脱硫计算
半干法脱硫计算
半干法脱硫计算半干法脱硫是一种工业化的脱硫方法,广泛应用于燃煤电厂,有着高效、节能、环保等优点。
对于这种脱硫方法,计算是非常重要的一部分。
本文将介绍半干法脱硫计算的基本原理与方法。
1. 半干法脱硫基本过程半干法脱硫主要依靠石灰石和水的反应,将SO2转化为硫酸盐,然后通过循环水去除硫酸盐。
其基本过程包括:(1)气体与喷洒石灰石破碎物料接触,SO2与石灰石反应生成硫酸钙。
(2)硫酸钙自炉内排放,通过除氧器到达吸收塔,与进口水接触反应生成水溶性硫酸钙。
(3)注入泥浆进入除氧器,蒸汽加热并混合硫酸钙形成氢氧化钙。
(4)将氢氧化钙混合硫酸酸化生成硫酸,硫酸与水接触生成氢离子和硫酸根离子。
(5)氢离子与水溶性的硫酸钙或碳酸盐结合生成结晶硬化。
(6)硬化的脱硫剂从塔底排出,送至脱水系统压实处理。
以上是半干法脱硫的基本过程,其实际运行需要注意的是对反应速率的控制以及反应后的运动和水的质量问题。
2. 半干法脱硫反应速率计算半干法脱硫过程中,反应速率是影响脱硫效率的关键因素之一。
反应速率的计算基于化学反应动力学。
硫化物和石灰石反应速度方程式如下所示:(1)该反应属于星星反应,速率可用下述式给出:r=k*[SO2]^2*[CaO]其中r是反应速率,k是速率常数,[SO2]和[CaO]是硫化物和石灰石的浓度。
运行实验时,可以测量SO2和CaO浓度,然后通过计算可以得到反应速率。
3. 半干法脱硫水质量计算除了反应速率控制,半干法脱硫还需要注意水的质量问题。
准确测量水的质量,可以通过以下的计算方法:(1)硬度的计算方法:Ca2+ 离子总量= Ca·Ⅱ离子用乙二醇-丙醇-水溶液电极法测Mg2+ 离子总量=Mg·Ⅱ离子用乙二醇-丙醇-水溶液电极法测硬度=(Ca2++Mg2+)×50除以水量(mL),单位是mg/L;(2)冲洗次数的计算方法:水质量=冲洗水总量+末倒清洗水总量(L)冲洗次数≈冲洗水总量/循环水量(L)(3)酸碱度和离子强度的计算方法:硫酸根离子≈10mg/L,碳酸盐离子≈5mg/L;离子强度=ΣciZi2(当Zi<0时,i代表阳离子,Z为离子电价、c为离子浓度),酸碱度由pH值确定。
氨法脱硫计算过程
氨法脱硫计算过程风量(标态):,烟气排气温度:168℃:工况下烟气量:还有约5%得水份如果在引风机后脱硫,脱硫塔进口压力约800Pa,出口压力约—200Pa,如果精度高一点,考虑以上两个因素、1、脱硫塔(1)塔径及底面积计算:塔内烟气流速:取D=2r=6、332m即塔径为6。
332米,取最大值为6、5米。
底面积S=πr2=3.14×3、252=33、17m2塔径设定时一般为一个整数,如6、5m,另外,还要考虑设备裕量得问题,为以后设备能够满足大气量情况下符合得运行要求。
(2)脱硫泵流量计算:液气比根据相关资料及规范取L/G= 1.4(如果烟气中二氧化硫偏高,液气比可适当放大,如1.5、)①循环水泵流量:较高,脱硫塔喷淋层设计时应选取为4层设计,每层喷淋设计由于烟气中SO2安装1台脱硫泵,476÷4=119m3/h,泵在设计与选型时,一定要留出20%左右得裕量。
裕量为:119×20%=23.8 m3/h, 泵总流量为:23。
8+119=142.8m3/h,参考相关资料取泵流量为140 m3/h。
配套功率可查相关资料,也可与泵厂家进行联系确定。
(3)吸收区高度计算吸收区高度需按照烟气中二氧化硫含量得多少进行确定,如果含量高,可适当调高吸收区高度、2。
5米×4层/秒=10米,上下两层中间安装一层填料装置,填料层至下一级距离按1米进行设计,由于吸收区底部安装有集液装置,最下层至集液装置距离为3。
7米-3。
8米进行设计、吸收区总高度为13.7米—13、8米。
(4)浓缩段高度计算浓缩段由于有烟气进口,因此,设计时应注意此段高度,浓缩段一般设计为2层,每层间距与吸收区高度一样,每层都就是2.5米,上层喷淋距离吸收区最下层喷淋为3、23米,下层距离烟气进口为5米,烟气进口距离下层底板为2。
48米。
总高为10、71米。
(5)除雾段高度计算除雾器设计成两段、每层除雾器上下各设有冲洗喷嘴。
双碱法烟气脱硫计算
双碱法计算过程标态:h Nm Q /4000030=65℃:h m Q /49523400002736527331=⨯+= 还有约5%的水份如果在引风机后脱硫,脱硫塔进口压力约800Pa ,出口压力约-200Pa ,如果精度高一点,考虑以上两个因素。
1、脱硫塔⑴ 塔径及底面积计算:塔内流速:取s m v /2.3=m v Q r r v vs Q 17.12.314.33600/49532121=⨯==⇒⋅⋅==ππ D=2r=2.35m 即塔径为2.35米。
底面积S=∏r 2=4.3m 2塔径设定为一个整数,如2.5m⑵ 脱硫塔高度计算:液气比取L/G= 4,烟气中水气含量设为8%SO 2如果1400mg/m3,液气比2.5即可,当SO2在4000mg/m3时,选4① 循环水泵流量:h m m l HG Q G L Q /1821000)08.01(495324)/(100033=-⨯⨯=⨯⨯= 取每台循环泵流量=Q 91m 。
选100LZ A -360型渣浆泵,流量94m 3/h ,扬程22.8米, 功率30KW ,2台② 计算循环浆液区的高度:取循环泵8min 的流量,则H 1=24.26÷4.3=5.65m如此小炉子,不建议采用塔内循环,塔内循环自控要求高,还要测液位等,投资相应大一点。
采用塔外循环,泵的杨程选35m ,管道采用碳钢即可。
③ 计算洗涤反应区高度停留时间取3秒,则洗涤反应区高度H2=3.2×3=9.6m④除雾区高度取6米H3=6m⑤脱硫塔总高度:H=H1+H2+H3=5.65+9.6+6=21.3m塔体直径和高度可综合考虑,直径大一点,高度可矮一点,从施工的方便程度、场地情况,周围建筑物配套情况综合考虑,可适当进行小的修正。
如采用塔内循环,底部不考虑持液槽,进口管路中心线高度可设在2.5m,塔排出口设为溢流槽,自流到循环水池。
塔的高度可设定在16~18m2、物料恒算每小时消耗99%的NaOH 1.075Kg。
烟气脱硫设计计算
烟气脱硫设计计算烟气脱硫是一种用于控制和减少燃烧过程中排放的二氧化硫(SO2)的技术手段。
SO2是一种有害气体,其排放对环境和人类健康造成严重影响。
烟气脱硫的设计计算涉及到多个方面,如脱硫剂选择、脱硫效率计算、废水处理等。
在烟气脱硫设计计算中,首先需要选择合适的脱硫剂。
常用的脱硫剂包括石灰石、石膏等。
脱硫剂的选择应考虑其成本、可获得性以及与废气中其他成分的相互作用等。
一般来说,选择含有较高钙含量的石灰石能够达到比较好的脱硫效果。
脱硫效率的计算是烟气脱硫设计的关键环节。
脱硫效率是指系统中硫的去除率。
常用的脱硫效率计算公式为:脱硫效率(%)=(SO2进-SO2出)/SO2进×100其中,SO2进和SO2出分别表示烟气中进入和出口的SO2浓度。
脱硫效率的计算需要准确测量这两个参数。
测量SO2浓度的方法包括湿法(如碘液法、苏金孚法等)和干法(如紫外线光谱法等)。
根据实际情况,选择合适的测量方法。
废水处理也是烟气脱硫设计中重要的环节。
在石灰石湿法脱硫中,产生的废水中含有大量的钙离子和硫离子。
废水的处理需要通过中和、沉淀等过程来除去其中的污染物。
一种常用的废水处理方法是利用石膏脱硫法中产生的石膏作为副产物,可以通过进一步的处理将其中的污染物去除。
在烟气脱硫设计计算中,还需要考虑一些其他因素,如烟气的温度、湿度、流量等,以及设备的尺寸、系统的布置等。
这些因素将直接影响脱硫效率和处理效果。
总之,烟气脱硫的设计计算是一项复杂的工程,需要考虑多个因素。
合理选择脱硫剂、准确测量SO2浓度、有效处理废水,以及考虑其他因素,能够有效地控制和减少烟气中的SO2排放,保护环境和人类健康。
脱硫计算公式大全
干烟气中含氧量
ngo2'
%
VO2'/Vgy'
4)
湿烟气中含氧量
nsho2'
%
VO2'/Vy'
5)
湿烟气中含湿量
nH2O'
%
VH20'/Vy'
6)
湿烟气中CO2含量
nshCO2'
%
Vy'
7)
干烟气中CO2含量
ngCO2'
%
Vgy'
8)
湿烟气中SO2含量
nshSO2'
%Leabharlann *Vy'9)干烟气中SO2含量
脱硫计算公式大全(共4页)
烟气量计算
序号
名称
符号
单位
计算公式或数值来源
一
烟气量计算
1
理论空气量
V0
Nm3/kg
(Car++
燃烧产物理论体积
Vy0
Nm3/kg
VN20+VRO20+VH2O0
1)
氮气
VN20
Nm3/kg
+
2)
二氧化物
VRO20
Nm3/kg
(Car+
3)
水蒸汽
VH2O0
Nm3/kg
++
3
塔内烟气放热蒸发水量
msh2
t/h
Q1/msh
3)
单塔蒸发水量
Mwe
t/h
msh1+msh2
单塔蒸发水汽体积
Vwe
Nm3/h
Mwe/18*106*1000
脱硫计算书
VCO2 = 1.866Car VSO2 = 0.700S ar VN 2 = 0.79Va + 0.80 N ar VO2 = 0.21(α − 1)Va
0
VH 2O = 11.12 H ar + 1.24(Va d a + M ar ) CO2 = VCO2 Vw1 VSO2 Vw1
SO2 =
N2 =
Q烟气量 (工况烟气量) V烟气
Q烟气量 =
273.15 + T1 101325 • •Q 273.15 P当地 + P表压
考虑 10%裕量 � 压力计算 确定脱硫系统阻力:填料塔 1500Pa,空塔 900Pa。考虑 20%裕量。 � 电机功率计算: 风机效率:85% 机械传动效率:98% 电机容量富裕系数 K:1.15 电机效率:94.6%
Q入口 =
273.15 + T2 101325 • • Q出口 273.15 P当地 + P表压
吸收塔直径计算:
D=2
Q入口 3.14 × 3600 × 烟气流速
3、塔顶烟囱计算: 确定烟气流速:15—17m/s 4、循环泵流量计算
L Q入口 G Q= 1000 5、吸收塔高度计算
� 洗涤浓缩循环浆液体积: V浆液 = Q每泵 •浆液循环停留时间 � 烟道尺寸 � 洗涤浓缩段高度: � 洗涤浓缩段至烟气进口底部距离:1.2m � 烟道进口高度: � 烟道进口顶部至第二层喷淋吸收距离:10m � 第二层喷淋吸收至除雾器高度: � 两层除雾器及冲洗高度: � 第二层除雾器至塔顶:1m 算出脱硫塔总高度。 四、氧化系统计算 1、氧化风计算 氧化倍率:2.5 � 氧化 1kgSO2 需要 O2 0.25kg � 脱硫率:95%
脱硫计算公式比较全
湿法脱硫系统物料平衡一、计算基础数据(1)待处理烟气烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry)烟气温度:114℃烟气中SO2浓度:3600mg/Nm3烟气组成:石灰石浓度:96.05%二、平衡计算(1)原烟气组成计算(2)烟气量计算1、①→②(增压风机出口→ GGH出口):取GGH的泄漏率为0。
5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0。
5%)=1228324Nm3/h=1629634kg/h泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。
温度为70℃。
2、⑥→⑦(氧化空气):假设脱硫塔设计脱硫率为95。
7%,即脱硫塔出口二氧化硫流量为3778×(1—95。
7%)=163 kg/h,二氧化硫脱除量=(3778—163)/64。
06=56。
43kmol/h。
取O/S=4需空气量=56.43×4/2/0.21=537。
14kmol/h×28。
86(空气分子量)=15499.60kg/h,约12000Nm3/h。
其中氧气量为537.14 kmol/h×0.21=112。
80 kmol/h×32=3609。
58kg/h 氮气量为537.14 kmol/h×0.79=424。
34 kmol/h×28.02=11890.02kg/h。
氧化空气进口温度为20℃,进塔温度为80℃.3、②→③(GGH出口→脱硫塔出口):烟气蒸发水量计算:1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。
由物性数据及烟气中的组分,可计算出进口烟气的比热约为0。
2536kcal/kg。
℃,Cp(40℃)=0。
2520 kcal/kg。
℃。
Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg。
脱硫方案计算
锅炉烟气脱硫物料衡算一、物料衡算1.烟气量入口烟气量两台75 t/h锅炉烟气量:150716 m3/h×2单台130 t/h锅炉烟气量:298253 m3/h出口烟气量两台75 t/h锅炉烟气量:117000 m3/h×2单台130 t/h锅炉烟气量:231601 m3/h2. SO2含量:75 t/h锅炉SO2:5109 mg/m3130 t/h锅炉SO2:4694 mg/m32×75 t/h锅炉SO2量:150716 m3/h×5109 mg/m3×2=1540Kg/h1×130 t/h锅炉SO2量: 298253 m3/h×4694 mg/m3=1400Kg/hSO2总量: 1540Kg/h+1400Kg/h=2940 Kg/h设计脱硫塔出口SO2量:≤200 mg/m3,若三台炉全开,年运行时间按8000h计算每小时脱除SO22850Kg,每年脱除SO2量22800吨。
脱硫效率达到92%就能达到国家对新上锅炉的环保要求。
3.氨消耗量液氨消耗:1514Kg/h、12112t/a折氨水(10%)消耗:15140 Kg/h、16.82 m3/h(氨水密度0.9)134577 m3 /a4.硫铵产量未考虑干燥(水份含量5%):5587.3 Kg/h、44698.4t/a 5.氧化空气量理论空气用量: V里空=2592.5N m3/h空气过剩系数:α=3实际空气用量: V 实空= V 里空×α=7777.5Nm 3/h=129.6N m 3/min二、脱硫塔计算按两套脱硫系统设计,空塔气速取4 m/s 。
两台75吨锅炉对应脱硫塔规格为: D=4785.036002150716⨯⨯⨯=5.16m ,圆整后取塔径:φ5200一台130吨锅炉对应脱硫塔规格为: D=4785.03600298253⨯⨯=5.13m ,圆整后取塔径:φ5200脱硫塔规格为:1#φ5200×32000×122#φ5200×32000×12三、冷却塔计算:空塔气速:4.8m/s D1=8.4785.036002150716⨯⨯⨯=4.714m,圆整为:φ4800mm D2=8.4785.03600298253⨯⨯=4.689m,圆整为:φ4800mm冷却塔规格为:1#φ4800×16000×122#φ4800×16000×12四、循环泵选用脱硫塔适宜的液气比为1.5L/molL/G=1.5L/201714=1.5,可知L=302m 3/h1#脱硫塔:选用350 m 3/h 泵两台,扬程50米,开一备一。
氨法脱硫计算过程
氨法脱硫计算过程风量(标态):,烟气排气温度:168℃:工况下烟气量:还有约5%的水份如果在引风机后脱硫,脱硫塔进口压力约800Pa,出口压力约-200Pa,如果精度高一点,考虑以上两个因素。
1、脱硫塔(1)塔径及底面积计算:塔内烟气流速:取D=2r=6.332m 即塔径为6.332米,取最大值为6.5米。
底面积S=πr2=3.14×3.252=33.17m2塔径设定时一般为一个整数,如6.5m,另外,还要考虑设备裕量的问题,为以后设备能够满足大气量情况下符合的运行要求。
(2)脱硫泵流量计算:液气比根据相关资料及规范取L/G= 1.4(如果烟气中二氧化硫偏高,液气比可适当放大,如1.5。
)①循环水泵流量:较高,脱硫塔喷淋层设计时应选取为4层设计,每层喷淋设计由于烟气中SO2安装1台脱硫泵,476÷4=119m3/h,泵在设计与选型时,一定要留出20%左右的裕量。
裕量为:119×20%=23.8 m3/h, 泵总流量为:23.8+119=142.8m3/h,参考相关资料取泵流量为140 m3/h。
配套功率可查相关资料,也可与泵厂家进行联系确定。
(3)吸收区高度计算吸收区高度需按照烟气中二氧化硫含量的多少进行确定,如果含量高,可适当调高吸收区高度。
2.5米×4层/秒=10米,上下两层中间安装一层填料装置,填料层至下一级距离按1米进行设计,由于吸收区底部安装有集液装置,最下层至集液装置距离为3.7米-3.8米进行设计。
吸收区总高度为13.7米-13.8米。
(4)浓缩段高度计算浓缩段由于有烟气进口,因此,设计时应注意此段高度,浓缩段一般设计为2层,每层间距与吸收区高度一样,每层都是2.5米,上层喷淋距离吸收区最下层喷淋为3.23米,下层距离烟气进口为5米,烟气进口距离下层底板为2.48米。
总高为10.71米。
(5)除雾段高度计算除雾器设计成两段。
每层除雾器上下各设有冲洗喷嘴。
双碱液法脱硫计算公式
双碱液法脱硫计算公式
双碱液法脱硫是一种常用的大气污染控制技术,可以将燃煤电厂等工业设施的二氧化硫排放量减少到国家和地方排放标准以下,从而保护环境和人民健康。
双碱液法脱硫的原理是利用碱性溶液(主要包括氢氧化钠和碳酸钙)与二氧化硫发生反应,形成硫酸钙和水,从而达到脱硫的目的。
在反应过程中,必须要控制溶液的浓度和温度才能保证脱硫效果。
具体的计算公式如下:
1. 双碱液法脱硫反应方程式
反应式:NaOH + SO2 + H2O → Na2SO3 + 2H2O
化学方程式:2NaOH + SO2 + 2CO2 → Na2SO3 + Na2CO3 +
2H2O
2. 双碱液法脱硫的常数及限制因素
常数:k1、k2、k3、k4、k5
限制因素:SO2、NaOH、Ca(OH)2的摩尔比、气相速度、溶液浓度、温度、气体分子量、溶液分子量以及反应釜的构造设计等。
3. 双碱液法脱硫效率的计算公式
SO2去除率=1- (Cout/Cin)*100%
其中,Cout为脱除后气流中的SO2浓度(mg/m3),Cin为控制前气流中的SO2浓度(mg/m3)。
4. 双碱液法脱硫量的计算公式
SO2去除量= V*I*(Cin-Cout)
其中,V表示气流体积(m3/s),I表示反应器中溶液的稀释倍数,Cin-Cout表示SO2的浓度差(mg/m3)。
5. 双碱液法脱硫方案比较
在双碱液法脱硫方案中,不同的方案对应着不同的反应器构造、气体流量、溶液循环量、溶液配比等。
需要进行全面比较才能选择
适宜的方案。
以上就是双碱液法脱硫计算公式的相关内容,具体的计算需要
根据实际情况进行调整。
脱硫各项计算公式
脱硫各项计算公式脱硫是指通过化学或物理方法去除燃煤、燃油等燃料中的硫化物,以减少大气中的二氧化硫排放,保护环境。
在脱硫工程中,需要进行各项计算来确定设备的尺寸、操作参数等。
下面将介绍脱硫各项计算公式及其应用。
1. 脱硫效率计算公式。
脱硫效率是衡量脱硫设备去除硫化物的能力的重要指标。
脱硫效率的计算公式如下:脱硫效率 = (进口SO2浓度出口SO2浓度) / 进口SO2浓度× 100%。
其中,进口SO2浓度和出口SO2浓度分别表示进入脱硫设备的烟气中的二氧化硫浓度和离开脱硫设备后的二氧化硫浓度。
通过这个公式可以计算出脱硫设备的去除效果,为后续工艺设计和操作提供重要参考。
2. 石灰用量计算公式。
在石灰-石膏法脱硫工艺中,需要计算石灰的用量来保证脱硫效果。
石灰用量的计算公式如下:石灰用量 = (SO2排放浓度×烟气流量× 3600) / (100 × CaO含量×石灰利用系数)。
其中,SO2排放浓度表示烟气中的二氧化硫浓度,烟气流量表示单位时间内烟气的流量,CaO含量表示石灰中氧化钙的含量,石灰利用系数表示石灰的利用率。
通过这个公式可以计算出石灰的用量,为脱硫设备的运行提供指导。
3. 石膏产量计算公式。
在石灰-石膏法脱硫工艺中,石膏是脱硫产生的主要副产品,需要计算石膏的产量来合理处理。
石膏产量的计算公式如下:石膏产量 = SO2排放浓度×烟气流量× 3600 / 100。
通过这个公式可以计算出单位时间内产生的石膏量,为后续的石膏处理提供依据。
4. 脱硫塔液气比计算公式。
在湿法脱硫工艺中,需要计算脱硫塔的液气比来保证脱硫效果。
脱硫塔液气比的计算公式如下:液气比 = (进口SO2浓度×烟气流量) / (脱硫液循环速率× 3600)。
其中,进口SO2浓度和烟气流量表示进入脱硫塔的烟气中的二氧化硫浓度和烟气流量,脱硫液循环速率表示单位时间内脱硫液的循环速率。
脱硫工艺及其计算公式全解析
脱硫工艺及其计算公式全解析脱硫工艺是指将燃煤产生的二氧化硫(SO2)转化为无害的化合物或直接去除其SO2的工艺,主要应用于电力、冶金、化工等行业中。
常见的脱硫工艺包括湿法脱硫和干法脱硫。
湿法脱硫是通过将煤中的SO2与吸收剂接触反应,将SO2转化为硫酸或硫酸盐。
干法脱硫是通过使用吸附剂或催化剂直接吸附或催化氧化SO2,使其转化为硫酸或硫酸盐。
下面给出了湿法脱硫工艺中常见的石灰石-石膏脱硫工艺的计算公式:1.石灰石的消耗量计算公式:石灰石消耗量=SO2排放量/石灰石中CaO的质量分数*石灰石的可用率其中,SO2排放量为燃煤所产生的SO2排放量,石灰石中CaO的质量分数为石灰石中CaO的含量,石灰石的可用率为石灰石转化为CaO的效率。
2.石灰石浆液制备量计算公式:石灰石浆液制备量=SO2排放量/[石灰石中CaO的质量分数*石灰石的可用率*石灰石的浆液中CaO的浓度]其中,石灰石中CaO的质量分数、石灰石的可用率同上述公式,石灰石的浆液中CaO的浓度为石灰石浆液中CaO的含量。
3.石灰石浆液的回收量计算公式:石灰石浆液的回收量=石灰石浆液制备量-石灰石溶液中CaO的消耗量其中,石灰石溶液中CaO的消耗量为CaO在反应过程中的消耗量。
4.石膏产量计算公式:石膏产量=SO2排放量/[石膏中CaSO4的质量分数*石膏中CaSO4的可用率]其中,石膏中CaSO4的质量分数为石膏中CaSO4的含量,石膏中CaSO4的可用率为石膏转化为CaSO4的效率。
需要注意的是,以上公式中的各项参数需要实际运行的数据进行计算,并且不同的脱硫工艺可能存在不同的计算公式。
此外,脱硫工艺还涉及到反应温度、压力、吸收剂浓度等因素的影响,这些因素也需要考虑在内。
因此,在实际应用中,需要结合具体情况和工艺要求进行合理计算和调整。
氨法脱硫计算过程
氨法脱硫计算过程风量(标态):,烟气排气温度:168℃:工况下烟气量:还有约5%的水份如果在引风机后脱硫,脱硫塔进口压力约800Pa,出口压力约-200Pa,如果精度高一点,考虑以上两个因素。
1、脱硫塔(1)塔径及底面积计算:塔烟气流速:取D=2r=6.332m 即塔径为6.332米,取最大值为6.5米。
底面积S=πr2=3.14×3.252=33.17m2塔径设定时一般为一个整数,如6.5m,另外,还要考虑设备裕量的问题,为以后设备能够满足大气量情况下符合的运行要求。
(2)脱硫泵流量计算:液气比根据相关资料及规取L/G= 1.4(如果烟气中二氧化硫偏高,液气比可适当放大,如1.5。
)①循环水泵流量:较高,脱硫塔喷淋层设计时应选取为4层设计,每层喷淋设计由于烟气中SO2安装1台脱硫泵,476÷4=119m3/h,泵在设计与选型时,一定要留出20%左右的裕量。
裕量为:119×20%=23.8 m3/h, 泵总流量为:23.8+119=142.8m3/h,参考相关资料取泵流量为140 m3/h。
配套功率可查相关资料,也可与泵厂家进行联系确定。
(3)吸收区高度计算吸收区高度需按照烟气中二氧化硫含量的多少进行确定,如果含量高,可适当调高吸收区高度。
2.5米×4层/秒=10米,上下两层中间安装一层填料装置,填料层至下一级距离按1米进行设计,由于吸收区底部安装有集液装置,最下层至集液装置距离为3.7米-3.8米进行设计。
吸收区总高度为13.7米-13.8米。
(4)浓缩段高度计算浓缩段由于有烟气进口,因此,设计时应注意此段高度,浓缩段一般设计为2层,每层间距与吸收区高度一样,每层都是2.5米,上层喷淋距离吸收区最下层喷淋为3.23米,下层距离烟气进口为5米,烟气进口距离下层底板为2.48米。
总高为10.71米。
(5)除雾段高度计算除雾器设计成两段。
每层除雾器上下各设有冲洗喷嘴。
脱硫工程计算
工程计算双碱法 计算过程入口烟气量:4.5×105Nm 3/h ;SO2浓度:2090mg/Nm 3;烟气入口温度:T=160℃、常压标态:h Nm Q /105.4350⨯=160℃:h m Q /713736105.4273160273351=⨯⨯+=脱硫塔(1)塔径及底面积计算:塔内流速:取s m v /2.3=m v Q r r v vs Q 44.42.314.33600/713736121=⨯==⇒⋅⋅==ππ D=2r=8.88m 即塔径为8.88米。
底面积S=∏r 2=61.9 m 2塔径设定为一个整数,如4.5m(2)脱硫塔高度计算:液气比取L/G= 4 烟气中水气含量设为8%SO2如果2090mg/m3,液气比2.5即可,当SO2在2090mg/m3时,选4①循环水泵流量:h m m l HG Q GL Q /28321000)08.01(7137364)/(100033=-⨯⨯=⨯⨯= 取每台循环泵流量=Q 191m 。
选100LZ A -360型渣浆泵,流量194m 3/h ,扬程122.8米, 功率130KW ,3台②计算循环浆液区的高度:取循环泵8min的流量H1=349.735÷61.9=5.65m如此小炉子,不建议采用塔内循环,塔内循环自控要求高,还要测液位等,投资相应大一点。
采用塔外循环,泵的杨程选35m,管道采用碳钢即可。
③计算洗涤反应区高度停留时间取3秒洗涤反应区高度H2=3.2×3=9.6m④除雾区高度取6米H3=6m⑤脱硫塔总高度H=H1+H2+H3=5.65+9.6+6=21.3m塔体直径和高度可综合考虑,直径大一点,高度可矮一点,从施工的方便程度、场地情况,周围建筑物配套情况综合考虑,可适当进行小的修正。
如采用塔内循环,底部不考虑持液槽,进口管路中心线高度可设在2.5m,塔排出口设为溢流槽,自流到循环水池。
塔的高度可设定在16~18m物料恒算每小时消耗99%的NaOH1.075Kg。
脱硫有关计算公式
脱硫有关计算公式一、锅炉每小时产生的SO2量:锅炉产生的SO2量(mg/Nm3)= 耗煤量(t/h)×含硫量(%)×2×燃烧率×109100×干烟气体积(N m3/h)我厂锅炉设计的干烟气体积为277920Nm3/h,如锅炉每小时耗煤量为35吨,煤的含硫量为1%,锅炉的燃烧率为95%,那么每台锅炉每小时产生的SO2量则为2393mg/Nm3。
二、每台吸收塔每小时脱除的SO2量:脱除的SO2量(t)=耗煤量(t/h)×含硫量(%)×2×燃烧率×脱硫率如锅炉每小时耗煤量为35吨,煤的含硫量为1%,锅炉的燃烧率为95%,设计脱硫率量则为0.6吨。
为90%,那么一台塔脱除的SO2三、脱硫系统每小时消耗的电石渣量:量(t)×56 脱硫系统消耗的电石渣(t/塔)= 脱除的SO264×0.65如锅炉每小时耗煤量为35吨,煤的含硫量为1%,那么一台吸收塔运行,每小时消耗的电石渣为0.8吨。
可以用下式对电石渣耗量进行估算:脱硫系统消耗的电石渣量(t/h)=80×锅炉(脱硫塔)运行台数×含硫量(%)四、脱硫系统每小时补充的钠碱量:脱硫系统补充的钠碱量(kg/塔)= 脱除的SO2量(t)×1000×0.05×4064×0.3如锅炉每小时耗煤量为35吨,煤的含硫量为1%,那么一台吸收塔运行,每小时补充的钠碱为62. 34kg。
可以用下式对钠碱量的补充量进行估算:脱硫系统补充的钠碱时(kg/h)=6234×锅炉(脱硫塔)运行台数×含硫量(%)。
脱硫相关工艺了解及计算公式详解
脱硫相关工艺了解及计算公式详解脱硫是指将硫化物(如二氧化硫)从燃烧或工业生产废气中去除的工艺。
脱硫工艺的选择取决于废气中硫化物的浓度和状态,以及具体的工艺要求。
以下是脱硫相关工艺的了解及计算公式的详细解释。
1.烟气湿法脱硫烟气湿法脱硫是一种常用的脱硫方法,其主要原理是通过将废气与含有氧化剂(如Ca(OH)2溶液)的洗涤液接触,使废气中的硫化物氧化为硫酸盐,进而达到脱硫的目的。
脱硫效率计算公式:脱硫效率(%)=(入口SO2浓度-出口SO2浓度)/入口SO2浓度×100%其中,入口SO2浓度和出口SO2浓度分别表示废气中二氧化硫的浓度。
2.干法脱硫干法脱硫主要有吸附法和催化剂法。
吸附法是通过将废气中的硫化物吸附到固体吸附剂上,实现脱硫的目的;催化剂法则是通过催化剂的作用将废气中的硫化物转化为无毒、无害的物质。
脱硫效率计算公式:脱硫效率(%)=(入口SO2浓度-出口SO2浓度)/入口SO2浓度×100%3.生物脱硫生物脱硫是一种利用生物催化剂将二氧化硫转化为硫酸盐的脱硫方法。
该方法具有高效、环保、经济等优点。
脱硫效率计算公式:脱硫效率(%)=(入口SO2浓度-出口SO2浓度)/入口SO2浓度×100%总结:脱硫效率计算公式中的入口SO2浓度和出口SO2浓度是脱硫过程中废气中二氧化硫的浓度。
通常,脱硫效率越高,废气中的硫化物就会被去除得越多,从而减少对环境的污染。
脱硫工艺的选择需根据废气的特性和要求进行评估。
各种脱硫工艺各有特点,有些适合处理高硫化物浓度的废气,而有些适合处理低浓度的废气。
因此,在实际应用中,需要根据具体情况选择最适合的脱硫工艺。
计算脱硫效率时,对于废气中其他组分(如氧、氮氧化物等)的影响可以进行修正。
但需要注意的是,不同的脱硫工艺对废气中的其他组分的影响各异,因此计算时需要进行具体的修正公式及参数选择。
脱硫分析计算公式
经济性分析计算公式
1、基本概念
(1)煤中硫的氧化反应机理:S + O2=SO2
(2)二氧化硫排放量: D1=B×S×
其中:
D1……SO2产生量(kg/h)
S……燃煤全硫份含量(%)
B……耗煤量(kg/h)
……可燃硫转化二氧化硫的转换系数。
2、脱硫效率
以耗煤量15t/h、烟气量100000Nm3/h、燃煤全硫份含量为%计算:
脱硫前二氧化硫排放量=
D1=B×S× =15t/h×%×=153kg/h
标准状况下的烟气量为100000Nm3/h(压强近似为标准大气压),则转换成工况烟气量为:
(200℃+273K)×100000Nm3/h/273K=173260m3/h
脱硫前每立方米烟气中的二氧化硫含量=
153kg/h×106÷173260m3/h=m3
满足脱硫后SO2排放浓度≤300 mg/m3要求,则最低脱硫效率
η= 1-( 300/)=67%
3、计算氨消耗量(费用)
计算依据
NH3·H2O +SO2→N H4H SO3
根据SO2原始排放量为153kg/h,脱硫效率67%计算得每小时消耗纯氨(100%浓度)h。
折合浓度为5%氨水
a、需5%浓度的氨水÷5%=544kg/h
b、需加水=h
c、折合成20%浓度的氨水质量136kg。
配成5%浓度加水408 kg(每小时流量)
d、按市场价20%浓度氨水元/吨、自来水元/吨计算:
(1)*136*10-3=元/h
(2)*408*10-3=元/h。
烟气脱硫计算公式汇总(烟气量、脱硫量、空气量、产物量等)
干烟气中SO2含量
ngSO2'
%
0.01866*0.375Sar/Vgy'
10)
湿烟气中N2含量
nshN2'
%
(0.79alfa'V0+0.008Nar)/Vy'
11)
干烟气中N2含量
ngN2'
%
(0.79alfa'V0+0.008Nar)/Vgy'
6
总燃烧产物实际湿体积
Vtshy
Nm3/h
Vy'*Bj*1000
Nm3/kg
0.79V0+0.008Nar
2)
二氧化物
VRO20
Nm3/kg
0.01866(Car+0.375Sar)
3)
水蒸汽
VH2O0
Nm3/kg
0.111Har+0.0124Mar+0.0161V0
3
燃烧产物实际体积
Vy'
Nm3/kg
Vy0+0.0161(alfa'-1)V0+(alfa'-1)V0
Cso2
mg/Nm3
M/Vtshy(标态,干基,6%O2)
ppm
Cso2*22.41/64
3
要求脱硫量
Ms
kg/h
M*η*n/100
kmol/h
Ms/64
4、吸收剂消耗量计算
1
石灰石(CaCO3)理论消耗量
M3
kmol/h
Ms/64*(Ca/S)
kg/h
M3*M1
2
石灰石(CaCO3)实际消耗量
M3'
脱硫计算公式比较全
湿法脱硫系统物料平衡计算基础数据(1)待处理烟气烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry)烟气温度:114C烟气中S02浓度:3600mg/Nm3烟气组成:组分分子量Vol% mg/Nm3SO2 64.06 0.113 3600 (6%O2)O2 32 7.56(dry)H2O 18.02 4.66CO2 44.01 12.28(dry)N2 28.02 80.01(dry)飞灰200 石灰石浓度:96.05%(1)原烟气组成计算组分Vol%(wet) mg/Nm3kg/h Kmol/hSO2 0.1083226(7.56%O2)3797 59.33O2 7.208 127116 3972.38 H2O 4.66 46214 2564.59 CO2 11.708 283909 6452.48 N2 76.283 1177145 42042.89 飞灰200 (dry)235合计1638416 55091.67平均分子量(0.108 64.06+7.208 32+4.66 >18.02+11.708 44.01+76.283 28.02) /100=29.74平均密度 1.327kg/m3(2)烟气量计算1①一②(增压风机出口 - GGH出口):平衡计算取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h Q-0.5%)3=1228324Nm3/h=1629634kg/h泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。
温度为70 C。
2、假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778 X (1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。
取O/S=4需空气量=56.43 X2/0.2仁537.14kmol/h 28X6 (空气分子量)3=15499.60kg/h,约12000Nm/h。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2脱硫效率的主要影响因素湿式烟气脱硫工艺中,吸收塔循环浆液的pH 值、液气比、烟气速度、烟气温度等参数对烟气脱硫系统的设计和运行影响较大。
2.1.1吸收塔洗涤浆液的PH吸收塔洗涤浆液中pH 值的高低直接影响SO 2 的吸收率及设备的结垢、腐蚀程度等, 而且脱硫过程的pH 值是在一定范围内变化的。
长期的研究和工程实践表明,湿法烟气脱硫的工艺系统一般要求洗涤浆液的P H 值控制在4.5 ~5.5之 间。
2.1.2液气比氧化镁法喷淋塔的液气比一般在(15~25)L/m 3。
取L/G =18L/m 3,则: 液体用量h L Q L 541034.61052.31818⨯=⨯⨯== 2.1.3烟气流速和烟气温度目前, 将吸收塔内烟气流速控制在(2.6~3.5)m/s 较合理,典型值为3m/s 。
则吸收塔的截面积为:2440.3360031067.3m V Q A =⨯⨯== 低洗涤温度有利于SO 2 的吸收。
所以要求整个浆液洗涤过程中的烟气温度都在100℃以下。
100℃左右的原烟气进入吸收塔后, 经过多级喷淋层的洗涤降温, 到吸收塔出口时温度一般为(45~70)℃。
3.设计条件:锅炉参数:蒸发量75t/h ,出口蒸汽压力39MP 设计耗煤量:4.2t/h 排烟温度:︒160 空气过剩系数:5.21=α 飞灰率=29%烟气在锅炉出口前阻力:850Pa设计煤成分:%2.63=Y C %3=Y H %6=Y O %1=Y N %8.0=Y S %14=Y A %12=Y W %18=Y V污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行连接锅炉、净化设备及烟囱等净化系统的管道假设长度200m ,︒90弯头40个。
4.设计计算4.1计算锅炉燃烧产生的烟气量、烟尘和二氧化硫的浓度4.1.1烟气量的计算理论需要量:kg mol 2.4605.20.577.652=++理论空气量:kg m 344.62110010004.2242.60=⨯⨯实际烟气量:()()kg m Q S 37.381000.4221812015.2144.61007944.610004.221525.07.52=⨯+-⨯+⨯+⨯++=标态下烟气流量:m Q Q S 341052.310002.437.8⨯=⨯⨯=⨯=设计耗煤量4.1.2烟气含尘浓度33105.8437.810001409.20m mg Q A C S Y ⨯=⨯⨯=⨯=飞灰率4.1.3 SO 2的浓度331091.137.810006425.02m mg C SO ⨯=⨯⨯=4.2除尘器的选择4.2.1除尘效率%88.951085.4200113=⨯-=-=C C S η 4.2.2除尘器的选择工况下烟气流量:()s m m T T Q Q 3344.5151058.52731602731052.3=⨯=+⨯⨯='='所以采用脉冲袋式清灰除尘器。
4.3除尘器的设计4.3.1过滤面积349301601058.560m v Q A =⨯⨯='=4.3.2滤袋的尺寸单个滤袋直径:mm D 300~200=,取mm D 250=单个滤袋长度:m L 12~2=,取m L 2.8= 滤布长径比一般为40~5,2.8325.02.8==D L 4.3.3每条滤袋面积344.62.825.014.3m DL a =⨯⨯==π4.3.4滤袋条数条1444.14444.6930≈===a A n 4.3.5滤袋布置按矩形布置:(A )a.滤袋分4组;b.每组36条;c.组与组之间的距离:250mm (B )组内相邻滤袋的间距:70mm (C )滤袋与外壳的间距:210mm4.4喷淋塔4.4.1喷淋塔内流量计算假设喷淋塔内平均温度为C 80 ,压力为120KPa ,则喷淋塔内烟气流量为:式中:—喷淋塔内烟气流量,;—标况下烟气流量,;K —除尘前漏气系数,0~0.1; 代入公式得:4.4.2 喷淋塔径计算依据石灰石烟气脱硫的操作条件参数,可选择喷淋塔内烟气流速s m v 4=,则喷淋塔截面A 为:285.4444.917m v Q A ===则塔径d 为:m Ad 39.214.385.4444=⨯==π取塔径mm D 2400= 4.4.3喷淋塔高度计算喷淋塔可看做由三部分组成,分成为吸收区、除雾区和浆池。
(1) 吸收区高度依据石灰石法烟气脱硫的操作条件参数得,选择喷淋塔喷气液反应时间t=4s ,则喷淋塔的吸收区高度为:(2) 除雾区高度()s m Q V 394.1706.01201324.101273802735.15=+⨯⨯+⨯=除雾器设计成两段。
每层除雾器上下各设有冲洗喷嘴。
最下层冲洗喷嘴距最上层(3.4~3.5)m 。
则取除雾区高度为:m H 5.32= (3) 浆池高度浆池容量V 1按液气比浆液停留时间t 1确定:式中:G L —液气比,取318m L ; Q —标况下烟气量,h m 3;t 1—浆液停留时间,s ;一般t 1为min 8~min 4,本设计中取值为min 5,则浆池容积为:34317.836051058.51018m V =⨯⨯⨯⨯=- 选取浆池直径等于或略大于喷淋塔D 0,本设计中选取的浆料直径为D 05m ,然后再根据V 1计算浆池高度:式中:h 0—浆池高度,m ; V 1—浆池容积,3m ; D 0—浆池直径,m 。
m h 26.4514.37.8342=⨯⨯=从浆池液面到烟气进口底边的高度为0.82m 。
本设计中取为2m 。
(4) 喷淋塔高度 喷淋塔高度为:m h H H H t 76.2326.45.31621=++=++=4.4.4 新鲜浆料的确定1mol 1mol因为根据经验一般镁/硫为:1.05:1.1,此处设计取为1.05则由平衡计算可得1h 需消耗MGO 的量为:31.050.514107350mol h ⨯⨯⨯=735056411.61000kg h⨯=5.烟囱设计计算具有一定速度的热烟气从烟囱出口排除后由于具有一定的初始动量,且温度高于周围气温而产生一定浮力,所以可以上升至很高的高度。
这相对增加了烟囱的几何高度,因此烟囱的有效高度为:式中:H —烟囱的有效高度,m ; H s —烟囱的几何高度,m ; H ∆—烟囱抬升高度,m 。
5.1 烟囱的几何高度的计算查相关资料可得燃烧锅炉房烟囱最低允许高度设为H s 为60m 5.1.1 烟气释放热计算式中:H Q —烟气热释放率,kw ;a p —大气压力,取邻近气象站年平均值; v Q —实际排烟量,s m 3s T —烟囱出口处的烟气温度,433K ; a T —环境大气温度,K ;取环境大气温度a T =293K ,大气压力a p =978.4kPa()s m Q V 322.006.01201324.1012731602735.15=+⨯⨯+⨯= kw Q H 83.2435433140224.97835.0=⨯⨯⨯=5.1.2烟气抬升高度计算由K T T kw Q kw s a H 35,210002100≥-<<,可得式中:210,,n n n —系数,1n 取0.6,2n 取0.4,0n 取0.292,则:则烟囱有效高度5.1.3 烟囱直径的计算设烟气在烟囱内的流速为s m v 20=,则烟囱平均截面积为:21.120.22m A ==则烟囱的平均直径d 为:m Ad 18.114.31.144=⨯==π取烟囱直径为DN1200mm ,校核流速v 得:s m d Q v v 46.192.114.34224122=⨯⨯==π5.2 烟囱阻力损失计算烟囱亦采用钢管,其阻力可按下式计算:(4-5)式中:λ——摩擦阻力系数,无量纲;v ——管内烟气平均流速,s m ;ρ——烟气密度,3m kg ;l ——管道长度,m ; d ——管道直径,m ;已知钢管的摩擦系数为0.02,所以烟囱的阻力损失为:a m p P 1.47222.1748.046.1920002.02=⨯⨯⨯⨯=∆5.3 烟囱高度校核假设吸收塔的吸收效率为:96%,可得排放烟气中二氧化硫的浓度为:()334.761091.1%9612m mg so =⨯⨯-=ρ二氧化硫排放的排放速率:s g Q v v so so 68.10.224.7622=⨯=⨯=ρ式中:z yρρ—为一个常数,一般取1~.50,此处取0.7;H —烟囱有效源高;32max 070.00.7072.2.399414.368.12m mg =⨯⨯⨯⨯⨯=ρ 国家环境空气质量二级标准日平均2SO 的浓度为33007.015.0m mg m mg >,则设计符合要求。
6. 管道系统设计计算管道采用薄皮钢管,管内烟气流速为s m v o 15=,则管道直径d 为:式中:Q ——烟气流量,; o v ——烟气流速,;1.2——修正系数 代入相关值得:结合实际情况,取为1260mm ,则实际烟气流速'v 为:7.系统阻力的计算7.1摩擦压力损失取m L 200=,对于圆管22v d l P L ρλ=∆工作状态下的烟气密度:3/84.016027327334.1160273273m kg n=+⨯=+=ρρa L p p 80.296292.1484.026.120002.02=⨯⨯⨯=∆7.2局部压力损失22v P ρξ=∆︒90弯头,23.0=ξa p p 50.21292.1484.023.02=⨯⨯=∆40个弯头a p p p 86050.214040=⨯=∆='∆出口前阻力为850Pa ,除尘器阻力选1400Pa ,脱硫设备阻力选100Paa p p 9.39788608.2961.4721001400850=+++++=∆∑8.风机的选择8.1风量的计算h m B tp Q Q y 3433431014.610325.10110325.1012731602731052.31.110325.1012732731.1⨯=⨯⨯⨯+⨯⨯⨯=⨯+=8.2风压的计算()()ay y p y y p B t t S p H 94.364934.1293.110325.10110325.10125027316027353.1719.39782.1293.110325.1012732732.1333=⨯⨯⨯++⨯-⨯=⨯++-∆∑=ρ结合风机全压及送风量,选用C Y 6475--型离心引风机,其性能参数见表3。
表3 C Y 6475--型离心引风机性能参数 机号 功率W K转速min /r 流量h m /3全压Pa6C18.528508020~15129 3364~2452电机的效率式中;N e —电机功率,kW ;Q —风机的总风量,m 3/h ;1η--通风机全压效率,一般取0.5~0.7;2η--机械传动效率,对于直联传动为0.95;β—电动机备用系数,对引风机,β=1.3;代入数据得:kw Ne 87.1499.06.010*******.194.36491014.64=⨯⨯⨯⨯⨯⨯= 9.达标分析9.1从从排放浓度核算在排烟温度160℃下,SO 2的排放浓度33/1045.32m mg so ⨯=ρ,转换为烟囱出口温度25℃:112212T T P P ρρ= 则 ()()()33/9.50122981602731045.32732516027322m mg so so =+⨯⨯=++⨯='ρρ 设脱硫效率为95.88%,脱硫后:()()353.2069.5012%8.8951%96122m mg so so =⨯-='-=ρρ3700m mg < 依据大气污染物排放标准中2类区新建排污项目执行,烟尘最高排放标标准700mg/m 3,所以本设计符合排放要求。