第5章_薄壳结构
薄壳结构
建筑结构选型——薄壳结构学校:专业班级:指导老师:小组成员:摘要大跨建筑中的壳体结构通常为薄壳结构,即壳体厚度于其中的最小曲率半径之比小于1/20,为薄壁空间结构的一种,它包括球壳、筒壳、双曲扁壳和扭壳等多种形式。
他们的共同特点在于通过发挥结构的空间作用,把垂直于壳体表面的外力分解为壳体面内的薄膜力,再传递给支座,弥补了板、壳等薄壁构件的面外薄弱性质,以比较轻的结构自重和较大的结构刚度及较高的承载能力实现结构的大跨度。
关键词形态分类受力特点应用与发展案例研究正文1 薄壳结构的定义壳,是一种曲面构件,主要承受各种作用产生的中面内的力。
薄壳结构就是曲面的薄壁结构,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都采用钢筋和混凝土。
壳体能充分利用材料强度,同时又能将承重与围护两种功能融合为一。
1.1薄壳结构的特点壳体结构一般是由上下两个几何曲面构成的空间薄壁结构。
两个曲面之问的距离即为壳体的厚度(δ),当δ比壳体其他尺寸(如曲率半径R,跨度等)小得多时,一般要求δ/R≤1/20(鸡蛋壳的δ/R≈1/50)称为薄壳结构。
现代建筑工程中所采用的壳体一般为薄壳结构。
而薄壳结构为双向受力的空间结构,在竖向均布荷载作用下,壳体主要承受曲面内的轴向力(双向法向力)和顺剪力作用,曲面轴力和顺剪力都作用在曲面内,又称为薄膜内力。
而只有在非对称荷载(风,雪等)作用下,壳体才承受较小的弯矩和扭矩。
由于壳体内主要承受以压力为主的薄膜内力,且薄膜内力沿壳体厚度方向均匀分布,所以材料强度能得到充分利用;而且壳体为凸面,处于空间受力状态,各向刚度都较大,因而用薄壳结构能实现以最少之材料构成最坚之结构的理想。
由于壳体强度高、刚度大、用料省、自重轻,覆盖大面积,无需中柱,而且其造型多变,曲线优美,表现力强,因而深受建筑师们的青睐,故多用于大跨度的建筑物,如展览厅、食堂、剧院、天文馆、厂房、飞机库等。
不过,薄壳结构也有其自身的不足之处,由于体形多为曲线,复杂多变,采用现浇结构时,模板制作难度大,会费模费工,施工难度较大;一般壳体既作承重结构又作屋面,由于壳壁太薄,隔热保温效果不好;并且某些壳体(如球壳、扁壳)易产生回声现象,对音响效果要求高的大会堂、体育馆、影剧院等建筑不适宜。
薄壳结构模版
薄壳构造受力特点及天津博物馆案例分析班级:土木N073 学号:2022456791432 姓名:周峰近几年来,建筑师又在蛋壳的启发下,设计了小到自行车棚大到现代化的大型薄壳构造的建筑物。
这种建筑物既结实又节约材料。
我国北京火车站大厅房顶就是承受这种薄壳构造,屋顶那么薄,跨度那么大,整个大厅显得格外宽阔光明,舒适美观。
举世知名的悉尼歌剧院也是一座典型而颖的薄壳建筑。
薄壳构造壳,是一种曲面构件,主要承受各种作用产生的中面内的力。
薄壳构造就是曲面的薄壁构造,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都承受钢筋和混凝土。
壳体能充分利用材料强度,同时又能将承重与围护两种功能融合为一。
实际工程中还可利用对空间曲面的切削与组合,形成造型惊异颖且能适应各种平面的建筑,但较为费工和费模板。
1.筒壳〔柱面薄壳〕:是单向有曲率的薄壳,由壳身、侧边缘构件和横隔组成。
横隔间的距离为壳体的跨度l↓1,侧边构件间距离为壳体的波长l↓2。
当l↓1/l↓2≥1时为长壳,l↓1/l↓22<1为短壳。
2.圆顶薄壳:是正高斯曲率的旋转曲面壳,由壳面与支座环组成,壳面厚度做得很薄,一般为曲率半径的1/600 ,跨度可以很大。
支座环对圆顶壳起箍的作用,并通过它将整个薄壳搁置在支承构件上。
3.双曲扁壳〔微弯平板〕:一抛物线沿另一正交的抛物线平移形成的曲面,其顶点处矢高 f 与底面短边边长之比不应超过1/5。
双曲扁壳由壳身及周边四个横隔组成,横隔为带拉杆的拱或变高度的梁。
适用于掩盖跨度为20 ~50 米的方形或矩形平面〔其长短边之比不宜超过2〕的建筑物。
4.双曲抛物面壳:一竖向抛物线〔母线〕沿另一凸向与之相反的抛物线〔导线〕平行移动所形成的曲面。
此种曲面与水平面截交的曲线为双曲线,故称为双曲抛物面壳。
工程中常见的各种扭壳也为其中一种类型,因薄壳构造简洁制作,稳定性好,简洁适应建筑功能和造型需要,所以应用较为广泛。
蛋壳就是利用了薄壳构造原理,由于这种构造的拱形曲面可以抵消外力的作用,构造更加结实。
钢筋混凝土空间薄壁结构
5.3.3 筒壳的结构构造 1、短壳:矢高大于波长的1/8,空间作用明显,壳体 内力以薄膜内力为主,弯矩极小,按构造配筋。 2、长壳:长壳截面高度建议取用跨长的1/10~1/15, 壳板的矢高不应小于波长的1/8,板厚取波长的 1/300~1/500且大于50mm。
5.3.4 筒壳结构的工程实例 1、同济大学礼堂
ቤተ መጻሕፍቲ ባይዱ
自然界中的空间薄壁结构
鸡蛋:直径50mm,壁厚0.2mm, 厚度为跨度的1/250
第五章 钢筋混凝土空间薄壁结构
5.1.1 薄壳结构的概念
壳体结构——上下两个几何曲面所构成的薄壁空间 结构。
壳体厚度——两个几何曲面距离称为壳体的厚度δ, 可分为等厚度壳,变厚度壳。
薄壳——壳体的厚度δ远小于壳体的最小曲率半径R 时,即称为薄壳。
3、直纹曲面 一条直线(母 线)的两端分 别沿二固定曲 线(导线)移 动所形成曲面。
双曲抛物面也是直纹曲面
5.1.3 薄壳结构的内力
为了方便计算,一般不用应力作为计算单位,而是 以中曲面单位长度上的内力作为计算单位。
内力有8对,分为两类: 1、作用于中曲面以内的薄膜 内力; 2、作用于中曲面以外的弯曲 内力。
5.2 圆顶
适用于平面为圆形的大跨 度建筑。 天文馆最常用的结构形式
5.2.1 圆顶的结构组成及 结构形式
圆顶结构由壳身、支座环、 下部支撑构件三部分组成。
5.2.1 圆顶的结构组成及 结构形式
圆顶结构由壳身、支座环、 下部支撑构件三部分组成。
5.2.1 圆顶的结构组成及结构形式 圆顶结构由壳身、支座环、下部支撑构件三部分组成。
第五章 钢筋混凝土空间薄壁结构
5.1 概述 平面结构——自身平面内受力,构件之间需额外设 置支撑以实现另一方向的安全性和稳定性。
薄壁结构_1030
1.概念 2.圆顶 3.筒壳和锥壳 4.双曲扁壳 5.扭壳 6.折板 7.雁形板 8.幕结构
天津南美风情酒店 (水母酒店)
1.概述
薄壁结构的概念 结构的厚度远小于长度和宽度,一 般由金属或钢筋混凝土材料制成, 受力特点为空间受力体系。
1.概述
1.1 薄壳结构的概念
(德国法兰克福市霍希斯特染料厂游艺大厅)
1.球形建筑,正六边形割球壳,球壳半径50m,矢高 25m,底平面为正六边形 2.球壳支撑在六个点上,支撑点之间、球壳的边缘是拱券形
3.球壳切口由边缘桁架支撑,跨度为43.3m
2.圆顶
2.3 圆顶工程实例
(美国麻省理工学院礼堂)
1.屋顶为球面薄壳,薄壳曲面由1/8球面构成,是由三个与水平
2.圆顶
2.1圆顶的结构组成及结构型式
2)支座环
横截面型式
2.圆顶
2.1圆顶的结构组成及结构型式
3)支撑结构
支座环承担径向推力的水平分量 竖向支撑承担径向推力的竖直分量
支撑在竖向承重结构上(墙、柱等)
2.圆顶
2.1圆顶的结构组成及结构型式
3)支撑结构
优点: 平、立面布置灵活,表现力比较强 缺点: 柱脚或拱脚使基础受到水平推力
2.圆顶
2.3 圆顶工程实例(罗马小体育馆)
1.钢筋混凝土网肋扁球壳结构,球壳直径59.13m
2.球壳采用装配整体式叠合结构
1620块预制钢丝网水泥菱形构件作为模板,现浇上混凝土, 成为肋形球壳 3.壳肋支撑在36根Y形斜柱上 斜柱的倾角与壳底边缘经向
切线方向一致,把推力传入
基础
2.圆顶
2.3 圆顶工程实例
概念: 壳体结构:上下两个几何曲面构成的薄壁空间结构 等厚度壳:两个曲面之间的距离(壳体的厚度)处处相等 薄壳:壳体的厚度远小于最小曲率半径R时称为薄壳
房屋建筑学第五章
三、影响建筑构造的因素
1.外力作用的影响 1.外力作用的影响 2.自然气候的影响 2.自然气候的影响 3.人为因素和其他因素的影响 3.人为因素和其他因素的影响
四、建筑构造设计原则
1.必须满足建筑使用功能要求 1.必须满足建筑使用功能要求 2.必须有利于结构抗震 2.必须有利于结构抗震 3.必须适应建筑工业化的需要 3.必须适应建筑工业化的需要 4.必须讲求建筑经济的综合效益 4.必须讲求建筑经济的综合效益 5.必须注意美观 5.必须注意美观
桁架筒体结构: 桁架筒体结构:在筒体结 构中, 构中,增加斜撑来抵抗水平 荷载, 荷载,以进一步提高结构承 受水平荷载的能力, 受水平荷载的能力,增加体 系的刚度。这种结构体系称 系的刚度。 为桁架筒体系。 为桁架点:由多根 杆件按照一定的网 格形式通过节点连 接而成的空间结构。 接而成的空间结构。 具有空间受力合理、 具有空间受力合理、 重量轻、刚度大, 重量轻、刚度大, 跨度大、 跨度大、抗震性能 好等优点。 好等优点。
地坪是底层房间与地基土层相接的构件,起承受底层房间荷载 地坪是底层房间与地基土层相接的构件, 的作用。要求地坪具有耐磨防潮、防水、防尘和保温的性能。 的作用。要求地坪具有耐磨防潮、防水、防尘和保温的性能。 4、楼梯: 楼梯: 建筑的垂直交通设施。供人们上下楼层和紧急疏散之用。 建筑的垂直交通设施。供人们上下楼层和紧急疏散之用。故要 求楼梯具有足够的通行能力,并且防滑、防火,能保证安全使用。 求楼梯具有足够的通行能力,并且防滑、防火,能保证安全使用。 5、屋顶: 屋顶: 建筑物顶部的围护构件和承重构件。抵抗风、 雪霜、 建筑物顶部的围护构件和承重构件。抵抗风、雨、雪霜、冰雹 等的侵袭和太阳辐射热的影响;又承受风雪荷载及施工、 等的侵袭和太阳辐射热的影响;又承受风雪荷载及施工、检修等屋 顶荷载,并将这些荷载传给墙或柱。故屋顶应具存足够的强度、 顶荷载,并将这些荷载传给墙或柱。故屋顶应具存足够的强度、刚 度及防水、保温、隔热等性能。 度及防水、保温、隔热等性能。 6、门与窗: 门与窗: 门与窗均属非承重构件,也称为配件。 门与窗均属非承重构件,也称为配件。门主要供人们出人内外 交通和分隔房间使用,窗主要起通风、采光、分隔、 交通和分隔房间使用,窗主要起通风、采光、分隔、眺望等围护作 处于外墙上的门窗又是围护构件的一部分,要满足热工及防水、 用。处于外墙上的门窗又是围护构件的一部分,要满足热工及防水、 保温、隔声、防火的的要求。 保温、隔声、防火的的要求。
薄壳结构调研讲解
薄壳结构班级学号:1101404-25姓名:刘益宁指导老师:彭懿日期:2013.11.20调研建筑:星海音乐厅·悉尼歌剧院·国家大剧院1薄壳结构的定义:壳,是一种曲面构建,主要承受各种作用产生的中面内的力。
薄壳结构就是曲面的薄壁结构,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都采用钢筋和混凝土。
壳体能充分利用材料强度,同时又能将承重与围护两种功能融合为一。
2薄壳结构的特点:壳体结构一般是由上下两个几何曲面构成的空间薄壁结构。
两个曲面之问的距离即为壳体的厚度(δ),当δ比壳体其他尺寸(如曲率半径R,跨度等)小得多时,一般要求δ/R≤1/20(鸡蛋壳的δ/R≈1/50)称为薄壳结构。
现代建筑工程中所采用的壳体一般为薄壳结构。
而薄壳结构为双向受力的空间结构,在竖向均布荷载作用下,壳体主要承受曲面内的轴向力(双向法向力)和顺剪力作用,曲面轴力和顺剪力都作用在曲面内,又称为薄膜内力。
而只有在非对称荷载(风,雪等)作用下,壳体才承受较小的弯矩和扭矩。
由于壳体内主要承受以压力为主的薄膜内力,且薄膜内力沿壳体厚度方向均匀分布,所以材料强度能得到充分利用;而且壳体为凸面,处于空间受力状态,各向刚度都较大,因而用薄壳结构能实现以最少之材料构成最坚之结构的理.想。
由于壳体强度高、刚度大、用料省、自重轻,覆盖大面积,无需中柱,而且其造型多变,曲线优美,表现力强,因而深受建筑师们的青睐,故多用于大跨度的建筑物,如展览厅、食堂、剧院、天文馆、厂房、飞机库等。
不过,薄壳结构也有其自身的不足之处,由于体形多为曲线,复杂多变,采用现浇结构时,模板制作难度大,会费模费工,施工难度较大;一般壳体既作承重结构又作屋面,由于壳壁太薄,隔热保温效果不好;并且某些壳体(如球壳、扁壳易产生回声现象,对音响效果要求高的大会堂、体育馆、影剧院等建筑不适宜。
双曲抛物面案例星海音乐厅星海音乐厅位于广州二沙岛,造型奇特的外观,富于现代感,犹如江边欲飞的一只天鹅,与蓝天碧水浑然一体,形成一道瑰丽的风景线。
第五章 薄壁空间结构(二)
五、雁形板的工程实例
顺剪力,为偏心受拉构件。受力与计算同 筒壳结构。
四、双曲扁壳的优缺点:
1.优点: A.矢高小-结构空间小 B.保持双曲-这是壳体发展的必然趋向 C.施工方便-与球壳相比 D.平面适应性有所改变-能用于矩形平面 E.造型美观-外形美观,内部素雅大方、名朗 宽敞 F.能达到无拉力状态-充分利用砖或混凝土抗 压强度,合理用材,材尽其用。 2.缺点:模板仍然不能使用直料。
第六节
折板
定义:由许多薄平板,以 一定角度相互整体联接而 成的空间结构体系。 一、折板的组成及其作用 1.组成:折板结构与 筒壳相似。一般由折 板、边梁、和横隔三 部分组成。对于多波 预制折板,也可以靠 转折处的边棱代替边梁。
小试验
用书做两个支座,找一张纸放在书上,用
手压 把纸折成许多小片,同样放在书上
1) 中央区:主要承受双向轴压力,按构造配筋 ,洞口
开在此区 主要承受正弯矩,壳体下表面受拉,布置 2) 边缘区:钢筋;壳体越高越薄,弯矩越小,弯矩作 用区越小 主要承受顺剪力, 3) 四角区:主应力为拉力——配45度斜筋 主应力为压力——局部增大混凝土厚度
2.横隔:边缘构件主要承受壳板边缘传来的
轴向应力呈三角形分布,屋脊处为零,支 座处最大,水平分力使得下弦杆受拉。
三、受力特点
1、扭壳的壳板 •只有顺剪力 平行于直纹方向
薄壳结构
壳结构的演变
1. 两边支承的单向板只有一个方向受弯,另一个方向的抗弯 能力根本没有利用; 2.如果把做成四边支承的双向板,那么,双向受弯,两向共同 受荷,则材料的抗弯潜力得到较充分的发挥。 3.在相同荷载作用下,双向板比单向板的跨度可以大1.3~1.8倍。 4.双向板虽然是四边支承而起双向受力的作用,但还是平面结 构,它的内力还是弯矩。
边缘构件主要承受壳板边缘传来的顺剪力
三 、工程实例
北京火车站
中央大厅顶盖、检票口通廊——双曲扁壳 ——双曲扁壳 中央大厅顶盖、检票口通廊—— 中央大厅顶盖:四周有拱形高窗, 中央大厅顶盖:四周有拱形高窗,采光充分 检票口通廊: 五个双曲扁壳, 检票口通廊: 五个双曲扁壳, 每个顶盖均可采光
薄壳的切割与组合实例
室外透视
壳体组合顶视图
室内透视
两圆柱正交几何图
墨西哥霍奇米洛科餐厅
立面
平面 几何形体
建筑由八瓣鞍壳交叉组成, 建筑由八瓣鞍壳交叉组成,相交处加厚形成刚度极大 的拱肋, 的拱肋,直接支承在八个基础上 建筑平面为30m*30m的正方形,壳厚40mm 的正方形,壳厚 建筑平面为 的正方形 壳体的外围八个立面是倾斜的, 壳体的外围八个立面是倾斜的,整个建筑犹如一朵覆 地莲花,造型别致室内采光、 地莲花,造型别致室内采光、通风效果好
薄壳的特点
薄壳必须具备两个条件:
1.曲面 2.刚性 1.理解为四边支承的曲板。 2.主要依靠曲面内的双向轴力和顺剪力承重。 3.强度和刚度主要依靠几何形状的合理性,而不是结构截 面尺寸得到。 4.空间整体工作性能良好,内力均匀,结构自重小; 5.强度高、刚度大、材料省、经济合理。 6.曲面多样化,丰富建筑造型。
一 、双曲扁壳的组成
边缘构件
薄壳结构 PPT
大家好
5
• 壳体用于建筑结构虽为时较早,但工程界 开始研究、分析、试验已是19世纪,到20 世纪初叶壳体结构的发展一直缓慢
• 二战期间及战后壳体结构发展才迅速起来。
• 只有空间受力的结构体系才能够很好地解 决大跨度屋盖的问题,而且只有空间体系 的结构才能组成富有造型特点的屋盖形式。
大家好
6
壳结构的演变
组长:冯帅 组员:韩昆昊,顾帅,国航,郭伟昊,刘松洋
大家好
1
大家好
2
大家好
3
薄壳结构
1.概述 2.薄壳的曲面形式 3.圆顶结构 4.筒壳结构 5.双曲扁壳结构
大家好
4
起源与发展
起源:
• 人类远在数千年前早已找出了各式各样的 日用壳体,如锅、碗、坛、罐……以后工业 逐渐发达,造出了灯泡、钢盔、木舟、机壳 等不胜枚举。
环向应力状态26
支座环的受力
大家好
27
圆顶的工程实例 罗马小体育宫
钢筋混凝土网肋形扁球壳结构
壳肋——葵花图案 具有装饰性
球壳采用预制钢丝网水泥菱形构件作模板, 采用36根Y字型斜柱支承 结构明朗 轻快 富
与壳板现浇成整体的肋形球壳
有表现力
大家好
28
大家好
29
第三节 筒 壳
一 、筒壳的结构组成
推力的竖向分力。圆顶的跨度较大时由于经向推力很大,要求支座环
的尺寸很大。
• 斜柱或斜拱
• 通过壳体四周沿着切线方向的直线形、Y形或叉形斜柱,把推力传给 基础;
• 或通过沿壳缘切线方向的单式或复式斜拱,把经向推力集中起来传给 基础
• 框架
• 利用圆顶下四周的围廊或圆顶周围的低层附属建筑的框架结构,把水 平推力传给基础。
薄壳结构10140501张冲
薄壳结构姓名:张冲班级:建筑学1101405学号:110104501指导老师:彭懿建筑学上的术语。
壳,是一种曲面构件,主要承受各种作用产生的中面内的力。
薄壳结构就是曲面的薄壁结构,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都采用钢筋和混凝土。
壳体能充分利用材料强度,同时又能将承重与围护两种功能融合为一。
实际工程中还可利用对空间曲面的切削与组合,形成造型奇特新颖且能适应各种平面的建筑,但较为费工和费模板。
薄壳结构的优点是可以把受到的压力均匀地分散到物体的各个部分,减少受到的压力。
新德里荷花教堂新德里荷花教堂这座大教堂外观十分复杂,造型上由一系列半圆球、圆柱体、圆锥和圆环组成,每一部分在设计中都需要进行单独的结构计算,并绘制出一系列相应的浇铸模板图。
在设计这座建筑物之前,据说,它的设计者走遍了整个印度,研究了过去的巴哈教派的建筑风格,最终依据巴哈教派的教义,依据对于崇高和圣洁的象征,设计了这样一座前无古人的新式教堂。
“大荷花”以现代的构思和技术建造了起来,但它同古代的思想却有着千丝万缕的联系。
它被圣徒们所接受,并成为印度新德里的又一处景观。
“大荷花”共由3层花瓣组成,每层9瓣。
外层处有9个入口,被称为入口瓣;中间层向中部弯曲,覆盖着外厅;而内部的9瓣高高耸起,聚成闭合状,仅在中部稍分开,用玻璃钢屋面覆盖形成采光天窗。
当圣徒们走进中央大厅,一片天光分成9条线奔泻而下,整个大厅沐浴在柔和的光线之中,高高的天花板仿佛与天相接,大厅内气氛静穆高洁,形成一派穆斯林世界。
这座教堂于1987年年底完工,被人们称为20世纪的泰姬陵。
白色的花瓣很像悉尼歌剧院的薄壳,所以也有人称它为“悉尼歌剧院第二”。
北京火车站北京火车站北京站占地面积25万平方米。
总建筑面积8万平方米。
车站布局为纵列式,分为到发场、交接场、调车场。
北京站站舍大楼坐南朝北,东西宽218米,南北最大进深124米,建筑面积71054平方米。
薄壳结构文档
薄壳结构概述薄壳结构是一种在工程和建筑中常见的结构形式,它由一张或多张薄而平面的结构单元组成。
薄壳结构在不同领域由于其优越的性能和美观的外观而得到广泛应用。
本文将介绍薄壳结构的定义、分类、设计原理和应用领域。
定义和分类薄壳结构是由薄板材料制成的,与厚实结构相比,其高度相对较小。
薄壳结构具有较大的自由度,可以采用一系列不同的形状和构造,如圆形、抛物形、双曲形等。
根据结构的形状和材料的不同,薄壳结构可分为以下几类:1.圆形薄壳:由圆盘形状的薄壳构成,常用于天幕结构、舞台盖顶等场合。
2.球面薄壳:由球面形状的薄壳构成,常用于建筑物的顶部、体育场馆等场合。
3.抛物面薄壳:由抛物面形状的薄壳构成,常用于大跨度建筑、教堂拱顶等场合。
4.双曲面薄壳:由双曲面形状的薄壳构成,常用于空中展览中心、会议厅等场合。
设计原理薄壳结构的设计需要考虑以下几个主要原理:1.材料强度:薄壳结构的材料应具备足够的强度以承受外部荷载。
常见的薄壳结构材料包括钢、混凝土和玻璃纤维增强塑料等。
2.几何形态:薄壳结构的几何形态是决定其性能的关键因素,不同的形态会影响结构的刚度和承载能力。
设计师需要根据具体情况选择合适的形态,并进行优化设计。
3.接缝和连接:薄壳结构通常由多个结构单元组成,接缝和连接的设计需要考虑结构的整体性能和稳定性。
合理的接缝和连接设计可以提高结构的抗震和承载能力。
4.荷载分布:薄壳结构的荷载分布是指外部力在结构表面上的分布情况。
合理的荷载分布可以提高结构的承载能力和稳定性。
应用领域薄壳结构由于其独特的设计和美观的外观,在各个领域都得到了广泛的应用。
以下是几个常见的应用领域:1.建筑领域:薄壳结构常用于建筑物的屋顶、门厅、展览馆等部位。
其具有较大的跨度和较小的重量,能够提供开放、透明和自由的空间体验。
2.体育场馆:薄壳结构在体育场馆的设计中得到了广泛应用,例如奥林匹克体育场和溜冰场等。
其特点是能够提供大跨度的无柱空间,满足观众需求,并具有良好的视野和声学性能。
薄壳结构1
➢扭壳的边缘构件 •落地拱单块扭壳屋盖
顺剪力
落地拱扭壳屋盖边框推力的平衡
合力R作用于A、B的基础上
当地基抗侧移能力不足时, 在基础之间设置拉杆
薄壁空间结构
第一节 概 述
一 、薄壳结构的概念 ➢概念 • 壳体结构
➢比较
• 等厚度壳
• 薄壳
双轴力 顺剪力
平板
双弯矩 扭矩
➢优点
壳体
空间受力 薄膜内力
薄膜内力
很大的强度、刚度 材料强度充分利用
一 、薄壳结构的概念
➢中曲面
➢高斯曲率
K
k1
k2
1 R1
1 R2
(1)
法 截
线
一 、薄壳结构的概念
是否有横隔板是筒壳和筒拱的区别 筒壳 横向 与拱类似 壳身产生环向压力
纵向 与梁类似 把上部竖向荷载传递给横隔
➢长壳 l1 / l2 3 横向拱的作用小;纵向梁传力显著。近似梁作用 按梁理论计算
➢短壳 l1 / l2 1/ 2 横向拱的作用明显;纵向梁传力作用很小。近似拱作用 内力主要为薄膜内力,按薄膜理论计算
双弯矩 扭矩 横向剪力
➢薄膜内力为主要内力的情况:
四、薄壳结构的施工方法
➢现浇混凝土壳体 ➢预制单元、高空装配成整体壳体 ➢地面现浇壳体或预制单元装配后整体提升 ➢装配整体叠合壳
北京天文馆
第二节 圆 顶
一 、圆顶的结构组成及结构型式
壳身 支座环
1.壳身结构
下部支承
平滑圆顶
肋形圆顶
多面圆顶
第二节 圆 顶
➢中长壳 1/ 2 l1 / l2 3 拱和梁的作用都明显。 存在薄膜内力和弯曲内力,按弯矩理论或半弯矩理论计算
第5章薄壳结构
第5章 钢筋混凝土空间薄壁结构 5.3 筒壳与锥壳 5.3.1 筒壳的结构组成及结构型式
跨度l1:两个横隔之间的距离 波长l2:两个侧边构件之间的距离 (筒壳的纵向) (筒壳的横向)
边梁(侧边构件)Biblioteka 横隔板 是否有横隔板是筒壳和筒拱的区别
第5章 钢筋混凝土空间薄壁结构 5.3 筒壳与锥壳 5.3.1 筒壳的结构组成及结构型式 侧边构件截面形式筒壳 边梁的型式
大圆从球面上切割的
2.平面形状为48m*41.5m的曲 边三角形
3.壳面荷载通过薄壳的三个边 传至支座。
割球壳屋顶实例
第5章 钢筋混凝土空间薄壁结构 5.2 圆顶 5.2.1 圆顶的结构组成及结构型式 组成
壳 身
支座环 下部支承
1)壳身结构
圆顶的壳身结构
第5章 钢筋混凝土空间薄壁结构 5.2 圆顶 5.2.1 圆顶的结构组成及结构型式
旋转曲面
由一条平面曲线绕着该平面内某 一指定的直线旋转一周所形成的 曲面
第5章 钢筋混凝土空间薄壁结构 5.1 概述 5.1.2 薄壳结构的曲面形式
平移曲面
由一条竖向曲线做母线沿着另一条竖向曲线(导线)平行 移动所形成的曲面
椭圆抛物面
双曲抛物面
第5章 钢筋混凝土空间薄壁结构 5.1 概述 5.1.2 薄壳结构的曲面形式
壳体结构的强度和刚度主要是利用其几何 形状的合理性,而不是以增大其结构截面尺寸取 得的,这是薄壳结构与拱式结构相似之处。
第5章 钢筋混凝土空间薄壁结构 5.1概述
梁式结构 排架结构 刚架结构 拱式结构
面外:需设支撑体系保证安 全及稳定 平面受力结构
面内:承受屋面板传来的竖 向荷载
平面受力结构体系的特点: 优点:荷载为单向传递,计算分析方便,结构施工吊装方便。 缺点:结构内力较大,材料强度得不到充分发挥,随着结构材料用量
工程结构与力学总结
第一章——xx悬挑结构1、梁的分类:①按材料分类:石梁、木梁、钢梁、钢筋混凝土梁、预应力混凝土梁、钢—钢筋混凝土混合梁等②按截面形式分类:石梁的截面一般为矩形;木梁的截面为圆形和矩形;钢梁为工字形、槽形,跨度较大时为箱形;钢筋混凝土梁有扁梁、花篮梁、T型梁、工字梁、空腹梁;较大跨度的梁有双坡薄腹梁、鱼腹梁、空腹梁③按支座约束条件分类:静定梁、超静定梁(根据跨数不同,有单跨静定梁、单跨超静定梁、多跨静定梁、多跨超静定梁)第二章——桁架结构1、桁架结构:①组成杆件:斜腹杆、上弦杆、竖腹杆、下弦杆2、屋架结构形式:①按使用材料的不同,可以分为:木屋架、钢—木组合屋架、钢屋架、轻型钢屋架、钢筋混凝土屋架、预应力混凝土屋架、钢筋混凝土—钢组合屋架等②按屋架外形的不同,有:三角形屋架、梯形屋架、抛物线屋架、折线形屋架、平行弦屋架等③根据结构受力的特点及材料性能的不同,有:桥式屋架、无斜腹杆屋架或刚接桁架、立体桁架3、适用范围:①木屋架:形式有豪式木屋架,一般分三角形和梯形。
三角形屋架的内力分布不均匀,支座处大而跨中小。
一般适用于跨度在18m以内的建筑中。
三角形屋架的坡度大,适用于屋面材料为黏土瓦、水泥瓦及小青瓦等要求排水坡度较大的情况②钢木组合屋架:形式有豪式屋架、芬克式屋架、梯形屋架、下折式屋架。
适用跨度视屋架结构的外形而定,对于三角形屋架,其跨度一般为12~18m,对于梯形、折线形等多边形屋架,跨度可达18~24m③钢屋架:形式有三角形钢屋架、梯形钢屋架、矩形(平行弦)钢屋架。
三角形屋架用于屋面坡度较大的屋盖结构中;梯形屋架用于屋面坡度较小的屋盖中;矩形屋架不宜用于大跨度建筑中,多用于托架或支撑系统。
④轻型屋架:有三角形屋架、。
三角拱屋架、梭形屋架。
三角形屋架和三铰拱屋架用于斜坡屋面,屋面坡度通常取;梭形屋架的屋面坡度较平坦,取;轻型钢屋架适用于跨度<=18,柱距4~6m,设置有起重量<=50kN的中、轻级工作制桥式吊车的工业建筑和跨度<=18m的民用房屋⑤混凝土屋架:有梯形屋架、折线形屋架、拱形屋架、无斜腹杆屋架等。
薄壳结构
第二节 薄壳的型式与曲面关系
薄壳结构是一种薄得不致于产生明显的弯曲应力,但厚度是以承受压力、 拉力和剪力的形抵抗结构。所谓“形抵抗结构”就是将材料造成一定的形式从 而获得强度去承受荷载的结构。薄壳结构赖以获得这种能力的“形”就是曲面, 薄壳的结构效能就是归功于曲面的曲率和几何特征。
薄壳的型式很多,诸如球面壳、圆柱壳、双曲扁壳、幕结构、折结构等, 都是由曲面变化而创造出的各种型式。
1.双曲抛物面(鞍壳、扭壳) 如上图(b)所示的双曲抛物面,也可按直纹曲面的方式形成,即工程 中的鞍壳。 工程中扭壳是由扭曲面构成的。
2.柱面与柱状面
柱面是由直母线沿一竖向曲导线移动而形成的,如筒壳。
柱状面是由一直母线沿着两根曲率不同的竖向曲导线移动,并始
终平行于一导平面而形成,如柱状面壳。
3.锥面与锥状面
受壳面边缘传来的推力,其截面内力主要为拉力。
由于支座环对壳面边缘变形的约束作用,壳面的边
缘附近产生径向的局部弯矩。
• 圆顶薄壳的支承结构,一般有以下几种:
• (1)通过支座环支承在房屋的竖向承重构件上。 • (2)支承在斜柱或斜拱上。 • (3)支承在框架上。 • (4)圆顶结构直接落地并支承在基础上。
薄壳基本曲面形式几何形成的类型:
一、旋转曲面
由一平面曲线作母线绕其平面内的轴旋转而成的曲面,称为旋转曲面。常见 的有:球形曲面、旋转抛物面和旋转双曲面。
二、平移曲面
竖向曲母线沿另一竖向曲导线平移而成的曲面称为平
移曲面。工程中常见的有椭圆抛物面双曲扁壳和双曲抛物面。注意
区别。
三、直纹曲面
一直线沿二固定曲线移动形成的曲面。常见的有:
可将平板理论中的某些公式直接应用到双曲扁壳结构的计算中。
薄壳结构
(二)按其形成的特点分:
2、平移曲面
一竖向曲线作母线沿另一竖向曲线平移所 成的曲面。 常见的椭圆抛物面、双曲抛物面。
3、直纹曲面 一段直线的两端沿二固定曲线移动而成的 曲面。 1)双曲抛物面 以一根直母线在两根相互倾斜但又不相交 的直导线上平行移动而形成的曲面。也 称扭面。
• 2)柱面与柱状面
• 薄壳结构为双向受力的空间结构,在竖 向荷载作用下,壳体主要承受曲面内的 轴向力和顺剪力的作用。这两种力都作 用在曲面内,又称为薄膜内力。而只有 在非对称荷载作用下,壳体才承受较小 的弯距和扭距。
壳体主要承受薄膜内力,且该内力沿 壳体厚度方向均匀分布,所以材料强 薄壳结构能实现以最少的材料构成最坚 固结构的理想。
人们从这些天然壳体中受到启发利用混凝土的可塑性创造出各种形式的薄壳结薄壳结构是一种新型薄壁空间结构可充分利用钢筋混凝土的可塑性形成各种形状如筒壳折板波形壳双曲壳半球形壳等
自然界某些动植物的种子外壳、蛋壳、贝壳 ,可以说是天然的薄壳结构,它们的外形符合力 学原理,以最少的材料获得坚硬的外壳,以抵御 外界的侵袭。人们从这些天然壳体中受到启发, 利用混凝土的可塑性,创造出各种形式的薄壳结 构。
北京天文馆--直径25m的圆顶薄壳,壳 厚仅为60mm。
花之圣母教堂 欧洲
布鲁涅内斯基
一、圆顶薄壳的组成及结构型式
一般由壳身、支座环、下部支承结构组成。 1、壳身结构
按构造的不同,可分为平滑圆顶、肋形圆 顶和多面圆顶。
• 当建筑上由于采光要求需将圆顶表面划 分成若干区格;或当壳体承受集中荷载 时;或当壳身厚度太小、不能保证壳体 的稳定;或采用整体式结构时用肋形圆 顶。
薄壳结构是一种新型薄壁空间结构,可充分利 用钢筋混凝土的可塑性形成各种形状,如筒壳、折 板、波形壳、双曲壳、半球形壳等。薄壳结构特点 是壁薄、自重轻、应力分布均匀,能充分发挥材料 的最大力学效能,并可获得较大的刚度。
第五章 薄壁空间结构
第五章薄壁空间结构第一节概述一.薄壁空间结构发展简况二.曲面理论相关知识1.基本概念:(1)薄壳:壳体结构一般是由上、下两个几何曲面构成的空间薄壁结构。
当δ不随坐标位置的不同而改变时,称为等厚壳;反之,称为变厚度壳。
两个曲面之间的距离称为壳体的厚度(δ),当δ与壳体的其它尺寸(如曲率半径R,跨度L等)小的多时,一般要求δ/R≤1/20,(鸡蛋壳的δ/R≈1/50)称为薄壳结构。
现代建筑中所采用的壳体一般为薄壳结构。
(2)中曲面:等分壳体各点厚度的几何曲面称为壳体的中曲面。
薄壳结构,可以仅以中曲面的方程描述整个结构的变形及内力。
(3)高斯曲率:曲面上任意一点上的高斯曲率等于该点两主曲率的乘积:K=k1k2=1/R1R2A.正高斯曲率:K=k1k2>0B.负高斯曲率:K=k1k2<0C.零高斯曲率:K=k1k2=0,即其中一个主方向为直线。
(4)矢高、矢率:中曲面覆盖的底面的短边为A,如图示:f/a称为矢率。
矢率很小的壳体称为扁壳,矢率较大着称为陡壳。
在混凝土结构中,f/a≤1/5时,称为扁壳。
三.薄壳结构的内力1.薄壳的内力:如图:对于任意壳体结构,在荷载作用下,壳体的内力可以分为两类――作用于中曲面内的和作用于中曲面外的弯曲内力。
弯曲内力是由于中曲面的曲率和扭率改变而产生的,它包括弯矩、横剪力、扭矩;理想的薄膜没有抵抗弯曲和扭曲的能力,在荷载的作用下只产生正向应力N 和顺剪力;因此,设计中应选取合理的曲面形式,使壳体内的弯曲内力小到足可以忽略的程度。
2.可以忽略弯曲内力的条件:A。
薄壁δ/R≤1/20,并同时满足B.壳体具有均匀、连续变化的曲面;C.壳体上的荷载是均匀连续的;D.壳体的各边界能够沿着曲面的法线方向自由移动,支座只产生阻止曲面沿切线方向位移的反力。
由于壳体主要承受薄膜内力,弯曲内力很小,且薄膜内力沿壳壁是均匀分布的,所以,壳体结构可以充分发挥材料强度,做到壳体薄,自重轻而强度大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•支承在框架上
斜拱
•直接落地并支承在基础上
Central South University of Forestry & Technology
第5章 钢筋混凝土空间薄壁结构 5.2 圆顶 5.2.2 圆顶的受力特点
1)圆顶的破坏
2)圆顶的薄膜内力
壳面单元体的主要内力 经向应力状态 环向应力状态
圆顶的坐标及薄膜内力
主方向:对应于每一个主曲率的方向称为曲面在o 点的主方向,两个主方向 是相互正交的。
曲率线:在曲面的每点处在主方向上的两根切线,这些切线围成了两组互成 正交的曲线网,称为曲率线
Central South University of Forestry & Technology
第5章 钢筋混凝土空间薄壁结构 5.1 概述 5.1.1 薄壳结构的概念 按高斯曲率分类
第5章 钢筋混凝土空间薄壁结构 5.1 概述 5.1.2 薄壳结构的曲面形式
3、直纹曲面
•锥面: 由一段直线(母线)沿一竖向曲线(导线)移动并始终通过 一定点形成的曲面
•劈锥曲面 由一段直线(母线)沿一直导线和一根竖向曲导线移动并始 终平行于一导平面形成的曲面
劈锥曲面
锥面
Central South University of Forestry & Technology
椭圆抛物面
双曲抛物面
Central South University of Forestry & Technology
第5章 钢筋混凝土空间薄壁结构 5.1 概述 5.1.2 薄壳结构的曲面形式
2、平移曲面
椭圆抛物面
双曲抛物面
Central South University of Forestry & Technology
• 薄壳
双轴力 顺剪力
薄膜内力
平板
双弯矩 扭矩
壳体
空间受力 薄膜内力 很大的强度、刚度 材料强度充分利用
优点
Central South University of Forestry & Technology
第5章 钢筋混凝土空间薄壁结构 5.1 概述 5.1.1 薄壳结构的概念 中曲面:等分壳体各点厚度的几何曲面 中曲面的几何性质取决于曲面上曲线的弧长与曲率 高斯曲率
第5章 钢筋混凝土空间薄壁结构 5.2 圆顶 5.2.1 圆顶的结构组成及结构型式 组成
壳 身
支座环 下部支承
1)壳身结构
圆顶的壳身结构
Central South University of Forestry & Technology
第5章 钢筋混凝土空间薄壁结构 5.2 圆顶 5.2.1 圆顶的结构组成及结构型式
薄壳结构的优点:空间整体工作性能良好、内力比较均匀、 强度高、刚度大、省材而经济合理
Central South University of Forestry & Technology
第5章 钢筋混凝土空间薄壁结构 5.1 概述 5.1.1 薄壳结构的概念 概念 • 壳体结构 比较
• 等厚度壳
第5章 钢筋混凝土空间薄壁结构 5.1 概述 5.1.2 薄壳结构的曲面形式
4、曲面的组合
双曲扁壳
扭壳
柱壳
劈锥壳
锥形壳
Central South University of Forestry & Technology
第5章 钢筋混凝土空间薄壁结构 5.1 概述 5.1.3薄壳结构的内力
壳体结构的内力
两个曲面之间的距离称为壳体的厚度δ。 等厚度壳:壳体厚度δ不随坐标的位臵不同而改变 变厚度壳:壳体厚度δ 随坐标的位臵不同而改变 薄壳:当壳体厚度δ<< R(曲率半径)时,称为薄壳 厚壳或中厚度壳:与上相反 薄壳承重:主要靠曲面内的双向轴力和顺剪力承重
薄壳的强度和刚度:利用其几何形状的合理性
0 0 0
零高斯曲率 正高斯曲率 负高斯曲率
K k1 k2
零高斯曲率 (圆柱面)
正高斯曲率 (椭圆抛物面)
负高斯曲率 (双曲抛物面)
Central South University of Forestry & Technology
第5章 钢筋混凝土空间薄壁结构 5.1 概述 5.1.2 薄壳结构的曲面形式
钢筋混凝土网肋形扁球 壳结构 ;球壳采用预制钢 丝网水泥菱形构件作模板, 与壳板现浇成整体的肋形 球壳;壳肋——葵花图案, 具有装饰性;采用36根Y字 型斜柱支承 结构明朗 轻 快 富有表现力;施工时起 重机安装在中央天窗处 十 分合理。
Central South University of Forestry & Technology
第5章 钢筋混凝土空间薄壁结构
System and Selection of Building Structures 土木工程学院
第5章 钢筋混凝土空间薄壁结构 5.1 概述 5.1.1 薄壳结构的概念 思考:一个鸡蛋能受多大的压力? F1=?
壳体结构的强度和刚度主要是利用其几何形状 的合理性,而不是以增大其结构截面尺寸取得的, 这是薄壳结构与拱式结构相似之处。
1、旋转曲面
由一条平面曲线绕着该平面内某 一指定的直线旋转一周所形成的 曲面
Central South University of Forestry & Technology
第5章 钢筋混凝土空间薄壁结构 5.1 概述 5.1.2 薄壳结构的曲面形式
2、平移曲面
由一条竖向曲线做母线沿着另一条竖向曲线(导线)平行 移动所形成的曲面
第5章 钢筋混凝土空间薄壁结构 5.2 圆顶 5.2.0 概述
北京天文馆
Central South University of Forestry & Technology
第5章 钢筋混凝土空间薄壁结构 5.2 圆顶 5.2.0 概述
美国麻省理工学院(MIT)礼堂 (球壳平面为正三角形)
Central South University of Forestry & Technology
K k1 k 2 1 1 R1 R2 (1)
法 截
线 曲面的几何性质
Central South University of Forestry & Technology
第5章 钢筋混凝土空间薄壁结构 5.1 概述 5.1.1 薄壳结构的概念
中曲面:等分壳体各点厚度的几何曲面,中曲面的几何性质取决于曲面上曲 线的弧长与曲率 切平面:通过曲面上的任一点o 法截面:通过法线o n₁可以做无数的平面, 称为法截面 法截线:法截面与曲面相交的曲线称为法截线 法曲率:这些法截线在o 处的曲率称为法曲率 主曲率:在o 点处的所有法曲率中,有两个极值,称为o 点的两个主曲率, 它们中一个是最大值,一个是最小值
现浇混凝土壳体 预制单元、高空装配成整体壳体 地面现浇壳体或预制单元装配后整体提升
装配整体叠合壳 采用柔模喷涂成壳 预应力混凝土结构
第5章 钢筋混凝土空间薄壁结构 5.1 概述 5.1.4 薄壳结构的施工方法
蜂巢芯 薄壁箱体
Central South University of Forestry & Technology
2.支座环
作用: 阻止裂缝开展 保证壳体处于受压工作状态 实现结构的空间平衡
支座环
Central South University of Forestry & Technology
第5章 钢筋混凝土空间薄壁结构 5.2 圆顶 5.2.1 圆顶的结构组成及结构型式
3.支承结构的类型
•支承在竖向承重构件上 •支承在斜柱或斜拱上
的增加,空间整体性能下降,结构安全性降低。
Central South University of Forestry & Technology
第5章 钢筋混凝土空间薄壁结构 5.1 概述 5.1.1 薄壳结构的概念 随着材料的发展、施工技术的进步及计算机分析软件的应 用,给空间结构体系的发展提供了有力的支持。 薄壁结构 网架及网壳结构 悬索结构 膜结构 杂交结构
由曲面形薄板构成的薄壳结构 由平板构成的折板、雁形板、幕结构
Central South University of Forestry & Technology
空间结构体系
钢筋混凝土大跨 空间薄壁结构
第5章 钢筋混凝土空间薄壁结构 5.1 概述 5.1.1 薄壳结构的概念 壳体结构是由上下两个几何曲面所构成的薄壁空间结构。
Central South University of Forestry & Technology
第5章 钢筋混凝土空间薄壁结构 5.1概述
梁式结构 拚架结构 刚架结构 拱式结构
面外:需设支撑体系保证安 全及稳定 平面受力结构
面内:承受屋面板传来的竖 向荷载
平面受力结构体系的特点: 优点:荷载为单向传递,计算分析方便,结构施工吊装方便。 缺点:结构内力较大,材料强度得不到充分发挥,随着结构材料用量
Central South University of Forestry & Technology
第5章 钢筋混凝土空间薄壁结构 5.2 圆顶 5.2.2 圆顶的受力特点
球形圆顶在自重作用下薄膜内力沿经线的变化
Central South University of Forestry & Technology
(2)壳体上的荷载是均匀连续分布的;
(3)壳体的各边界能够沿着曲面的法线方向自由移动,支座 只产生阻止曲面切线方向位移的反力。
Central South University of Forestry 间薄壁结构 5.1 概述 5.1.4 薄壳结构的施工方法