出的S=()A.11112310++++B.11112!3!10!++++C.11112311++++D.11112!3!11!++++4.(2012·6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输入A、B,则()A. A+B为a1,a2,…,a N的和B.2BA+为a1,a2,…,a N的算术平均数C. A和B分别是a1,a2,…,a N中最大的数和最小的数D. A和B分别是a1,a2,…,a N中最小的数和最大的数· 2 ·· 3 ·5.(2011·3)执行右面的程序框图, 如果输入的N 是6,那么输出的p 是( )A .120B .720C .1440D .5040 §6. 线性规划1.(2014·9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =- 的最大值为( )A .10B .8C .3D .22.(2013·9)已知0a >,x ,y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )A .14B .12C .1D .23.(2015·14)若x ,y 满足约束条件1020+220x y x y x y -+≥⎧⎪-≤⎨⎪-≤⎩,则z x y =+的最大值为_______.4.(2014·14)设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x ,则2z x y =-的取值范围为 . 5.(2011·13)若变量x , y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 . §7. ※二项式定理1.(2013·5)已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =( )A .4-B .3-C .2-D .1-2.(2011·8)51()(2)a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为( )A .- 40B .- 20C .20D .403.(2015·15)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =_______. 4.(2014·13)10()x a +的展开式中,7x 的系数为15,则a =________.· 4 ·§8. 数 列1.(2015·4)已知等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7 =( )A .21B .42C .63D .842.(2013·3)等比数列{}n a 的前n 项和为n S ,已知32110S a a =+,59a =,则1a =( )A .13B .13-C .19D .19-3.(2012·5)已知{a n }为等比数列,a 4 + a 7 = 2,a 5 a 6 = 8,则a 1 + a 10 =( )A. 7B. 5C. -5D. -74.(2015·16)设S n 是数列{a n }的前项和,且11a =-,11n n n a S S ++=,则S n =________________. 5.(2013·16)等差数列的前项和为,已知,,则的最小值为____. 6.(2012·16)数列}{n a 满足12)1(1-=-++n a a n n n ,则}{n a 的前60项和为 . 7.(2014·17)已知数列{a n }满足a 1 =1,a n +1 =3 a n +1.(Ⅰ)证明1{}2n a +是等比数列,并求{a n }的通项公式;(Ⅱ)证明:123111…2n a a a +++<.8.(2011·17)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设31323log log log n n b a a a =+++L L ,求数列1{}nb 的前n 项和.§9. 三角函数1. (2014·4)钝角三角形ABC 的面积是12,AB =1,BCAC =( )A .5BC .2D .12.(2012·9)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是() A. 15[,]24B. 13[,]24C. 1(0,]2D. (0,2]3.(2011·5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( ) A .45- B .35- C .35D .454.(2011·11)设函数()sin()cos()(0,||)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增{}n a n n S 100S =1525S =n nS· 5 ·5. (2014·14)函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________.6.(2013·15)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=_________.7.(2011·16)在△ABC中,60,B AC ==2AB BC +的最大值为 . 8.(2015)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sin sin BC ∠∠;(Ⅱ) 若AD =1,DC=2 ,求BD 和AC 的长.9.(2013·17)在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.10. (2012·17)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,0sin 3cos =--+c b C a C a . (Ⅰ)求A ; (Ⅱ)若a =2,△ABC 的面积为3,求b ,c .§9. 立体几何1.(2015·6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51 2.(2015·9)已知A ,B 是球O 的球面上两点,∠AOB =90º,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB .64πC .144πD .256π3.(2014·6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A .1727B .59C .1027D .134.(2014·11)直三棱柱ABC -A 1B 1C 1中,∠BCA =90º,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成的角的余弦值为( ) A .110B .25CD5.(2013·4)已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l n ⊥,l α⊄,l β⊄,则( )A .α // β且l // αB .αβ⊥且l β⊥C .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l· 6 ·6.(2013·7)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )7.(2012·7)如图,网格纸上小正方形的边长为1何体的三视图,则此几何体的体积为( ) A. 6B. 9C. 128.(2012·11)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A.62B. 63C. 32D. 22 9.(2011·6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )A. B. C. D.10.(2011·15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==则棱锥O -ABCD 的体积为 .11.(2015·19)如图,长方体ABCD -A 1B 1C 1D 1中AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.12.(2014·18)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB // 平面AEC ;(Ⅱ)设二面角D -AE -C 为60º,AP =1,AD E -ACD 的体积.B. C.14. (2012·19)如图,直三棱柱ABC -A 1B 1C 1中,121AA BC AC ==,D 是棱AA 1的中点,DC 1⊥BD . (Ⅰ)证明:DC 1⊥BC ;(Ⅱ)求二面角A 1-BD -C 1的大小.§10. 排列组合、概率统计1.(2015·3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著.B .2007年我国治理二氧化硫排放显现成效.C .2006年以来我国二氧化硫年排放量呈减少趋势.D .2006年以来我国二氧化硫年排放量与年份正相关.2.(2014·5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A .0.8B .0.75C .0.6D .0.453. (2012·2)将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有( ) A. 12种B. 10种C. 9种D. 8种5.(2013·14)从个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=________.6. (2012·15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,n C BADC 1A 1B 11AD1B1CACEB且元件3正常工作,则部件正常工作. 设三个电子元件的使用寿命(单位:小时)服从正态分布N (1000,502),且各元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为 .7.(2015·18)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件评价相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率. 8. (2014·19)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的估计公式分别为:()()()121ˆnii i ni i tty y bt t ==--=-∑∑,ˆˆay bt =-.· 9 ·(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x ∈[100, 110),则取x =105,且x =105的概率等于需求量落入[100, 110)的概率),求利润T 的数学期望. 10. (2012·18)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花做垃圾处理. (Ⅰ)若花店某天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.(i )若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;(ii )若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?说明理由. 11.(2011·19)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表(Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用B 配方生成的一件产品的利润y (单位:元)与其质量指标值t 的关系式为2(94)2(94102)4(102),t <y ,t <,t -⎧⎪=≤⎨⎪≥⎩,从用B 配方生产的产品中任取一件,其利润记为X (单位:元)求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)§11. 解析几何1.(2015·7)过三点A(1, 3),B (4, 2),C (1, -7)的圆交于y 轴于M 、N两点,则MN =( )A .B .8C .D .102.(2015·11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) AB .2CD· 10 ·3.(2014·10)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30º的直线交C 于A , B 两点,O 为坐标原点,则△OAB 的面积为( ) ABC .6332D .944.(2013·11)设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,||5MF =,若以MF 为直径的园过点(0,2),则C 的方程为( ) A .24y x =或28y x = B .22y x =或28y x = C .24y x =或216y x =D .22y x =或216y x =5.(2013·12)已知点(1,0)A -,(1,0)B ,(0,1)C ,直线(0)y ax b a =+>将ABC △分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1)B.1(1)2-C.1(1]3D .11[,)326.(2012·4)设F 1,F 2是椭圆E : 12222=+b y a x )0(>>b a 的左右焦点,P 为直线23ax =上的一点,12PF F △是底角为30º的等腰三角形,则E 的离心率为( ) A.21B.32 C.43 D.54 7.(2012·8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=34,则C 的实轴长为( )A.2B. 22C. 4D. 88.(2011·7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A , B两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) ABC .2D .39.(2014·6)设点M (0x ,1),若在圆O :221x y +=上存在点N ,使得∠OMN =45º,则0x 的取值范围是________.10.(2011·14)在平面直角坐标系xoy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为 .11.(2015·20)已知椭圆C :2229x y m +=(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值;(Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边形?若能,求此时l 的斜率;若不能,说明理由.12.(2014·20)设F 1,F 2分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a, b .13.(2013·20)平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>右焦点F 的直线0x y +-=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ACBD 的对角线CD AB ⊥,求四边形ACBD 面积的最大值.14.(2012·20)设抛物线:C py x 22=)0(>p 的焦点为F ,准线为l ,A 为C 上的一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点. (Ⅰ)若∠BFD =90º,△ABD 面积为24,求p 的值及圆F 的方程;(Ⅱ)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 的距离的比值.15.(2011·20)在平面直角坐标系xOy 中,已知点A (0, -1),B 点在直线y =-3上,M 点满足//MB OA uuu r uu r, MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r ,M 点的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值 .§12. 函数与导数1.(2015·5)设函数211log (2)(1)()2(1)x x x f x x -+-<⎧=⎨≥⎩,则2(2)(log 12)f f -+=( )A .3B .6C .9D .122.(2015·10)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x. 将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为 ( )A .B .C .D .3.(2015·12)设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当x >0时,()()0xf x f x '-<,则使得f (x ) >0成立的x 的取值范围是( ) A .(,1)(0,1)-∞-U B .(1,0)(1,)-+∞U C .(,1)(1,0)-∞--UD .(0,1)(1,)+∞U4.(2014·8)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .35.(2014·12)设函数()x f x mπ=,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( ) A .(,6)(6,+)-∞-∞U B .(,4)(4,+)-∞-∞U C .(,2)(2,+)-∞-∞UD .(,1)(4,+)-∞-∞U6.(2013·8)设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>7.(2013·10)已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .00,()0x f x ∃∈=RB .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D .若0x 是()f x 的极值点,则0()0f x '= 8.(2012·10)已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为( )A.C. D.xx x x9.(2012·12)设点P 在曲线xe y 21=上,点Q 在曲线)2ln(x y =上,则||PQ 的最小值为( ) A. 2ln 1-B.)2ln 1(2- C. 2ln 1+D.)2ln 1(2+10.(2011·2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = B .||1y x =+ C .21y x =-+ D .||2x y -=11.(2011·9)由曲线y =2y x =-及y 轴所围成的图形的面积为( )A .103B .4C .163D .612.(2011·12)函数11y x =-的图像与函数2sin ,(24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) A .2B .4C .6D .813.(2014·15)已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________.14.(2015·21)设函数2()mx f x e x mx =+-.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤ e -1,求m 的取值范围. 15.(2014·21)已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001). 16.(2013·21)已知函数()ln()x f x e x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.17.(2012·21)已知函数121()(1)(0)2x f x f e f x x -'=-+. (Ⅰ)求)(x f 的解析式及单调区间;(Ⅱ)若b ax x x f ++≥221)(,求b a )1(+的最大值. 18.(2011·21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. §13. 几何证明选讲1.(2015·22)如图,O 为等腰三角形ABC 内一点,⊙O 与△ABC 的底边BC 交于M 、N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点. (Ⅰ)证明:EF ∥BC ;(Ⅱ)若AG 等于⊙O 的半径,且AE=MN=求四边形EBCF 的面积.2.(2014·22)如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线PBC 与⊙O 相交于点B 、C ,PC =2PA ,D 为PC 的中点,AD 的延长线交⊙O 于点E . 证明:(Ⅰ)BE = EC ;(Ⅱ)AD ·DE = 2PB 2.3.(2013·22)如图,为外接圆的切线,的延长线交直线于点,,分别为弦与弦上的点,且,B 、E 、F 、C 四点共圆.(Ⅰ)证明:是外接圆的直径;(Ⅱ)若,求过B 、E 、F 、C 四点的圆的面积与外接圆面积的比值.4.(2012·22)如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交于△ABC 的外接圆于F ,G 两点,若CF // AB ,证明: (Ⅰ)CD = BC ; (Ⅱ)△BCD ∽△GBD .5.(2011·22)如图,D ,E 分别为△ABC 的边AB ,AC 上的点,且不与△ABC 的顶点重合. 已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程x 2-14x +mn =0的两个根. (Ⅰ)证明:C 、B 、D 、E 四点共圆;(Ⅱ)若∠A =90º,且m =4,n =6,求C 、B 、D 、E 所在圆的半径.CD ABC △AB CD D E F AB AC BC AE DC AF ⋅=⋅CA ABC △DB BE EA ==ABC △G§14. 坐标系与参数方程1.(2015·23)在直角坐标系xOy 中,曲线C 1:cos sin x t y t αα=⎧⎨=⎩(t 为参数,t ≠0)其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:2sin ρθ=,C 3:ρθ=. (Ⅰ)求C 2与C 3交点的直角坐标;(Ⅱ)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.2.(2014·23)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C的极坐标方程为2cos ρθ=,[0,]2πθ∈.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.3.(2013·23)已知动点,都在曲线(为参数)上,对应参数分别为与,为的中点. (Ⅰ)求的轨迹的参数方程;(Ⅱ)将到坐标原点的距离表示为的函数,并判断的轨迹是否过坐标原点.4.(2012·23)已知曲线C 1的参数方程是2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ = 2. 正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为)3,2(π.(Ⅰ)点A ,B ,C ,D 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA |2 + |PB |2 + |PC |2 + |PD |2的取值范围.5.(2011·23)在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是C 1上的动点,P 点满足2OP OM =uu u v uuu v,P 点的轨迹为曲线C 2.(Ⅰ)求C 2的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.P Q 2cos ,:2sin x t C y t =⎧⎨=⎩t t α=2(02)t ααπ=<<M PQ M M d αM§15. 不等式选讲1.(2015·24)设a ,b ,c ,d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd>||||a b c d -<-的充要条件.2.(2014·24)设函数1()||||(0)f x x x a a a=++->.(Ⅰ)证明:f (x ) ≥ 2;(Ⅱ)若f (3) < 5,求a 的取值范围.3.(2013·24)设均为正数,且.证明:(Ⅰ);(Ⅱ).4.(2012·24)已知函数f (x ) = |x + a | + |x -2|.(Ⅰ)当a =-3时,求不等式f (x ) ≥ 3的解集;(Ⅱ)若f (x ) ≤ | x -4 |的解集包含[1, 2],求a 的取值范围.5.(2011·24)设函数()||3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集; (Ⅱ)若不等式()0f x ≤的解集为{|1}x x ≤-,求a 的值.参 考 答 案§1. 集合及其运算1. 【答案:A 】解析:由已知得,故,故选A.2.【答案:D 】解析:∵2={|320}{|12}N x x x x x -+≤=≤≤,∴{1,2}M N =.3.【答案:A 】解析:解不等式(x -1)2<4,得-1<x <3,即M ={x |-1<x <3}.而N ={-1, 0, 1, 2, 3},所以M ∩Na b c 、、1a b c ++=13ab bc ca ++≤2221a b c b c a ++≥{}21B x x =-<<={0, 1, 2},故选A. 4.【答案:D 】解析:要在1,2,3,4,5中选出两个,大的是x ,小的是y ,共2510C =种选法.§2. 复数计算1. 【答案:B 】解析:由已知得4a + (a 2 -4)i = -4i ,所以4a = 0,a 2 -4 = -4,解得a = 0,故选B.2.【答案:A 】解析:∵12i z =+,复数1z ,2z 在复平面内的对应点关于虚轴对称,∴22z i =-+,∴2212(2)(2)2145z z i i i =+-+=-=--=-.3.【答案:A 】解析:由(1-i )·z =2i ,得221=111i i i z i i i (+)=-(-)(+)=222i-+=-1+i . 4.【答案:C 】解析:经计算2221,||(1)21z i z z i i i==--∴==---+ =,复数z 的共轭复数为1i -+,z 的虚部为1-,综上可知P 2,P 4正确.5.【答案:C 】解析:212i i+-=(2)(12),5i i i ++=共轭复数为C.§3. 简易逻辑5. 【答案:A 】解析:由||1+a b 得2[0,)3πθ⇒∈.由||1-==a b 得(,]3πθπ⇒∈,故选A.§4. 平面向量1.【答案:A 】解析:2222||10||6210,26,a b a b a b a b a b a b +=-=∴++⋅=+-⋅=,两式相减得:1a b ⋅=.2. 【答案:】 解析:因为向量a b λ+与2a b +平行,所以(2)a b k a b λ+=+,则12k kλ=⎧⎨=⎩,所以12λ=.1cos 2θ>-1cos 2θ<123.【答案:2】解析:以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则点A 的坐标为(0,0),点B 的坐标为(2,0),点D 的坐标为(0,2),点E 的坐标为(1,2),则AE uu u r =(1,2),BD uu u r=(-2, 2),所以=2AE BD ⋅uu u r uu u r.4.【答案:解析:由已知得222222|2|(2)444||4||||cos45||a b a b a a b b a a b b -=-=-⨯+=-⋅+or r r r r r r r r r r r24|||10b b =-+=r r ,解得||b =r.§5. 程序框图1. 【答案:B 】解析:程序在执行过程中,a ,b 的值依次为a =14,b =18,b =4,a =10,a =6,a =2,b =2,此时a =b =2程序结束,输出a 的值为2,故选B .2.【答案:D 】解析:输入的x ,t 均为2.判断12≤?是,1221M =⋅=,235S =+=,112k =+=;判断22≤?是,2222M =⋅=,257S =+=,213k =+=,判断32≤?否,输出7S =.3.【答案:B 】解析:由程序框图知,当k =1,S =0,T =1时,T =1,S =1;当k =2时,12T =,1=1+2S ; 当k =3时,123T =⨯,111+223S =+⨯;当k =4时,1234T =⨯⨯,1111+223234S =++⨯⨯⨯; … … … … ; 当k =10时,123410T =⨯⨯⨯⨯,1111+2!3!10!S =+++, k 增加1变为11,满足k >N ,输出S ,故选B . 4.【答案:C 】解析:由程序框图判断x >A 得A 应为a 1,a 2,…,a N 中最大的数,由x <B 得B 应为a 1,a 2,…,a N 中最小的数. 5. 【答案:B 】解析:框图表示1n n a n a -=⋅,且11a =所求6a =720,故选B.§6. 线性规划1.【答案:B 】解析:作出x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩所表示的平面区域为如图阴影部分,做出目标函数l 0:y =2x ,∵y =2x -z ,∴当y =2x -z 的截距最小时,z 取最大值.当y =2x -z 经过C 点时,z 取最大值.由31070x y x y -+=⎧⎨+-=⎩得C (5,2),此时z 取最大值为2×5-2=8. 2.【答案:B 】解析:由题意作出13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩所表示的区域如图阴影部分所示,当目标函数表示的直线经过点A 时,取得最小值,而点A 的坐标为(1, -2a ),所以2-2a =1,解得12a =. 故选B.3. 【答案:】 解析:画出可行域,如图所示,将目标函数变形为y =-x +z ,当z 取到最大时,直线y = -x + z 的纵截距最大,故将直线尽可能地向上平移到1(1,2D ,则z =x +y 的最大值为32.4.【答案:[3,3]-】解析:画出可行域,易知当直线2Z x y =-经过点(1,2)时,Z小值-3;当直线2Z x y =-经过点(3,0)时,Z 取最大值3. 故2Z x y =-的取值范围为[3,3]-. 5. 【答案:-6】解析:画出可行域如图,当直线2z x y =+过239x y x y +=⎧⎨-=⎩(4,-5)时,min 6z =-.§7. ※二项式定理1.【答案:D 】解析:因为(1+x )5的二项展开式的通项为5C r r x (0≤r ≤5,r ∈Z ),则含x 2的项为225C x +ax ·15C x =(10+5a )x 2,所以10+5a =5,a =-1. 故选D. 2. 【答案:D 】32l 0 l 13x-y-5=0yxo 12 x-3y+1=0l 2x+y-7=052CA BA (1, -2a )解析:由51()(2)a x x x x+-的展开式中各项系数的和为2,得a =1(令x =1). 故原式=511()(2)x x x x+-,所以通项521552155(2)()(1)2r r r r r r r r T C x x C x ----+=-=-,由5-2r =1得r =2,对应的常数项=80,由5-2r =-1得r =3,对应的常数项=-40,故所求的常数项为40,故选D .3. 【答案:3】解析:由已知得,故的展开式中x 的奇数次幂项分别为,,,,,其系数之和为,解得. 4.【答案:12】 解析:∵10110r r r r T C x a -+=,∴107r -=,即3r =,∴373741015T C x a x ==,解得12a =. §8. 数列1. 【答案:B 】解析:设等比数列公比为q ,则a 1+a 1q 2+a 1q 4=21,又因为a 1=3,所以q 4+q 2-6=0,解得q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=42,故选B.2.【答案:C 】解析:由S 3=a 2+10a 1,得,a 1+a 2+a 3=a 2+10a 1即,a 3=9a 1,亦即a 1q 2=9a 1,解得q 2=9. ∵a 5=a 1·q 4=9,即81a 1=9,∴a 1=19.3.【答案:D 】解析:472∵a a +=,56478a a a a ==-,4742a a ∴==-,或4724a a =-=,,14710∵,,,a a a a 成等比数列,1107a a ∴+=-.4. 【答案:】解析:由已知得,两边同时除以,得,故数列是以为首项,为公差的等差数列,则,所以. 5.【答案:-49】解析:设数列{a n }的首项为a 1,公差为d ,则S 10=1109102a d ⨯+=10a 1+45d=0①,S 15=11514152a d ⨯+=15a 1+105d =25②,联立①②,得a 1=-3,23d =,所以S n 2(1)211032333n n n n n -=-+⨯=-. 令f (n )=nS n ,则32110()33f n n n =-,220()3f n n n '=-. 令f ′(n )=0,得n =0或203n =. 当203n >时,f ′(n )>0,200<<3n 时,f ′(n )<0,所以当203n =时,f (n )取最小值,而n ∈N +,则f (6)=-48,f (7)=-49,所以当n =7时,f (n )取最小值-49.6.【答案:1830】4234(1)1464x x x x x +=++++4()(1)a x x ++4ax 34ax x 36x 5x 441+6+1=32a a ++3a =1n-111n n n n n a S S S S +++=-=⋅1n n S S +⋅1111n nS S +=--1n S ⎧⎫⎨⎬⎩⎭1-1-11(1)n S n n =---=-1n S n=-解析:由1(1)21nn n a a n ++-=-得2212124341①②k k k ka a k a a k -+-=-⎧⎪⎨+=-⎪⎩L L ,由②-①得, 21212k k a a +-+=③ 由①得,2143656059()()()()奇偶S S a a a a a a a a -=-+-+-++-L (1117)30159********+⨯=++++==L .由③得,3175119()()()奇S a a a a a a =++++++5957()21530a a ++=⨯=L , 所以60()217702301830奇奇奇偶偶S S S S S S =+=-+=+⨯=.7.解析:(Ⅰ)证明:∵131n n a a +=+,∴1113()22n n a a ++=+,即:112312n n a a ++=+,又11322a +=,∴1{}2n a +是以32为首项,3为公比的等比数列.∴113322n n a -+=⋅,即312n n a -=.(Ⅱ)证明:由(Ⅰ)知312n n a -=,∴11231()3133n n n n n a -=≤=∈-N*, ∴21211()11111131331[1()]133323213nn n n a a a -++⋅⋅⋅+≤+++⋅⋅⋅+==-<- 故:1211132n a a a ++⋅⋅⋅+< 8.解析:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219q =. 由条件可知a >0,故13q =. 由12231a a +=得12231a a q +=,所以113a =. 故数列{a n }的通项式为13n n a =.(Ⅱ )31323(1)log log log =(12)2n n n n b a a a n +=+++-+++=-, 故12112()(1)1n b n n n n =-=--++,121111111122((1)()())22311nn b b b n n n +++=--+-++-=-++, 所以数列1{}nb 的前n 项和为21nn-+. §9. 三角函数1.【答案:B 】解析:∵1||||sin 2ABC S AB BC B ∆=⋅⋅,即:111sin 22B =⋅,∴s i n B =,即45B =或135.又∵222||||||2||||cos AC AB BC AB BC B =+-⋅⋅,∴2||1AC =或5,又∵ABC ∆为钝角三角形,∴2||5AC =,即:||AC =2.【答案:A 】解析:由322,22442k k k ππππππωπωπ+≤+<+≤+∈Z 得,1542,24k k k ω+≤≤+∈Z ,15024∵,∴ωω>≤≤.3. 【答案:B 】解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,故选B. 4. 【答案:A 】解析:())(0,||)42f x x ππωϕωϕ=++><的最小正周期为π,所以2ω=,又()()f x f x -=,∴ f (x )为偶函数,=+,4k k Z πϕπ∴∈,())2f x x x π∴=+, 故选A. 5.【答案:1 】解析:∵()sin(2)2sin cos()sin[()]2sin cos()f x x x x x ϕϕϕϕϕϕϕ=+-+=++-+sin cos()cos sin()2sin cos()cos sin()sin cos()sin x x x x x xϕϕϕϕϕϕϕϕϕϕ=+++-+=+-+=∵x R ∈,∴()f x 的最大值为1.6.【答案:】 解析:由π1tan 1tan 41tan 2θθθ+⎛⎫+== ⎪-⎝⎭,得tan θ=13-,即sin θ=13-cos θ. 将其代入sin 2θ+cos 2θ=1,得210cos 19θ=. 因为θ为第二象限角,所以cos θ=sin θsin θ+cos θ=. 7.【答案:解析:00120120A C C A +=⇒=-,0(0,120)A ∈,22sin sin sin BC ACBC A A B==⇒=,022sin 2sin(120)sin sin sin AB ACAB C A A A C B==⇒==-=+,2AB BC ∴+=5sin ))A A A A ϕϕ+=+=+,故最大值是.8.解析:(Ⅰ)1sin 2ABD S AB AD BAD ∆=⋅∠,1sin 2ADC S AC AD CAD ∆=⋅∠,因为2ABD ADC S S ∆∆=,BAD CAD ∠=∠,所以2AB AC =,由正弦定理可得sin 1sin 2B AC C AB ∠==∠.(Ⅱ)因为::2ABD ADC S S BD DC ∆∆==,2DC=,所以BD ABD ∆和ADC ∆中,由余弦定理知,2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠, 故222222326AB AC AD BD DC +=++=,由(Ⅰ)知2AB AC =,所以1AC =.9.解析:(Ⅰ)由已知及正弦定理得sin A =sin B cos C +sin C sin B ①, 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C ②,由①,②和C ∈(0,π)得sin B =cos B ,又B ∈(0,π),所以4B π=. (Ⅱ)△ABC的面积1sin 2S ac B ==. 由已知及余弦定理得224=+2cos4a c ac π-. 又a 2+c 2≥2ac ,故ac ≤当且仅当a =c 时,等号成立.因此△ABC.10.解析:(Ⅰ)由cos sin 0a C C b c +--=及正弦定理可得sin cos sin A C A Csin sin 0B C --=,sin cos sin sin()sin 0A C A C A C C -+-=sin cos sin A C A C - sin 0C -=,sin 0C >Q,cos 10A A --=,2sin()106A π∴--=,1sin()62A π-=,0A π<<Q ,5666A πππ∴-<-<,66A ππ∴-=,3A π∴=.(Ⅱ)ABC S =V Q1sin 24bc A bc ∴==4bc ∴=,2,3a A π==Q , 222222cos 4abc bc A b c bc ∴=+-=+-=,228b c ∴+=,解得2b c ==.§10. 立体几何1. 【答案:D 】解析:由三视图得,在正方体ABCD -A 1B 1C 1D 1中,截去四面体A -A 1B 1D 1,如图所示,设正方体棱长为,则,故剩余几何体体积为,所以截去部分体积与剩余部分体积的比值为,故选D.2. 【答案:C 】解析:如图所示,当点C 位于垂直于面的直径端点时,三棱锥的体积最大,设球O 的半径为R ,此时,故R=6,则球O 的表面积为,故选C .3.【答案:C 】解析:原来毛坯体积为π·32·6=54π (cm 2),由三视图得,该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,所以该零件的体积为:π·32·2+π·22·4=34π (cm 2),则切削掉部分的体积为54π-34π =20π(cm 2),所以切削掉部分的体积与原来毛a 11133111326A AB D V a a -=⨯=3331566a a a -=AOB O ABC -2311136326O ABC C AOB V V R R R --==⨯⨯==24144S R ππ==1坯体积的比值为20105427ππ=. 4.【答案:C 】解析:取BC 的中点P ,连结NP 、AP , ∵M ,N 分别是A 1B 1,A 1C 1的中点,∴四边形NMBP 为平行四边形,∴BM //PN ,∴所求角的余弦值等于∠ANP 的余弦值,不妨令BC =CA =CC 1=2,则AN =APNP =,∴222||||||cos 2||||AN NP AP ANP AN NP +-∠=⨯⋅10=. 【另解】如图建立坐标系,令AC =BC =C 1C =2,则A (0, 2, 2),B (2, 0, 2),M (1, 1, 0),N (0, 1, 0),(1,1,2)(0,1,2),BM AN ∴=--=--,cos ||||6BM AN θBM AN ⋅===⋅5.【答案:D 】解析:因为m ⊥α,l ⊥m ,l ⊄α,所以l ∥α. 同理可得l ∥β. 又因为m ,n 为异面直线,所以α与β相交,且l 平行于它们的交线.故选D. 6.【答案:A 】解析:如图所示,该四面体在空间直角坐标系O -xyz 的图像为右图,则它在平面zOx 上的投影即正视图为右图,故选A. 7.【答案:B 】解析:由三视图可知,此几何体为底面是斜边为6的等腰直角三角形(俯视图),高为3的三棱锥,故其体积为113932V =⨯⨯=.8.【答案:A 】解析:易知点S 到平面ABC 的距离是点O 到平面ABC 的距离的2倍.显然O -ABC 是棱长为113O ABC V -==2S ABC O ABC V V --=. 9. 【答案:D 】解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的. 故选D.10.【答案:解析:设ABCD 所在的截面圆的圆心为M ,则AM=,OM22=,1623O ABCD V -=⨯⨯=11.解析:(Ⅰ)交线围成的正方形EHGF 如图:ACB1A1C 1BNMP(Ⅱ)作EM AB ⊥,垂足为M ,则14AM AE ==,18EM AA ==因为EHGF 为正方形,所以EH EF =10BC ==,于是6MH ==,所以10AH =,以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所以的空间直角坐标系D xyz -,则(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F ,(10,0,0)FE =,(0,6,8)HE =-,设(,,)n x y z =是平面EHGF 的法向量,则00n FE n HE ⎧⋅=⎪⎨⋅=⎪⎩,即100680x y z =⎧⎨-+=⎩,所以可取(0,4,3)n =,又(10,4,8)AF =-,故||4|cos ,|||||n AFn AF n AF ⋅<>==AF 与平面EHGF 所成角的正弦值为15. 12.解析:(Ⅰ)证明:连结BD 交AC 于点O ,连结OE .∵底面ABCD 为矩形,∴点O 为BD 的中点,又E 为PD 的中点,∴//OE PB ,∵OE ⊂平面AEC ,PB ⊄平面AEC ,∴PB//平面AEC .(Ⅱ)以A 为原点,直线AB 、AD 、AP 分别为x 、y 、z 轴建立空间直角坐标系,设AB a =,则D ,(0,0,0)A,1)2E ,(C a ,∴1(0,)2AE =,(AC a=,设(,,)n x yz =是平面AEC 的法向量,则310220n AE y zn AC ax⎧⋅=+=⎪⎨⎪⋅=+=⎩,解得:yx z ⎧=⎪⎨⎪=⎩,令x =(3,,)n a =-,又∵(,0,0)AB a =是平面AED 的一个法向量,∴1|cos ,|cos602AB n <>==, 解得32a =,∴111||||||322E A C D V A D C D A P -=⨯⨯⨯⨯113132228=⨯⨯⨯=.13.解析:(Ⅰ)连结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,连结DF ,则BC 1∥DF . 因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1 // 平面A 1CD . (Ⅱ)由AC =CB =2AB 得,AC ⊥BC . 以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz . 设CA =2,PB CDEA则D (1,1,0),E (0,2,1),A 1(2,0,2),CD =(1,1,0),CE =(0,2,1),1CA =(2,0,2).设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则100CD CA ⎧⋅=⎪⎨⋅=⎪⎩n n ,即11110,220.x y x z +=⎧⎨+=⎩可取n =(1, -1, -1).同理,设m 是平面A 1CE 的法向量,则100CE CA ⎧⋅=⎪⎨⋅=⎪⎩m m ,可取m =(2, 1, -2).从而cos 〈n ,m〉=||||3=·n m n m ,故sin 〈n ,m即二面角D -A 1C -E14.解析:(Ⅰ) 证明:设112A CBC A Aa ===,直三棱柱111C B A ABC -,1DC DC ∴==,12CC a =,22211DC DC CC ∴+=,1DC DC ∴⊥. 又1DC BD ⊥Q ,1DC DC D =I ,1DC ∴⊥平面BDC . BC ⊂Q 平面BDC ,1DC BC ∴⊥.(Ⅱ)由 (Ⅰ)知,1DC,1BC =,又已知BD DC ⊥1,BD ∴=. 在Rt ABD △中,BD =,,90AD a DAB =∠=o,AB ∴=. 222AC BC AB ∴+=,AC BC ∴⊥.<法一>取11A B 的中点E ,则易证1C E ⊥平面1BDA ,连结DE ,则1C E ⊥BD ,已知BD DC ⊥1,BD ∴⊥平面1DC E ,BD ∴⊥DE ,1C DE ∴∠是二面角11C BD A --平面角. 在1Rt C DE △中,1111s i n 2C E C D E C D ∠===,130C DE ∴∠=. 即二面角11C BD A --的大小为30.<法二>以点C 为坐标原点,为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系C xyz -.则()()()()11,0,2,0,,0,,0,,0,0,2A a a B a D a a C a . (),,DB a a a =--,()1,0,DC a a =-,设平面1DBC 的法向量为1111(,,)n x y z =r ,则11111100n D B a x a y a z n DC a x a z ⎧⋅=-+-=⎪⎨⋅=-+=⎪⎩,不妨令11x =,得112,1y z ==,故可取1(1,2,1)n =r .同理,可求得平面1DBA 的一个法向量2(1,1,0)n =r . 设1n r与2n r的夹角为θ,则1212cos ||||6n n n n θ⋅===⋅⨯, 30θ∴=. 由图可知,二面角的大小为锐角,故二面角11C BD A --的大小为30.§11. 排列组合、概率统计1. 【答案:D 】解析:由柱形图可知,从2006年以来,我国二氧化硫排放量呈下降趋势,所以二氧化硫排放量与年份负相关,故选D.2.【答案:A 】解析:设A =“某一天的空气质量为优良”,B =“随后一天的空气质量为优良”,C BADC 1A 1B 1。
最新五年山东卷数学立体几何题真题合集
最新五年山东卷数学立体几何题真题合集为了方便广大考生对于山东卷数学立体几何题的学习和备考,特整理了最新五年山东卷数学立体几何题真题合集。
以下是这些年份的数学立体几何题目及解析。
希望能为考生们提供帮助和指导。
2016年山东卷数学立体几何题1. 已知棱长为3cm的正方体ABCDA1B1C1D1,点P是AD边上的动点,则以下选项中关于点P的轨迹描述正确的是()A. 是一个平面内的椭圆柱曲线B. 是一个平面内的半椭圆形C. 是一个平面内的椭圆D. 是一个平面内的抛物线解析:由于点P是在直线AD上运动,所以P的轨迹是直线AD。
答案为A。
2. 如图,棱长为2的正方体DABC与平面a交于直线l,点A到直线l的距离的最大值是()A. 1B. 1.5C. 2D. 2.5解析:由于DABC为正方体,所以线段AD的垂直平分线l'即为点A到直线l的最短距离。
且垂直平分线l'与平面a的交点为M。
线段AD的长度为2,所以AM的长度为1。
答案为A。
2017年山东卷数学立体几何题1. 如图,正方体ABCDA1B1C1D1的棱长为3,M、N分别为AC、DD1的中点。
若面AAD1M的法线与面MNB的交线段为x,则x =()A. 4B. 4√2C. 6D. 6√2解析:由图可知,线段MM'为面AAD1M的法线。
又因为点M、N分别为AC、DD1的中点,所以线段MM'垂直于线段AC,即为MNB的高。
根据勾股定理可知,x = √(MM'^2 + NB^2) = √(1.5^2 + 3^2) =√(2.25 + 9) = √11.25 = 3√2。
答案为3√2。
2. 如图所示,正方体ABCD-A1B1C1D1的棱长为2。
点M、N分别是线段CD1、CC1的中点,点P在斜面ABB1C1上,且线段PM和线段AA1平行。
若线段PN与平面ABB1C1的交点为K,则PK/KC1的值为()A. 1/2B. 1/√3D. √3解析:由题可知,线段AA1和线段PM平行,则线段AP在平面ABB1C1上的投影为PM。
5年高考2及山东新课标真题解析几何解答题理科
(2011-2020)123山东真题专题08解析几何解答题(理科)2.【2020年全国2卷理科19】已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.4.【2020年山东卷22】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,且过点A (2,1). (1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.6.【2019年全国新课标2理科21】已知点A (﹣2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:△PQG 是直角三角形;(ii )求△PQG 面积的最大值.9.【2018年新课标2理科19】设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.12.【2017年新课标2理科20】设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=√2NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =﹣3上,且OP →•PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .15.【2016年新课标2理科20】已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k>0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(Ⅰ)当t =4,|AM |=|AN |时,求△AMN 的面积;(Ⅱ)当2|AM |=|AN |时,求k 的取值范围.。
解析几何山东高考真题答案
解析几何山东高考真题答案是高中数学的一门重要学科,也是山东高考数学试题中常见的考点。
在山东高考中,题目通常涉及到平面几何和空间几何两个方面的内容。
本文将从历年的山东高考题目中选取几道经典题目,进行详细的解析和讲解,帮助考生对这一重要考点有更深入的理解。
第一题:已知点A,B,C分别是y轴负半轴、x轴正半轴和x+y=2所在的直线上的点,OA是单位向量,O为坐标原点。
过A点作平面OAC的垂线交y轴于点M,线段BM交平面OAC于点N.这道题目涉及到直线和平面的交点问题,首先我们需要确定直线y=-x+2的参数方程。
设直线上任一点为P(t),其横纵坐标分别为t和2-t。
又因为直线过B点(1,0),可以得到直线上任一点的坐标满足x=t+1,y=1-t。
由此可得到直线的参数方程为P(t)=(t+1, 1-t)。
又已知A点位于直线上,所以A点坐标为(-1,3)。
根据题目中给出的信息,我们可以知道向量AO为单位向量,所以可以得到向量OA=(1, -3)。
接下来我们需要确定平面OAC的方程。
平面OAC通过A点且垂直于平面xy,所以可以得到平面的法向量为n=(1, 1, 0)。
根据平面的一般方程Ax+By+Cz+D=0,代入已知点A坐标(-1,3,0),可以得到平面OAC的方程为-x+y+D=0。
由于O为坐标原点,所以代入原点坐标可以得到D=0,所以平面OAC的方程为-x+y=0。
根据已知信息,我们可以得到直线y=-x+2和平面-x+y=0的交点坐标。
解方程组得到交点为(1,1)。
这个点就是点C的坐标。
题目中还提到过A点作平面OAC的垂线交y轴于点M,线段BM交平面OAC于点N。
根据题目的描述,我们可以知道点M的坐标为(0, 3)。
由于点M和点B都在直线y=-x+2上,所以可以得到向量MB的方向向量为(1, 1)。
根据已知信息,我们可以求得点M(0,3)和向量MB(1,1),可以得到直线BM的参数方程为P(t)=(t, 3+t),其中t∈R。
平面解析几何(选择题、填空题)(解析版)-三年(2022–2024)高考数学真题分类汇编(全国通用)
专题05平面解析几何(选择题、填空题)考点三年考情(2022-2024)命题趋势考点1:直线方程与圆的方程2022年全国II卷、2022年全国甲卷(文)2022年全国乙卷(理)近三年高考对解析几何小题的考查比较稳定,考查内容、频率、题型难度均变化不大,备考时应熟练以下方向:(1)要重视直线方程的求法、两条直线的位置关系以及点到直线的距离公式这三个考点.(2)要重视直线与圆相交所得弦长及相切所得切线的问题.(3)要重视椭圆、双曲线、抛物线定义的运用、标准方程的求法以及简单几何性质,尤其是对离心率的求解,更是高考的热点问题,因方法多,试题灵活,在各种题型中均有体现.考点2:直线与圆的位置关系2024年北京卷、2022年全国甲卷(理)2022年天津卷、2022年北京卷2023年全国Ⅰ卷、2024年北京卷考点3:圆与圆的位置关系2022年全国I卷考点4:轨迹方程及标准方程2023年北京卷、2023年天津卷2024年全国Ⅱ卷、2022年天津卷2022年全国甲卷(文)考点5:椭圆的几何性质2022年全国I卷2023年全国甲卷(理)2023年全国甲卷(文)考点6:双曲线的几何性质2022年北京卷2023年全国乙卷(理)考点7:抛物线的几何性质2024年北京卷、2024年天津卷2023年全国乙卷(理)2023年天津卷、2023年全国Ⅱ卷2024年全国Ⅱ卷、2022年全国I卷考点8:弦长问题2022年全国乙卷(理)2023年全国甲卷(理)考点9:离心率问题2024年全国Ⅰ卷、2022年全国甲卷(文)2023年全国Ⅰ卷、2022年浙江卷2022年全国乙卷(理)2024年全国甲卷(理)2023年全国Ⅰ卷、2022年全国甲卷(理)考点10:焦半径、焦点弦问题2022年全国II卷、2023年北京卷考点11:范围与最值问题2022年全国II卷2024年全国甲卷(文)2023年全国乙卷(文)考点12:面积问题2024年天津卷、2023年全国Ⅱ卷2023年全国Ⅱ卷考点13:新定义问题2024年全国Ⅰ卷考点1:直线方程与圆的方程1.(2022年新高考全国II 卷数学真题)已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且||||,||23MA NB MN ==l 的方程为.【答案】2220x -=【解析】[方法一]:弦中点问题:点差法令AB 的中点为E ,设()11,A x y ,()22,B x y ,利用点差法得到12OE AB k k ⋅=-,设直线:AB y kx m =+,0k <,0m >,求出M 、N 的坐标,再根据MN 求出k 、m ,即可得解;令AB 的中点为E ,因为MA NB =,所以ME NE =,设()11,A x y ,()22,B x y ,则2211163x y +=,2222631x y +=,所以2222121206633x x y y -+-=,即()()()()12121212063x x x x y y y y -++-+=所以()()()()1212121212y y y y x x x x +-=--+,即12OE AB k k ⋅=-,设直线:AB y kx m =+,0k <,0m >,令0x =得y m =,令0y =得m x k =-,即,0m M k ⎛⎫- ⎪⎝⎭,()0,N m ,所以,22m m E k ⎛⎫- ⎪⎝⎭,即1222mk m k⨯=--,解得22k =或22k =(舍去),又23MN =,即()22223MN m m=+=2m =或2m =-(舍去),所以直线2:22AB y x =-+,即2220x -=;故答案为:2220x -=[方法二]:直线与圆锥曲线相交的常规方法由题意知,点E 既为线段AB 的中点又是线段MN 的中点,设()11,A x y ,()22,B x y ,设直线:AB y kx m =+,0k <,0m >,则,0m M k ⎛⎫- ⎪⎝⎭,()0,N m ,,22m m E k ⎛⎫- ⎪⎝⎭,因为3MN =3OE =联立直线AB 与椭圆方程得22163y kx m x y =+⎧⎪⎨+=⎪⎩消掉y 得222(12)4260k x mkx m +++-=其中2221224=4-4(12)260,12mkmk k m x x k ∆+-+=-+()()>,∴AB 中点E 的横坐标2212E mk x k =-+,又,22m m E k ⎛⎫- ⎪⎝⎭,∴22=122E mk x k m k =-+-∵0k <,0m >,∴22k 又22+322O m m k E -=()(),解得m=2所以直线2:22AB y x =-+,即2220x -=2.(2022年高考全国甲卷数学(文)真题)设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为.【答案】22(1)(1)5x y -++=【解析】[方法一]:三点共圆∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,点M 到两点的距离相等且为半径,2222(3)(12)(2)-+-+-a a a a R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,5R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++=[方法二]:圆的几何性质由题可知,M 是以(3,0)和(0,1)为端点的线段垂直平分线y=3x-4与直线210x y +-=的交点(1,-1).5R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++=3.(2022年高考全国乙卷数学(理)真题)过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为.【答案】()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭.【解析】[方法一]:圆的一般方程依题意设圆的方程为220x y Dx Ey F ++++=,(1)若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;(2)若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;(3)若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;(4)若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭.[方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心)设()()()()0,04,01,14,2A B C D -点,,,(1)若圆过、、A B C 三点,圆心在直线2x =,设圆心坐标为(2,)a ,则()2224913,413a a a r a +=+-⇒=+=22(2)(3)13x y -+-=;(2)若圆过A B D 、、三点,设圆心坐标为(2,)a ,则22244(2)1,45a a a r a +=+-⇒==+=的方程为22(2)(1)5x y -+-=;(3)若圆过A C D 、、三点,则线段AC 的中垂线方程为1y x =+,线段AD 的中垂线方程为25y x =-+,联立得4765,333x y r ==⇒=,所以圆的方程为224765()()339x y -+-=;(4)若圆过B C D 、、三点,则线段BD 的中垂线方程为1y =,线段BC 中垂线方程为57y x =-,联立得813,155x y r ==⇒=,所以圆的方程为()228169()1525x -y +-=.故答案为:()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭.【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.考点2:直线与圆的位置关系4.(2024年北京高考数学真题)若直线()3y k x =-与双曲线2214xy -=只有一个公共点,则k 的一个取值为.【答案】12(或12-,答案不唯一)【解析】联立()22143x y y k x ⎧-=⎪⎨⎪=-⎩,化简并整理得:()222214243640k x k x k -+--=,由题意得2140k -=或()()()2222Δ244364140k k k =++-=,解得12k =±或无解,即12k =±,经检验,符合题意.故答案为:12(或12-,答案不唯一).5.(2022年高考全国甲卷数学(理)真题)若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =.33【解析】双曲线()22210x y m m-=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离2211m d m==+,解得33m =或33m =.336.(2022年新高考天津数学高考真题)若直线()00x y m m -+=>与圆()()22113x y -+-=相交所得的弦长为m ,则m =.【答案】2【解析】圆()()22113x y -+-=的圆心坐标为()1,13圆心到直线()00x y m m -+=>1122m-+由勾股定理可得22322m ⎛⎫+= ⎪⎝⎭,因为0m >,解得2m =.故答案为:2.7.(2022年新高考北京数学高考真题)若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ()A .12B .12-C .1D .1-【答案】A【解析】由题可知圆心为(),0a ,因为直线是圆的对称轴,所以圆心在直线上,即2010a +-=,解得12a =.故选:A .8.(2023年新课标全国Ⅰ卷数学真题)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A .1B .154C .104D .64【答案】B【解析】方法一:因为22410x y x +--=,即()2225x y -+=,可得圆心()2,0C ,半径5r =,过点()0,2P -作圆C 的切线,切点为,A B ,因为()22222PC =+-223PA PC r =-可得51036sin ,cos 442222APC APC ∠=∠==,则10615sin sin 22sin cos 2444APB APC APC APC ∠=∠=∠∠=⨯⨯=,22226101cos cos 2cos sin 0444APB APC APC APC ⎛⎫⎫∠=∠=∠-∠=-=-< ⎪⎪ ⎪⎪⎝⎭⎝⎭,即APB ∠为钝角,所以()15sin sin πsin 4APB APB =-∠=∠=α法二:圆22410x y x +--=的圆心()2,0C ,半径5r =,过点()0,2P -作圆C 的切线,切点为,A B ,连接AB ,可得()22222PC =+-223PA PB PC r ==-=,因为22222cos 2cos PA PB PA PB APB CA CB CA CB ACB +-⋅∠=+-⋅∠且πACB APB ∠=-∠,则()336cos 5510cos πAPB APB +-∠=+--∠,即3cos 55cos APB APB -∠=+∠,解得1cos 04APB ∠=-<,即APB ∠为钝角,则()1cos cos πcos 4APB APB =-∠=-∠=α,且α为锐角,所以215sin 1cos 4αα=-=;方法三:圆22410x y x +--=的圆心()2,0C ,半径5r 若切线斜率不存在,则切线方程为0x =,则圆心到切点的距离2d r =>,不合题意;若切线斜率存在,设切线方程为2y kx =-,即20kx y --=,22251k k -=+2810k k ++=,且644600∆=-=>设两切线斜率分别为12,k k ,则12128,1k k k k +=-=,可得()21212124215k k k k k k -+-=所以1212tan 151k k k k -==+αsin 15cos αα=,可得cos 15=α,则2222sin sin cos sin 115+=+=αααα,且()0,πα∈,则sin 0α>,解得15sin 4α=.故选:B.9.(2024年北京高考数学真题)圆22260x y x y +-+=的圆心到直线20x y -+=的距离为()A 2B .2C .3D .32【答案】D【解析】由题意得22260x y x y +-+=,即()()221310x y -++=,则其圆心坐标为()1,3-,则圆心到直线20x y -+=()()221323211--+=+-故选:D.考点3:圆与圆的位置关系10.(2022年新高考全国I 卷数学真题)写出与圆221x y +=和22(3)(4)16x y -+-=都相切的一条直线的方程.【答案】3544y x =-+或7252424y x =-或=1x -【解析】[方法一]:显然直线的斜率不为0,不妨设直线方程为0x by c ++=,2||11c b =+24.1b=+故221c b =+①,|34||4|.b c c ++=于是344b c c ++=或344b c c ++=-,再结合①解得01b c =⎧⎨=⎩或247257b c ⎧=-⎪⎪⎨⎪=-⎪⎩或4353b c ⎧=⎪⎪⎨⎪=-⎪⎩,所以直线方程有三条,分别为10x +=,724250x y --=,3450.x y +-=(填一条即可)[方法二]:设圆221x y +=的圆心(0,0)O ,半径为11r =,圆22(3)(4)16x y -+-=的圆心(3,4)C ,半径24r =,则12||5OC r r ==+,因此两圆外切,由图像可知,共有三条直线符合条件,显然10x +=符合题意;又由方程22(3)(4)16x y -+-=和221x y +=相减可得方程3450x y +-=,即为过两圆公共切点的切线方程,又易知两圆圆心所在直线OC 的方程为430x y -=,直线OC 与直线10x +=的交点为4(1,)3--,设过该点的直线为4(1)3y k x +=+24311k k -=+,解得724k =,从而该切线的方程为724250.(x y --=填一条即可)[方法三]:圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,22345+=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l 的距离19116d ==+,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意22113441p k k p k ⎧=⎪+⎪⎨++⎪=⎪+⎩,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为=1x -,故答案为:3544y x =-+或7252424y x =-或=1x -.考点4:轨迹方程及标准方程11.(2023年北京高考数学真题)已知双曲线C 的焦点为(2,0)-和(2,0)2,则C 的方程为.【答案】22122x y -=【解析】令双曲线C 的实半轴、虚半轴长分别为,a b ,显然双曲线C 的中心为原点,焦点在x 轴上,其半焦距2c =,由双曲线C 22ca=2a =222b c a =-=所以双曲线C 的方程为22122x y -=.故答案为:22122x y -=12.(2023年天津高考数学真题)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12F F 、.过2F 向一条渐近线作垂线,垂足为P .若22PF =,直线1PF 的斜率为24,则双曲线的方程为()A .22184x y -=B .22148x y -=C .22142x y -=D .22124x y -=【答案】D【解析】如图,因为()2,0F c ,不妨设渐近线方程为by x a=,即0bx ay -=,所以222bc bcPF b ca b ==+,所以2b =.设2POF θ∠=,则2tan PF b bOP OP aθ===,所以OP a =,所以2OF c =.因为1122P ab c y =⋅,所以P ab y c =,所以tan P P P aby b c x x a θ===,所以2P a x c =,所以2,a ab P c c ⎛⎫ ⎪⎝⎭,因为()1,0F c -,所以122222222424PF ab ab a a ck a a c a a a c c=====+++++,)2224a a +=,解得2a =所以双曲线的方程为22124x y -=故选:D13.(2022年新高考天津数学高考真题)已知抛物线21245,,y F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为()A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=【答案】C【解析】抛物线245y =的准线方程为5x =-5c =,则()15,0F 、)25,0F ,不妨设点A 为第二象限内的点,联立b y x a x c⎧=-⎪⎨⎪=-⎩,可得x c bc y a =-⎧⎪⎨=⎪⎩,即点,bc A c a ⎫⎛- ⎪⎝⎭,因为112AF F F ⊥且124F F A π∠=,则12F F A △为等腰直角三角形,且112AF F F =,即2=bc c a,可得2ba =,所以,22225ba c c ab ⎧=⎪⎪⎪⎨⎪=+⎪⎪⎩,解得125a b c ⎧=⎪=⎨⎪=⎩,因此,双曲线的标准方程为2214y x -=.故选:C.14.(2022年高考全国甲卷数学(文)真题)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为()A .2211816x y +=B .22198x y +=C .22132x y +=D .2212x y +=【答案】B【解析】因为离心率22113c b e a a ==-,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=- BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y +=.故选:B.15.(2024年新课标全国Ⅱ卷数学真题)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)【答案】A【解析】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A考点5:椭圆的几何性质16.(2022年新高考全国I 卷数学真题)已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是.【答案】13【解析】∵椭圆的离心率为12c e a ==,∴2a c =,∴22223b a c c =-=,∴椭圆的方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,∵222AF a OF c a c ===,,,∴23AF O π∠=,∴12AF F △为正三角形,∵过1F 且垂直于2AF 的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,∴直线DE 的斜率为333直线DE 的方程:3x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:22136390y cy c --=,判别式()2222634139616c c c ∆=+⨯⨯=⨯⨯,∴()212Δ13226461313cDE y =+-==⨯⨯⨯=,∴138c =,得1324a c ==,∵DE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ==,,∴ADE V 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为222211*********DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==.故答案为:13.17.(2023年高考全国甲卷数学(理)真题)设O 为坐标原点,12,F F 为椭圆22:196x y C +=的两个焦点,点P 在C 上,123cos 5F PF ∠=,则||OP =()A .135B .302C .145D .352【答案】B【解析】方法一:设12π2,02F PF θθ∠=<<,所以122212tan tan 2PF F F PF S b b θ∠== ,由22212222cos sin 1tan 3cos cos 2cos +sin 1tan 5F PF θθθθθθθ--∠====+,解得:1tan 2θ=,由椭圆方程可知,222229,6,3a b c a b ===-=,所以,1212111236222PF F p p S F F y y =⨯⨯=⨯=⨯ ,解得:23p y =,即2399162p x ⎛⎫=⨯-= ⎪⎝⎭,因此22930322p p OP x y =++故选:B .方法二:因为1226PF PF a +==①,222121212122PF PF PF PF F PF F F +-∠=,即2212126125PF PF PF PF +-=②,联立①②,解得:22121215,212PF PF PF PF =+=,而()1212PO PF PF =+ ,所以1212OP PO PF PF ==+ ,即22121122111315302212222522PO PF PF PF PF PF PF =++⋅+=+⨯⨯= .故选:B .方法三:因为1226PF PF a +==①,222121212122cos PF PF PF PF F PF F F +-∠=,即2212126125PF PF PF PF +-=②,联立①②,解得:221221PF PF +=,由中线定理可知,()()222212122242OP F F PF PF +=+=,易知1223F F=302OP =.故选:B .18.(2023年高考全国甲卷数学(文)真题)设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅=,则12PF PF ⋅=()A .1B .2C .4D .5【答案】B【解析】方法一:因为120PF PF ⋅= ,所以1290FPF ∠=,从而122121tan 4512FP F S b PF PF ===⨯⋅,所以122PF PF ⋅=.故选:B.方法二:因为120PF PF ⋅= ,所以1290FPF ∠= ,由椭圆方程可知,25142c c =-=⇒=,所以22221212416PF PF F F +===,又1225PF PF a +==22121212216220PF PF PF PF PF PF ++=+=,所以122PF PF ⋅=.故选:B.考点6:双曲线的几何性质19.(2022年新高考北京数学高考真题)已知双曲线221x y m +=的渐近线方程为33y x =±,则m =.【答案】3-【解析】对于双曲线221x y m+=,所以0m <,即双曲线的标准方程为221x y m -=-,则1a =,b m =-221x y m +=的渐近线方程为33y =±,所以33a b =33m =-,解得3m =-;故答案为:3-20.(2023年高考全国乙卷数学(理)真题)设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A .()1,1B .()1,2-C .()1,3D .()1,4--【答案】D【解析】设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +-+===+-+,因为,A B 在双曲线上,则221122221919y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得()2222121209y y x x ---=,所以221222129AB y y k k x x -⋅==-.对于选项A :可得1,9AB k k ==,则:98AB y x =-,联立方程229819y x y x =-⎧⎪⎨-=⎪⎩,消去y 得272272730x x -⨯+=,此时()2272472732880∆=-⨯-⨯⨯=-<,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得92,2AB k k =-=-,则95:22AB y x =--,联立方程22952219y x y x ⎧=--⎪⎪⎨⎪-=⎪⎩,消去y 得245245610x x +⨯+=,此时()224544561445160∆=⨯-⨯⨯=-⨯⨯<,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得3,3AB k k ==,则:3AB y x=由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :94,4AB k k ==,则97:44AB y x =-,联立方程22974419y x y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消去y 得2631261930x x +-=,此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;故选:D.考点7:抛物线的几何性质21.(2024年北京高考数学真题)抛物线216y x =的焦点坐标为.【答案】()4,0【解析】由题意抛物线的标准方程为216y x =,所以其焦点坐标为()4,0.故答案为:()4,0.22.(2024年天津高考数学真题)圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.【答案】45/0.8【解析】圆22(1)25-+=x y 的圆心为()1,0F ,故12p=即2p =,由()2221254x y y x ⎧-+=⎪⎨=⎪⎩可得22240x x +-=,故4x =或6x =-(舍),故()4,4A ±,故直线()4:13AF y x =±-即4340x y --=或4340x y +-=,故原点到直线AF 的距离为4455d ==,故答案为:4523.(2023年高考全国乙卷数学(理)真题)已知点(5A 在抛物线C :22y px =上,则A 到C 的准线的距离为.【答案】94【解析】由题意可得:2521p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =-,点A 到C 的准线的距离为59144⎛⎫--= ⎪⎝⎭.故答案为:94.24.(2023年天津高考数学真题)已知过原点O 的一条直线l 与圆22:(2)3C x y ++=相切,且l 与抛物线22(0)y px p =>交于点,O P 两点,若8OP =,则p =.【答案】6【解析】易知圆()2223x y ++=和曲线22y px =关于x 轴对称,不妨设切线方程为y kx =,0k >,2231k k =+3k =232y y px ⎧=⎪⎨=⎪⎩解得:00x y =⎧⎨=⎩或23233p x p y ⎧=⎪⎪⎨⎪=⎪⎩,所以2222348333p p p OP ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:6p =.当3k =-故答案为:6.25.(多选题)(2024年新课标全国Ⅱ卷数学真题)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A .l 与A 相切B .当P ,A ,B 三点共线时,||15PQ =C .当||2PB =时,PA AB⊥D .满足||||PA PB =的点P 有且仅有2个【答案】ABD【解析】A 选项,抛物线24y x =的准线为=1x -,A 的圆心(0,4)到直线=1x -的距离显然是1,等于圆的半径,故准线l 和A 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ⊥,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故(4,4)P ,此时切线长22224115PQ PA r =-=-=,B 选项正确;C 选项,当2PB =时,1P x =,此时244P P y x ==,故(1,2)P 或(1,2)P -,当(1,2)P 时,(0,4),(1,2)A B -,42201PA k -==--,4220(1)AB k -==--,不满足1PA AB k k =-;当(1,2)P -时,(0,4),(1,2)A B -,4(2)601PA k --==--,4(2)60(1)AB k --==--,不满足1PA AB k k =-;于是PA AB ⊥不成立,C 选项错误;D 选项,方法一:利用抛物线定义转化根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题,(0,4),(1,0)A F ,AF 中点1,22⎛⎫ ⎪⎝⎭,AF 中垂线的斜率为114AF k -=,于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y -+=,2164301360∆=-⨯=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确.方法二:(设点直接求解)设2,4t P t ⎛⎫⎪⎝⎭,由PB l ⊥可得()1,B t -,又(0,4)A ,又PA PB =,422(4)1164t t t +-=+,整理得216300t t -+=,2164301360∆=-⨯=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确.故选:ABD26.(多选题)(2022年新高考全国I 卷数学真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则()A .C 的准线为1y =-B .直线AB 与C 相切C .2|OP OQ OA ⋅>D .2||||||BP BQ BA ⋅>【答案】BCD【解析】将点A 的代入抛物线方程得12p =,所以抛物线方程为2x y =,故准线方程为14y =-,A 错误;1(1)210AB k --==-,所以直线AB 的方程为21y x =-,联立221y x x y=-⎧⎨=⎩,可得2210x x -+=,解得1x =,故B 正确;设过B 的直线为l ,若直线l 与y 轴重合,则直线l 与抛物线C 只有一个交点,所以,直线l 的斜率存在,设其方程为1y kx =-,1122(,),(,)P x y Q x y ,联立21y kx x y=-⎧⎨=⎩,得210x kx -+=,所以21212Δ401k x x k x x ⎧=->⎪+=⎨⎪=⎩,所以2k >或2k <-,21212()1y y x x ==,又2221111||OP x y y y =+=+,2222222||OQ x y y y =+=+所以2121212||||(1)(1)||2||OP OQ y y y y kx kx k OA ⋅=++=⨯=>=,故C 正确;因为21||1||BP k x =+,22||1|BQ k x =+,所以2212||||(1)||15BP BQ k x x k ⋅=+=+>,而2||5BA =,故D 正确.故选:BCD27.(多选题)(2023年新课标全国Ⅱ卷数学真题)设O 为坐标原点,直线)31y x =--过抛物线()2:20C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则().A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN 为等腰三角形【答案】AC【解析】A 选项:直线)31y x =-过点()1,0,所以抛物线()2:20C y px p =>的焦点()1,0F ,所以1,2,242pp p ===,则A 选项正确,且抛物线C 的方程为24y x =.B 选项:设()()1122,,,M x y N x y ,由)2314y x y x⎧=--⎪⎨=⎪⎩消去y 并化简得()()231033310x x x x -+=--=,解得1213,3x x ==,所以121163233MN x x p =++=++=,B 选项错误.C 选项:设MN 的中点为A ,,,M N A 到直线l 的距离分别为12,,d d d ,因为()()12111222d d d MF NF MN =+=+=,即A 到直线l 的距离等于MN 的一半,所以以MN 为直径的圆与直线l 相切,C 选项正确.D 选项:直线)31y x =-330x y +=,O 330y +的距离为3d =所以三角形OMN 的面积为1163432323⨯=由上述分析可知)1212333123,3133y y ⎫=--=-=--=⎪⎭所以()22221231332321,333OM ON ⎛⎫⎛⎫=+-==+= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以三角形OMN 不是等腰三角形,D 选项错误.故选:AC.考点8:弦长问题28.(2022年高考全国乙卷数学(理)真题)设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =()A .2B .22C .3D .32【答案】B【解析】由题意得,()1,0F ,则2AF BF ==,即点A 到准线=1x -的距离为2,所以点A 的横坐标为121-+=,不妨设点A 在x 轴上方,代入得,()1,2A ,所以()()22310222AB =-+-=.故选:B29.(2023年高考全国甲卷数学(理)真题)已知双曲线2222:1(0,0)x y C a b a b-=>>5C 的一条渐近线与圆22(2)(3)1x y -+-=交于A ,B 两点,则||AB =()A .55B .255C .355D .455【答案】D【解析】由5e =222222215c a b b a a a+==+=,解得2ba=,所以双曲线的一条渐近线为2y x =,则圆心(2,3)到渐近线的距离25521d ==+,所以弦长22145||22155AB r d =-=-=.故选:D考点9:离心率问题30.(2024年新课标全国Ⅰ卷数学真题)设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为.【答案】32【解析】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b -=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225bAF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3231.(2022年高考全国甲卷数学(文)真题)记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值.【答案】2(满足15e <皆可)【解析】2222:1(0,0)x y C a b a b -=>>,所以C 的渐近线方程为b y x a =±,结合渐近线的特点,只需02b a <≤,即224b a≤,可满足条件“直线2y x =与C 无公共点”所以221145=++c b e a a又因为1e >,所以15e <≤故答案为:2(满足15e <皆可)32.(2023年新课标全国Ⅰ卷数学真题)已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A F B ⊥=- ,则C 的离心率为.355/355【解析】方法一:依题意,设22AF m =,则2113,22BF m BF AF a m ===+,在1Rt ABF 中,2229(22)25m a m m ++=,则(3)()0a m a m +-=,故a m =或3a m =-(舍去),所以124,2AF a AF a ==,213BF BF a ==,则5AB a =,故11244cos 55AF a F AF ABa ∠===,所以在12AF F △中,2221216444cos 2425a a c F AF a a +-∠==⨯⨯,整理得2259c a =,故355c e a =方法二:依题意,得12(,0),(,0)F c F c -,令()00),,(0,A x y B t ,因为2223F A F B =-,所以()()002,,3x c y c t -=--,则00235,3x c y t ==-,又11F A F B ⊥ ,所以()1182,,33F A F B c t c t ⎛⎫⋅=-⋅ ⎪⎝⎭ 2282033c t =-=,则224t c =,又点A 在C 上,则2222254991c t a b-=,整理得2222254199c t a b -=,则22222516199c c a b -=,所以22222225169c b c a a b -=,即()()2222222225169c c a a c a c a --=-,整理得4224255090c a c a -+=,则()()22225950c a c a --=,解得2259c a =或225c a =,又1e >,所以355e =或55e =(舍去),故355e =故答案为:355.33.(2022年新高考浙江数学高考真题)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是.【答案】364【解析】过F 且斜率为4b a 的直线:()4b AB y x c a=+,渐近线2:b l y x a =,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率36e 4=.36434.(多选题)(2022年高考全国乙卷数学(理)真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A 52B .32C 132D .172【答案】AC【解析】[方法一]:几何法,双曲线定义的应用情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为B ,所以1OB F N ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的左支,OB a =,1OF c =,1FB b =,设12F NF α∠=,由即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,21NF NF 2a-=532222a a b a ⎛⎫--= ⎪⎝⎭,52b e 2a =∴=,选A 情况二若M 、N 在双曲线的两支,因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OB a =,1OF c =,1FB b =,设12F NF α∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,12NF NF 2a -=352222a b a a +-=,所以23b a =,即32b a =,所以双曲线的离心率221312c b e a a =+=选C[方法二]:答案回代法5A e 2=选项特值双曲线())22121,F 5,0,F 5,04x y -=∴,过1F 且与圆相切的一条直线为(y 2x 5=+,两交点都在左支,62N 5,555⎛∴ ⎝,2112NF 5,NF 1,FF 5∴===,则123cos 5F NF ∠=,13C e 2=选项特值双曲线())2212x y 1,F 13,0,F 13,049-=∴-,过1F 且与圆相切的一条直线为(2y x 133=+, 两交点在左右两支,N 在右支,1418N 13,131313∴,2112NF 5,NF 9,FF 213∴===,则123cos 5F NF ∠=,[方法三]:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,若,M N 分别在左右支,因为1OG NF ⊥,且123cos 05F NF ∠=>,所以N 在双曲线的右支,又OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,在12F NF △中,有()212sin sin sin NF NF cβαβα==+,故()122sin sin sin NF NF cαββα-=+-即()sin sin sin a c αββα=+-,所以sin cos cos sin sin sin a cαβαββα=+-,而3cos 5α=,sin a c β=,cos bcβ=,故4sin 5α=,代入整理得到23b a =,即32b a =,所以双曲线的离心率221312c b e a a =+=若,M N 均在左支上,同理有()212sin NF NF c βαβα==+,其中β为钝角,故cos bcβ=-,故()212sin sin sin NF NF cβαβα-=-+即sin sin cos cos sin sin a c βαβαβα=--,代入3cos 5α=,sin a c β=,4sin 5α=,整理得到:1424a b a =+,故2a b =,故2512b e a ⎛⎫=+= ⎪⎝⎭,故选:AC.35.(2024年高考全国甲卷数学(理)真题)已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为()A .4B .3C .2D 2【答案】C【解析】由题意,设()10,4F -、()20,4F 、()6,4P -,则1228F F c ==,()22164410PF =++=,()2226446PF +-=,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.36.(2023年新课标全国Ⅰ卷数学真题)设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若213e e =,则=a ()A 233B 2C 3D 6【答案】A【解析】由213e e =,得22213e e =,因此2241134a a --=⨯,而1a >,所以233a =.故选:A37.(2022年高考全国甲卷数学(理)真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A .32B .22C .12D .13【答案】A【解析】[方法一]:设而不求设()11,P x y ,则()11,Q x y -则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+,由2211221x y a b +=,得()2221212b a x y a-=,所以()2221222114b a x ax a -=-+,即2214b a =,所以椭圆C 的离心率22312c b e a a ==- A.[方法二]:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQ k k =-故()14AP AQ PA PB k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA PBb k k a⋅=-,故2214b a =所以椭圆C 的离心率22312c b e a a ==- A.考点10:焦半径、焦点弦问题38.(多选题)(2022年新高考全国II 卷数学真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则()A .直线AB 的斜率为26B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒【答案】ACD【解析】对于A ,易得(,0)2p F ,由AF AM =可得点A 在FM 的垂直平分线上,则A 点横坐标为3224ppp +=,代入抛物线可得2233242p y p p =⋅=,则36()42p A ,则直线AB 的斜率为6226342p p =-,A 正确;对于B ,由斜率为26可得直线AB 的方程为226p x y =+,联立抛物线方程得2206y py p -=,设11(,)B x y ,则16626p y p +=,则163y =-,代入抛物线得2162p p x ⎛=⋅ ⎝⎭,解得13p x =,则6(,)33p pB ,则22673332p p p p OB OF ⎛⎫⎛⎫=+-≠= ⎪ ⎪ ⎪⎝⎭⎝⎭,B 错误;对于C ,由抛物线定义知:325244312p p pAB p p OF =++=>=,C 正确;对于D ,23663663()(,)0423343234p p p p p p p p OA OB ⎛⎫⋅=⋅-=⋅+⋅-=-< ⎪ ⎪⎝⎭,则AOB ∠为钝角,又26262665()(,)0423343236p p p p p MA MB ⎛⎫⎛⎫⋅=-⋅--=-⋅-+⋅-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭,则AMB ∠为钝角,又360AOB AMB OAM OBM ∠+∠+∠+∠= ,则180OAM OBM ∠+∠< ,D 正确.故选:ACD.39.(2023年北京高考数学真题)已知抛物线2:8C y x =的焦点为F ,点M 在C 上.若M 到直线3x =-的距离为5,则||MF =()A .7B .6C .5D .4【答案】D【解析】因为抛物线2:8C y x =的焦点()2,0F ,准线方程为2x =-,点M 在C 上,所以M 到准线2x =-的距离为MF ,又M 到直线3x =-的距离为5,所以15MF +=,故4MF =.故选:D.考点11:范围与最值问题40.(2022年新高考全国II 卷数学真题)设点(2,3),(0,)A B a -,若直线AB 关于y a =对称的直线与圆22(3)(2)1x y +++=有公共点,则a 的取值范围是.【答案】13,32⎡⎤⎢⎥⎣⎦【解析】()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=;圆()()22:321C x y +++=,圆心()3,2C --,半径1r =,依题意圆心到直线l 的距离()()223342132a ad a ----=≤-+,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦41.(2024年高考全国甲卷数学(文)真题)已知直线20ax y a ++-=与圆2241=0C x y y ++-:交于,A B 两点,则AB 的最小值为()A .2B .3C .4D .6【答案】C 【解析】因为直线20ax y a ++-=,即()120a x y -++=,令10x -=,则x 1,y 2==-,所以直线过定点()1,2-,设()1,2P -,将圆2241=0C x y y ++-:化为标准式为()2225x y ++=,所以圆心()0,2C -,半径5r =,1PC =当PC AB ⊥时,AB 的最小,此时222514AB r PC =-⨯-.故选:C42.(2023年高考全国乙卷数学(文)真题)已知实数,x y 满足224240x y x y +---=,则x y -的最大值是()A .3212B .4C .132+D .7【答案】C【解析】法一:令x y k -=,则x k y =+,代入原式化简得()22226440y k y k k +-+--=,因为存在实数y ,则0∆≥,即()()222642440k k k --⨯--≥,化简得22170k k --≤,解得132132k -≤≤+故x y -的最大值是321,法二:224240x y x y +---=,整理得()()22219x y -+-=,令3cos 2x θ=+,3sin 1y θ=+,其中[]0,2πθ∈,则π3cos 3sin 132cos 14x y θθθ⎛⎫-=-+=++ ⎪⎝⎭,[]0,2θπ∈ ,所以ππ9π,444θ⎡⎤+∈⎢⎥⎣⎦,则π2π4θ+=,即74πθ=时,x y -取得最大值321,法三:由224240x y x y +---=可得22(2)(1)9x y -+-=,设x y k -=,则圆心到直线x y k -=的距离|21|32k d =≤,解得132132k -≤≤+故选:C.考点12:面积问题43.(2024年天津高考数学真题)双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为()A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=【答案】C【解析】如下图:由题可知,点P 必落在第四象限,1290F PF ∠=︒,设2PF m =,211122,PF F PF F θθ∠=∠=,由21tan 2PF k θ==,求得1sin 5θ=因为1290F PF ∠=︒,所以121PF PF k k ⋅=-,求得112PF k =-,即21tan 2θ=,2sin 5θ=121212::sin :sin :sin 902:1:5PF PF F F θθ=︒=则由2PF m =得1122,25PF m F F c m ===,由1212112822PF F S PF PF m m =⋅=⋅= 得22m =则211222,42,2210,10PF PF F F c c =====由双曲线第一定义可得:1222PF PF a -==222,8a b c a ==-所以双曲线的方程为22128x y -=.故选:C44.(2023年新课标全国Ⅱ卷数学真题)已知直线:10l x my -+=与()22:14C x y -+= 交于A ,B 两点,写出满足“ABC 面积为85”的m 的一个值.【答案】2(112,2,,22--中任意一个皆可以)【解析】设点C 到直线AB 的距离为d ,由弦长公式得224AB d =-,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 3
高考真题(2016-2020)(新课标理科与山东卷)
专题13平面解析几何选择填空题
3.【2020年全国2卷理科05】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x −y −3=0的距离为() A .√5
5
B .
2√5
5
C .
3√5
5
D .
4√5
5
4.【2020年全国2卷理科08】设O 为坐标原点,直线x =a 与双曲线C:
x 2a
2−
y 2b 2
=1(a >0,b >0)的两条渐近
线分别交于D,E 两点,若△ODE 的面积为8,则C 的焦距的最小值为() A .4
B .8
C .16
D .32
8.【2019年全国新课标2理科08】若抛物线y 2=2px (p >0)的焦点是椭圆x 23p
+
y 2p
=1的一个焦点,则p =
( ) A .2
B .3
C .4
D .8
9.【2019年全国新课标2理科11】设F 为双曲线C :x 2
a 2−y 2
b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A .√2 B .√3 C .2
D .√5
13.【2018年新课标2理科05】双曲线x 2
a 2−y 2
b 2=1(a >0,b >0)的离心率为√3,则其渐近线方程为( ) A .y =±√2x B .y =±√3x C .y =±√2
2
x D .y =±√32
x
14.【2018年新课标2理科12】已知F 1,F 2是椭圆C :x 2
a 2+y 2
b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为√3
6的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A .2
3
B .1
2
C .1
3
D .1
4
18.【2017年新课标2理科09】若双曲线C :
x 2a
2
−y 2b 2
=1(a >0,b >0)的一条渐近线被圆(x ﹣2)2+y 2=4
所截得的弦长为2,则C 的离心率为( ) A .2
B .√3
C .√2
D .
2√3
3
23.【2016年新课标2理科04】圆x 2+y 2﹣2x ﹣8y +13=0的圆心到直线ax +y ﹣1=0的距离为1,则a =( )
A .−4
3 B .−3
4 C .√3 D .2
24.【2016年新课标2理科11】已知F1,F2是双曲线E:x2
a2−y2
b2
=1的左,右焦点,点M在E上,MF1与
x轴垂直,sin∠MF2F1=1
3
,则E的离心率为()
A.√2B.3
2
C.√3D.2
40.【2020年山东卷13】斜率为√3的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=________.45.【2017年新课标2理科16】已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=.
1 / 3。