高中物理:动能和动能定理
高中物理备课参考 动能和动能定理
8.D 解:小球在摆动过程中,质量不变,在 A 点和 C 点的速度为零,小球在 A 点和 C 点的动能 为 0;在 A 点到 B 点的摆动过程中,小球的速度越来越大,动能越来越大;在 B 点到 C 点的 摆动过程中,速度越来越小,动能越来越小.
9.A 解:当两车的速度相同时,质量大的车动能大,因载重汽车的质量比小轿车的质量大,所以 载重汽车的动能大;
滚动的钢珠,质量不变,高度不变,重力势能不变.符合题意.
6.C 解:A、跳伞员张开伞后,匀速下降,速度不变,所以动能不变,高度减小,故重力势能减 小,不符合题意;B、汽车沿斜坡匀速向下行驶时,速度不变,所以动能不变,高度减小, 故重力势能减小,不符合题意;C、电梯从楼下加速上升,速度增大,动能则增大,高度升 高,所以重力势能增大,符合题意;D、列车在平直轨道上匀速行驶,动能不变,重力势能
能不变.不符合题意.B、水从高处流向低处时,水的质量不变,水的高度减小,水的重力 势能减少.水的运动速度不断增加,水的动能增加.不符合题意.C、气球上升时气球的质 量不变,高度越升越高,速度越来越快,所以气球的动能增加,重力势能增加.符合题
意.D、列车在平直的轨道上匀速行驶时,列车的质量不变,速度不变,高度不变,所以列 车的动能不变,重力势能不变.不符合题意.
A.只有 A 点 B.只有 B 点 C.只有 C 点 D.有 A、C 两点
9.以同样速度行驶的载重汽车和小轿车,它们的动能相比( ) A.载重汽车的动能大 B.小轿车的动能较大 C.它们的动能一样大 D.无法比较 10.老鹰和麻雀都在空中飞行,如果他们具有的动能相等,那么( ) A.老鹰比麻雀飞得快 B.麻雀比老鹰飞得快 C.老鹰比麻雀飞得高 D.麻雀比老鹰飞得高
高中物理 7.7动能和动能定律详解
高中物理| 7.7动能和动能定律详解动能物体由于运动而具有的能量,用符号EK表示表达式:E K=1/2mv2动能是标量,单位是焦耳(J),动能是状态量,表达某一瞬间物体由于运动而具有的能量。
由动能的表达式可以看出,一个物体的动能跟该物体的质量和该物体的速度有关。
动能定理力在一个过程中对物体做的功,等于物体在这个过程中动能的变化,这个结论叫动能定理。
表达式:W=E k2-E k1解释:式中W为在某一过程中合外力对物体做的功,也可理解为各力对物体做功的代数和;E k1表示物体在这个过程中的初状态的动能,E k2表示物体在这个过程中末状态的动能。
如果外力做正功,物体的动能增加;外力做负功,物体的动能减少。
适用范围动能定理既适用于直线运动,也适用于曲线运动,既适用于恒力做功,也适用于变力做功。
且只需确定初、末状态而不必涉及过程细节,因而解题很方便。
应用动能定理解题的一般步骤①确定研究对象和研究过程。
②分析物理过程,分析研究对象在运动过程中的受力情况,画受力示意图,及过程状态草图,明确各力做功情况,即是否做功,是正功还是负功。
③找出研究过程中物体的初、末状态的动能(或动能的变化量)④根据动能定理建立方程,代入数据求解,对结果进行分析、说明或讨论。
1. 两个质量为m的物体,若速度相同,则两个物体的动能,若动能相同,两个物体的速度?2. 下列关于运动物体所受合力做功和动能变化的关系正确的是( )A 如果物体所受合力为零,则合力对物体做的功一定为零B 如果合力对物体所做的功为零,则合力一定为零C 物体在合力作用下做变速运动,动能一定发生变化D 物体的动能不变,所受合力一定为零3. 如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。
求物体在轨道AB段所受的阻力对物体做的功。
1. 相同不一定相同(速度方向可以不同)2. A物体所受合力为零,则合力做功为零,物体的动能变化为零.但如果物体所受合力不为零,合力对物体做功也可能为零,动能变化为零,如匀速圆周运动。
动能和动能定理
2
1 2
Ekt mvt
2
W合
由动能定理
1 2 1 2
W合外力 mvt mv0
2
2
应用动能定理
得:
课堂小结
一、动能的表达式 Ek = mv2
1.标量:动能总是正值
2.相对性:相对于地面的速度
3.与速度关系:
(1)数值关系:
(2)瞬时关系:
(3)变化关系:
弹力做功WF
弹性势能kx2/2
?力做功 W
动能表达式?
【情景1】光滑水平面上,质量为m的物体,在与运动方向相同
的恒力F 的作用下发生一段位移l,速度由v1增加到v2。试求这
个过程中力F做的功。
【解析】根据牛顿第二定律有: F=ma
v22 - v12
速度与位移的关系式: l
2a
2
2
2
1
v -v
例:从高为h的山崖上,以
初速度V0抛出一石块,抛出
的速度方向与水平方向之间
的夹角为θ,不计空气阻力。
求石块落到地面上时的速度
大小。
答案: V V0 2 2 gh
动能定理的解题思路
选择研究对象
确定研究过程
确定
过程初末状态动能
受力分析
求合外力的总功
教材 第88页
解:以______为研究过程
1 2
④匀速圆周运动的动能变化吗?
一、动能的表达式
1.定义:物体由于运动而具有的能量叫作动能
E
=
mv2
2.表达式: k
3.单位:焦耳
1kg·m2/s2=1N·m=1J
如图小球碰墙后以原速率反弹 ,
人教版高中物理必修第2册 第八章 3 动能和动能定理
B.该物体动能增加,增加量等于4 J
C.该物体重力势能减少,减少量等于2 J
D.该物体重力势能增加,增加量等于2 J
答案 BD
解析 重力做负功,重力势能增加,增加量等于克服重力做的功,选项C错误,
选项D正确;根据动能定理知该物体动能增加,增加量为4 J,选项A错误,选项
B正确。
课堂篇 探究学习
探究一
一个相对客车静止的质量为4 kg的行李,行李的动能是(
A.0 J
)
B.200 J
C.450 J D.900 J
答案 B
解析 行李的速度v=10 m/s,所以行李的动能Ek=
1 2
mv =200
2
J,选项B正确。
3.(多选)一物体在运动过程中,重力做了-2 J的功,合力做了4 J的功,则(
)
A.该物体动能减少,减少量等于4 J
答案 √
)
(3)合力不为零,物体的动能一定会变化。(
)
答案 ×
解析 合力不为零,合力做功可能为零,此时物体的动能不会变化。
(4)物体所受合力做正功,则它的动能一定增加。(
)
答案 √
(5)做匀速圆周运动的物体动能不变,速度变化。(
答案 √
)
2.在水平路面上,有一辆客车以10 m/s的速度匀速行驶,在车厢后座上放着
(2)应用牛顿运动定律和运动学规律时,涉及的有关物理量比较多,对运动
过程中的细节也要仔细研究,而应用动能定理只考虑合力做功和初、末两
个状态的动能,并且可以把不同的运动过程合并为一个全过程来处理。
2.应用动能定理解题的一般步骤
(1)选取研究对象(通常是单个物体),明确它的运动过程。
(2)对研究对象进行受力分析,明确各力做功的情况,即是否做功?做正功还
高中物理必修二第八章 机械能守恒定律 动能和动能定理
2.物理意义:动能定理指出了合外力对物体所做的总功与物体动能变化之间的关系, 即若合外力做正功,物体的动能增加,若合外力做负功,物体的动能减小,做了多 少功,动能就变化多少. 3.实质:动能定理从能量变化的角度反映了力改变运动的状态时,在空间上的累积 效果.
例 下列关于运动物体的合外力做功和动能、速度变化的关系,正确的是 A.物体做变速运动,合外力一定不为零,动能一定变化 B.若合外力对物体做功为零,则合外力一定为零
动能减少.
例 关于物体的动能,下列说法正确的是
√A.物体的质量、速度不变,其动能一定不变
B.物体的动能不变,其速度一定不变 C.两个物体中,速度大的动能也大 D.某一过程中物体的速度变化越大,其动能的变化一定越大
解析 根据Ek=12 mv2可知,如果物体的质量、速度不变,则动能不变,故A正确; 如果物体的动能不变,则说明其速度大小一定不变,方向可能变化,故B错误; 动能由质量和速度大小共同决定,速度大的物体动能不一定大,故C错误; 做匀速圆周运动的物体,速度变化可能大,但动能不变,故D错误.
素有质量.
知识深化 1.对动能的理解 (1)动能是标量,没有负值,与物体的速度方向无关. (2)动能是状态量,具有瞬时性,与物体的运动状态(或某一时刻的速度)相对应. (3)动能具有相对性,选取不同的参考系,物体的速度不同,动能也不同,一般以地 面为参考系. 2.动能变化量ΔEk ΔEk=12mv22-12mv12,若 ΔEk>0,则表示物体的动能增加,若 ΔEk<0,则表示物体的
即学即用
判断下列说法的正误.
(1)某物体的速度加倍,它的动能也加倍.( × ) (2)两质量相同的物体,动能相同,速度一定相同.( × ) (3)物体的速度变化,动能一定变化.( × ) (4)合外力做功不等于零,物体的动能一定变化.( √ ) (5)物体的速度发生变化,合外力做功一定不等于零.( × ) (6)物体的动能增加,合外力做正功.( √ )
2025《高中物理总复习》6.2动能定理及其应用
第2讲动能定理及其应用课程标准素养目标1.理解动能和动能定理.2.能用动能定理解释生产生活中的现象.物理观念:了解动能的概念和动能定理的内容.科学思维:会用动能定理分析曲线运动、多过程运动问题.返回导航考点一动能、动能定理的理解【必备知识•自主落实】1.动能动能是标量(1)定义:物体由于运动而具有的能.(2)公式:E k=^mv2v是瞬时速度(3)单位:焦耳,1J=1N m=l kg m2/s2.(气)动能]的变化:物体末动能与初动能之差,即AEk=答案返回导航2.动能定理“力”指的是物体受到的合力(1)内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.合力所做的总功1719(2)表达式:W=(3)物理意义:合外力的功是物体动能变化的量度.答案返回导航【关键能力.思维进阶]1.甲、乙两物体的质量分别用m甲、m乙表示,甲、乙两物体的速度大小分别用v甲、v乙表示,则下列说法正确的是()A.如果m乙=2m甲,v甲=2v乙,则甲、乙两物体的动能相等B.如果m甲=2m乙,v乙=2v甲,则甲、乙两物体的动能相等C.如果m乙=2m甲,v乙=2v甲,则甲、乙两物体的动能相等D.如果111甲=111乙,v¥=v^,两物体的速度方向相反,此时两物体的动能相等答案:D解析:由动能的表达式氏=fl"”?可知,A、B、C错误;动能是标量,只与物体的质量和速度的大小有关,与速度方向无关,D正确.解析■答案返回导航2.(多选)如图所示,电梯质量为M,在它的水平底板上放置一质量为m 的物体.电梯在钢索的拉力作用下做竖直向上的加速运动,当电梯的速度由V|增大到V2时,上升高度为H.则在这个过程中,下列说法正确的是(重力加速度为g)()A.对物体,动能定理的表达式为W=:mv专-:mv,,其中W为支持力做的功B.对物体,动能定理的表达式为W合=0,其中W合为合力做的功C.对物体,动能定理的表达式为W—mgH=:mv芸一?mv,,其中W为支持力做的功|D.对电梯,其所受合力做功为!Mv专一I—―I答案:CD解析■答案胃返回导航思维提升有能与动能变化的区别(1)动能与动能的变化是两个不同的概念,动能是状态量,动能的变化是过程量.(2)动能没苔负值,而动能变化量有正负之分.JE,>0表示物体的动能增加,/E r VO表示物体的动能减少.返回导航2.对动能定理的理解做功的过程就是能量转化的过程,动能定理表达式中的意义是一种因果关系在数值上相等的符号.因果关系一合力做功是物体动能变化的原因数量关系一合力做的功与动能变化可以等量代换单位关系一国际单位都是焦耳返回导航返回导航考点二动能定理的基本应用【关键能力•思维进阶】应用动能定理的注意事项(1)方法的选择:动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)过程的选择:物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段应用动能定理,也可以对全过程应用动能定理.如果对整个过程应用动能定理,往往能使问题简化.(3)规律的应用:动能定理表达式是一个标量式,不能在某个方向上应用动能定理.返回导航考向1应用动能定理求变力的功例1承德的转盘滑雪机为我国自主原创、世界首例的专利产品.一名运 动员的某次训练过程中,转盘滑雪机绕垂直于盘面的固定转轴以角速度3 = 0.5,以〃s 顺时针匀速转动,质量为60 kg 的运动员在盘面上离转轴10 m 半 径上滑行,滑行方向与转盘转动方向相反,在最低点的速度大小为10 m/s, 滑行半周到最高点的速度大小为8 m/s,该过程中,运动员所做的功为6 500 J,巳知盘面与水平面夹角为18° , g 取10 mis 1, sin 18° =0.31, cos 18° =0.95,则该过程中运动员克服阻力做的功为( )A. 4 240 J C. 3 860JB. 3740 JD. 2 300 J 答案:c解析■答案返回导航考向2应用动能定理求解直线运动问题例2如图所示,一斜面体ABC 固定在水平地面上,斜面AD 段粗糙、DC 段光 滑,在斜面底端C 点固定一轻弹簧,弹簧原长等于CD 段长度.一质量m = 0.1 蚀的小物块(可视为质点)从斜面顶端A 以初速度v 0=2力/s 沿斜面下滑,当弹簧 第一次被压缩至最短时,其长度恰好为原长的一半,物块沿斜面下滑后又沿 斜面向上返回,第一次恰能返回到最高点A.己知弹簧的原长L o = O.2 m,物块 与斜面AD 段间的动摩擦因数p=g 斜面倾角0=30° ,重力加速度g=10 tn/s 2,6弹簧始终处于弹性旭度范围内.下列说法中正确的是()A. A 、D 间的足巨鬲X n )=0.2 m%B. 物块第一次运动到D 点时的速度大小为匝m/sC. 弹簧第一次被压缩到最短时的弹性势能为0.3 Jn D. 物块在斜面AD 段能滑行的总路程为1.6 mCB 答案:D 解析■答案返回导航考向3应用动能定理求解曲线运动问题例3[2023-湖北卷]如图为某游戏装置原理示意图.水平桌面上固定一半圆形竖直挡板,其半径为2R、内表面光滑,挡板的两端A、B在桌面边缘,B与半径为R的固定光滑圆弧轨道COE在同一竖直平面内,过C点的轨道半径与竖直方向的夹角为60°.小物块以某一水平初速度由A点切入挡板内侧,从B点飞出桌面后,在C点沿圆弧切线方向进入轨道CDE内侧,并恰好能到达轨道的最高点D.小物块与桌面之间的动摩擦因数为重力加速度大小21T为g,忽略空气阻力,小物块可视为质点.求:a A(1)小物块到达D点的速度大小;(2)B和D两点的高度差;(寻f(3)小物块在A点的初速度大小.芯夕次答案返回导航思维提升求解多过程问题抓好“两状态,一过程”“两状态”即明确研究对象的始、末状态的速度或动能情况;“一过程”即明确研究过程,确定这一过程研究对象的受力情况和位置变化或位移信息.返回导航考向4动能定理在往复运动问题中的应用1.往复运动问题:在有些问题中物体的运动过程具有重复性、往返性,而在这一过程中,描述运动的物理量多数是变化的,而且重复的次数又往往是无限的或者难以确定.2.解题策略:此类问题多涉及滑动摩擦力或其他阻力做功,其做功的特点是与路程有关,运用牛顿运动定律及运动学公式将非常繁琐,甚至无法解出,由于动能定理只涉及物体的初、末状态,所以用动能定理分析这类问题可使解题过程简化.返回导航例4(多选)[2024-山东模拟预测]如图,左侧光滑曲面轨道与右侧倾角a= 37°的斜面在底部平滑连接且均固定在水平地面上,质量为m的小滑块从斜面上离斜面底边高为H处由静止释放,滑到斜面底端然后滑上左侧曲面轨道,再从曲面轨道滑上斜面,滑块第一次沿斜面上滑的最大高度为&H,多次往复运动.不计空气阻力,重力加速度为g,sin37°=0.6.返回导航下列说法正确的是()A.滑块第一次下滑过程,克服摩擦力做的功为土mgHB.滑块第1次下滑的时间与第1次上滑的时间之比为:4C.滑块与斜面间的动摩擦因数为寿D.滑块从静止释放到第n次上滑到斜面最高点的过程中,系统产生的热量为(l—*)mgH答案:BCD解析■答案返回导航返回导航考点三动能定理与图像结合问题【关键能力•思维进阶】考向1E r x(W-x)图像问题例5(多选)一滑块从某固定粗糙斜面底端在沿斜面向上的恒力作用下由静止开始沿斜面向上运动,某时刻撤去恒力,上升过程中滑块的动能和重力势能随位移变化的图像如图所示,图中E和、So为已知量,滑块与斜面间的动摩擦因数为0.5,重力加速度为g,下列说法正确的是()A.恒力的大小为譬酮三B.斜面倾角的正饥值为0.75C.滑块下滑到斜面底端时的速度大小为玄笋D.滑块的质量可表示为竺剪\gs。
高中物理精品课件:《动能和动能定理应用》
求解曲线运动问题
人抛球:
W人
1 2
mv02
0
V0
球 2
mv02
H
5J, 17.2J V
列式时要注意W合和△Ek的正负
多过程问题
(直线+曲线)
如图所示,质量为1kg的木块(可视为质点)静
止在高1.2m的平台上,木块与平台间的动摩擦
因数为0.2,用水平推力20N使木块产生位移3m
2
解法二:全程列式
mg(H h) f h 0
mg
H
f
h
mg
以一恒定的初速度V0竖直向上抛出一小球,质量为m, 小球上升的最大高度为h,空气阻力的大小f恒定不变,
则小球回到出发点时的速度是多大?
h
f
v0 f
v
GG
子弹问题
一颗子弹速度为v时,刚好打穿一块 钢板,那么速度为2v时,可打穿几块 同样的钢板?要打穿n块同样的钢板 ,子弹速度应为多大?
求变力做功问题
瞬间力做功问题
运动员踢球的平均作用力为200N,把一个静止的质 量为1kg的球以10m/s的速度踢出,水平面上运动 60m后停下,则运动员对球做的功?
如果运动员踢球时球以10m/s迎面飞来,踢出速度仍为 10m/s,则运动员对球做的功为多少?
vo
v=0
F
S=60m
瞬间力做功问题
某人从12.5m的高楼顶突然向上抛出一个小球,不计 空气阻力,小球脱手时的速度是5m/s,小球的质量为 0.6kg(g=10m/s2),则人对小球所做功的大小是多 少?
时撤去,木块又滑行1m时飞出平台,求木块落
地时速度的大小?
全程列式:
1
WF
Fs1
高中物理 第七章 机械能守恒定律 第7节 动能和动能定理讲义(含解析)新人教版必修2-新人教版高中必
第7节动能和动能定理一、动能1.大小:E k =12mv 2。
2.单位:国际单位制单位为焦耳,1 J =1N·m=1 kg·m 2/s 2。
3.标矢性:动能是标量,只有大小,没有方向,只有正值,没有负值。
二、 动能定理1.推导:如图所示,物体的质量为m ,在与运动方向相同的恒力F 的作用下发生了一段位移l ,速度由v 1增加到v 2,此过程力F 做的功为W 。
1.物体由于运动而具有的能量叫做动能,表达式为E k =12mv 2。
动能是标量,具有相对性。
2.力在一个过程中对物体做的功,等于物体在这个过 程中动能的变化,这个结论叫动能定理,表达式为 W =E k2-E k1。
3.如果物体同时受到几个力的共同作用,则W 为合力 做的功,它等于各个力做功的代数和。
4.动能定理既适用于恒力做功,也适用于变力做功, 既适用于直线运动,也适用于曲线运动。
2.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化。
3.表达式:W=E k2-E k1。
4.适用范围:既适用于恒力做功也适用于变力做功;既适用于直线运动也适用于曲线运动。
1.自主思考——判一判(1)速度大的物体动能也大。
(×)(2)某物体的速度加倍,它的动能也加倍。
(×)(3)合外力做功不等于零,物体的动能一定变化。
(√)(4)物体的速度发生变化,合外力做功一定不等于零。
(×)(5)物体的动能增加,合外力做正功。
(√)2.合作探究——议一议(1)歼15战机是我国自主研发的第一款舰载战斗机,如图所示:①歼15战机起飞时,合力做什么功?速度怎么变化?动能怎么变化?②歼15战机着舰时,动能怎么变化?合力做什么功?增加阻拦索的原因是什么?提示:①歼15战机起飞时,合力做正功,速度、动能都不断增大。
②歼15战机着舰时,动能减小,合力做负功。
人教版高中物理必修第二册 第8章 第3节 动能和动能定理(课件)
环节三:动能定理的应用
应用动能定理解题的思维流程: (1)确定研究对象及运动过程。 (2)分析物体在运动过程中的受力情况,明确每个力是否做功, 是做正功还是做负功。 (3)明确初状态和末状态的动能,写出始、末状态动能的表达式。 (4)根据动能定理列原始方程并计算求解。
环节三:动能定理的应用
例题 半径为R的竖直半圆形轨道与水平轨道平滑衔接,固定 在水平地面上,质量为m的小球以水平初速度v0= 6gR滚入轨道, 重力加速度为g。
环节二:对动能定理的深入理解
(5)普适性,即当物体受变力作用或做曲线运动时,动能定理 仍成立。
可进行如下推导: 利用微元法,把整个过程分成许多小段,认为物体在每小段运 动中受到的是恒力,运动的轨迹为直线,则有W1=12mv12﹣12mv02, W2=12mv22﹣12mv12,W3=12mv32﹣12mv22……Wn=12mvn2﹣12mvn﹣12。 把这些小段中各力做的功相加,可以得到W=12mvn2﹣12mv02。
正好跟物体动能的决定因素有关。因此,物理学中就用“12mv2”表 示物体的动能。
环节一:通过研究合力做功的特点来探究动能 的表达式
(1)动能是状态量,而功是过程量。 (2)动能是标量,且没有负值。 (3)动能具有相对性,与参考系的选取有关,通常选地面为参 考系。 (4)动能与速度的辨析: ①物体的速度改变时,动能不一定发生改变。 ②物体的动能改变时,速度一定发生了改变。
环节二:对动能定理的深入理解
前面我们推导出的规律是否只适用于光滑水平面的情况呢?
质量为m的物体在粗糙的水 平面上运动,在恒力F和FN的作 用下发生一段位移L,速度由v1 变化到v2,请依据牛顿运动定律 及运动学公式推导动能的变化量 与什么力做的功有关。
高中物理必修二。动能和动能定理
高中物理必修二。
动能和动能定理高中物理必修二:动能和动能定理动能是指物体由于运动而具有的能量。
动能的大小取决于物体的质量和速度,可以用公式Ek=1/2mv^2来计算。
动能是标量,是状态量,也是相对量。
动能定理是指外力做功等于物体动能的变化,表达式为W合=Ek2-Ek1.这意味着外力所做的总功将导致物体动能的变化,变化的大小由动能定理来度量。
外力可以是重力、弹力、摩擦力、电场力、磁场力或其他力。
物体动能的变化是指物体从一个状态到另一个状态时动能的变化。
动能定理适用于直线运动和曲线运动,适用于___做功和变力做功。
力可以是各种性质的力,可以同时作用或分别作用。
动能定理解题的优越性在于只需求出在作用过程中各力做功的多少和正负即可。
应用动能定理解题的基本步骤包括选取研究对象,分析受力情况和各力做功的情况,明确物体在过程的始末状态的动能Ek1和Ek2,列出动能定理的方程W合=Ek2-Ek1及其它必要的解题方程,进行求解。
动能定理的计算式为W合=Ek2-Ek1,其中v和s是相对于同一参考系的。
动能定理的研究对象是单一物体或可以看做单一物体的物体系。
动能定理不仅适用于___做功,也适用于变力做功。
当力F的大小或方向发生变化时,可以利用动能定理来求变力做功。
如图所示,一块长木板B放在光滑的水平面上,在B上放一物体A,现以恒定的外力F拉B,由于A、B间摩擦力的作用,A将在B上滑动,以地面为参考系,A、B都向前移动一段距离。
在此过程中,外力F做的功等于A和B动能的增量。
例二:从牛顿定律出发,对于物体为质点,作用力是___,运动轨迹为直线的情况,动能定理的表达式为:$W=\frac{1}{2}mv^2-\frac{1}{2}mu^2$,其中$W$表示力所做的功,$m$表示物体的质量,$v$表示物体的末速度,$u$表示物体的初速度。
例三:如图所示,一弹簧振子,物块的质量为$m$,它与水平桌面间的动摩擦因数为$\mu$。
高中物理必修二人教版2019第8章机械能守恒定律3动能和动能定理
知识点一 对动能的理解
问题引领
滑雪运动员从坡上由静止开始匀加速下滑,运动员的动能怎
样变化?运动员在赛道上做匀速圆周运动,运动员的动能是否
变化?
提示:增加。不变。
归纳提升
1.动能的特征
(1)动能是状态量:与物体的运动状态相对应。
(2)动能具有相对性:选取不同的参考系,物体的速度不同,动
能也不同,一般以地面为参考系。
解析:功是力与物体在力的方向上发生的位移的乘积,如果
物体所受的合力为零,那么合力对物体做的功一定为零,A正
确。如果合力对物体做的功为零,可能是合力不为零,而是在
力的方向上的位移为零,B错误。竖直上抛运动是一种匀变速
直线运动,其在上升和下降阶段经过同一位置时动能相等,故
动能的变化量可以为零,C错误。动能不变化,只能说明速度
J-×0.3×62
J=0,选项 C、D
知识点二 对动能定理的理解
问题引领
足球运动员用力F踢出静止在地面上的足球,足球的质量为
m,足球被踢出时的速度为v,足球被踢出后在地面上运动了距
离x停下。在这个过程中,足球运动员对足球做功了吗?做了
多少功?
提示:做功。因x不是力F作用时间内的位移,做的功不等于
第八章 机械能守恒定律
3.动能和动能定理
自主预习·新知导学
合作探究·释疑解惑
课 堂 小 结
随 堂 练 习
课标定位
1.知道动能的概念及表达式,会计算物体的动能。
2.理解动能定理的推导过程、含义及适用范围,并能灵活应
用动能定理分析问题。
3.掌握利用动能定理求变力做功的方法。
素养阐释
1.理解动能的概念,形成物理观念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习8.质量为m的飞机以水平v0飞离跑道后逐渐上升, 若飞机在此过程中水平速度保持不变,同时受到重力和 竖直向上的恒定升力(该升力由其他力的合力提供,不含 重力).今测得当飞机在水平方向的位移为L时,它的上升 高度为h,求(1)飞机受到的升力大小?(2)从起飞到上升 至h高度的过程中升力所做的功及在高度h处飞机的动 能? 解析(1)飞机水平速度不变,L= v0t,竖直方向的加速度恒 定,h=½at2,消去t即得
物体做的功一定为零
B.如果合外力对物体所做的功为零,则合外力一
定为零
C.物体在合外力作用下作变速运动,动能一定变
化
D.物体的动能不变,所受的合外力必定为零
例4质. 量为m的跳水运动员从高为H的跳台上以速
率v1 起跳,落水时的速率为v2 ,运动中遇有空气阻力 ,那么运动员起跳后在空中运动克服空气阻力所做的
a
2h l2
v02
由牛顿第二定律得:F=mg+ma=
mg
1
2h gl 2
v02
总之,无论做何种运动,只要不涉及加速度和时间, 就可考虑应用动能定理解决动力学问题。
例1、 钢球从高处向下落,最后陷入泥中,如果空 气阻力可忽略不计,陷入泥中的阻力为重力的n 倍, 求:钢珠在空中下落的高度H与陷入泥中的深度h 的 比值 H∶h =?
解: 画出示意图并分析受力如图示:
由动能定理,选全过程 mg(H+h)-nmgh=0
(2)“增量”是末动能减初动能.ΔEK>0表示动能增加, ΔEK<0表示动能减小.
(3)在动能定理中,总功指各外力对物体做功的代数 和.这里我们所说的外力包括重力、弹力、摩擦力、 电场力或其他的力等.
(4)动能定理适用单个物体,对于物体系统尤其是具有 相对运动的物体系统不能盲目的应用动能定理.由于 此时内力的功也可引起物体动能向其他形式能(比如 内能)的转化. (5)各力位移相同时,可求合外力做的功,各力位移不 同时,分别求力做功,然后求代数和.
0.8mg
f
H
1 2
mv02
可得H=v02/2g,
f 1 mg 4
f v
v/
f
G
G
再以小球为对象,在有空气阻力的情况下对上升 和下落的全过程用动能定理。全过程重力做的功为零, 所以有:
f
2 0.8H
1 2
mv02
1 2
mv 2
解得
v
3 5
v0
例8.地面上有一钢板水平放置,它上方3m处有一钢球
Ek
1 2
mv22
1 2
m
v12
V0=2m/s mg
S
mgh
mgh
fS 0
1 2
mv0
2
1 2
m
v0
2
30 2
16m
h=3m
f
2
练习7.如图所示,A、B是位于水平桌面上的两质量相
等的木块,离墙壁的距离分别为l1 和l2 ,与桌面之间的
滑动摩擦系数分别为A和B,今给A以某一初速度, 使之从桌面的右端向左运动,假定A、B之间,B与墙 间的碰撞时间都很短,且碰撞中总动能无损失,若要 使木块A最后不从桌面上掉下来,则A的
6.动能与动量大小的关系:
EK
P2 2m
P 2mEK
一个物体的动量发生变化,它的动能不一定变化一个 物体的动能发生变化,它的动量一定变化
二、动能定理
1.合外力所做的功等于物体动能的变化,这个结论叫做 动能定理.
W合
1 2
mv22
1 2
mv12
EK
2.动能定理的理解及应用要点:
(1)等式的左边为各个力做功的代数和,正值代表正功, 负值代表负功。等式右边动能的变化,指末动能 EK2=1/2mv22与初能EK1=1/2mv12之差.
动。一质量为1kg的物体与传送带间的动摩擦因数为
0.2。现将该物体无初速地放到传送带上的A点,然后
运动到了距A点1m 的B点,则皮带对该物体做的功为
( A)
A. 0.5J B. 2J
C. 2.5J D. 5J
A
B
解: 设工件向右运动距离S 时,速度达到传送带的速 度v,由动能定理可知 μmgS=1/2mv2
功是多少?
解: 对象—运动员
过程---从起跳到落水
受力分析---如图示 V1
由动能定理
W合
1 2
mv22
1 2
mv12
EK
f
mgH Wf
1 2
mv22
1 2
mv12
Wf
mgH
1 2
mv22
1 2
mv12
H
mg
V2
练习4、一质量为1kg的物体被人用手由静止
向上提升1m,这时物体的速度2 m/s,则下
∴W1= F1S=8J
F甲 F乙
v
W2= F2S=24J
A
S
B
C
例10.总质量为M的列车,沿水平直线轨道匀 速前进,其末节车厢质量为m,中途脱节.司 机发觉时,机车已行驶L的距离,于是立即关 闭发动机滑行.设运动的阻力与质量成正比, 机车的牵引力恒定,当列车的两部分都停止时, 它们的距离是多少?
解 设从脱钩开始,前面的部分列车和末节车厢分别行驶了s1、s2
(9)动能定理中涉及的物理量有F、S、m、v、W、 EK等,在处理含有上述物理量的力学问题时,可以 考虑使用动能定理。由于只需从力在整个位移内的功 和这段位移始末两状态动能变化去考察,无需注意其 中运动状态变化的细节,又由于动能和功都是标量, 无方向性,无论是直线运动或曲线运动,计算都有会 特别方便。
∴W1 =mgh-1 /2 mv02 O m
h ABC
练习5.某人在高h处抛出一个质量为m的物体. 不计空气阻力,物体落地时的速度为v,这人对物体
所做的功为:( D)
A.mgh B.mv2/2 C.mgh+mv2/2 D.mv2/2- mgh
例6. 斜面倾角为α,长为L, AB段光滑,BC段粗糙 ,AB =L/3, 质量为m的木块从斜面顶端无初速下滑, 到达C端时速度刚好为零。求物体和BC段间的动摩擦 因数μ。
例7.将小球以初速度v0竖直上抛,在不计空气阻力的 理想状况下,小球将上升到某一最大高度。由于有空
气阻力,小球实际上升的最大高度只有该理想高度的
80%。设空气阻力大小恒定,求小球落回抛出点时的
速度大小v?
解:有空气阻力和无空气阻力两种情况下分别在上升 过程对小球用动能定理:
mgH
1 2
mv02
和
初速度最大不能超过 4g[μ A(l1 l2 ) μ Bl2 ] 。
l1
l2 B
A
例9.在光滑水平面上有一静止的物体,现以水平恒力
甲推这一物体,作用一段时间后,换成相反方向的恒
力乙推这一物体,当恒力乙作用时间与恒力甲作用时
间相同时,物体恰好回到原处,此时物体的动能为32
J,则在整个过程中,恒力甲做的功等于 8J焦耳,恒
教学方法
1.讲授法,启示法,直观演示法
第一课时
一. 动能
1.物体由于运动而具有的能叫动能.
2.动能的大小: 3.动能是标量. NhomakorabeaEK
1 mv2 2
4.动能是状态量,也是相对量.因为V为瞬时速度, 且与参考系的选择有关,公式中的速度一般指相对于地 面的速度 . 5.动能的单位与功的单位相同-----焦耳.
(6)有些力在物体运动全过程中不是始终存在的,若物 体运动过程中包含几个物理过程,物体运动状态、受 力等情况均发生变化,因而在考虑外力做功时,必须 根据不同情况分别对待.
(7)动能定理中的位移和速度必须是相对于同一个参考 系.一般以地面为参考系.
(8)若物体运动过程中包含几个不同的物理过程,解题 时可以分段考虑. 若有能力,可视全过程为一整体,用 动能定理解题.
C点,已知,AB=BC , 则物块在斜面上克服阻力做的
功为
mgh-1 /2 mv02。(设物块经过斜面与水
平面交接点处无能量损失)
解:设物块在斜面上克服阻力做的功为W1, 在AB或BC段克服阻力做的功W2
由动能定理 O→B
mgh -W1 –W2= 0
O→C
mgh -W1 –2W2= 0 - 1 /2 mv02
7.7《动能和动能定理》
教学目标
1、掌握用动能定理还能解决一些用牛顿第二定律和运动学公式 难以求解的问题,如变力作用过程、曲线运动等问题。
2、掌握用动能定理处理含有涉及的物理量中的F、l、m、v、W、 Ek等物理量的力学问题。
教学重难点
理解动能的概念,会用动能的定义式进行计算 探究功与物体速度变化的关系,知道动能定理的适用 范围 会推到动能定理的表达式
解得 S=0.25m,说明工件未到达B点时,速度已达到v,
所以工件动能的增量为 △EK = 1/2 mv2 = 0.5×1×1= 0.5J
练习2、两辆汽车在同一平直路面上行驶,它们的 质量之比m1∶m2=1∶2,速度之比v1∶v2=2∶1, 两车急刹车后甲车滑行的最大距离为s1,乙车滑行 的最大距离为s2,设两车与路面间的动摩擦因数相 等,不计空气阻力,则D( )
。
解: 小球自B点抛出后做斜上抛运动,水平方向做匀速 直线运动,到最高点C的速度仍为v ,设AC的高度差为h
由动能定理, A→B →C mgh – E=1/2×mv2