最新继电保护知识点总结
继电保护知识点
第1章1、继电保护装置的作用是什么?答:当被保护元件发生故障时,自动、迅速、有选择地将故障从电力系统切除,以保证其余部分恢复正常运行,并使故障元件免于继续受损害。
当被保护元件发生异常运行状态时,经一定延时动作于信号,以使值班人员采取措施。
2、继电保护按反应故障和按其功用的不同可分为哪些类型?答:(1)按反应故障可分为:相间短路保护,接地短路保护,匝间短路保护,失磁保护等。
(2)按其功用可分为:主保护、后备保护、辅助保护。
3、何谓主保护、后备保护和辅助保护?答:(1)能反应整个保护元件上的故障,并能以最短延时有选择地切除故障的保护称为主保护。
(2)主保护或其断路器拒动时,由于切除故障的保护称为后备保护。
(3)为补充主保护和后备保护的不足而增设的比较简单的保护称为辅助保护。
4、继电保护装置由哪些部分组成?答:继电保护装置由测量部分、逻辑部分和执行部分组成。
第2章5、何谓电流互感器10%误差特性曲线?答:10%误差曲线是指电流误差10%,角度误差不超过7°时,电流互感器的一次电流倍数和允许负荷阻抗之间的关系曲线。
6、怎样用10%误差曲线校验电流互感器?答:(1)根据接线方式,确定负荷阻抗计算;(2)根据保护装置类型和相应的一次电流最大值,计算电流倍数;(3)由已知的10%曲线,查出允许负荷阻抗;(4)按允许负荷阻抗与计算阻抗比较,计算值应小于允许值,否则应采用措施,使之满足要求。
7、保护装置常用的变换器有什么作用?答:(1)按保护的要求进行电气量的变换与综合;(2)将保护设备的强电二次回路与保护的弱电回路隔离;(3)在变换器中设立屏蔽层,提高保护抗干扰能力;(4)用于定值调整。
8、用哪些方法可以调整电磁型电流继电器定值?答:调整动作电流可采用:(1)改变线圈连接方式;(2)改变弹簧反作用力;(3)改变舌片起始位置。
9、信号继电器有何作用?答:装置动作的信号指示并接通声光信号回路。
10、微机保护硬件由哪些部分组成?答:一般由:模拟量输入系统;微机系统;开关量输入/输出系统;人机对话接口回路和电源五部分组成。
继电保护重点知识
1、简述继电保护的基本原理和构成方式答:继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。
大多数情况下,不管反应哪种物理量,继电保护装置将包括测量部分(和定值调整部分)、逻辑部分、执行部分。
2、电力系统对继电保护的基本要求是什么?答:继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求。
这四“性”之间紧密联系,既矛盾又统一。
(1)可靠性是指保护该动作时应可靠动作,不该动作时应可靠不动作。
可靠性是对继电保护装置性能的最根本的要求。
(2)选择性是指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护、线路保护或断路器失灵保护切除故障。
为保证对相邻设备和线路有配合要求的保护和同一保护内有配合要求的两元件(如起动与跳闸元件或闭锁与动作元件)的选择性,其灵敏系数及动作时间,在一般情况下应相互配合。
(3)灵敏性是指在设备或线路的被保护范围内发生金属性短路时,保护装置应具有必要的灵敏系数,各类保护的最小灵敏系数在规程中有具体规定。
选择性和灵敏性的要求,通过继电保护的整定实现。
(4)速动性是指保护装置应尽快地切除短路故障,其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用电源或备用设备自动投入的效果等。
一般从装设速动保护(如高频保护、差动保护)、充分发挥零序接地瞬时段保护及相间速断保护的作用、减少继电器固有动作时间和开关跳闸时间等方面入手来提高速动性。
3、简述220千伏及以上电网继电保护整定计算的基本原则和规定答:(1)对于220千伏及以上电压电网的线路继电保护一般都采用近后备原则。
当故障元件的一套继电保护装置拒动时,由相互独立的另一套继电保护装置动作切除故障,而当断路器拒绝动作时,起动断路器失灵保护,断开与故障元件相连的所有其他联接电源的断路器。
继电保护复习总结_2
第一章对继电保护的基本要求: 可靠性、选择性、速动性、灵敏性。
可靠性包括安全性和信赖性, 是对继电保护性能的最根本的要求。
所谓安全性, 是要求继电保护在不需要它动作时可靠不动作, 即不发生误动作。
所谓信赖性, 是要求继电保护在规定的保护范围内发生了应该动作的故障时可靠动作, 即不发生拒绝动作。
选择性是指保护装置动作时, 在可能最小的区间内将故障从电力系统中断开, 最大限度地保证系统中无故障部分仍能继续安全运行。
速动性是指尽可能快地切除故障, 以减少设备及用户在大短路电流、低电压下运行的时间, 降低设备的损坏程度, 提高电力系统并列运行的稳定性。
灵敏性是指对于其保护范围内发生故障或不正常运行状态的反应能力。
第二章过电流继电器的动作电流、返回电流、返回系数:动作电流: 能使继电器动作的最小电流称为动作电流Iop 。
返回电流: 能使继电器返回原位的最大电流称为继电器的返回电流Ire 。
返回系数:返回系数是返回电流与动作电流的比值, 即opre I I re K 系统最大运行方式和最小运行方式:1. 最大运行方式: 对继电保护而言, 在相同地点发生相同类型的短路时流过保护安装处的电流最大, 称为系统最大运行方式, 对应的系统等值阻抗最小, Zs =Zs.min ;2. 最小运行方式:对继电保护而言, 在相同地点发生相同类型的短路时流过保护安装处的电流最小, 称为系统最小运行方式, 对应的系统等值阻抗最小, Zs =Zs.max 。
3. 电流速断、限时电流速断和定时限过电流保护的整定计算(包括动作电流、动作时限、灵敏度校验):三段式电流保护如何保证选择性:电流速断(Ⅰ断): 依靠整定值保证选择性;4. 限时电流速断(Ⅱ断): 依靠动作时限和动作值共同保证选择性;5. 定时限过电流保护(Ⅲ断): 依靠动作电流、动作时限、灵敏系数三者相配合保证选择性。
6. 相间电流保护的接线方式和各种接线方式的应用场合:7. 相间电流保护的接线方式: 分为三相星形接线、两相星形接线。
继电保护最全面的知识
继电保护最全面的知识一、基本原理继电保护装置必须具有正确区分被保护元件是处于正常运行状态还是发生了故障,是保护区内故障还是区外故障的功能。
保护装置要实现这一功能,需要根据电力系统发生故障前后电气物理量变化的特征为基础来构成。
电力系统发生故障后,工频电气量变化的主要特征是:1)电流增大短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。
2)电压降低当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。
3)电流与电压之间的相位角改变正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60°~85°,而在保护反方向三相短路时,电流与电压之间的相位角则是180°+(60°~85。
)。
4)测量阻抗发生变化测量阻抗即测量点(保护安装处)电压与电流之比值。
正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。
不对称短路时,出现相序分量,如两相及单相接地短路时,出现负序电流和负序电压分量;单相接地时,出现负序和零序电流和电压分量。
这些分量在正常运行时是不出现的。
利用短路故障时电气量的变化,便可构成各种原理的继电保护。
此外,除了上述反应工频电气量的保护外,还有反应非工频电气量的保护,如瓦斯保护。
二、基本要求继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。
对于作用于继电器跳闸的继电保护,应同时满足四个基本要求,而对于作用于信号以及只反映不正常的运行情况的继电保护装置,这四个基本要求中有些要求可以降低。
1、选择性选择性就是指当电力系统中的设备或线路发生短路时,其继电保护仅将故障的设备或线路从电力系统中切除,当故障设备或线路的保护或断路器拒动时,应由相邻设备或线路的保护将故障切除。
继电保护技术知识点总结
继电保护技术知识点总结继电保护技术知识点总结一、继电保护技术概述继电保护技术是电力系统中的重要组成部分,它在电力系统中起着保护设备和电网安全运行的关键作用。
本文将以继电保护技术为主线,总结电力系统中的基础知识点。
二、电力系统的组成电力系统由发电厂、变电站和配电网组成。
发电厂负责将能源转化为电能,变电站通过变压器将电能从高压输送到低压,配电网将电能分配到各个用户。
在电力系统中,需要对各个组成部分进行保护,以确保电力系统的正常运行。
三、故障类型及保护措施电力系统中常见的故障类型包括短路故障、过电流故障、过压故障、欠电压故障等。
为了保护电力系统的安全运行,需要针对不同故障类型采取相应的保护措施,如差动保护、零序保护、过电流保护等。
四、继电保护器的分类继电保护器可以根据其功能、工作原理、使用场合等对其进行分类。
常见的继电保护器包括电流继电器、电压继电器、频率继电器、时间继电器等。
每种继电保护器都有其独特的特点和适用范围。
五、保护装置的配置与调校为了保证继电保护的可靠性和适应性,需要对保护装置进行合理的配置和调校。
保护装置的配置包括选择合适的保护装置和安装位置,调校是指根据电力系统的特点和要求,对保护装置的参数进行调整,以使其在不同工作情况下能够起到良好的保护作用。
六、继电保护技术的新发展随着电力系统的发展和技术的进步,继电保护技术也在不断创新和发展。
目前,数字化继电保护技术、智能继电保护技术、光纤继电保护技术等已经开始应用于电力系统中,使继电保护技术更加智能化、精确化和可靠化。
七、继电保护技术中的常见问题与解决方法在实际应用中,继电保护技术可能会遇到一些常见问题,如误动、误动抑制、快速耗散能量等。
对于这些问题,需要采取相应的解决方法,如增加滞后特性、改变继电器的接线方式等。
八、继电保护技术在实际工程中的应用继电保护技术在电力系统的实际工程中得到广泛应用。
通过应用继电保护技术,可以提高电力系统的安全性和可靠性,并且减少停电时间和损失。
继电保护概念总结
继电保护概念总结第一章绪论1、继电保护执行了保护电力系统安全运行旳任务,因此叫继电保护。
2、仅靠保护装置并不能达到保护电力设备目的,必须经过断路器、互感器等配合才能实现继电保护相关功能。
3、电压互感器、电流互感器作用是分别获得母线电压、线路电流信息。
4、电能质量指标评价主要有两个:电压、频率。
5、继电保护主要作用是:自动将故障元件或异常运行元件从系统中切除。
6、继电保护基本任务是:切除故障元件和反映不正常运行状态。
7、继电保护泛指:继电保护技术和(各种继电保护装置构成的)继电保护系统。
8、继电保护装置定义为:在电力系统发生故障或不正常工作状态时,动作于断路器跳闸或发出告警信号的一种安全自动装置。
9、继电保护装置组成:测量部分、逻辑部分、执行部分。
10、距离保护组成:测量元件、逻辑回路、起动元件。
11、一个保护系统包括:一个或多个保护装置、互感器、接线、跳闸回路、辅助电源,有时还包括通信系统、自动重合闸装置,但不包括断路器。
12、继电保护并不能预测和防止故障发生,只有在发生电力系统故障时表现出来。
13、继电保护不单指继电保护装置,必须联系一次系统需求,电流、电压输入量,对断路器控制、动作行为来讨论保护动作行为。
14、保护用法:不能直接用于高压电和大电流设备上。
15、继电保护触点(接电):指交流或直流电路中可以断开或闭合电路的金属触点。
16、常开触点(动合触点):常态情况下处于断开状态的触点。
17、常闭触点(动断触点):常态情况下处于闭合状态的触点。
18、保护起动:继电保护装置反映故障状态,相应元件做出动作行为。
19、保护动作:保护起动后经过一段时间间隔,相应元件触点关闭或打开。
20、整定:继保装置的起动值可以调整,调整过程和步骤称为继保装置“整定”。
21、保护跳闸:继电器(触点闭合)向断路器发跳闸命令,将断路器跳开。
22、触点释放及复位:外加电流降至起动值以下一定量,继电器开始释放。
通过一段时间,触点完全打开(或闭合),此过程称为继电器返回(保护返回)。
继电保护知识点总结
继电保护知识点总结1、电保护装置的概念和基本任务:继电保护装置指能反应电力系统中电器元件发生故障或不正常运行状态并动作断路器跳闸或着发出信号的一种自动装置。
基本任务:自动迅速有选择的将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行;反应电器元件的不正常运行状态,并根据运行维持条件而动作与发出信号减负荷或跳闸。
2、继电保护装置是由:测量部分,逻辑部分,执行部分组成3、保护的四性及含义:1选择性:指电力系统中有故障时,应由距离故障点最近的保护装置动作,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中非故障部分继续安全运行。
2速动性:快速切除故障,提高电力系统并联运行的稳定性,减少用户在电压降低情况下工作的时间,以及缩小故障元件的损坏程度。
3灵敏性:对其保护范围内发生故障或不正常运行状态的反应能力。
4可靠性:指在该保护装置规定的保护范围内发生了它应该动作的故障时,他不应该拒绝动作,而在任何其他该保护装置不应该动作的情况下,则不应该误动作。
过电流继电器的技术参数5继电器能够动作的条件:Me≥Mth+Mf,满足这个条件并能使保护装置动作的最小电流值称为保护装置的动作电流(起动电流)Ik’act继电器能够返回的条件:Me≤Mth-Mf,满足这个条件并能使保护装置返回原位的最大电流值称为返回电流Ik’re 返回电流与动作电流的比值称为返回系数Kre,在实际应用中,常常要求过电流继电器有较高的返回系数,如0.85~0.9。
6概念:最大运行方式:短路时流过保护装置处电流最大(系统阻抗最小)的运行方式最小运行方式:短路时流过保护装置处的电流最小(系统阻抗最大)的运行方式应用:最大运行方式应用于电流保护的整定计算最小运行方式应用于电流保护的灵敏度校验在最大运行方式下三相短路时的电流I3k’max在最小情况下两相短路I2k’min()k s k Z Z E I+=?3()ks k Z Z E I+?=?232六、功率方向继电器的工作原理因为在正方向短路时,电流落后于电压的角度为锐角,在反方向短路时为钝角,所以利用判别短路功率的方向或电流、电压之间的相位关系,就可以判断发生故障的方向。
继电保护基础知识
1 .变压器故障和异常运行的类型: 答:变压器故障可分为内部故障和外部故障。变压器的内
部故障又可分为油箱内和油箱外故障两种。油箱内的故障包 括绕组的相间短路、接地短路、匝间短路以及铁芯的烧损等。 对变压器来讲,这些故障都是十分危险的。因为油箱内部故 障时产生的电弧将引起绝缘物质的剧烈气化,从而可能引起 爆炸,因此这些故障应该尽快切除。油箱外的故障,主要是 套管和引出线上发生的短路。此外,还有由于变压器外部相 间短路引起的过流,以及由于变压器外部接地短路引起的过 电流及中性点过电压,变压器突然甩负荷或切空载长线路时 变压器的过励磁等。变压器的异常运行状态主要有过负荷和 油面降低以及油位过高等。
源,则流过TA1和TA2一、二次侧电流方向如图(b)所示,于是I1和I2按同一
方向流过继电器KD线圈即I=I1+I2使KD动作,瞬时跳开QSl和QS2。如果只
有母线I有电源,当保护范围内部有故障(知kl点)时,I2=o,故I=I如图(c),
此时继电器KD仍能可靠动作。
5、变压器气体保护的基本原理: 气体保护是变压器的主要保护,能有效地反
3、一条线路有两套微机保护,线路投单相重 合闸方式,两套微机保护重合闸应如何使用?
两套微机重合闸的选择开关切在单重的位
置,合闸出口连接片只投一套。如果将两套 重合闸出口连接片都投入,可能造成断路器 短时内两次重合。
谢谢观看!
4.什么是距离保护? 所谓距离保护是利用阻抗元件来反映短路
故障点距离的保护装置。阻抗元件反映接入 该元件的电压与电流之比,即反映短路故障 点至保护安装处的阻抗值,因线路阻抗与距 离成正比,所以叫做距离保护或阻抗保护。 5.什么叫差动保护? 通过测量被保护设备或被保护线路两端的 电流大小和相位构成的保护。
继电保护基础期末总结
继电保护基础期末总结继电保护是电力系统中非常重要的组成部分,其作用是通过检测电力系统中的异常情况,及时采取自动控制系统来实现电力系统的安全运行。
在继电保护的设计与应用中,人们主要关注的是对电力系统中的故障、短路等异常情况进行及时处理和保护,以避免这些异常情况对电力系统的正常运行造成损害。
一、继电保护的基本原理继电保护的基本原理是通过感应电流或电压的变化来判定电力系统中是否存在异常情况,并触发相应的保护机构进行操作。
常用的继电保护装置有电流继电器、电压继电器、频率继电器等。
继电保护装置的工作原理是基于电力系统中的电流、电压等参数的变化来判断当前是否存在故障,进而进行保护动作。
二、继电保护的分类根据继电保护所起的作用和保护对象的不同,可以将继电保护划分为多种类型,包括过流保护、跳闸保护、短路保护、接地保护等。
各个保护的分类主要是根据电力系统中可能出现的异常情况来制定的,不同的保护类型可以根据需要组合应用,以实现对电力系统的全面保护。
三、继电保护系统的组成继电保护系统主要由继电保护装置、CT(互感器)、PT(电压互感器)、保护控制器、触发器等组成。
其中,继电保护装置是继电保护系统的核心部分,通过检测电流、电压等参数的变化,实现对电力系统的保护。
互感器主要用于降低电力系统中的电流和电压,以便继电保护装置能够正常工作。
保护控制器则是负责处理继电保护装置发出的信号,并根据需要触发相应的保护动作。
四、继电保护的应用继电保护系统广泛应用于电力系统中的发电、输电、变电等各个环节,其作用是保护电力系统的正常运行,防止电力系统发生故障或事故。
通过及时检测电流、电压、频率等参数的变化,继电保护系统可以预警并采取保护措施,以避免电力系统因异常情况而导致的故障或损害。
五、继电保护的发展趋势随着电力系统的发展和升级,继电保护技术也在不断进步。
目前,继电保护系统已经在数字化、网络化、智能化等方面取得了巨大的突破。
数字化技术的应用使得继电保护系统更加精确和可靠,网络化技术的应用使得继电保护系统的监控和控制更加方便,智能化技术的应用使得继电保护系统更加智能和自动化。
继电保护需要掌握的知识点
第一章
1、继电保护的基本任务
2、继电保护的基本原理
3、继电保护的基本要求
4、主保护、后备保护(远后备、近后备)的概念。
第二章
1、互感器(TA、TY)的概念及作用。
2、变换器(UV、UA、UX)的概念及作用。
3、对称分量虑过器的概念。
如何实现零序、正序、负序电流(电压)虑过器。
4、继电器的继电特性是什么?
5、简述电磁型电流继电器的工作过程。
第三章
1、三段式电流保护(单侧、双侧)的组成、优缺点、整定原则及计算。
2、单侧电流保护接线方式。
3、方向电流保护接线方式。
4、零序电压、零序电流的分布特点。
5、接地电流电压保护。
第四章
1、距离保护的概念及构成。
2、各种阻抗继电器的动作特性和动作方程。
3、阻抗继电其的接线方式。
4、距离保护的整定原则及计算。
继电保护知识点
1.电力系统的运行状态分为正常工作状态、不正常工作状态和故障状态。
2.继电保护的作用• 自动、迅速、有选择性的将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证无故障部分迅速恢复正常运行。
• 反应电气元件的不正常运行状态,并根据运行维护条件,而动作于发出信号或跳闸。
3.继电保护的基本原理:找出正常运行与故障时系统中电气量或非电气量的变化特征。
装置:测量比较元件、逻辑判断元件、执行输出元件4. 影响短路电流的大小的因素:(1)故障类型(2)运行方式(3)故障位置5.对电力系统继电保护的基本要求在保证可靠性和选择性的前提下,强调灵敏性,力争速动性。
选择性——让最靠近短路点断路器跳闸。
速动性——尽量快。
灵敏性——有足够的故障反应能力。
可靠性——不误动、不拒动。
6.电网的方向性电流保护:解决方法: 加装方向元件,规定功率为正方向时保护动作;而功率为反方向时保护不动作。
可以利用功率方向继电器来判别方向。
跳闸条件:① 短路电流大于整定值② 短路功率方向为正。
原则:动作延时最长的且仅有一个,其他的加方向元件;动作延时最长的不止一个,所有的都加7.两种接线方式性能分析:(1)各种相间短路:相同之处: 两种接线方式均能正确反应;不同之处:动作的继电器个数不同。
(2)中性点接地系统中单相接地短路:三相星形: 可反应各相的接地短路;两相星形:不能反应B相接地短路。
(3)△侧故障,滞后相电流2倍大;Y故障超前相电流2倍大解决方法:为了提高灵敏度,采用两相三继电器接线方式8.什么是90︒接线?采用90°接线方式的优缺点指系统三相对称且功率因数cosφ=1时,Ir超前Ur 90︒的接线方式优点:① 对各种两相短路都没有死区,因为继电器加入的是非故障的相间电压,其值很高;② 对线路上各种相间故障都能保证动作的方向性。
缺点:正方向出口处三相金属性短路时仍有死区。
9.对零序电流保护的评价优点:1.零序过电流保护的灵敏度高2.受系统运行方式的影响要小3.不受系统振荡和过负荷的影响4.方向性零序电流保护没有电压死区5.简单、可靠缺点:1.对短线路或运行方式变化很大时,保护往往不能满足要求2.单相重合闸的过程中可能误动3.当采用自耦变压器联系两个不同电压等级的电网时,将使保护的整定配合复杂化,且将增大第III段保护的动作时间10. 距离保护的作用原理:距离保护是利用短路时电压、电流同时变化的特征,测量电压与电流的比值,反应故障点到保护安装处的距离而工作的保护。
继电保护基础知识全
工作原理: i ik ik N
2024/10/18
58
微机保护硬件系统
2024/10/18
59
各组成部分作用
数据采集系统的作用: 完成输入信号的预处理工 作。即对取自被保护元件的连续模拟信号进行
必要的处理并将其变成离散信号,最后转换成 数字信号,输入给微处理机。
CPU 主 系 统 的 作 用 : 由 微 处 理 器 执 行 存 放 在 EPROM 中 的 程 序 , 对 由 数 据 采 集 系 统 输 入 至 RAM区的原始数据进行分析处理,以完成各种 继电保护的功能。
U1
1 3
•
(U
a
•
aUb
a2
•
U
c)
•
U2
1 3
•
(U
a
a
2
•
Ub
•
aU c)
•
U
0
1 3
•
(U
••
a Ub U
c)
a e j1200
2024/10/18
30
三组对称分量的相量图
•
U a1
•
U a2
•
••
U a0 U b0U c0
•
U c1
•
U b1
•
U b2
•
U c2
2024/10/18
31
对称分量滤过器
可靠性是指在保护装置规定的保护范围内发 生了它应该反应的故障时,保护装置应可 靠地动作;而在不属于该保护动作的其他 任何情况下,则不应该动作。
2024/10/18
13
复习思考题
1-2 什么是继电保护装置?其任务是什么? 1-3 举例说明继电保护选择性的概念。 1-4 继电保护装置一般由哪几部分组成?
五项继电保护技术常识(三篇)
五项继电保护技术常识包括:1. 电流保护技术2. 电压保护技术3. 频率保护技术4. 线路保护技术5. 跳闸保护技术下面将逐一介绍这五项继电保护技术的相关知识。
1. 电流保护技术电流保护技术是保护电力系统中电流的一种继电保护技术。
电流保护技术可以分为过电流保护和欠电流保护两大类。
(1) 过电流保护过电流保护用于检测电流超过额定值的情况,常见的过电流保护技术有相序过电流保护、零序过电流保护和差动保护等。
相序过电流保护根据电流大小、相位关系和时间特征来判断是否存在故障;零序过电流保护用于检测并保护接地故障;差动保护则是通过比较电流差值来实现保护。
(2) 欠电流保护欠电流保护用于检测电流小于额定值的情况,常见的欠电流保护技术有过负荷保护和低电流离线保护等。
过负荷保护通常用于保护电动机,在电动机过载时及时切断电源;低电流离线保护则用于检测电流低于一定值时的保护。
2. 电压保护技术电压保护技术是保护电力系统中电压的一种继电保护技术。
电压保护技术可以分为失压保护、过压保护、欠压保护和低电压离线保护等。
(1) 失压保护失压保护用于检测电网中电压突然中断或降低的情况。
失压保护可以保护设备不因电压突然下降而损坏,同时可以通过及时切换备用电源来保证电力供应的连续性。
(2) 过压保护过压保护用于检测电网中电压超过额定值的情况,常见的过压保护技术有与失压保护类似的过电压保护、过电压跳闸保护和非对称过电压保护等。
(3) 欠压保护欠压保护用于检测电网中电压低于额定值的情况,常见的欠压保护技术有与过压保护类似的欠电压保护、欠电压跳闸保护和非对称欠电压保护等。
(4) 低电压离线保护低电压离线保护用于检测电网中电压低于设置的最低电压值时的保护措施。
一般用于保护敏感电子设备,在电压低于最低电压值时及时切断电源。
3. 频率保护技术频率保护技术主要用于检测电力系统中电网的频率异常情况。
频率异常往往是由于电力系统中的故障引起的,因此频率保护技术可以作为故障判断和保护的重要手段。
继电保护基础知识
是指直接参与电力系统运行的设备,如发电机、变压器、输电线路等。它们 是电力系统的核心组成部分,直接参与电能的传输和分配。
二次设备
是指对一次设备进行监测、控制和保护的设备,如继电保护装置、自动化装 置、控制装置等。它们是通过电力系统的二次侧来间接地参与电力系统的运 行。
互感器与断路器
互感器
是一种将高电压或大电流转换为低电压或小电流的设备,以便于二次设备能够安 全地监测和控制一次设备。互感器分为电流互感器和电压互感器两种类型。
继电器的类型与特性
电磁继电器
电磁继电器是一种利用电磁铁控制开关的装置。当线圈通电时,电磁铁产生磁力,将开关 吸合,从而接通电路。这种继电器通常具有较高的灵敏度和快速响应时间,但容易受到振 动和冲击的影响。
固态继电器
固态继电器是一种利用半导体器件控制开关的装置。当输入信号达到一定值时,半导体器 件导通,开关接通。这种继电器具有较低的功耗和较长的使用寿命,但需要稳定的直流电 源。
初步检查
对设备进行初步检查,确定故 障范围和可能的原因。
故障诊断与修复
根据初步检查的结果,对故障 进行诊断,并采取相应的修复 措施。
故障报告
当继电保护装置出现故障时, 相关人员应立即报告给相关部 门。
故障隔离
在保证安全的前提下,将故障 设备从电网中隔离出来。
恢复运行
在修复完成后,将设备重新投 入运行,并密切关注其运行状 况。
通过比较线路两端电流的相位或功率方向来实现对线 路的保护。根据比较方式的不同,可分为纵联差动保 护和纵联方向保护。
横联差动保护
利用输电线路横向连接元件(如变压器、断路器等) 的电流相位或功率方向来实现对线路的保护。根据比 较方式的不同,可分为横联差动保护和横联方向保护 。
继电保护总结(重点看)
继电保护(重点看)什么是继电保护?继电保护是一种保护电气设备避免因电力系统内部或外部故障而引起的损坏。
通常,继电保护是通过检测电流、电压、频率、相位角等电参数的变化来实现的。
为什么需要继电保护?在电力系统中,故障是不可避免的。
例如,设备内部失效或外部短路等都会引起故障。
如果不及时检测、判断和处理,这些故障会引起设备受损、事故发生,造成重大的经济和社会影响。
因此,为了保证电力系统的安全、稳定和可靠,需要对各种故障进行保护。
继电保护类型继电保护根据不同的保护对象和保护措施,可分为以下类型:过电压保护当电力系统内部或外部发生过电压时,过流保护会自动切断电路,以保护设备。
过电流保护当电力设备发生故障时,过电流保护会自动切断电路,以保护设备。
地面保护地面保护主要是为了检测电路中的接地故障,一旦发现,会自动切断电路,以保持系统的安全性。
远方保护远方保护用于保护电力系统里的远离内部故障的设备。
通过检测电力系统的电流和电压等参数,以及远端的设备位置,来避免电能从远端故障处流过来,而不会影响到更加重要的设备。
微机保护微机保护是一种用于保护电力系统的数字式电力保护系统。
它能够通过检测电力系统的各种参数,预测电气故障,并及时切断故障电路。
继电保护的参数设置不同的电力设备、不同的电气工程环境,对继电保护也有不同的要求。
在设置继电保护参数时,需要根据设备本身的特点、工作环境的特点、工作要求等,综合考虑。
参数选择在选择继电保护参数时,需要根据实际情况,采用适当的参数。
例如,当选择过电流保护的参数时,需要考虑设备的额定电流、故障电流等参数,以最大限度地保护设备。
参数调整在设置继电保护参数时,需要进行适当的调整。
例如,在设置过电流保护参数时,需要适当调整电流互感器数量和容量,以保证保护灵敏度和可靠性。
继电保护的优化和升级随着电力系统的发展和设备的更新换代,继电保护的优化和升级也成为了不可避免的趋势。
在优化和升级继电保护时,需要根据电力系统的实际情况和需要,采用合适的技术和方法。
线路继电保护知识点总结
线路继电保护知识点总结引言线路继电保护是电力系统中非常重要的一个方面,它起着对电力系统进行监测、控制和保护的作用。
在电力系统中,线路继电保护必须快速、准确地检测故障并且保护设备不受损坏。
本文将对线路继电保护的主要知识点进行总结,包括继电保护的作用、分类、原理、主要设备、故障检测和故障处理等方面。
一、线路继电保护的作用线路继电保护的主要作用是在故障发生时,迅速地将故障部位与周围正常部分分离,从而实现系统的快速隔离,保证系统的安全、可靠运行。
线路继电保护的作用包括故障检测、故障定位、故障隔离和设备保护。
1. 故障检测继电保护设备能够快速、准确地检测出故障信号,并在故障发生后尽快地切除故障部分,保护电力系统中的设备不受到额外的损害。
2. 故障定位继电保护设备能够根据故障信号的特点,准确定位故障的位置,帮助运维人员尽快地找到故障并进行修复。
3. 故障隔离继电保护设备具有隔离故障电路的功能,当发生故障时可以迅速地隔离故障部分,保护系统中的正常设备。
4. 设备保护继电保护设备能够对系统中的设备进行保护,如保护变压器、断路器、线路等设备,避免其在故障时受到损坏。
二、线路继电保护的分类线路继电保护根据其功能和工作原理可分为多种类型,主要包括差动保护、过流保护、过压保护、距离保护等。
下面将对这些线路继电保护的分类进行详细介绍。
1. 差动保护差动保护是一种利用电流变化进行故障检测和定位的保护方式。
它通过比较电流输入和输出的差值,来识别故障信号,并对故障进行保护。
差动保护主要用于对重要设备如变压器和发电机进行保护。
2. 过流保护过流保护是一种根据电流值超出设定范围来进行故障检测和保护的继电保护方式。
当电流超过设定值时,过流保护设备将动作,切除故障电路,保护系统不受损害。
3. 过压保护过压保护是一种根据电压值超出设定范围来进行故障检测和保护的继电保护方式。
当电压超过设定值时,过压保护设备将动作,切除故障电路,保护系统不受损害。
继电保护知识要点总结
第一章绪论一、基本概念1、正常状态、不正常状态、故障状态要求:了解有哪三种状态,各种状态的特征正常状态:等式和不等式约束条件均满足;不正常运行状态:所有的等式约束条件均满足,部分的不等式约束条件不满足但又不是故障的工作状态故障状态:电力系统的所有一次设备在运行过程中由于外力、绝缘老化、过电压、误操作、设计制造缺陷等原因会发生如短路、断线等故障。
2、故障的危害要求:(了解,故障分析中学过)①过短路点的很大短路电流和所燃起的电弧,使故障元件损坏。
②短路电流通过非故障元件,由于发热和电动力作用,会使其的损坏或缩短其使用寿命。
③电力系统中部分地区的电压大大降低,使大量的电力用户的正常工作遭到破坏或产生废品。
④破坏电力系统中各发电厂之间并列运行的稳定性,引起系统振荡,甚至使系统瓦解。
3、继电保护定义及作用(或任务)要求:知道定义,明确作用。
定义:继电保护是继电保护技术与继电保护装置的总称基本任务:①自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证无故障部分迅速恢复正常运行。
②反应电气元件的不正常运行状态,并根据运行维护条件,而动作于发出信号或跳闸。
4、继电保护装置的构成及各部分的作用要求:构成三部分,哪三部分测量比较元件、逻辑判断元件、执行输出元件。
5、对继电保护的基本要求,“四性”的含义要求:知道有哪四性,各性的含义选择性:指电力系统发生故障时,保护装置仅将故障元件切除,而使非故障元件仍能正常运行,以尽量缩小停电范围。
速动性:是指尽可能快地切除故障。
灵敏性:在规定的保护范围内,对故障情况的反应能力。
可靠性:在保护装置规定的保护范围内发生了应该动作的故障时,应可靠动作,即不发生拒动;而在任何其他不该动作的情况下,应可靠不动作,即不发生误动作。
6、主保护、后备保护、近后备、远后备保护的概念要求:什么是主保护、后备保护、近后备、远后备保护主保护:指能以较短时限切除被保护线路(或元件)全长上的故障的保护装置。
继电保护知识重点
继电保护知识重点第一章绪论1. 继电保护装置是什么?其基本任务是什么?答:能反应电力系统中电气元件发生故障或者不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。
基本任务是:自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行。
反应电气元件的不正常运行状态,而动作于发出信号、减负荷或跳闸。
2. 继电保护装置的组成?答:继电保护装置中的基本组成元件——继电器(一种当输入量(电、磁、声、光、热)达到一定值时,输出量将发生跳跃式变化的自动控制器件。
) 传统继电保护装置的组成测量部分:测量被保护设备相应的电气量,并与整定值比较,从而判断是否启动保护。
逻辑部分:根据各测量部分输出量的大小、性质等判断被保护设备的工作状态。
执行部分:完成保护所承担的任务,如跳闸、发告警信号等。
3. 试述对继电保护的四个基本要求的内容: 答:选择性:※ 保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。
※ 主保护:正常情况下,有选择性切除故障· 但存在主保护不能够隔离故障元件的可能性,如断路器拒动 ※ 后备保护:主保护不能切除故障时起作用· 远后备:在远处(变电站)实现,性能比较完善,但其动作将扩大停电范围。
· 近后备:在主保护安装处实现,要同时装设必要的断路器失灵保护。
速动性:※ 力求保护装置能够迅速动作切除故障 ● 提高电力系统并列运行的稳定性 · 暂态稳定等面积定则极限切除时间 · 高压/超高压输电线路保护 ● 减轻对设备、用户的损害※ 对继电保护的速动性,不同情况有不同的要求(工程实际的考虑) ● 切除故障时间:保护装置动作时间+断路器动作时间。
·快速保护动作时间:0.01~0.04s · 断路器动作时间:0.02~0.06s 灵敏性:对于其保护范围内发生故障或不正常运行状态的反应能力。
继电保护基本理论知识
一、继电保护基础知识
1.3.7按保护的作用分类
可分为主保护、后备保护和辅助保护。 • 主保护满足系统稳定和设备安全要求,能以最快速度有选 择地切除所保护范围内的故障。
• 后备保护指主保护或断路器拒动时用来切除所保护范围内 故障的保护装置,可分为远后备保护和近后备保护。远后 备保护由相邻电力设备或线路的保护来实现。近后备保护 由本电力设备或线路的另一套保护来实现(当主保护拒动 时),或者由断路器失灵保护来实现(当断路器拒动时, 只动作于母联断路器和母线分段断路器)。 • 辅助保护是为补充主保护和后备保护的性能或当主保护和 后备保护退出运行时所增设的简单保护。
电动型
静态型
3 1970s后期以来
机电型
2 1940s~1990s
2
数字化、智能化
1 1890s~1960s 1 无触点化、小型化 低功耗
一、继电保护基础知识
1.5继电保护名词解析
• 系统最小运行方式:系统在该方式下运行时,具有最大的 短路阻抗,发生短路后产生的短路电流最小的一种运行方 式。 • 系统最大运行方式:系统在该方式下运行时,具有最小的 短路阻抗值,发生短路后产生的短路电流最大的一种运行 方式。 • 小电流接地系统:中性点不接地或不直接接地系统。 • 大电流接地系统:中性点直接接地系统。
一、继电保护基础知识
1.3继电保护分类 1.3.1按反应的电网运行状态分类
• 反应故障(包括短路和断线)状态,保护动作于相应断路 器跳闸; • 反应不正常运行状态(如过负荷等),保护动作于告警信 号。
1.3.2按保护对象分类 :变压器保护、线路保护、发电机
保护、母线保护等。
1.3.3按判据特征物理量分类: 电流保护、距离保护、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章、绪论电力系统的概念:由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。
完成发电-输电-配电功能的设备叫做一次设备,如发电机,断路器,电流电压互感器,变压器,避雷器等;对一次设备进行控制,保护作用的设备叫做二次设备,如继电器,控制开关,指示灯,测量仪表等。
继电保护的基本原理1、利用每个电气元件在内部故障和外部故障(包括正常运行情况)时,两侧电流相位或功率方向的差别,就可以构成各种差动原理的保护,如纵联差动保护、相差高频保护、方向高频保护等。
2、差动原理的保护只能在被保护元件的内部故障时动作,而不反应外部故障。
所以被认为有绝对的选择性。
1、电力系统运行状态概念及对应三种状态:正常(电力系统以足够的电功率满足符合对电能的需求等)不正常(正常工作遭到破坏但还未形成故障,可继续运行一段时间的情况)故障 ( 电力系统的所有一次设备在运行过程中由于外力、绝缘老化、误操作、设计制造缺陷等原因会发生如短路,断线等故障 )2、电力系统运行控制目的:通过自动和人工的控制,使电力系统尽快摆脱不正常运行状态和故障状态,能够长时间的在正常状态下运行。
3、电力系统继电保护:泛指继电保护技术和由各种继电保护装置组成的继电保护系统。
4、事故:指系统或其中一部分的正常工作遭到破坏,并造成对用户停电或少送电或电能质量变坏到不能允许的地步,甚至造成人身伤亡和电气设备损坏的事件。
5、故障:电力系统的所有一次设备在运行过程中由于外力、绝缘老化、误操作、设计制造缺陷等原因会发生如短路,断线等。
6、继电保护装置:指能反应电力系统中电气设备发生故障或不正常运行状态,并动作与断路器跳闸或发出信号的一种自动装置。
7、保护基本任务:自动、迅速、有选择性的将故障元件从电力系统中切除,使元件免于继续遭到损坏,保障其它非故障部分迅速恢复正常运行;反应电气设备的不正常运行状态,并根据运行维护条件,而动作于发出信号或跳闸。
8、保护装置构成及作用:测量比较元件(用于测量通过被保护电力元件的物理参量,并与其给定的值进行比较根据比较结果,给出“是”“非”“0”“1”性质的一组逻辑信号,从而判断保护装置是否应启动)、逻辑判断元件(根据测量比较元件输出逻辑信号的性质、先后顺序、持续时间等,使保护装置按一定的逻辑关系判定故障的类型和范围,最后确定是否该使断路器跳闸、发出信号或不动作,并将对应的指令传给执行输出部分)、执行输出元件(根据逻辑判断部分传来的指令,发出跳开断路器的跳闸脉冲及相应的动作信息、发出警报或不动作)9、对电力系统继电保护基本要求:可靠性(包括安全性和信赖性;最根本要求;不拒动,不误动);选择性;速动性;灵敏性10、保护区件重叠:为了保证任意处的故障都置于保护区内。
区域越小越好,因为在重叠区内发生短路时,会造成两个保护区内所有的断路器跳闸,扩大停电范围。
11、故障切除时间等于保护装置( 0.06-0.12s ,最快 0.01-0.04s )和断路器动作时间(0.06-0.15 ,最快 0.02-0.6 )之和。
12、① 110kv 及以下电网,主要实现“远后备” - 一般下级电力元件的后备保护安装在上级(近电源侧)元件的断路器处;② 220kv 及以上电网,主要实现“近后备” - ,“加强主保护,简化后备保护”第二章、电网的电流保护1、继电器特性:工作可靠,动作过程具有“继电特性”要求继电器动作值误差小、功率损耗小、动作迅速、动热稳定性好以及抗干扰能力强。
安装整定方便,运行维护少,便宜。
(按原理分:电磁型、感应、整流、电子、数字;按反应物理量:电流继电器、电压、功率方向、阻抗、频率和气体;按其作用:启动继电器、量度、时间、中间、信号、出口)继电特性:继电器的继电特性是指继电器的输入量和输出量在整个变化过程中的相互关系。
无论是动作还是返回,继电器都是从起始位置到最终位置,它不可能停留在某一个中间位置上。
这种特性就称之为继电器的“继电特性”。
返回系数:对于继电保护定值整定的保护,例如按最大负荷电流整定的过电流保护和最低运行电压整定的低电压保护,在受到故障量的作用时,继电器动作,当故障量消失或回复至动作量以内后保护返回到正常位置。
返回量与动作量比值即返回系数。
Ke=Ire(动作电流)/Iop (返回电流)可靠系数:通俗一点讲就是为了你整定的保护定值能可靠的躲过你计算出来的短路电流,而选取的一个系数,一般会在1.1-1.3之间,选取主要靠经验,需要你权衡是尽量不让保护误动还是不让它拒动,返回系数是确保保护选择性的重要指标.让不该动作的继电器及时返回,使正常运行的部分系统不被切除.2、系统最大运行方式:在相同地点发生相同类型的短路时流过保护安装处的电流最大,对继电保护而言称为系统最大运行方式;3、系统最小运行方式:在相同地点发生相同类型的短路时流过保护安装处的电流最小,对继电保护而言称为系统最小运行方式。
3、电流速断保护优缺点:简单可靠,动作迅速;不能保护路线的全长,保护范围直接受方式变化的影响。
4、三段式电流保护特点:简单可靠,一般情况下也能够满足快速切除故障的要求;它直接受电网的接线以及电力系统的运行方式变化的影响,使它往往不能满足灵敏系数或变化范围要求。
5、对功率方向继电器概念、要求:A.用以判别功率方向或测定电流、电压间相位角的元件;B,应具有动作可靠性,即在正方向发生各种故障时能可靠动作,而在反方向故障时可靠不动作;正方向故障时有足够的灵敏度。
6、采用 90°接线特点:对各种两相短路都没有死区,因为继电器加入的是非故障的相间电压,其值很高;选择继电器的内角α=90°- φk 后,对线路上发生的各种故障,都能保证动作的方向性。
7、零序分量中电压,电流,功率特点:(1)只要本级电压网络中发生单相接地故障,则在同一电压等级的所有发电厂和变电所的母线上,都将出现数值较高的零序电压。
(2)故障线路零序电流较非故障线路大。
(3)利用故障线路与非故障线路零序功率方向不同的特点来实现有选择性的保护,动作于信号或跳闸。
8、理清零序电流保护的评价:(1)优点:保护简单,经济,可靠;整定值一般较低,灵敏度较高;受系统运行方式变化的影响较小;系统发生震荡、短时过负荷是不受影响;方向零序保护没有电压死区,零序保护就为绝大部分故障情况提供了保护,具有显著的优越性。
( 2)缺点:对于短路线路或运行方式变化较大的情况,保护往往不能满足系统运行方式变化的要求。
随着相重合闸的广泛应用,在单项跳开期间系统中可能有较大的零序电流,保护会受较大影响。
自耦变压器的使用使保护整定配合复杂化。
9、电网中区分消弧线圈三种补偿:完全补偿就是使 IL=Ic ∑,接地点的电流近似为零;欠补偿就是使IL<Ic ∑, 补偿后的接地点电流仍然是电容性的;过补偿 IL>Ic ∑,补偿后的电流是感性的( P=5-10%)。
10、为什么定时限过电流保护的灵敏度、动作时间需要同时逐级配合,而电流速断的灵敏度不需要逐级配合?定时限过电流保护的整定值按照大于本线路流过的最大负荷电流整定,不但保护本线路的全长,而且保护相邻线路的全长,可以起远后备保护的作用。
当远处短路时,应当保证离故障点最近的过电流保护最先动作,这就要求保护必须在灵敏度和动作时间上逐级配合,最末端的过电流保护灵敏度最高、动作时间最短,每向上一级,动作时间增加一个时间级差,动作电流也要逐级增加。
否则,就有可能出现越级跳闸、非选择性动作现象的发生。
由于电流速断只保护本线路的一部分,下一级线路故障时它根本不会动作,因而灵敏度不需要逐级配合。
第三章、电网距离保护31、距离保护:利用短路发生时电压、电流同时变化的特征,测量电压与电流的比值,该比值反应故障到保护安装处的距离(或阻抗),如果短路点距离(或阻抗)小于整定值则动作的保护。
2、距离保护是反应故障点至保护安装地点之间的距离(或阻抗)。
并根据距离的远近而确定动作时间的一种保护装置。
距离保护主要用于输电线的保护,一般是三段或四段式。
第一、二段带方向性,作为本线段的主保护,其中第一段保护线路的80%~90%。
第二段保护余下的10%~20%并作相邻母线的后备保护。
第三段带方向或不带方向,有的还没有不带方向的第四段,作本线及相邻线段的后备保护。
距离保护构成:由启动、测量、振荡闭锁、电压回路断线闭锁、配合逻辑和出口等几部分组成;作用如下:1 用来判别系统是否发生故障。
系统正常运行时,该部分不动作;而当发生故障时,该部分能够动作。
通常情况下,只有启动部分动作后,才将后续的测量、逻辑等部分投入工作。
2在系统故障的情况下,快速、准确地测定出故障方向和距离,并与预先设定的保护范围相比较,区内故障时给出动作信号,区外故障时不动作。
3 在电力系统发生振荡时,距离保护的测量元件有可能误动作,振荡闭锁元件的作用就是正确区分振荡和故障。
在系统振荡的情况下,将保护闭锁,即使测量元件动作,也不会出口跳闸;在系统故障的情况下,开放保护,如果测量元件动作且满足其他动作条件,则发出跳闸命令,将故障设备切除。
4 电压回路断线时,将会造成保护测量电压的消失,从而可能使距离保护的测量部分出现误判断。
这种情况下应该将保护闭锁,以防止出现不必要的误动。
5 用来实现距离保护各个部分之间的逻辑配合以及三段式保护中各段之间的时限配合。
6 包括跳闸出口和信号出口,在保护动作时接通跳闸回路并发出相应的信号。
3、影响距离保护正常工作因素:短路点过渡电阻对距离保护的影响;电力系统振荡对距离保护的影响;电压互感器二次回路断线对距离保护的影响;分支电路对距离保护的影响;线路串联补偿电容对距离保护的影响;短路电压、电流中的非工频分量对距离保护的影响。
4、电力系统振荡:并联运行的电力系统或发电厂之间出现功率角大范围周期性变化的现象。
第四章、输电线路纵联保护1、输电线路纵联保护:利用某种通信通道将输电线路两端的保护装置纵向连接起来,将各段的电气量传送到对端,将各段的电气量进行比较,以判断故障在本线路范围内部还是在本线路范围外部,从而决定是否切除被保护线路。
2、纵联保护包括:两端保护装置,通信设备,通信通道。
3、纵联保护分类 :按所利用信息通道类型分导引线纵联保护,电力线载波,微波,光纤;按动作原理方向分比较式纵联保护,纵联电流差动保护。
4、导引线通信概念:利用敷设在输电线路两端变电所之间的二次电缆传递被保护线路各侧信息的通信方式叫导引线通信,以导引线为通道的纵联保护称之为导引线纵联保护。
5、电力线载波信号有哪三种信号、通道工作方式:A.闭锁信号,阻止保护动作跳闸的信号,只有满足本端保护元件动作、无闭锁信号,保护才作用于跳闸; B 允许信号,允许保护动作于跳闸的信号,只有满足本端保护元件动作、有允许信号,保护装置在动作于跳闸; C跳闸信号,直接引起跳闸的信号,跳闸的条件是本端保护元件动作或对端传来跳闸信号。