铅酸蓄电池充电装置的设计方案
铅酸电池充电

1、最高充电电压与充入电量关系不大。
2、浮充电压与充入电量没关系,只要高于电池最大开路端电压,低于开始析气点电压就行了。
3、浮充转换电流,仅是切换最高充电电压到浮充电压的设定点,不宜过小或过大,与充电量也没关系。
4、充电电流只要不超过0.3C(对10Ah相应为4A)都是允许的,不必要严格要求。
所以,对于36V阀控式吸附式小密封电池组充电参数推荐如下:最高电压:43.5V~44.8V浮充转换电流:300mA~500Ma浮充电压:41V~42V充电电流:2A±20%12V的电平充电电压最高为14V,一般恒压充电为13.8V,超过14.2V就会对电平寿命产生影响,长时间电压过高会导致电平鼓包(就是侧面鼓出来),直至报废。
不过13V的电压相对来说稍微偏低了,可能是摩托车磁电机功率不够造成,一般自己无法简单的更改。
你如果用15V的电充,会导致电平损坏。
铅酸蓄电池充电方法的研究作者:侯聪玲,吴捷,李金鹏,张淼来源:电源技术应用更新时间:2007年11月09日引言铅酸蓄电池由于其制造成本低,容量大,价格低廉而得到了广泛的使用。
但是,若使用不当,其寿命将大大缩短。
影响铅酸蓄电池寿命的因素很多,而采用正确的充电方式,能有效延长蓄电池的使用寿命。
研究发现:电池充电过程对电池寿命影响最大,放电过程的影响较少。
也就是说,绝大多数的蓄电池不是用坏的,而是“充坏”的。
由此可见,一个好的充电器对蓄电池的使用寿命具有举足轻重的作用。
1蓄电池充电理论基础上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研究,并提出了以最低出气率为前提的,蓄电池可接受的充电曲线,如图1所示。
实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电池的容量和寿命也没有影响。
原则上把这条曲线称为最佳充电曲线,从而奠定了快速充电方法的研究方向[1,2]。
图1最佳充电曲线由图1可以看出:初始充电电流很大,但是衰减很快。
蓄电池自适应充电装置的设计

行选 取 , 2 F 4 F,6 F; 取 4 ,8 9 电阻 。 放 电作 起
用 。 万 能 开 关 选 用 L — 5 1 8 / 。L 可 选 用 W5 1 F 7 26 P C
频 芯 片 L 3 , 电压 信号 变成 频率 信号 , 通 过光 M3 1 将 再
∞
2 蓄 电池 自适应充 电装置 的硬件设计
蓄 电池 自适 应 充 电装 置 的硬 件 电路 如 图 1所
耦隔 至PC 速输 完 离送 L 高 入端 成信号 测。L 选 检 PC
用 日本 三菱 F 2 - 1 MR XN 6 .
摘 要 : 绍 采 用 P C 实现 蓄 电 池 自适 应 充 电 的 方 法 , 用这 种 方 法 能 对 不 同 电 压 的 蓄 电 池 自动 识 别 、 介 L 采 自动 充 电 。整 个 装 置 线路 简单 、 器件 较 少、 元 系统 可 靠 性 高 , 一 定 市 场前 景 。 有
S 间 内判 8V, 时
别 检测 值在 区间[04 1 3 ,2的状况 。 M8闭锁 , 4 在 2V值
被 剔 除 , 证 3 保 0V≤U 4 内 , 定值 为 4 在 < 2V 设 0 V,
联 电阻 尺 和交 流 电容 C ,交 流 输入 电源 的另 一输
参考 文献 :
【 王 兆安 . 1 】 电力 电子 技 术 【 . 京 : 械 工业 出版 社 . M】 北 机 [ 赵 同贺 . 2 】 开关 电 源 设 计 技 术 与 应 用 实 例 [ 】 京 : 民 邮 M. 北 人
电出 版 社.
接报 警 灯 及 继 电器 线 圈 ,报警 灯 及 线 圈 另 一 端 接 2 0V其 中一 输入 端 ,上述 接报 警 灯及继 电器线 圈 2 的 P C两 输 出 口对应 的 C M 端短 接 再 接 至 2 0V L O 2
铅酸电池智能充电器设计

铅酸电池智能充电器设计摘要铅酸蓄电池在直接供电和备用供电等场合获得了比较广泛的应用。
为了更加有效合理的对铅酸蓄电池充电的作用,所以在给蓄电池充电的过程中,应合适的给电池充电,从而减少充电时对电池的损害。
达到保护电池,维持电池的使用寿命。
由于蓄电池在充电时的温度是变化的,所以在设计充电器时应把温度考虑到充电的因素当中。
对充电过程的进一步精确控制。
本文中铅酸蓄电池充电器主要用到的芯片UC3909,介绍了UC3909控制智能充电器的工作原理,分析了电池充电时的各种状态,具体解决方案,做到对电池的伤害最小,并设计了应用于铅酸电池硬件控制电路,监控电路的设计方案,对UC3909,HT46R23等芯片做了简单介绍,并且还对蓄电池充电器系统硬件电路的设计做了较为明确的说明和具体的软件编程。
另外,本文还对电池的充电电压和电池温度的监控流程进行了初步设想,从而实现充电器的智能化。
对蓄电池在充电时起到了一定的保护作用,基本上解决了充电时的电能浪费和能源浪费的问题。
为今后的减排节能起到了一定作用。
关键词:UC3909;HT46R23;铅酸蓄电池;智能充电;控制Intelligent lead-acid battery charger designABSTRACTLead-acid battery in direct power supply and backup power supply has been widely used. In order to more effective and reasonable, the function of lead-acid battery charging so on battery charging process, should be suitable for the battery, and thus to minimize damage to the battery when charging. To protect the battery, to maintain the service life of batteries. Due to the temperature of the battery when charging is changing, so in the design of the charger should be the temperature when considering the factors of charging. Further precise control of the charging process. The chip UC3909 lead-acid battery charger is mainly used in this paper, introduces the working principle of intelligent charger UC3909, analyzes several kinds of battery charging status, the specific solutions, to achieve the minimum damage to the battery, and designs the hardware control circuit used in lead-acid battery, the control circuit design, to UC3909 HT46R23 chip made simple introduction, but also on the battery charger system clear instructions to the hardware circuit design and software programming in detail. In addition, this article also for charging voltage of the battery and battery temperature monitoring process has carried on the preliminary conception, so as to realize the intelligent of the charger. For the protection of the battery when charging have played a role, basically solved the charging electric energy waste and energy waste problem. Play a certain role for the future of the emissions reduction and energy saving.Key words:UC3909; HT46R23; Lead-acid batteries; Intelligent Charger; Monitoring目次摘要 (I)ABSTRACT (II)1 绪论 (1)1.1引言 (1)1.2智能铅酸电池的发展 (1)1.3常见充电方法概述 (2)1.4课题的目的和意义 (2)1.5课题的组织安排 (2)2 系统的总体方案及芯片简介 (4)2.1系统的总体方案 (4)2.2系统软件实现方案 (4)2.3充电电路硬件设计方案 (4)2.3.1基于UC3909及外围元件充电电路设计方案 (4)2.3.2基于充电电压的监控电路设计方案 (5)2.3.3基于电池温度监控设计方案 (5)2.3.4基于充电器电源电路设计方案 (5)2.3.5基于恒定+5V电源电路设计方案 (6)2.4 UC3909简介 (6)2.4.1概述 (6)2.4.2引脚排列与功能说明 (7)2.5 HT46R23芯片简介 (8)2.5.1概述 (8)2.5.2引脚排列与功能说明 (8)2.5.3内部框图 (10)2.6 MC34063芯片简介 (11)2.6.1概述 (11)2.6.2引脚排列与说明 (11)2.7 DS18B20芯片简介 (11)2.7.1概述 (11)2.7.2引脚排列与功能 (12)2.7.3内部框图和主要特性 (12)2.8液晶显示模块简介 (13)2.8.1管脚介绍及主要技术参数 (13)2.8.2相关指令 (14)3 铅酸蓄电池智能充电系统硬件电路设计 (15)3.1铅酸蓄电池充电问题分析 (15)3.2铅酸蓄电池智能充电器的结构及充电方法 (16)3.2.1充电电路的电路结构 (16)3.2.2充电电路的电路充电方法 (16)3.3铅酸蓄电池智能充电器电路设计 (17)3.3.1电铅酸蓄电池充电电路实现功能 (17)3.3.2输入电源电路 (18)3.3.3MC34063降压变换电路 (19)3.3.4UC3909及外围元件组成的充电电路 (19)3.3.5电池的充电电压的监控电路 (22)3.3.6蓄电池充充电温度监控电路 (23)3.3.7恒定+5V电源电路 (24)3.3.8继电保护电路 (24)4 铅酸电池充电系统软件设计 (26)4.1系统软件设计注意事项 (26)4.2铅酸电池充电系统软件设计 (26)4.3系统各子部分软件设计 (27)4.3.1A/D转换子程序采样部分 (27)4.3.2液晶显示部分 (27)4.3.3温度传感器部分 (28)设计总结 (30)致谢 (31)参考文献 (32)1 绪论1.1 引言近些年来,铅酸蓄电池凭借着性能稳定、寿命长、低成本、还有可逆性等特点,使得铅酸蓄电池成为一种新型的能源。
智能化铅酸蓄电池充电电路设计

频调速稍低, 价格也低于变频调速( 串级调速大于 1 0 K 0 元/W, 0
斩波式内反馈调速小于1 ( K ) 0〕 wo 0元/ 随着新的控制理论( 如失量变换控制) 和计算机技术的运 用, 更高性能、 更适合调速控制的新型电动机和调速系统必将不 断涌现出来。新世纪的电动机调速技术将向着高效率、 高性能、 高精度、 响应快、 智能化、 绿色化的方向发展。为我国经济发展 做出更大贡献。
( 上接第36 9 页) 从表2 1 我们可以看出变频调速、 一 串级调速、 双馈调速、 斩 波式内反馈调速方法都是高效率、 节能型调速方法。其它各种 调速方法也都有自己的特点。变频调速适用范围广泛, 在多台 电动机同频拖动, 或者调速范围大的低速大容量拖动系统中发 挥着不可替代的作用。其调速范围广( 0 0 , 1 %一 %)调速精度高 0 ( 05 )节电效果好( t .% , 多数为 2%一 0 , 5 5%)性能是其它各种 交流调速技术所不能比拟的。但变频器的价格较高( 一般为 1 0 1 ( k 大容量、 0 一 3〕 W, 0 0 元/ 高精度调速还要高些) 。 变极调速用于小容量、 非平滑调速场合, 需要增加的投资少 ( 平均5 元/ , 0 k 节电3%. W) 0 电磁转差离合器调速适用于要求有一定调速范围, 又经常 用于高速的场合。容量在 05 - k . 60W范围内, 5 3 它的初始投资 不高( 普通笼型电动机约高20 k o 比 2 元/ W) 定子调压调速适用于小容量的短时与重复短时作深调速运
作者简介
车存仁, 高 男. 级工程师,9」 11 7 年毕业于拈京工业学院。主 要从事电力电子装!设计。
.4 7 · 7
社 , 7. 19 9
[l 王克成. 4 秦晓平, 感应电动机的双馈调速和串级调速. 北京: 机械工业出版社, 9. 10 9 [] 近代交流调速. 5 将纯厚. 北京: 冶金工业出版杜. 8. 15 9
蓄电池充放电方案

蓄电池充放电方案摘要:蓄电池是一种能够将化学能转换为电能的装置,广泛应用于各种移动设备和能源储存系统中。
在日常生活和工业应用中,蓄电池的充放电方案对其性能和寿命起着重要作用。
本文将介绍基本的蓄电池充放电原理、常见的充放电方案,并探讨其优缺点以及适用场景。
1. 蓄电池充电原理蓄电池是由一个或多个电池单元组成的装置,通过在化学反应中储存和释放电能。
常见的蓄电池类型包括铅酸蓄电池、锂离子电池、镍氢电池等。
不同类型的蓄电池有不同的充电原理,但基本原理是相同的:在充电过程中,外部电源提供电流,通过化学反应将电能储存到蓄电池中;在放电过程中,蓄电池的化学反应将储存的电能转化为电流输出。
2. 常见的蓄电池充放电方案2.1 恒定电流充电方案恒定电流充电是一种常见的充电方式,其原理是在充电过程中保持恒定的充电电流。
典型的恒定电流充电方案包括恒定电流充电、恒定电流恒定电压充电等。
恒定电流充电方案适用于大容量蓄电池和长时间充电的情况。
通过控制恒定的充电电流,可以有效地充满电池,并保护电池免受过充放电的损害。
然而,这种充电方案可能会导致电池表面温度升高,需要注意散热和安全问题。
2.2 脉冲充电方案脉冲充电是一种将脉冲电流注入到蓄电池中进行充电的方案。
这种充电方案通常在短时间内提供高电流,然后在休息时间内停止充电,电池可以在这段时间内恢复。
脉冲充电方案可以提高充电效率和充电速度,减少充电时间,并且对电池的性能和寿命影响较小。
但是,应注意脉冲充电的电流和频率,以免对电池产生过大的压力和损害。
2.3 恒定功率放电方案恒定功率放电方案是一种通过控制放电电流或电压来使电池以恒定功率放电的方案。
这种放电方案适用于需要稳定输出功率的设备或系统。
恒定功率放电方案可以有效地保持电池的电压稳定,防止电压过低引起设备故障。
然而,这种方案也可能导致电池容量及续航时间的减少,需要权衡电池的可用能量和使用时间。
3. 蓄电池充放电方案的优缺点3.1 优点蓄电池充放电方案具有以下优点:- 可以实现电能的储存和释放,满足不同应用的需求;- 充电方案多样,根据实际情况选择合适的充电方式;- 放电方案灵活,可以根据不同负载要求进行调整;- 充放电过程中不产生有害物质,对环境友好。
铅酸蓄电池智能充电系统的设计

本文主要介绍了一种铅酸蓄电池智能充电系统的设计过程,包括对蓄电池充电方法的研究和充电系统的设计。
在通过对蓄电池充电原理和充电方法研究的基础上,提出采用恒压限流充电和脉冲充电相结合的充电方法。
这种充电方法可以始终地使充电电流在总体上逼近蓄电池的可接受充电电流曲线,并且在整个充电期间内适时地采取了去除蓄电池极化的措施。
理论研究和实验数据表明,这种充电模式可以大大缩短充电时间,提高充电效率。
在本充电系统的设计过程当中,采用了高频开关电源,主回路由三相整流电路、改进型全桥移相控制的零电压PWM变换电路和能量回馈电路组成,控制回路由SOC196KB单片机最小系统、模拟量检测电路、键盘和显示电路、执行电路组成。
功率开关管选用IGBT,驱动芯片选用EXB841,移相控制芯片选用UC3879。
通过采集蓄电池的端电压、充电电流等参数,送入80C196KB单片机进行分析和处理,得到相应的控制信号,控制主回路IGBT的通断,从而实现蓄电池的智能充电。
实验结果表明,基于80196KB单片机控制的智能充电系统,其效率高、调节时间快的良好充电特性可得到充分发挥,使得蓄电池具有较高的使用容量和较长的循环寿命,可满足电机车动力蓄电池的充电要求,具有良好的应用前景,为提高蓄电池的性能和可靠性提供一条新的、有效的途径。
关键词电机车;铅酸蓄电池;智能充电;80C196KB单片机AbstractThis paper mainly introduces a kind of lead-acid batteries intelligent charging system design process, including the battery charging method of research and charging system design. In the battery principle and charging methods on the basis of study, the paper proposes the constant pressure and pulse current limiting charging charging combination of charging methods. This kind of charging methods can always to recharge current in overall approximation battery acceptable charging electric current curve, and throughout the charging period timely adopted remove battery polarization measures. Theoretical and experimental data shows that this model can greatly shorten charging charging time and improve charging efficiency.In this charging system design process, adopts the high frequency switching power supply, the main circuit by three-phase rectifier circuit, improved the whole bridge phase shifting control ZVS PWM transform circuit and energy feedback circuit, control circuit 80C196KB composed by single chip minimize system, analogue detection circuit, keyboard and display circuit, executive circuit composed. The power switch tube choose IGBT, drive chip choose EXB841, phase shifting control chip choose UC3879. By collecting and analyzing the battery voltage, charging current parameters such as 80C196KB microcontroller, to analyze and processing, obtained the corresponding control signal, the control of main loop IGBT hige, thus realize battery intelligent charging. Experimental results show that the 80C196KB single-chip microcomputer control based on the intelligent charging system, its high efficiency, regulating time quick good charging characteristics can get fully, make battery has higher use capacity and long cycle life, can meet the electric locomotive motive battery charging request, has a good application prospect for improving battery performance and reliability provides a new and effective way.Keywords electric locomotive, Lead-acid batteries, Intelligent charging, 80C196KB single chip.connected microcontroller1.1课题背景目前,大多数电机车使用的电源都是铅酸蓄电池组。
智能铅酸蓄电池充电器的设计与实现

智能铅酸蓄电池充电器的设计与实现关键字:蓄电池充电过程大电流充电引言20世纪60年代末期,美国科学家马斯对蓄电池充电过程的析气问题做了大量的研究工作,提出了以最低析气率为前提的蓄电池可接受的充电电流曲线,如图1所示。
其充电电流轨迹近似为一条呈指数规律下降的曲线。
基于铅酸蓄电池的特性以及图1的充电曲线,本文采用了三阶段充电模式:预充、直充和浮充。
通过检测蓄电池的电压,进入不同的充电阶段。
预充电:对于长期不用的电池、新电池或在充电初期已经处于深度放电的蓄电池,刚开始就采用大电流直接充电会突然增加蓄电池的析气量,缩短蓄电池的寿命。
因此,必须先用小电流对蓄电池充电,当蓄电池电压上升到能接受大电流充电时再进行大电流直接充电。
直充电:此阶段充电器以恒定电压对蓄电池进行充电。
充电开始时电流很大,随着电池端电压上升,充电电流按指数规律下降。
因此电池的析气量小,耗水少,有利于延长电池使用寿命,不过充入电量约在90%左右,不能有效地给电池充足电。
浮充电:也叫涓流充电,主要作用是补充蓄电池自放电所消耗的能量,使电池能接近100%容量。
充电电压仅略高于蓄电池组的断路电压且维持恒定,充电电流很小,并逐渐减小到0。
方案设计总体设计如图2所示,系统主要硬件电路包括辅助电源、开关电源和MXT8051单片机控制部分。
其中,辅助电源给单片机和运算放大器提供工作电压,由线性变压器、整流滤波和DC/DC转换电路等组成;开关电源输出充电电压和电流,由高频磁芯单端反激式变压器、整流滤波和DC/DC转换电路等组成;MXT8051单片机控制部分负责控制充电电压电流,检测电压电流并通过LCD和发光二极管实时显示充电信息,并驱动蜂鸣器报警和风扇转动,由充电电压电流控制、电压电流检测、充电阶段指示、液晶显示、蜂鸣器和风扇控制电路组成。
如图3所示,系统软件主要包括电压电流控制、电压电流检测、液晶显示、风扇和蜂鸣器控制模块。
通过设置寄存器,控制MXT8051内建的10位PWM,产生不同占空比的PWM波,经放大、滤波后通过TL431及光耦隔离接至UC3842的反馈端,产生PWM波,以驱动功率MOSFET管,从而控制开关电源输出;由MXT8051提供的10位ADC对充电电压和负载电流进行检测;通过LCD显示充电电压和电流的采集值,以及电池型号、充电模式、充电时间等信息;由MXT8051的PWM控制风扇和蜂鸣器,实现散热和报警;由GPIO口控制充电阶段指示灯(发光二极管);通过UART连接上位机进行调试、诊断。
小型风光互补电源的蓄电池智能充电装置的设计

式 。但 是这种 充 电方式 ,在 蓄 电池 开始 充 电时 的电
流 比较 小 ,而 后 期 电流 又 过 大 ,造 成 整 个 充 电时 间 延
长 ,尤 其 在 充 电后 期 会 析 出较 多气 体 ,对 机 板 产 生 冲
击 ,能耗 高 、充 电效 率不 足6% 5。 () 二 恒压 充 电 恒 压 充 电 主 要 以恒 定 电压 对 蓄 电池 进 行 持 续 充 电 , 因此 在 充 电初 期 , 由于 蓄 电池 的 电压 比较 低 、充 电 电流 较 大 ,但 是 随着 电流 电压 的不 断 升 高 , 电流 也 会 随之 减 少 。在 充 电末 期 ,只 剩 下 很 小 电流 通 过 ,就 不 需 要 在 充 电过 程 中 调 整 电 流 。 与 恒 流 充 电方 式 相 比 ,这 种 充 电 方法 的 时 间短 、析 气 量 小 、 能耗 低 ,充 电效 率 可达 N8 % o ,如 果 选 择 恰 当 的 充 电 电压 ,8 时 小 内即可完 成 充 电。但 是这 种 方式 也存 在 一定 不足 : 1 .在 充 电前 期 , 如果 蓄 电池 的放 电深 度 过 深 ,充 电 电流 会较 大 , 此 时 难 以确 保 充 电控 制 器 的 安全 , 并
3 4
此 时 即进 入 第三 阶 段 ,通 过 渭 流 形 式 实 现 浮 充 电 ,保 持 蓄 电池 的荷 电 。 当 蓄 电池 的 电 能充 足 ,如 果 脱 离 了
变 。这种方法 比较适合多个蓄 电池的 串联形式,对蓄
电池 组 进 行 充 电 , 可 应 用 于 小 电流 的 长 时 间 充 电模
参考 文献 [ 机械设 计手册联合 编写组.机械 设计手册 ( 2版 )M】 1 】 第 [ . 化学工业 出版社 ,9 7 18. []唐 立夫, 2 王维一 , 张怀清.过 滤机 f .机械 工业出版社 , M】
利用迟滞比较器实现蓄电池充放电电路设计

利用迟滞比较器实现蓄电池充放电电路设计蓄电池是一种能够储存电能的装置,广泛应用于车辆、太阳能系统和备用电源等领域。
为了有效地控制蓄电池的充放电过程,通常需要使用比较器来监测和调节电压。
而迟滞比较器是一种特殊的比较器,能够提供一定的带电压差的滞后效果,从而可以有效地控制电压的波动。
本文将使用迟滞比较器设计一个蓄电池充放电电路,并详细介绍其原理和实现过程。
首先,我们需要确定蓄电池的充电电压范围和充电电流。
假设我们使用的是一个12V的铅酸蓄电池,其最大充电电压为14.4V,最大充电电流为2A。
在设计充电电路时,我们希望能够实现以下功能:-当蓄电池电压低于13.6V时,启动充电过程;-当蓄电池电压达到14.4V时,停止充电过程;-充电电流控制在2A以内。
为了实现以上功能,我们可以设计如下的充电电路:首先,使用一个交流-直流电源将交流电转换为12V的直流电压,作为充电电源。
接下来,将电源的正极连接到一个迟滞比较器的正极引脚,同时将蓄电池的正极连接到比较器的负极引脚。
通过调节比较器的阈值电压和迟滞时间,可以实现对蓄电池的充电控制。
当蓄电池电压低于13.6V时,比较器输出低电平,启动充电过程;当蓄电池电压达到14.4V时,比较器输出高电平,停止充电过程。
同时,通过连接一个电流传感器到充电回路中,可以实时监测电流大小,从而控制充电电流在2A以内。
在设计放电电路时-当蓄电池电压低于11.0V时,停止放电过程;-放电电流控制在2A以内。
为了实现以上功能,我们可以设计如下的放电电路:首先,将蓄电池的正负极连接到一个迟滞比较器中,同时连接一个电流传感器到放电回路中。
通过调节比较器的阈值电压和迟滞时间,可以实现对蓄电池的放电控制。
当蓄电池电压低于11.0V时,比较器输出高电平,停止放电过程;当蓄电池电压达到11.5V时,比较器输出低电平,启动放电过程。
同时,通过电流传感器监测放电电流大小,控制放电电流在2A以内。
通过以上设计,我们可以实现对蓄电池充放电过程的有效控制,保证蓄电池的使用安全和稳定性。
蓄电池安装及充放电施工方案

×××110kV升压站工程蓄电池安装及充放电施工方案×××施工项目部20××年9月批准:____________ ________年____月____日审核:____________ ________年____月____日编写:____________ ________年____月____日目录目录 (3)1 项目概况 (4)1.1项目简介 (4)1.2主要工程量 (4)1.3项目施工特点 (4)2 编制依据及引用标准 (4)3 项目进度控制计划 (5)4 施工条件及人员机具配置 (5)4.1安装前必须具备的条件和准备 (5)4.2作业人员及资质要求 (6)4.3作业机械、工器具配置 (6)5 本项目需要的设备、材料需求计划 (7)6 作业流程及方法 (7)6.1作业流程图 (7)6.2作业方法和要求 (7)7 质量目标、要求和质量验评范围 (11)7.1质量目标 (11)7.2质量要求 (11)7.3质量验评范围 (12)8安全文明施工 (12)8.1安全施工技术措施 (12)9 成本控制措施 (13)附表1:危险/危害因素及其控制措施一览表 (14)附表2:环境因素及控制措施一览表 (16)×××110kV升压站工程蓄电池安装及充放电施工方案1 项目概况1.1项目简介×××110kV升压站直流系统蓄电池组选用深圳奥特迅电力设备股份有限公司产品。
装设两组230V固定阀控密封式铅酸蓄电池,型号为GZDW-2×80A/230V300AH/2V,为机组直流控制负荷供电。
此电池具有体积小、重量轻、不溢酸、不污染环境、不腐蚀设备等,另外此蓄电池还具有内阻低、自放电小、耐过充过放等特点,既可浮充使用,又可循环使用,安全可靠、使用寿命长。
1.2主要工程量1.2.1蓄电池台架安装1.2.2蓄电池安装 GZDW-2×80A/230V300AH/2V 104只×2(2组);1.2.3蓄电池组充放电1.3项目施工特点230V蓄电池为300AH,采用双极柱双并联的方式组成,三层组架卧式安装,三层电池架共两组208只。
基于单片机的铅酸蓄电池充电装置的设计设计

基于单片机的铅酸蓄电池充电装置的设计设计
一、背景介绍
铅酸蓄电池是目前工业和生活中最常用的电池之一,因其低成本、操
作方便等优点,被广泛应用于家庭、工业及军用等多个领域。
但是,由于
铅酸蓄电池充放电过程中涉及到各种相对复杂的工艺过程,以及存在许多
外部恶劣环境因素,充电过程中还需要很多的安全措施以及精确的控制技术,否则会对蓄电池产生不良影响,从而降低电池的使用寿命和使用效率。
为此,我们设计了基于单片机的铅酸蓄电池充电装置,它能够更精确
地控制蓄电池充放电过程,满足不同环境条件下的充放电需要,有效保障
充电过程的安全,提高充电效率,延长电池使用寿命。
二、基于单片机的铅酸蓄电池充电装置设计
1.系统框架
基于单片机的铅酸蓄电池充电装置由调节器、单片机控制系统和监控
系统三部分组成,其中调节器包括外接桥接电路,主要是对输入电源
AC220V的电压进行整流处理,以输出额定电压到蓄电池;单片机控制系
统主要由单片机、变频电路、智能芯片和调节控制电路组成,负责实现对
电压、电流、充电时间进行控制和检测。
铅酸电池储能系统方案设计 (无集装箱)

技术方案管式胶体铅酸蓄电池成套设备方案设计报告2014年1月目录目录 (2)1 需求分析 (3)2 电池组串成组方案 (3)2.1 电池组串内部及组间连接方案 (5)2.2 系统拓扑图 (6)3 蓄电池管理系统(BMS) (7)3.1 BMS系统整体构架 (7)3.2 BMS系统主要设备介绍 (8)3.3 BMS系统保护方式 (11)3.4 BMS系统通信方案 (11)4 对厂房要求 (13)1 需求分析管式胶体铅酸蓄电池成套设备供货范围包括管式胶体铅酸蓄电池、BMS 、附属设备、备品备件、专用工具和安装附件等。
根据项目的特点,根据标书要求,综合铅酸电池特性,对于储能系统进行如下设计:336只2V1000Ah 管式胶体铅酸电池串联而成一个电池堆,电压672V ,电池串容量672kWh 。
每3个电池堆并联到一台500kWh 储能双向变流器。
三个电池堆的总容量可达2MWh ,故本方案中三个电池堆为一储能单元,每个单元配置一套BMS 电池管理系统,可监控每人单体电池电压,内阻及温度、电流。
厂房含烟感探头、消防灭火器、环境控制系统、排氢系统、视频监控系统、温湿度监测等设备,以保证铅酸电池安全稳定的工作环境,实现远程监控。
2 电池组串成组方案名称成组单元 设备组成详图容量单体采用2V1000Ah 管式胶体铅酸蓄电池2V1000Ah 2KWh电池簇24只2V1000Ah 管式胶体铅酸蓄电池串联组成一簇,配备一台蓄电池监控模块。
蓄电池簇48V1000h 48KWh蓄电池簇监控单元电池组单元14簇电池组串联组成一组电池组单元,配备一台蓄电池组控制单元电池组单元672V/1000A h 672kWh电池组控制单元储能系统单元3组电池组单元并接入一台双极式单级500KW PCS 构成一组储能单元,配备一台直流配电柜。
电池管理系统BMU ,500KW ,PCS电池组单元500KW/2.016MWh直流配电柜BMUPCS7MW/28MWh 储能系统14组500KW/2.016MWh储能系统单元并联构成7MW/28MWh储能系统储能系统单元7MW/28.224MWh就地监控系统以上成组方案,充分考虑了电池多组并联时产生环流的问题,也充分考虑了系统的走线主载流量,电池簇内采用铜排联结,载流量300A,满足系统运行需求,在跨簇联结时采用铜线联结形式,载流量300A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铅酸蓄电池充电装置的设计方案1 概述1.1 课题研究的背景电池是一种化学电源,是通过能量转换而获得电能的设备。
也被称为可再充电电池或蓄电池被激活的充电电池的放电后的活性物质继续使用的二次电池。
当对电池充电时,电能转变为化学能,实现向负荷供电,伴随吸热过程。
应用过程中的可充电电池,充电器是使用的设备,是其成功的关键,可充电电池一问世,充电器设计就是一个关键问题,因为直接影响充电电池的两个重要方面:充电电池的使用容量及循环寿命。
因此,直到二十世纪中叶,充电器的技术都没有取得大的进展,常用的恒流或恒压充电方法,效果比较差。
这种情况一直持续,直到六十年代MASCC博士基于最低出气率曲线原理,发现可接受的电池充电电流的大小随时间而减少这一规律,证实恒流或恒压充电是不是最合适的方法。
根据MASCC 的曲线,提出了两阶段,三阶段的多段充电方式。
所谓的两阶段的第一阶段以恒定电流或恒定电压对电池进行充电,当电池电压达到一定的水平,然后涓流充电;所谓的三阶段充电先以恒定电流充电,直到电池电压达到一定值时,转入第二阶段,即恒定电压充电阶段,当电流降到某种程度时,进入第三阶段涓流充电。
经过几十年的发展,铅酸蓄电池充电技术已较为成熟。
由于使用这种电池的性能接近镍镉电池,而且不需要维护,国内铅酸电池使用量逐渐增加。
充电器在近几年的进步已经取得明显进步的标志就是世界上最的半导体制造商纷纷推出自己的充电芯片,其中一些还带有中央处理器。
本文也将应用单片机PIC16C54,设计一款智能型铅酸蓄电池充电器。
1.2 课题研究的意义由于铅酸电池有许多因素影响电池的寿命和容量,为了提高效率,消除偏振,缩短充电时间,在分析铅酸电池的充电特性的基础上,集合涓流充电和恒定电流,恒定电压充电,PIC16C54微控制器,脉宽调制技术的优点,根据电压、电流反馈自动调节充电脉冲宽度,设计一个可以在系统控制下进行三阶段充电的铅酸蓄电池智能充电器。
该充电器根据设计的充电方法对12V、4AH蓄电池充电。
该充电器的一些技术指标有:a)基本输入:单相220VAC±5%,50HZ±2%;b)充电参数:快充时充电电流为4A,慢充时充电电压为14.7V,涓充时充电电压为14.1V;c)环境温度:-10℃到50℃:空气相对湿度不超过85%。
2 充电方案的选择及系统的整体结构2.1 课题的总体设计方案该设计采用逐个功能模块分析再组合的方法来实现方案。
分别对充电控制电路,开关电源PWM控制电路,开关电源主回路中的滤波电路、开关管的驱动电路以及辅助电源电路和显示电路进行了分析设计。
然后对每一部分的具体电路的特点进行组合。
软件方面阐述了软件实现的功能,说明了PIC系统的指令,绘制了程序流程图,分析和解释了程序。
2.2 充电方法的选择铅酸蓄电池充电方法的选择是至关重要的,不同的充电方法差别很大,充电效果有很大的差距,对电池性能的影响也不相同。
选择最合适的充电方法,你应该考虑使用充电电池的频率,放点的放大倍率以及其他因素。
下面是对不同充电方法的简要概述:2.2.1 恒流充电充电器的交流电源电压通常是波动的,充电需要的是直流恒流电源。
当使用恒定电流充电时,电池可以具有高充电效率,可以很容易地根据充电时间来决定是否充电中止,并且还可以改变的电池的数目。
恒流电源充电电路如图2.1所示。
图2.1 恒流电源充电电路2.2.2 恒压充电在该充电模式中,充电电路随电池两端的电压波动而变化,初始充电电流比较大,到最后阶段,充电电流变小。
充电电流中的最大充电电流应设置为最高充电电压,以便将电池过度充电。
此外,在用恒压方式充电时,充电电压在充电末期达到峰值后会有所下降。
电池充电电流会加大,会导致电池温度上升。
当电池温度上升时,电压下降将导致热失控的电池,电池的性能损坏,因此,不建议使用恒压充电。
如图2.2所示:图2.2 恒压充电电路2.2.3 浮充方式在浮充模式下,电池以小电流(C/30号C/20)充电,以保持电池在完全充电的状态。
浮充法适用于电池作为应急电源或备用电源的电气设备。
常规浮充方式充电电路如图2.3所示。
图2.3 浮充方式充电电路2.2.4 涓充方式电池与负载并联,同时电池与直流电源(充电器)相连。
一般情况下,作为负载的工作电源,直流电源以涓流充电模式对电池进行充电,只有当负载变大,在直流电源的端电压低于电池端电压或直流电源停止供电时,电池对负载放电。
在这种方式下,充电电流由使用模式决定。
它通常使用在紧急电源、备用电源或电子表等不允许断电的场合。
如图2.4所示是简单的涓充方式示意图。
图2.4 涓流方式的简单示意图2.2.5 分阶段充电方式在分阶段充电方式中,在电池充电的初始阶段充电电流较大。
当电池电压达到控制点时,电池转为以涓流方式充电。
分阶段充电模式是最好的电池充电模式,但缺点是,所述充电电路的复杂性和更高的成本。
另外,需增设控制点的电池电压的监测电图。
如图2.5所示:图2.5 分阶段充电的简单示意图铅酸蓄电池往往采用恒压充电或恒流充电。
恒压充电的初始充电电流过大,影响电池寿命铅酸电池,甚至可能导致极板弯曲,损坏电池。
因此,大量的铅酸蓄电池充电电路以恒流充电方式充电,恒流充电电路始终是一个恒定的充电电流给电池充电,直到电池充满后关断电路,或进入浮充形式。
相比而言,恒流充电对蓄电池的寿命是有好处的。
而且恒流充电具有较大的电流充放电,使充放电的速度大大加快。
但是,如果恒定电流充电,充电电流,以保持原始值,大部分电流消耗在分解水上,使冒气非常强大,电解液沸腾十分激烈,不仅消耗能量,而且容易使极板活性脱落,对极板极其不利。
因此,对于铅酸蓄电池分阶段充电方法是一个更好的办法,因为在充电过程中的,充电电流逐渐下降。
使用这种方法中,充电结束的电解质沸腾现象减弱,能量损失少,而且保护极板,以防止过度充电和水解带来的功率损耗。
分析几种充电方式,综合快充和慢充铅酸电池充电器设计的优势。
使用微控制器控制的充电器,充电过程分为快速充电,慢速充电,涓流充电三个阶段,充电更好。
2.3 系统的整体结构图2.6 系统的整体结构充电系统的结构框图如图2.6所示。
整个充电装置由单片机控制系统,斩波电路,辅助电源电路,电流电压反馈电路,隔离驱动电路和电源变换电路组成。
单片机控制系统由PIC16C54及其外围电路组成,单片机接收到电压电流检测电路反馈的信号后,控制斩波电路的导通,使电压或电流稳定。
斩波电路由晶体管组成,主要作用是可以实现占空比的调节从而达到电流电压稳定的效果。
辅助电源电路是将整流的电压降压,滤波,为单片机提供工作电压。
电流电压检测电路是检测蓄电池两端的充电电压或充电电流是否稳定的设定值。
电源变换电路由滤波电路和整流电路组成,将市网电处理。
驱动隔离电路的主要作用是有基极驱动电路驱动变压器输出。
2.4 本章小结本章着重对比各种充电方案,综合各种充电方案的优点,确定了充电器的设220V 交流电源电源变换电路 辅助电源 斩波电路 单片机 隔离,驱动电路 铅酸蓄电池 电流、电压检测电路计方案,以单片机为控制核心的恒流—恒压—恒流三阶段充电方式。
搭建了系统的总体框图,接下来就总体框图来进行各部分的硬件设计。
3 充电器硬件部分的设计3.1 充电器的充电过程及工作原理3.1.1 充电过程分析图3.1所示为该充电器的充电电流、电压曲线。
U(t)I(A)、U (V )1CI (t )0.09C0t(h)快充慢充涓流充t1t2t3图3.1 充电器的充电电流、电压曲线可以看出,在图3.1中:快充阶段(0至t1),充电器以恒定电流1C 充电,由单片机控制快速充电时间,避免充电过量,慢充阶段(t1至t2),单片机输出PWM 控制信号来控制斩波器开关通断,以一个恒定的电压,对电池进行充电时,充电电流呈指数下降,当电池电压上升到规定值时,慢充结束;进入涓流充电阶段(t2至t3),单片机输出的PWM 控制信号,使充电器以约0.09C 的充电电流充电,在此状态下,很长一段时间,可以对电池进行充电,从而延长电池寿命。
3.1.2 充电器的工作原理根据框图中所示的系统结构中,铅酸蓄电池的充电装置的原理图,主要包括开关稳压器的,斩波器开关,控制器和辅助电源四个部分,并设有过电流保护,过电压保护和过温保护。
交流电流输入整流电路和辅助电源,辅助电源给单片机提供工作电压,再输入半桥式转换器,然后通过使用TL494设计的电压控制和电流监测,使用单片机控制半桥变换器斩波开关实现对蓄电池充电的智能控制,单片机还可以控制灯运行和停止,可以看到现在处于那个阶段的充电状态。
在此示意图中,必须先设定值,然后由微控制器控制的每个阶段的充电。
具体的原理图如图3.2所示:图3.2铅酸蓄电池充电器原理图3.2 充电控制电路的设计根据本系统的特点,硬件电路采用单片机控制系统来实现。
3.2.1 单片机的选择PIC16C54单片机的介绍:PIC16C54属CMOS单片机,是一个低价位高性能8位单片机,具有体积小,功耗低,性能强,体密性高,价格低等特点。
仅使用了33条精简指令集、单字节单周期指令,每条指令的执行时间最快可达到200ns。
易于记忆和使用的指令系统可大大减少产品的开发时间。
它有两个双向I/O口线,其中A口用来检测四种工作方式的按键情况,作为输入,B口中除RB0作为输入,用来检测电流强度控制键的按键情况外,其余都用作输出,RB1用于输出脉冲信号,该信号刺激隔离器,耦合到刺激电极上输出,它的振荡源有四种,晶体振荡(XT),低功耗振荡(LP),高速振荡(HP)及RC振荡。
多种时钟振荡电路低功耗睡眠省电模式和WDT(看门狗)代码保护功能,这些功能有更大的优势。
RB2--RB7是用来控制六档电流强度指示灯的开启和关闭;PIC16C54系列单片机可广泛应用于电机控制、汽车电路、家用电器等领域。
PIC16C54单片机主要性能:RISC精简指令集,指令仅有33条,指令长度为12位绝大部分均为单机器周期指令。
工作速度高,最快可达200ns(20MHz时钟时)数据长度为8位片内程序存储器容量为512-2kbyte片内静态数据存储器(SRAM)为25-73byte硬件组成7个专用寄存器两级硬件堆栈有直接、间接、相对和位寻址功能12-20条I/O引脚,每条引脚均可设置为输入和输出态多种时钟振荡电路及WDT定时器电路宽工作电压范围和低功耗模式:工作电压为 2.5V-6.0V,典型工作电流为2mA,睡眠状态仅为3uA。
PIC16C54单片机引脚图:图3.3 PIC16C54单片机引脚图PIC16C54单片机的引脚功能为:RA0-RA3 I/O输入和输出端口A,与内部的F5对应,为一个4位I/O端口,可进行位控。
RB0-RB7 I/O输入和输出端口B,与内部的F6对应,为一个8位I/O端口,可进行位控。