运动模糊图像的复原
运动模糊图像复原算法实现及应用
运动模糊图像复原算法实现及应⽤任务书1、课程设计⽬的:1)提⾼分析问题、解决问题的能⼒,进⼀步巩固数字图像处理系统中的基本原理与⽅法。
2)熟悉掌握⼀门计算机语⾔,可以进⾏数字图像应⽤处理的开发设计。
2、课程设计的题⽬:运动模糊图像复原算法实现及应⽤1)创建⼀个仿真运动模糊PSF来模糊⼀幅图像(图像选择原理)。
2)针对退化设计出复原滤波器,对退化图像进⾏复原(复原的⽅法⾃定)。
3)对退化图像进⾏复原,显⽰复原前后图像,对复原结果进⾏分析,并评价复原算法。
3、课程设计⽅案制定:1)程序运⾏环境是Windows 平台。
2)开发⼯具选⽤matlab、VC++、VB、C#等,建议选⽤matlab作为编程开发⼯具,可以达到事半功倍的效果、并降低编程难度。
3)以组件化的思想构建整个软件系统,具体的功能模块根据选定的不同题⽬做合理的划分。
4、课程设计的⼀般步骤:1)选题与搜集资料:选择课题,进⾏系统调查,搜集资料。
2)分析与设计:根据搜集的资料,进⾏功能分析,并对系统功能与模块划分等设计。
3)程序设计:掌握的语⾔,编写程序,实现所设计的功能。
4)调试与测试:⾃⾏调试程序,同学之间交叉测试程序,并记录测试情况。
5)验收与评分:指导教师对每个成员开发对的程序进⾏综合验收,综合设计报告,根据课程设计成绩的判定⽅法,评出成绩。
5、要求1)理解各种图像处理⽅法确切意义。
2)独⽴进⾏⽅案的制定,系统结构设计合理。
3)程序开发时,则必须清楚主要实现函数的⽬的和作⽤,需要在程序书写时做适当的注释。
⽬录摘要 (2)⼀、概述 (3)1.1选题背景 (3)1.2课程设计⽬的 (4)1.3设计内容 (5)⼆、图像退化与复原 (6)2.1图像退化与复原的定义 (6)2.2图像退化模型 (7)2.3运动模糊图像复原的⽅法 (7)2.3.1逆滤波复原法 (8)2.3.2维纳滤波的原理 (9)三、运动模糊图象复原的matlab实现 (10)3.1维纳滤波复原 (10)3.2约束最⼩⼆乘滤波复原 (10)3.3 运动模糊图像复原实例 (11)四、课程设计总结与体会 (14)参考⽂献 (16)摘要随着计算机技术的发展,计算机的运⾏速度和运算精度得到进⼀步提⾼,其在图像处理领域的应⽤⽇见⼴泛。
运动模糊图像的复原-课程设计报告
目录一、概述 (1)1.1课程设计目的 (1)1.2设计容 (2)二、图像退化与复原 (3)2.1 图像退化的数学模型 (4)2.2匀速直线运动模糊的退化模型 (5)2.3点扩散函数PSF (7)三、运动模糊图象的复原方法及原理 (8)3.1逆滤波复原原理 (8)3.2维纳滤波复原原理 (9)3.3 有约束最小二乘复原原理 (11)四、运动模糊图像复原的实现与比较 (12)4.1 运动模糊图像复原的MATLAB实现 (12)4.2 复原结果比较 (16)实验小结 (17)参考文献 (17)一概述1.1课程设计目的图像复原是在假定模糊或噪声的模型时,试图估计原图像的一种技术,它是图像处理中的重要容。
它的主要目的就是改善图像质量,研究如从所得的变质图像中复原出真实图像,或说是研究如何从获得的信息中反演出有关真实目标的信息。
图像复原的目的是将退化的以及模糊的图像的原有信息进展恢复,以到达清晰化的目的。
图像退化是指图像经过长时间的保存之后,因发生化学反响而使画面的颜色以及比照度发生退化改变的现象,或者是因噪声污染等导致图画退化的现象,或者是因为现场的亮暗围太大,导致暗区或者高光区信息退化的现象。
图像模糊那么常常是因为运动以及摄像时镜头的散焦等原因所导致的。
无论是图像的退化还是图像的模糊,本质上都是原始信息局部丧失,或者原始信息与外来信息的相互混叠所造成的。
因此,需根据退化模糊产生原因的不同,采用不同的图像恢复方法到达图像清晰化目的近年来,在数字图像处理领域,关于运动模糊图像的复原处理成为了国外研究的热点问题之一,也出现了一些行之有效的算法和方法。
但是这些算法和方法在不同的情况下,具有不同的复原效果。
因为这些算法都是其作者在假定的前提条件下提出的,而实际上的模糊图像,并不一定能够满足这些算法前提,或者只满足其局部前提。
作为一个实用的图像复原系统,就得提供多种复原算法,使用户可以根据情况来选择最适当的算法以得到最好的复原效果。
如何处理图像中的运动模糊问题
如何处理图像中的运动模糊问题图像是由很多个小的像素点组成的。
当一个物体在图像中移动时,快门打开的时间会导致物体的模糊效果。
这种现象被称为图像的运动模糊。
运动模糊对于图像的清晰度和质量产生了负面影响,因此我们需要找到方法来处理和减少图像中的运动模糊问题。
如何处理图像中的运动模糊问题呢?下面将介绍几种主要的方法:1. 增加快门速度:通过增加快门速度,可以减少运动模糊。
快门速度越快,图像中运动物体的模糊效果就越小。
但是增加快门速度可能会导致图像过暗,因此需要在光线条件允许的情况下尽量选择更快的快门速度。
2. 使用稳定器设备:稳定器设备可以减少手持拍摄时的抖动,从而减少图像中的运动模糊。
稳定器设备可以是手持稳定器、三脚架或者是图像稳定软件等。
3. 图像复原算法:图像复原算法可以通过分析图像中的模糊信息来恢复清晰的图像。
其中一种常用的算法是逆滤波算法。
逆滤波算法使用图像的模糊核和退化函数来估计原始图像。
然后通过这些估计值进行逆滤波处理,最终得到清晰的图像。
还有一些其他的图像复原算法,如盲复原算法和最小二乘复原算法,可以根据具体情况选择。
4. 多图像融合:多图像融合是通过将多张图像综合在一起来减少运动模糊。
比如,在拍摄过程中,连续拍摄多张照片,并将它们进行融合,可以减少运动物体的模糊效果。
多图像融合可以使用算法来自动对齐和融合图像。
5. 图像后期处理:图像后期处理软件可以通过一些滤镜和工具来修复运动模糊。
例如,通过运动模糊滤镜可以减少模糊效果,或者通过锐化工具可以增加图像的清晰度。
还可以通过图像编辑软件中的其他工具来进一步修复和改善图像的质量。
总结起来,处理图像中的运动模糊问题有多种方法可供选择。
可以通过增加快门速度、使用稳定器设备、应用图像复原算法、多图像融合以及图像后期处理来改善图像的质量。
具体使用哪种方法取决于实际情况和需求。
无论选择哪种方法,都需要在拍摄前或者图像后期处理时进行一定的实验和调整,以达到最佳的效果。
数学建模运动模糊图像的复原
数学建模运动模糊图像的复原在我们的日常生活和各种科学研究、工程应用中,图像是一种非常重要的信息载体。
然而,由于多种原因,我们获取的图像有时会出现模糊的情况,其中运动模糊就是较为常见的一种。
运动模糊图像的复原是图像处理领域中的一个重要课题,它对于提高图像质量、获取更准确的信息具有重要意义。
想象一下,当你用手机拍摄一张快速移动的物体,比如飞驰的汽车,或者在不太稳定的情况下按下快门,得到的照片往往就会出现运动模糊。
这种模糊使得图像中的细节变得模糊不清,给我们的观察和分析带来了很大的困难。
那么,如何才能让这些模糊的图像恢复清晰,重新展现出原本的细节呢?这就需要运用数学建模的方法。
数学建模,简单来说,就是用数学的语言和方法来描述和解决实际问题。
在运动模糊图像的复原中,我们首先需要对运动模糊的形成过程进行数学描述。
运动模糊的产生是因为在曝光时间内,成像物体与相机之间存在相对运动,使得像点在成像平面上形成了一条轨迹,从而导致图像的模糊。
为了建立运动模糊的数学模型,我们需要考虑多个因素。
其中,最重要的是运动的速度和方向。
假设物体在成像平面上沿着水平方向以匀速 v 运动,曝光时间为 T,那么在这段时间内物体移动的距离就是vT。
在成像过程中,像点在水平方向上就会被拉伸,形成一个模糊核。
这个模糊核可以用一个函数来表示,通常称为点扩散函数(Point Spread Function,PSF)。
有了点扩散函数,我们就可以建立运动模糊图像的数学模型。
假设原始清晰图像为 f(x,y),经过运动模糊后的图像为 g(x,y),那么它们之间的关系可以表示为卷积运算:g(x,y) = f(x,y) h(x,y) + n(x,y) ,其中h(x,y) 就是点扩散函数,n(x,y) 表示噪声。
接下来,就是要根据这个数学模型来复原图像。
图像复原的方法有很多种,常见的有逆滤波、维纳滤波和 LucyRichardson 算法等。
逆滤波是一种简单直观的方法。
快速修复照片中的运动模糊问题
快速修复照片中的运动模糊问题PhotoShop是一款功能强大的图像处理软件,广泛应用于设计、摄影等领域。
在拍摄照片时,由于摄影者的手抖或者拍摄对象的运动等原因,有时候照片中会出现运动模糊的问题。
而运动模糊的照片给人的感觉常常是模糊不清,视觉效果差,无法展现出照片的真实美感。
这款软件提供了一些简单而有效的工具来修复照片中的运动模糊问题。
首先,打开需要修复的照片,并选择“滤镜”菜单中的“其他...”选项。
在弹出的菜单中,选择“运动模糊”选项。
然后,调整运动模糊滤镜的参数来使得照片能够更好地还原清晰度。
可以调整的参数有方向、距离和角度。
方向参数用于指定运动的方向,可以通过拖动滑块来选择合适的方向,或者在输入框中手动输入数值。
根据拍摄时的情况,选择正确的方向非常重要。
比如,如果是由于水平方向的移动导致的模糊,那么就需要选择水平方向的运动模糊滤镜。
距离参数用于调整模糊效果的程度,也就是运动的幅度。
根据照片中的模糊程度,可以适当调整该参数的数值。
通常情况下,较小的数值表示模糊程度较低,而较大的数值表示模糊程度较高。
可以通过拖动滑块或手动输入数值来调整距离参数。
角度参数用于指定运动的方向角度,同样可以通过拖动滑块或手动输入数值来调整角度。
根据拍摄时的情况,选择合适的角度非常重要。
调整完以上参数后,点击确定按钮,PhotoShop会根据设定的参数来对照片进行处理。
处理完后的照片会恢复清晰度,运动模糊的问题将得到修复。
然而,仅仅使用运动模糊滤镜是无法完全修复运动模糊问题的。
有时候,由于摄影者的手抖或者运动对象的速度过快,照片中的模糊程度较高,此时就需要使用其他工具和技巧来进一步提升照片的清晰度和质量。
一种常用的技巧是图层叠加。
在PhotoShop中,可以复制原始照片的图层,并进行微调,然后将两个图层叠加在一起。
通过调整叠加图层的透明度和模式,可以达到模糊修复的效果。
另一种常用的技巧是局部清晰化。
可以使用“钢笔工具”或“套索工具”在模糊的区域绘制选区,然后使用“图像”菜单中的“调整”选项来进行局部清晰化。
(完整word版)运动模糊图像复原开题报告
数字图像处理大作业 - 运动模糊图像复原开题报告小组成员:张博文、范桂峰、笪腾飞一、研究意义相机对物体成像时 ,由于平台的颤振,在曝光时间内成像器件与物体之间往往存在着相对运动 ,在像面上产生像移 ,因此拍出来的图像是被运动模糊后的图像。
这种图像质量较差 ,对比度和分辨率均降低 ,需要进行恢复。
二、研究现状如果这种相对运动属于平动,则可以把模糊过程看作一个线性位移不变的系统。
因此 ,如果知道了系统的冲激响应 ,在这里是点扩展函数 ( PSF) ,就可以用来恢复图像。
但是 ,模糊过程的点扩展函数往往是不知道的,因此图像恢复的关键就变成了如何推导点扩展函数。
如 Marius Tico 从图像序列入手 ,通过一帧快速曝光未被运动模糊,但却因曝光不足而信噪比很低的图像,以及一帧曝光充足但被运动模糊了的图像来计算点扩展函数,然后恢复。
但更多的研究还是集中在如何从单帧被模糊了的图像中找出点扩展函数,主要有2类 ,一类从空域直接入手,利用差分、相关等等各种方法计算,另一种则是通过图像变换后的频谱域中的零值点来计算,这些方法往往只能计算特殊运动形式的点扩展函数 ,主要是匀速直线运动,而且受噪声影响精度比较低。
相机的振动通常比较复杂 ,这些方法的适用性受到限制,因此 ,需要找到一种能够不受运动形式和运动方向限制的计算模糊过程点扩展函数的方法。
一种方法是利用了利用经阈值化处理的Radon 变换估计模糊方法,通过微分自相关法估计模糊长度,最后应用带最优窗的维纳滤波进行图像复原,该算法能够较为精确地估算出运动模糊图像的模糊参数并取得了较好的恢复效果,提升了图像恢复的抗噪性能,具有实际参考价值。
这是属于第一种空域处理方法。
另一种方法是运动模糊图像经傅立叶变换后在频域有频谱零点进行参数估计,通过霍夫变换初步求得运动模糊图像的点扩展函数,当估计出运动模糊图像的点扩展函数的参数后,用神经网络方法进行恢复。
这种恢复模型可以对任意角度的匀速运动模糊图像的恢复取得恢复效果。
二维运动模糊图像的处理
二维运动模糊图像的处理运动模糊是一种常见的图片模糊效果,它是由于拍摄时物体或相机发生了运动而导致的。
这种模糊在一些拍摄场景下是必要的,比如拍摄运动中的人物或者车辆,可以营造出动感和速度感。
在其他场景下,运动模糊可能会影响照片的清晰度和细节。
第一种方法是使用图像处理软件进行模糊恢复。
这种方法主要是通过调整图像的模糊参数,来模拟物体或相机的运动轨迹,从而恢复清晰的图像。
这种方法需要使用专业的图像处理软件,如Photoshop等,通过调整滤镜的参数和强度来达到理想的效果。
第二种方法是使用图像复原算法进行模糊恢复。
这种方法是通过数学模型和算法来恢复模糊图像。
常见的算法有盲解卷积算法和非盲解卷积算法。
这些算法利用图像的统计特性和运动模糊的数学模型进行图像复原操作。
这种方法需要对算法有一定的了解和掌握,并且需要编程实现。
第三种方法是使用深度学习进行模糊恢复。
深度学习是一种机器学习的方法,可以通过训练大量的数据和神经网络模型来实现图像的复原和增强。
对于模糊图像的处理,可以使用深度学习模型来进行训练和预测。
通过输入模糊图像和对应的清晰图像来训练模型,然后使用训练好的模型对新的模糊图像进行预测和复原。
这种方法需要有大量的训练数据和计算能力,同时也需要具备一定的深度学习知识和编程技巧。
除了以上几种方法之外,还可以通过拍摄技巧来减少运动模糊。
比如使用快门优先模式,提高快门速度,增加光圈和ISO感光度等。
通过调整这些参数,可以减少物体或相机的运动,从而减少图像的运动模糊效果。
处理二维运动模糊图像可以采用图像处理软件调整模糊参数、使用图像复原算法进行模糊恢复或者使用深度学习进行模糊恢复。
也可以通过调整拍摄参数减少运动模糊的影响。
不同的方法适用于不同的场景和需求,需要根据具体情况选择合适的处理方式。
运动模糊图像PSF参数估计与图像复原研究
㊀doi:10.3772/j.issn.1002 ̄0470.2019.04.004运动模糊图像PSF参数估计与图像复原研究①廖秋香②㊀卢在盛㊀彭金虎(梧州学院广西高校图像处理与智能信息系统实验室㊀梧州543002)摘㊀要㊀运动模糊图像复原对于改善图像质量有重要的理论意义和现实意义ꎮ在研究运动模糊图像复原中ꎬ对点扩散函数(PSF)的估计是关键点也是难点ꎮ本文利用Radon变换原理来求解点扩散函数PSF中的运动模糊方向ꎬ并提出了消除十字亮线引起的干扰的新方法ꎮ利用运动模糊图像频谱上的中心暗条纹间距来计算运动模糊尺度ꎮ基于估计的PSF参数采用维纳滤波算法来恢复运动模糊图像ꎮ实验结果表明ꎬ运动模糊参数估计精确ꎬ运动模糊方向控制在1ʎ以下ꎬ运动模糊尺度控制在1个像素以内ꎮ同时采用维纳滤波算法来恢复运动模糊图像ꎬ效果优异ꎬ可获得细节清晰的图像ꎮ关键词㊀点扩散函数(PSF)ꎬ模糊方向ꎬ模糊尺度ꎬRadon变换ꎬ维纳滤波0㊀引言采集图像时ꎬ如果采集设备和目标在曝光瞬间产生相对运动将导致图像降质ꎬ从而造成的图像模糊称为运动模糊[1]ꎮ在不同的图像应用领域ꎬ比如天文㊁军事㊁医学㊁工业控制㊁道路监控以及刑侦等方面ꎬ清晰的图像是采集图像信息进行各种分析的重要前提ꎮ因此ꎬ运动模糊图像的复原研究成为很多学者研究的一个热点课题ꎮ在研究运动模糊图像复原中ꎬ对点扩散函数(pointspreadfunctionꎬPSF)的估计是关键点也是难点[2]ꎮ国内很多学者在点扩散函数(PSF)的精确估计方面做了很多的研究ꎮ文献[3]利用Radon变换和Sobel算子对模糊图像进行一阶微分计算ꎬ所求模糊方向绝对误差控制在2ʎꎬ但该算法对于低信噪比图像的估计不理想ꎮ文献[4]提出了在改进的倒频域中使用位平面分解提取算法结合Radon变换ꎬ提取出了含模糊方向信息的清晰中央细线条纹ꎮ但是该算法在估计小尺度模糊中出现了一些波动ꎬ其效果不是很稳定ꎮ文献[5]利用全局均值标准差法对频谱图进行阈值分割来估计模糊尺度ꎬ但在阈值的选取上比较复杂ꎮ本文从频谱分析角度出发ꎬ利用Radon变换原理来求解点扩散函数中的运动模糊方向ꎬ并消除了频谱图中的十字亮线出现导致的干扰ꎮ同时利用图像频谱上的中心暗条纹间距来求解运动模糊尺度ꎮ基于估计的PSF参数构建点扩散函数ꎬ利用维纳滤波算法来对运动模糊图像复原ꎮ实验结果表明ꎬ该算法简单可行ꎬ运动模糊参数估计精确ꎬ运动模糊方向误差控制在1ʎ以下ꎬ运动模糊尺度误差控制在1个像素以内ꎮ同时采用维纳滤波算法来恢复运动模糊图像ꎬ效果良好ꎬ可获得细节清晰的图像ꎮ1㊀运动模糊图像的退化模型图像复原处理的关键在于退化模型的确定ꎮ图1中ꎬ用退化函数h(xꎬy)把退化过程模型化ꎬ它和加性噪声n(xꎬy)一起ꎬ作用于输入图像f(xꎬy)上ꎬ产生一幅退化的图像g(xꎬy):833 ㊀高技术通讯2019年第29卷第4期:338~343㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀①②国家自然科学基金(61562074)ꎬ2018年广西高校中青年教师基础能力提升(2018KY0542)ꎬ梧州学院重点科研(2017B006)和梧州学院中青年骨干教师培养工程资助项目ꎮ女ꎬ1981年生ꎬ硕士ꎬ副教授ꎻ研究方向:图像处理ꎬ电路系统ꎻ联系人ꎬE ̄mail:liaoqiu123456@163.com(收稿日期:2018 ̄04 ̄19)图1㊀图像退化的模型图中h(xꎬy)涵盖了整个退化的物理过程ꎬ这正是寻找的退化数学模型函数ꎬ即需要估计的点扩散函数PSFꎮ如果空间域H是线性的㊁空间不变的ꎬ则在空间域中退化图像可由式(1)给出:g(xꎬy)=h(xꎬy)∗f(xꎬy)+n(xꎬy)(1)其中符号∗表示卷积ꎬ空间域的卷积和频域的乘法组成了一个傅立叶变换对ꎬ式(1)在频域上可以表示成式(2)ꎮG(uꎬv)=H(uꎬv)F(uꎬv)+N(uꎬv)(2)其他运动产生的模糊在一定条件下都可以转换为分段匀速直线运动模糊ꎬ其点扩散函数可表示为式(3)ꎮh(xꎬy)=1L㊀0ɤxɤLcosθꎬ0ɤyɤxtanθ0㊀其他{(3)上式中ꎬθ指运动方向与水平方向之间的夹角ꎬ称为运动模糊方向ꎮL指在运动方向上像素移动的距离ꎬ称为运动模糊尺度ꎮ以下讨论的运动模糊仅由水平匀速直接运动导致ꎬ假如图像沿水平正方向移动ꎬ则h(xꎬy)变为h(xꎬy)=1L㊀㊀0ɤxɤLꎬy=0(4)对式(4)中的点扩散函数做傅立叶变换:H(uꎬv)=ʏ+ɕ-ɕʏ+ɕ-ɕh(xꎬy)e-j2π(ux+vy)dxdy=ʏL01Le-j2πuxdx=sin(πuL)πuLe-jπuL(5)所以H(uꎬv)是一个sinc函数ꎬ当uL=0ꎬH(uꎬv)取最大值ꎬ当uL为非0整数时ꎬH(uꎬv)=0ꎬ同时使得G(uꎬv)=0(在不考虑噪声的情况下)ꎬ也就是说在运动模糊图像的频谱图中将会出现明暗相间并平行的条纹ꎮ经过若干图像进行实验ꎬ结果表明运动模糊图像频谱图中的亮条纹和模糊方向之间是垂直的关系ꎬ见图3ꎮ在文献[6 ̄8]中也提到了该结论ꎮ图2给出了实验中的一幅原图和运动模糊图像(设定的模糊方向为30ʎꎬ模糊尺度为20像素)ꎮ图2㊀清晰图像和运动模糊图像图3为将运动模糊图像直接进行傅立叶变换后的频谱图与对其进行压缩居中后的频谱图对比ꎮ图3㊀运动模糊图像的频谱图对比依据傅立叶变换的时域特性ꎬ亮条纹与运动模糊方向是垂直关系ꎬ所以要检测PSF中的运动模糊方向这个参数ꎬ只需要检测出其频谱图中亮条纹方向即可ꎮ2㊀运动模糊参数的估计为测出频谱图中亮线的方向ꎬ早期的文献中大多采用Hough变化来检测亮线的方向ꎬ如文献[9ꎬ10]ꎮ由于Hough变换的应用以二值图像为基础ꎬ实际处理中难以对一幅图像进行恰当的二值分割ꎬ因此在大部分情况下ꎬ与Hough变换相比ꎬRadon变换更加精细和准确ꎮ本文正是基于Radon变换原理来检测频谱图中亮线的方向ꎮ933廖秋香等:运动模糊图像PSF参数估计与图像复原研究2.1㊀运动模糊方向的估计Radon变换的本质是将直角坐标系的函数做了一个空间转换ꎬ即将原来的XY平面内的点映射到极坐标(ρꎬθ)空间ꎬ那么原来在XY平面上的一条直线的所有的点在极坐标(ρꎬθ)平面上都位于同一点ꎮ记录极坐标(ρꎬθ)平面上的点的积累厚度ꎬ便可知XY平面上的线的存在性ꎮRadon变换就是图像中的像素点在某个方向上的一个积分ꎬ所以ꎬ图像中高灰度值的直线投影到(ρꎬθ)空间将会形成亮点ꎬ而低灰度值的直线投影到(ρꎬθ)空间将会形成暗点ꎮ因此对XY平面内直线的方向检测就转变为在极坐标(ρꎬθ)空间中对亮点㊁暗点的检测ꎮRadon变换定义示意图如图(4)所示ꎮ图4㊀Radon变化定义示意图在实验过程中ꎬ对运动模糊图像进行灰度化ꎬ并进行二维快速傅立叶变换ꎬ生成其频谱图ꎮ将频谱压缩居中后可以发现ꎬ以原点为中心出现的对称平行线条是沿着同一个方向ꎬ这个方向就是与运动模糊图像的模糊方向相垂直的方向ꎮ然后对频谱图进行1~180ʎ的Radon变换ꎬ结果得到的是一个180列的矩阵Rꎬ矩阵R中各列的取值正是模糊图像频谱图在某个方向上沿一族直线积分所得的投影值ꎮ当Radon变换是在运动模糊方向上时ꎬ因为频谱中的亮㊁暗条纹与积分直线平行ꎬ所得的投影向量中就会有一个最大值ꎬ且此最大值就是整个矩阵中的最大值ꎮ通过找到R矩阵中的最大值所在的列ꎬ便可得到运动方向ꎮ实验结果如表1所示ꎮ实验过程中进一步增大模糊尺度到52㊁55㊁58㊁60㊁70㊁100㊁150㊁200㊁500ꎬ模糊尺度增大ꎬ可以扩表1㊀不同模糊尺度下的实验结果模糊尺度/设定运动方向值(ʎ)测量运动方向值(ʎ)误差50/2590出错50/2626060/3030060/3535070/4041170/45450200/50500200/55550500/60600500/64640500/6590出错大测量范围到25~66ʎꎬ影响不是很大ꎮ分析表1的实验结果ꎬ当运动方向为26~64ʎ范围时ꎬ基本能准确测出运动模糊图像的运动方向ꎬ误差最大为1ʎꎬ非常准确ꎮ但如果运动方向不在26~64ʎ范围内ꎬ结果将会出错ꎬ出现90ʎ或者180ʎꎮ分析原因是频谱图中出现了十字亮线ꎬ对结果形成了干扰ꎮ由于十字亮线的存在直接影响到实验的结果ꎬ必须要对其进行处理ꎮ文献[8]中采用分块取阈值的方法来避开十字亮线的干扰ꎬ但阈值的选取没有固定的算法ꎮ文献[11]中采取的是对二值频谱图进行自适应形态学滤波ꎬ算法复杂ꎮ文献[12]采取滑动邻操作的办法ꎬ对频谱图中每个像素3ˑ3邻域范围内的像素灰度取平均值ꎬ以此作为该像素二值化处理的依据从而去除十字亮线的干扰ꎮ但这种方法只适用于二值化后的频谱图ꎬ且容易删除频谱ꎬ影响检测精度ꎮ文献[13]中通过图像大小确定十字亮线的位置ꎬ再根据亮线宽度判断该亮线是否是由于图像中的条纹引起的十字亮线ꎬ若是ꎬ就重新对该像素值赋其邻域的灰度值ꎬ从而除去十字亮线ꎮ本文的算法正是基于文献[13]的一个改进ꎮ十字亮线导致计算结果出现90ʎ或者是180ʎꎬ可以在程序中设置一个判断ꎬ当结果出现90ʎ或者是180ʎ时ꎬ就对其赋零值ꎬ赋完后继续对新的R矩阵找最大值ꎬ这样就可以很容易地避开了十字亮线对结果的干扰ꎮ实验结果如表2所示ꎮ043 高技术通讯㊀2019年4月第29卷第4期表2㊀改进算法后不同模糊尺度下的实验结果模糊尺度/设定运动方向值(ʎ)测量运动方向值(ʎ)误差50/2525050/2626060/3030060/3535070/4041170/45450200/50500200/55550500/60600500/6464050/6565060/7575070/80800200/1001000500/1301300500/1501500该算法与文献[13]中所提到的算法相比ꎬ不用判断亮线是否由图像中的条纹引起ꎬ速度更快ꎮ赋零值可以直接避开该十字亮线的干扰ꎮ从表2实验结果可以看出ꎬ算法改进后有效地避免了十字亮线的干扰ꎬ同时对于原来的实验精度没有影响ꎬ误差控制在1ʎ以下ꎮ该算法原理简单㊁有效㊁容易实现ꎮ图5为实验结果对比ꎮ图5㊀实验结果对比2.2㊀运动模糊尺度的估计基于对运动模糊图像频谱的分析和Radon变换原理ꎬ在估计运动模糊尺度参数时引入了投影的理论ꎮ设图像有N行ꎬ对式(5)进行离散化ꎬ得到表达式:H(u)=sin(πuL/N)πuL/N(6)令H(u)=0ꎬ则sin(πuL/N)=0ꎬ假设有2个频谱图上连续的零点u1ꎬu2ꎬ则满足πu2LN-πu1LN=πꎬ化简可得到u2-u1=NLꎬ而(u2-u1)就是运动模糊图像频谱图中暗条纹之间的距离ꎬ设为Dꎬ则得到式(7)ꎮ㊀㊀L=ND(7)求解运动模糊尺度Lꎬ只需求出频谱图中的暗条纹间距即可ꎮ由于频谱图中的暗条纹不是垂直方向ꎬ所以首先将频谱图顺时针旋转θ度(θ为之前Radon变换所求出的运动模糊方向)至水平方向ꎬ图6为Lena的运动模糊图像(LEN=50ꎬ模糊尺度取50ʎ)的频谱图及旋转至水平方向的频谱图ꎮ图6㊀频谱图旋转前后对比对旋转后的频谱图进行垂直投影ꎬ得到垂直投影图ꎬ图7为频谱图垂直投影后的图像ꎮ图7㊀频谱垂直投影图143 廖秋香等:运动模糊图像PSF参数估计与图像复原研究在投影图中查找暗条纹对应的极值点dk(k=1ꎬ2ꎬ )ꎮ根据式(7)来计算运动模糊尺度Lꎬ实验结果见表3ꎮ表3㊀图6(b)中暗条纹的间距(像素)暗条纹序列u1u2u2u3u3u4u4u5暗条纹间距D20202041暗条纹序列u5u6u6u7u7u8u8u9暗条纹间距D21202120㊀㊀其中u4u5为中心两侧间距ꎬ是两倍的暗条纹间距ꎬ将表格中的8组数据取平均值得D=20.3ꎬ图像行数N=1024ꎬ带入得运动模糊尺度L=N/D=50.44ꎬ实际设置的运动模糊尺度为50ꎬ表明测量非常准确ꎬ误差不到1个像素ꎮ3㊀运动模糊图像复原PSF参数估计出来后ꎬ采用经典的线性图像复原方法维纳滤波来对图像进行复原ꎮ维纳滤波器是一种基于最小均方误差准则的最优估计器ꎬ如下式所示:㊀㊀e2=Ef-f^()2{}(8)式中ꎬe2为统计误差ꎬf^是使统计误差为最小的估计值ꎬE表示数学期望ꎬf是未退化的图像ꎮ该表达式在频域可表示为式(9):F^(uꎬv)=1H(uꎬv)[|H(uꎬv)2||H(uꎬv)2+Sη(uꎬv)/Sf(uꎬv)|]G(uꎬv)(9)其中ꎬH(uꎬv)表示退化函数ꎬ|H(uꎬv)2|=H∗(uꎬv)H(uꎬv)ꎬH∗(uꎬv)表示H(uꎬv)的复共轭ꎮSη(uꎬv)=|N(uꎬv)|2是噪声的功率谱ꎬSf(uꎬv)=|F(uꎬv)|2是未退化图像的功率谱ꎮ比率Sη(uꎬv)/Sf(uꎬv)称为噪信功率比ꎮ这里讨论的两个量是噪声平均功率和图像平均功率ꎬ分别定义为ηA=1MNðuðvSη(uꎬv)(10)fA=1MNðuðvSf(uꎬv)(11)上式中ꎬM和N分别代表图像和噪声数组的垂直和水平大小ꎮ设它们的比值为R=ηAfA(12)图8为实验结果对比ꎬ选取不同的R值ꎬ复原效果不同ꎬ图8(c)为R=0.0000019的复原结果ꎬ图8(d)为R=0.00097的复原效果ꎮ从实验结果来看ꎬ适当增大R的值ꎬ复原效果较好ꎮ尽管得到的结果里面仍然包含一些噪声ꎬ但从视觉上看已经比较接近原始图像了ꎮ图8㊀复原效果对比4㊀结论为了求取运动模糊图像的点扩散函数PSF中的两个重要参数ꎬ本文利用Radon变换原理来求解PSF中的运动模糊方向ꎬ并对十字亮线出现导致的干扰进行了优化和改善ꎮ利用求解图像频谱上的中心暗条纹间距来估算运动模糊尺度ꎮ基于估计的PSF参数采用维纳滤波算法来恢复运动模糊图像ꎮ实验结果表明ꎬ运动模糊参数估计精确ꎬ运动模糊方向误差控制在1ʎ以下ꎬ运动模糊尺度误差控制在1个像素以内ꎮ同时采用维纳滤波算法来恢复运动模糊图像ꎬ效果良好ꎬ可获得细节清晰的图像ꎮ243 高技术通讯㊀2019年4月第29卷第4期参考文献[1]梁宛玉ꎬ孙权森ꎬ夏德森.利用频谱特性鉴别运动模糊方向[J].中国图象图形学报ꎬ2011ꎬ16(7):1164 ̄1169[2]王玉全ꎬ隋宗宾.运动模糊图像复原算法综述[J].微型机与应用ꎬ2014ꎬ33(19):54 ̄57[3]贤光ꎬ颜昌翔ꎬ张新洁.运动模糊图像点扩散函数的频谱估计法[J].液晶与显示ꎬ2014ꎬ29(5):751 ̄754[4]吕霞付ꎬ王博化ꎬ陈俊鹏.基于位平面分解方法的运动模糊图像PSF参数辨识[J].半导体光电ꎬ2016ꎬ37(3):449 ̄453[5]许兵ꎬ牛燕雄ꎬ邓春雨ꎬ等.基于图像频谱全局均值标准差分割的点扩散函数估计[J].光学技术ꎬ2015ꎬ41(4):341 ̄345[6]高树辉ꎬ樊攀登ꎬ蔡能斌.基于Matlab平台的运动模糊图像复原研究[J].中国人民公安大学学报(自然科学版)ꎬ2015ꎬ4:5 ̄8[7]陈至坤ꎬ韩斌ꎬ王福斌ꎬ等.运动模糊图像模糊参数辨识与逐行法恢复[J].科学技术与工程ꎬ2016ꎬ16(5):177 ̄180[8]乐翔ꎬ程建ꎬ李民.一种改进的基于Radon变换的运动模糊图像参数估计方法[J].红外与激光工程ꎬ2011ꎬ40(5):963 ̄969[9]黄琦ꎬ张国基ꎬ唐向东.基于霍夫变化的图像运动模糊角度识别法的改进[J].计算机应用ꎬ2008ꎬ28(1):211 ̄213[10]陈波.一种新的运动模糊图像恢复方法[J].计算机应用ꎬ2008ꎬ28(8):2024 ̄2026[11]胡硕ꎬ张旭光ꎬ吴娜.基于Radon变换的运动模糊方向估计的改进方法[J].高技术通讯ꎬ2015ꎬ25(8 ̄9):822 ̄828[12]孔勇奇ꎬ卢敏ꎬ潘志庚.频谱预处理模糊运动方向鉴别的改进算法[J].中国图象图形学报ꎬ2013ꎬ18(6):637 ̄646[13]唐春菊.基于频谱分析的运动模糊图像参数检测[J].太赫兹科学与电子信息学报ꎬ2015ꎬ13(1):148 ̄152ResearchonPSFparameterestimationandimagerestorationofmotionblurredimageLiaoQiuxiangꎬLuZaishengꎬPengJinhu(GuangxiCollegesandUniversitiesKeyLaboratoryofImageProcessingandIntelligentInformationSystemsꎬWuzhouUniversityꎬWuzhou543002)AbstractTherestorationofmotionblurredimageshasimportanttheoreticalandpracticalsignificanceforimprovingthequalityoftheimage.Estimationofpointspreadfunction(PSF)iscrucialanddifficultinresearchonrestorationofmotionblurredimages.ThemotionblurdirectioninpointspreadfunctionisgainedbyusingtheRadontransformprincipleꎬandanewmethodtoeliminatetheinterferencecausedbythecrosslineisproposed.Themotionblurex ̄tentiscalculatedbyusingthecentraldarkfringedistanceonthemotionblurredimagespectrum.TheWienerfilte ̄ringalgorithmisusedtorestorethemotionblurredimagebasedontheestimatedPSFparameters.Theexperimentresultsshowthatthemotionblurparametersareestimatedaccuratelyꎬtheestimatederrorinblurreddirectionislessthan1degreeꎬandtheestimatederrorofblurredextentislessthan1pixel.AtthesametimeꎬtherestorationbasedontheWienerfilteringalgorithmhasgoodrestoreeffectandgaincleardetails.Keywords:pointspreadfunction(PSF)ꎬblurreddirectionꎬblurredextentꎬRadontransformꎬWienerfilte ̄ring343廖秋香等:运动模糊图像PSF参数估计与图像复原研究。
二维运动模糊图像的处理
二维运动模糊图像的处理
二维运动模糊是指物体在二维平面上的运动导致图像模糊。
具体而言,当相机快门打开的时间足够长时,物体的运动轨迹会在感光元件上留下痕迹,导致图像产生模糊效果。
这种模糊效果可能会在拍摄快速移动的物体、摄像机晃动或者低光条件下产生。
为了消除二维运动模糊,通常采用图像处理算法来对图像进行复原。
下面将介绍一些常用的方法。
1. 基于逆滤波的复原方法:逆滤波是恢复原始图像的一种基本技术。
假设原始图像可以表示为一个线性系统的输出,那么通过找到该线性系统的逆滤波器,从模糊图像中提取出原始图像。
在实际应用中,逆滤波方法容易受到噪声的干扰,可能导致结果不理想。
2. 统计方法:统计方法是另一种常用的复原方法。
通过统计模糊图像中像素值的分布情况,可以推测出原始图像的分布,并在此基础上进行复原。
统计方法在处理噪声比较多的情况下效果较好,但对于噪声较少的情况效果可能不佳。
3. 图像增强方法:图像增强方法是一种通过增大图像的对比度或者锐化效果来减弱图像模糊的方法。
通过增强图像的边缘信息或者恢复图像的高频细节,可以使图像看起来更加清晰。
4. 基于最小二乘法的复原方法:最小二乘法是一种优化算法,能够找到使得模糊图像与原始图像的差异最小的复原结果。
通过建立一个优化问题,并找到使得问题的目标函数最小的参数值,可以得到最佳的复原结果。
二维运动模糊图像的处理方法有很多种,每种方法都有其适用的场景和局限性。
在实际应用中,需要根据具体情况选择合适的方法来进行处理。
运动模糊图像复原方法的研究
过程 , 因此 这种 方法称 逆 向滤波 法 。接 着采 用F( U , ) 的傅 里 叶逆变换 获 得 图像 的相 应估 计 , 复原后 的图像 可用式 ( 7 ) 表述:
g ( m , n ) =∑ ∑f ( i , j ) h ( m — , -j ) +n ( m , , 2 )
3 图 像 复 原 方 法
图像 复原 的最终 目标 是要 获得对 未退 化 图像 的 一个 最 优 估计 , 而 这种估 计是 建立 在某种 客观 准则 基础 上 的。
3 . 1 逆 滤 波 复 原
逆 滤波 复原是 一种 无约 束复原 方法 。 其原理 : 由退 化模
型式 ( 4 ) , 可 得到 噪声 ”一 g— H , 在对 噪声无 先验 知识 的 条件 下 , 寻求 1 个 ,的估 计,, 使, 在最 小均方 误差 准则 下 ,
【 0 ,其他
( 5 )
)
式中: d是 运动退 化 函数 的 长度 , 0表 示 运 动模 糊 方 向与 水 平方 向 的夹角 。 如 果是 其他方 向 的线性运 动 , 同样 可 以用 此 方 法来表 示 。
图2 图像 退化 的 一 般 模 型
退化 的典 型特 点是模 糊 , 图像 复 原 的基 本 目标 就 是 如 何去模 糊 。 复 原过程 , 根 据退 化模 型及 原始 图像 的某方 面 知 识, 设计 一 个恢 复 系 统 p ( x, ) , 输 入 是退 化 图像 g ( x, ) , 输 出是复 原 图像 f( x, ) , 按 照 某 种 准则 , 最 接 近 原始 图像 f ( x, ) 。 图像 的退 化及 复原 过程 如图 3所示Ⅲ 。
g( x, )一 f ( x, )*h ( x, 3 , ) +n ( x, 3 , ) ( 1 ) o f
运动模糊图像经典复原方法分析
运动模糊图像经典复原方法分析摘要:图像复原是数字图像处理的一个研究热点,而运动模糊图像复原又是图像复原中的重要课题之一。
该文主要是针对匀速直线运动造成的模糊图像,描述了逆滤波、维纳滤波和lucy-richardson 算法复原图像的基本原理和过程,并且用matlab对添加噪声和无添加噪声的模糊图像利用三种经典复原方法进行仿真实验,实验结果表明,在无噪声和有噪声两种情况下,逆滤波法、维纳滤波法和l-r算法有其各自的优缺点。
在图像复原过程中,要根据图像的具体信息选择合适的方法,使得复原效果达到最好。
关键词:图像复原;运动模糊图像;逆滤波;维纳滤波;lucy-richardson算法中图分类号:tp18 文献标识码:a 文章编号:1009-3044(2013)13-3120-051 概述图像在获取的过程中不可避免地要受到各种外界因素的影响,造成图像模糊,严重影响了图像的应用。
图像复原就是研究怎样从退化的模糊图像复原出原来清晰的图像[1]。
造成图像退化模糊的原因有很多,其中,图像运动模糊是最常见的一种模糊形式,主要是由于在曝光过程中,照相机或目标物体发生了位置上的相对运动造成的。
这种模糊在实际生活中经常的会遇到[2],比如,相机抖动。
运动模糊图像的复原一直以来都是数字图像处理课程中一个比较困难的课题,对其进行研究具有重要的实用价值和意义,已经有许多经典的复原方法。
主要有逆滤波法[3],维纳滤波法[4],lucy-richardson算法[5-6]、约束最小二乘方法、最大熵方法等。
现在也已经有许多现代数字图像复原技术,比如,基于小波变换的图像复原[7]、基于神经网络的图像复原技术等等。
该文主要是介绍了经典复原方法中的逆滤波法、维纳滤波法和lucy-richardson 算法的基本复原过程和原理,针对添加噪声和无添加噪声的运动模糊图像,通过matlab进行仿真实验,通过分析实验结果,总结出三种方法的各自特点,为日后使用这三种方法复原图像时提供理论基础和选择依据,并为学习其他现代复原技术奠定基础。
运动模糊图复原
运动模糊图复原随着科技的不断发展和人们对更高质量图像要求的提高,图像的锐度成为了一个越来越受重视的话题。
在运动摄影中,由于物体或者相机的运动造成的摄影图像中的运动模糊已经成为了一种非常普遍的现象。
针对这样一种问题,可以采用一些方法对图像进行复原,使图像中的物体轮廓和细节更加清晰。
一、运动模糊的产生原因当相机或拍摄的物体相对运动而引起摄像机的曝光时,图像中出现的模糊是由物体在成像平面上引起的运动产生的。
由于快门时间过长或拍摄的物体运动速度过快,已经超出了相机的快门速度,所以摄像机的曝光时间变长。
这样,光线将在物体和成像平面之间传播,导致摄像机的图像出现模糊。
此外,相机自身的震动和非线性运动也会导致模糊出现。
这种情况下,对图像的复原工作难度更大。
二、运动模糊图像复原方法为了针对运动模糊的图像进行复原,目前已经有了很多方法。
这里我们简单介绍一下最常用的方法。
1、退化模型为了表示运动模糊引起的图像退化,在研究运动模糊图像复原方法时,首先需要定义相应的模型来描述图像的退化过程。
传统的运动模糊退化模型通常使用卷积模型或脉冲响应模型来表示。
其中,卷积模型使用卷积操作来描述图像的退化过程,而脉冲响应模型则使用相应的点扩散函数来描述退化过程。
频域方法是一种通过对运动模糊图像的频率分析来进行复原的方法。
其基本思想是将退化图像转换到频域,然后用一定的滤波方法对其进行处理,最后再将处理后的图像转换回空间域。
常用的频域方法有卷积定理、Wiener滤波器和Lucy-Richardson迭代法。
卷积定理是一种将原始图像和点扩散函数的频率响应同时转换到频率域进行卷积后再转换回空间域的方法。
通过在频率域内快速实现卷积操作,可以大大减少计算时间和复杂度。
然而,卷积定理的实现还需要进行一定的截断处理,同时对点扩散函数的正确估计也是卷积定理的一个关键问题。
Wiener滤波器可以根据退化模型和图像的噪声估计来设计频率滤波器。
其设计基于最小均方误差准则,可以有效地减少噪音对图像复原的影响,同时增强图像的高频细节。
运动模糊图像复原算法研究
Abs t r a c t St u dy f o r t he n oi s y mo t i o n bl ur a nd i mage d egr ada t i o n m o de l r e co v er y pr oc e s s, t h i s pap er de s cr i b es t h e ba s i c pr i n ci — pi e s o f mot i o n bl u r r ed i ma ge s, an d pr op os e a va r i a t i o n m e t h od f o r e x t r e me an d f u z z y i mag e r es t r i c t t h e ap pl i ca t i o n of t h e k e r n el f u nc t i on met h od t o s o l v e t h e v ar i a t i on mo del of t h e l i mi t ed n a t u r e of mo s t a ppl i ca t i o ns a bo u t t he do ma i n o f t h e f i el d.
其中 :
( x ) =T / a ( D ≤x ≤a ) ( 2)
应、 传感器特性 的非线性 、 光学 系统的像差 、 成 像 设 备 与 物 体 之
间 的 相 对 运 动 以及 镜 头 的 畸 变 等 。 我 们 就 需 要进 行 图像 的 复原 , 人 们 研 究 的 数 字 图 像 就 是 应 用 计 算 机 图像 技 术 。 图 像 复 原 试 图
如何应对图像识别中的运动模糊问题(八)
如何应对图像识别中的运动模糊问题导言:随着科技的飞速发展,图像识别成为了人工智能领域的一个重要研究方向。
然而,在现实应用中,图像识别时常面临着运动模糊问题,从而影响其准确性和可靠性。
本文将探讨如何应对图像识别中的运动模糊问题,并提出一些解决方案。
一、运动模糊的原因在图像识别中,运动模糊通常是由于相机或被拍摄对象的运动造成的。
当相机快门速度较慢或被拍摄对象移动速度较快时,就会产生运动模糊。
这种模糊度会导致图像中的物体边缘模糊不清,从而使图像识别算法无法准确识别物体。
二、了解运动模糊的影响在应对运动模糊问题之前,我们需要了解它对图像识别的影响。
运动模糊会导致图像边缘失真、细节丢失以及图像整体模糊等问题。
这些问题会使得图像识别算法难以识别物体特征,从而降低识别准确性。
三、降低运动模糊的方法针对图像识别中的运动模糊问题,我们可以采取以下几种方法来降低模糊效果。
1. 提高快门速度提高相机的快门速度可以减少运动模糊。
通过增加快门速度,相机曝光时间变短,从而减少了被拍摄对象的移动过程中光线变化的影响,进而降低图像的模糊度。
然而,高快门速度也会导致图像暗淡,因此需要在光线充足的情况下选择合适的快门速度。
2. 使用防抖技术相机的防抖功能可以有效减少图像的模糊度。
防抖技术通过在拍摄时对图像进行震动补偿,从而降低由于相机晃动而造成的模糊效果。
现代相机多数都配备了防抖功能,使用防抖模式可以显著提高图像的清晰度。
3. 采用图像复原算法图像复原算法是通过数学方法对模糊图像进行修复,从而提高图像的清晰度。
有许多图像复原算法可供选择,如Wiener滤波、逆滤波等。
这些算法能够根据图像模糊的特点进行相应的处理,使得图像的清晰度得到提高。
4. 多帧图像拼接多帧图像拼接也是一种应对运动模糊的有效方法。
通过拍摄多张相似的图像,然后将这些图像合并,可以减少运动模糊的影响,提高图像的清晰度。
多帧图像拼接通常需要借助于图像处理软件来完成,但它能够显著提高图像的质量。
任意方向直线运动模糊图像复原的TSVD方法
武 汉 理 工 大 学学 报 ( 通科 学 与 工 程 版 ) 交
21 0 0年
第 3 卷 4
×
H 2*( 1*F)一 H2*G H
i M + N — —
× I
l x 2 lN N
收 稿 日期 : O O O — O 2 1—32
令
朱 华 平 ( 93 : , 士 , 师 , 要 研 究 领 域 为 反 问 题 及 图像 复 原 17 一) 男 硕 讲 主
国家 自然 科 学 基 金 项 目资 助 ( 准 号 :0 7 0 4 批 6949 )
・
58 7 ・
M — i +
1 f 1 一
1 具 有 对 称 性 的 点扩 散 函数 的 图像 复 原 的 TS VD 方 法[6 3] -
s ‘ I M R。 。 表 示 2 M 一 1 × 2 N ~ 1 的 ( ) ( )
g( , ) iJ
() 1
式 中 : ( ,) M × N 的 原 始 图 像 ; — g + r是 f k Z为 g 。
0 引
言
∑ ∑ hs )( +sJ +£一 (t i ,f 一 ,— )
一
1 f 1 一
通 常 ,由平 移 不 变 模 糊 函 数 和 噪 声 所 导 致 的 图像 降 质 离 散 模 型 可 表 示 为
2 -12 1 m- n
g( , ) iJ
() 2
∑ ∑ s )(+ —s + (,fi , 一£一 t J )
【 0 H 满 跫
其 他
以F , H 表 示 F 与 H 的 周 期 延 拓 满 足 , 然 显
t
件) 与散 焦模 糊 、 平 运 动 和 垂 直 运 动 模糊 所 对 . 水 应 的的点 扩散 函数 是对 称 的 , 处 的对 称是 指 此
运动模糊图像复原技术介绍
糊 , 为 图 像 的 运 动模 糊 。运 动 模 糊 是 造 成 图 像 退 化 的 重 要 原 因 之 一 , 运 动模 糊 图 像 的 复 原 研 究 早 已成 为 图像 复 原 领 域 的热 点 , 即 对 退化 模 型 的建 立 方 法 特 别 是 退 化 参 数 ( 动 模 糊 方 向 和 运 动 模 糊 距 离 ) 估 计 已经 有 了 比较 成 熟 的方 法 , 声 滤 除 技 术 也 在 不 断 地 运 的 噪 发展 和完 善 。本 文 则 对 几 种 参 数 估计 方 法 和滤 波 方 法 进 行 概 括 和 对 比总结 , 以便 于 在 以 后 的研 究 中更 具 有 针 对 性 。
摘要 : 图像 复 原 是 数 字 图像 处 理 的 重要 组 成 部 分 , 而运 动 模 糊 图像 复 原 又 是 图像 复 原 中的 重要 课 题 之 一 。要 想 实现 运 动模 糊 图像 的
复 原 . 动 退 化 模 型 的 建 立 和 噪 声 的滤 除是 不 可 或 缺 的 部 分 。该 文先 对运 动 模 糊 参 数 的 确 定 方 法进 行 了介 绍 , 运 然后 对噪 声 滤 除方 法
na v a sc cuso n ut u m ke on l i nsa d o l ook o m a e r c v r e hnoog . sf ri g e o e y t c ly
数学建模运动模糊图像的复原
2015 高教社杯全国大学生数学建模竞赛
承
诺
书
我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模 竞赛参赛规则》 (以下简称为“竞赛章程和参赛规则” ,可从全国大学生数学建模 竞赛网站下载) 。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮 件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问 题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的 成果或其他公开的资料(包括网上查到的资料) ,必须按照规定的参考文献的表 述方式在正文引用处和参考文献中明确列出。 我们郑重承诺, 严格遵守竞赛章程和参赛规则,以保证竞赛的公正、 公平性。 如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行 公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表 等) 。
三、主要变量符号说明
符号 M N v L 意义 运动图像的长度 运动图像的宽度 运动物体相对于摄像机的水平运动速度 运动模糊图像的模糊尺度 运动模糊图像的模糊角度 未降质图像的能量 摄像机的曝光时间 像素坐标 聚集在图像上的的点而构成的原始图像 聚集在图像上的的点而构成的模糊图像 聚集在图像上的的点而构成的还原图像 加在图像上的加信噪音 未傅里叶变换的点扩展函数 点扩展函数 退化图像的傅里叶变换
图5-1 运动模糊原理图
如图5-1-1所示,当运动物体以速度 v 相对于摄像机一段距离 D 在平面上运 动时,周围的景物 A 点相对于运动物体后移到 A' 。通过光学系统成像于 a ' 点,在 摄像机靶面上像移动速度为: V V ' f max (5-1) D D -摄像机离运动物体的距离 f max -光学系 其中, V -运动物体的速度 统最大焦距 在摄像机每场积分时间内像移量为: l V 't (mm) (5-2) t 为摄像机的积分时间。 像移量的存在导致图像模糊,为得到清晰图像必须对像移量进行控制。然而 在实际工程中,摄像机的积分时间不能无限制的缩小,因为积分时间缩小后,为 了保证图像的质量,必须加大地面的照度,这就限制了摄像机的工作条件。 目前解决运动模糊的主要手段是通过了解图像的退化过程, 建立运动图像的 复原模型,通过数学模型来解决图像的复原问题。现在常用的模糊图像复原方法 有很多种,包括逆滤波、维纳滤波、盲解卷积算法、Lucy-Richardson算法等, 不同的算法效果和使用范围个不相同,但是都有一个共同点,那就是需要预先确 定点扩散函数PSF,在不知道点扩散函数的情况下,进一步的复原工作无法进行。 而对于一般的模糊图像(包括本题给出的运动模糊图像)都没有直接给出点扩散 函数,因此,必须通过已有的模糊图像建立数学模型来估计点扩展函数。 5.2 模型的建立 5.2.1.通过建立数学模型确定退化模型的点扩展函数
基于运动模糊图像还原的分析与研究
基于运动模糊图像还原的分析与研究【摘要】运动模糊是一种常见的图像模糊现象,对图像质量会造成影响。
针对运动模糊图像还原的问题,本文从研究背景和研究意义入手,分析了运动模糊的形成原因以及目前常用的还原方法。
特别关注基于深度学习的运动模糊图像还原技术,通过实验设计和结果分析展示了其在改善图像质量方面的效果。
对运动模糊图像还原的性能评价提供了一种客观的评价方法。
在结论部分总结了本文的研究成果,并展望了未来在这一领域的研究方向,为进一步提高运动模糊图像还原技术的效果和应用提供了有益的参考。
本文将有助于深入了解运动模糊图像还原技术,促进相关研究的发展。
【关键词】运动模糊,图像还原,深度学习,实验设计,性能评价,分析,研究总结,未来研究方向1. 引言1.1 研究背景运动模糊是指由于快速运动的物体导致相机或观察者移动而产生的图像模糊现象。
在现实生活中,许多场景都会受到运动模糊的影响,比如拍摄运动中的体育比赛、快速移动的车辆等。
运动模糊会降低图像的清晰度和细节,影响图像的质量和观赏效果。
在数字图像处理领域,对运动模糊图像进行还原是一个具有挑战性的问题。
传统的图像恢复方法往往效果不佳,无法满足实际需求。
研究人员引入了深度学习技术来解决运动模糊图像的恢复问题。
深度学习通过建立复杂的神经网络模型,可以实现对复杂图像信息的学习和提取,从而提高图像恢复的效果和准确性。
通过对运动模糊图像还原的研究与分析,可以更好地理解图像恢复的原理和方法,为图像处理技术的进一步发展提供技术支持和理论指导。
本文将围绕运动模糊图像还原展开研究,探讨基于深度学习的技术在图像处理中的应用,并对运动模糊图像还原的性能进行评价和分析。
1.2 研究意义运动模糊是在图像采集过程中经常出现的现象,主要由于摄像机或目标的运动造成图像模糊不清。
而对于运动模糊图像的还原技术在图像处理和计算机视觉领域具有重要的意义。
研究运动模糊图像还原的意义在于提高图像质量和视觉效果,使得图像更加清晰和真实。
边缘区域约束引导的运动模糊图像复原
边缘区域约束引导的运动模糊图像复原第一章:引言- 介绍图像复原的重要性和背景- 说明边缘区域约束引导在图像复原中的作用- 阐述运动模糊图像复原的研究现状和存在问题第二章:边缘区域约束引导在图像复原中的应用- 介绍边缘检测的方法和技术- 阐述如何将边缘区域约束引导应用于图像复原中- 分析边缘区域约束引导在图像复原中的作用和效果第三章:运动模糊图像复原的基本原理- 介绍运动模糊的基本概念和分类- 阐述运动模糊的成因和表现形式- 介绍运动模糊图像复原的基本原理和常用的复原方法第四章:边缘区域约束引导的运动模糊图像复原方法- 提出一种边缘区域约束引导的运动模糊图像复原方法- 阐述该方法的具体流程和实现步骤- 分析该方法在不同场景下的复原效果和应用价值第五章:实验结果和分析- 介绍实验数据集和方法评价指标- 对比本文提出的方法与其他常用方法的实验结果- 分析实验结果和优缺点,并探讨未来研究方向第六章:结论- 总结本文研究的重要意义和贡献- 简述本文提出的边缘区域约束引导的运动模糊图像复原方法的优劣- 展望未来研究方向。
第一章:引言随着现代数字图像技术的迅猛发展,图像处理和图像分析的应用范围越来越广泛,涉及到许多领域,例如医学、工业、军事等。
图像复原作为图像处理中的一项重要技术,旨在恢复被损坏的图像的原始细节和清晰度,使图像更具可视性和更适合进一步的分析和处理。
在图像复原中,常常会遇到一些挑战,例如图像受到噪声、模糊或失真的影响等。
其中,运动模糊是一种常见的图像失真类型,通常是由于相机或物体的移动而产生的。
由于运动模糊可引起图像的细节损失和清晰度降低,因此如何对运动模糊的图像进行修复是图像处理领域中的一个热门研究课题。
然而,针对运动模糊的图像复原存在许多困难。
首先,在运动模糊的情况下,像素点的运动轨迹可能因速度、方向和强度等因素而变化,因此需要研究出能够有效适应不同运动轨迹的图像复原算法。
其次,在进行图像复原时,常常会出现图像的边缘模糊化的问题,这会影响图像的视觉效果和应用效果。
车辆运动模糊图像复原方法
h , 一J 0 一 0 ( v j ≤l ,一 4 ( ) 、 … )一 一 d 1 z Y ≤ ) ( 圳
1 其他 0
式 ( ) 1 水 平 方 向 运 动 模 糊 的 点 扩 展 函 数 , 4为 个 d 是 运 动 模 糊 长 度 。若 运 动 模 糊 的 方 向 不 在 水 平 方 向 , 可 通过 坐标 变换 转换 到水 平方 向。 则
分析 法利 用误 差 度量 E估计 参数 d, 其步 骤如 下 : 1 )选定 1个长 度 参数 搜索 范 围 , 长 度初 始 用 值d、 。 步长 △ 和搜索 步数 尼来 表示 。 2 )由参 数 d产 生 点 扩展 函数 h, 实施 复原 算
运 动模 糊 图像 降质模 型 可 以描述 为 :
g( )= h , , ( )*_( )+ ( . ( ) 厂 z, , ) 1 y
式 中 : x, 为 原 始 图像 ; ( ) 模 糊 图像 ; f( ) g z, 为 h
( ) 点 扩 展 函 数 ; , ) 加 性 噪 声 。 , 为 ( - 为 y
G( )一 H ( ) “, )+ N ( , ) ( “, “, F( 2)
摘 要
介 绍 了 1种 运 动 模 糊 图像 复 原 方 法 , 用 维 纳 滤 波 进 行 图 像 复 原 , 用 误 差 一 数 分 析 法 估 使 采 参
计 点扩展函数参数 , 于概率统计的方法估计 噪声参 数, 对振铃 效应进 行处理 。实验结果 表 明, 基 并 这
一
方 法 能 够 有 效 地 实 现 模 糊 图像 复 原 , 对 噪 声 具 有较 好 的 鲁 棒 性 。 且 运 动模 糊 图 像 ; 图像 复 原 ; 扩 展 函 数 点 文献标志码 : A D : 0 3 6 /. S N 1 7 — 8 1 2 0 . 6 0 3 0I 1 . 9 3 j I S 6 44 6 . 0 9 0 . 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要运动模糊图像的复原是图像复原中较常见也是较难的一类,在智能交通系统中有着广泛的应用。
本文面向车牌识别应用,对运动模糊图像的复原技术进行了系统的研究与实现。
匀速直线运动模糊图像复原的关键在于运动模糊方向和长度的自动鉴别两个方面。
将原图像视为各向同性的一阶马尔科夫过程,通过用双线性插值来进行方向微分,实现了运动模糊方向的自动鉴别算法;根据分析模糊图像的频谱图出现黑色条带的原因、条件以及它的精确位置,实现了运动模糊长度自动鉴别算法。
针对复杂成像情况下的运动模糊图像复原工作,着重解决了含噪运动模糊图像和局部运动模糊图像的复原问题;综合应用椒盐噪声检测器和基于带可变正则化参数的径向基神经网络(I也FN)方法,实现了组合滤波器去噪算法,采用改进的局部运动模糊对象提取算法实现局部运动模糊图像的复原。
开发了车牌模糊图像复原系统。
该系统对模糊长度和模糊角度均具有较高的鉴别精度,对于含有噪声的运动模糊图像和局部模糊图像进行相应的去噪处理和对局部模糊对象进行提取,并提供参数调整机制以获得最佳的复原效果。
自动实现各种类型的运动模糊车牌图像的清晰恢复,复原的效果图可直接应用于后续的车牌识别等工作。
关键词:图像复原,运动模糊,模糊方向,模糊长度,噪声,局部模糊,车牌识别ABSTRACTThe restoration of motion-blurred images is a familiar and also difficult type in image restoration,thus the study of the motion-blurred image restoration is of very extensive operation significance.Towards the license plate recognition application,we systemically study and implement the technology of motion-blurred image restoration.The key problem of restoring constant-speed straight-line motion-blurred images lies in the estimation of motion-blurred direction and motion-blurred length.The original image obeys isotropy Markov process with rank one,Can efficiently identify it with high precision via on directional derivation using bilinear interpolation;realizes automatic estimation of motion-blurred length;according to the reason and condition of black strips in the spectrum images of motion-blurred images and specified the exact positions of black strips,a method to accurately estimate the blurring length of uniform linear motion blurred images is implemented.For the restoration of motion-blurred images in complex imaging environment,this paper emphasizes on the restoration of noisy motion-blurred images and partial motion-blurred images,realizes a combined filter using both the salt-and-pepper noise detector and radial basis function network approaches,and devises the picking estimation for partial motion-blurred images.we develop a system of motion.blurred license plate images restoration.The system results in precise discrimination for blurred length and blurred direction,to the noisy motion-blurred image and partial blurred image,the system can implement theprocess of wiping out noises and picking up the partial blurred objects,and realizes the perfectrestoration effects with the help of arithmetic adjusting system.The legible restoration of motion.blurred license plate images iS implemented,and the restoration image Can be applied directly to the license identification.第一章绪论1.1 研究背景图像复原是数字图像处理中的一个重要课题。
它的主要目的是改善给定的图像质量并尽可能恢复原图像。
图像在形成、传输和记录过程中,受多种因素的影响,图像的质量都会有不同程度的下降,典型的表现有图像模糊、失真、有噪声等,这一质量下降的过程称为图像的退化。
图像复原的目的就是尽可能恢复被退化图像的本来面目。
在成像系统中,引起图像退化的原因很多。
例如,成像系统的散焦,成像设备与物体的相对运动,成像器材的固有缺陷以及外部干扰等。
成像目标物体的运动,在摄像后所形成的运动模糊。
当人们拍摄照片时,由于手持照相机的抖动,结果像片上的景物是一个模糊的图像。
由于成像系统的光散射而导致图像的模糊。
又如传感器特性的非线性,光学系统的像差,以致在成像后与原来景物发生了不一致的现象,称为畸变。
再加上多种环境因素,在成像后造成噪声干扰。
人类的视觉系统对于噪声的敏感程度要高于听觉系统,在声音传播中的噪声虽然降低了质量,但时常是感觉不到的。
但景物图像的噪声即使很小都很容易被敏锐的视觉系统所感知。
图像复原的过程就是为了还原图像的本来面目,即由退化了的图像恢复到能够真实反映景物的图像。
在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦察和日常生活中常常由于摄像设备的光学系统的失真、调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。
但是相对于散焦模糊,运动模糊图像的复原在日常生活中更为普遍,比如高速运动的违规车辆的车牌辨识,快速运动的人群中识别出嫌疑人、公安刑事影像资料中提取证明或进行技术鉴定等等,这些日常生活中的重要应用都需要通过运动模糊图像复原技术来尽可能地去除失真,恢复图像的原来面目。
因此对于运动模糊图像的复原技术研究更具有重要的现实意义。
1.2 相关领域的研究现状及存在的问题与图像增强相似,图像复原的目的也是改善图像的质量。
图像复原可以看作图像退化的逆过程,是将图像退化的过程加以估计,建立退化的数学模型后,补偿退化过程造成的失真,以便获得未经干扰退化的原始图像或图像的最优估计值,从而改善图像质量。
图像复原是建立在退化的数学模型基础上的,且图像复原是寻求在一定优化准则下的原始图像的最优估计,因此,不同的优化准则会获得不同的图像复原,图像复原结果的好坏通常是按照一个规定的客观准则来评价的,如:最小均方准则,加权均方准则等。
因而,图像恢复可以理解为图像降质过程的反向过程。
建立图像恢复的反向过程的数学模型和确定导致图像退化的点扩散函数,就是图像复原的主要任务。
目前,尽管图像复原技术已得到了广泛的发展,对于不同原因造成的图像变质的复原有了深入的研究,也已经提出了一些不同的具体算法,但这些方法适用于已知点扩散函数的参数情况。
因此,寻求一种行之有效的方法来自动鉴别运动模糊参数并实现运动模糊图像的复原便成为一个迫切并且必要的任务。
在日常生活中最常见的运动模糊中,如何进行任意方向运动模糊图像的运动模糊方向和模糊长度的自动鉴别,从而构造出最为近似的点扩散函数(Point Spread Function ,PSF),最后由事先建立的退化模型中选取适当的复原算法来尽可能地复原出图像的原始面貌。
这一课题引起了不少图像处理研究者的关注。
由于图像复原技术在图像处理中占有重要的地位,已经形成了一些经典的常用图像复原算法,如无约束最小二乘法、有约束最小二乘方法、逆滤波、维纳、最大熵复原等,至今还被广泛使用。
但这些复原算法都是假设系统的点扩散函数PSF(即系统对图像中点的脉冲响应,是导致图像退化的原因)为已知,实际情况是系统的点扩散函数由于大气扰动、光学系统的相差、相机和对象之间的相对运动等多种因素的影响,往往是未知的。
这就需要人们用某种先验知识在系统的点扩散函数未知时进行估计,然而这种先验知识并不容易取得也不够精确,这就需要我们在对己模糊图像分析和处理的基础之上估计最逼近的PSF 。
在运动模糊方向的鉴别方面,由于匀速直线运动的点扩散函数是矩形函数,其模糊图像对应的频域上有周期性的零值条纹,运动方向与零值条纹方向相垂直,M .Cannon 等利用这一特点从模糊图像中估计出运动方向和点扩散函数,但并没有给出自动鉴别方法,抗噪声能力也弱。
Y .Yitzhaky 、X .S .Kopeika 和Ofer .Hadar 等采用一个2*2微分乘子来鉴别运动模糊方向,但是该微分乘子只能鉴别O-45度范围内的运动模糊方向,并且鉴别误差比较大,且鉴别误差总是倾向于负值(鉴别结果总是偏向0度)。
目前为止一种有效的鉴别方法就是陈前荣等所提出的运动模糊方向鉴别方法,该方法利用方向微分的特点和双线性插值方法,构造出3×3方向微分乘子,利用该微分乘子基于单张运动模糊图像,自动鉴别出运动模糊方向。