经典高考数学三视图还原方法归纳
完整版三视图还原技巧
核心内容:三视图的长度特征一一“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。
还原三步骤:(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示(1)将如图所示的三视图还原成几何体还原步骤:①依据俯视图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不可能有垂直拉升的线条,而在E处必有垂直拉升的线条ES由正视图和侧视图中高度,确定点S的位置;如图I③将点S 与点ABCD 分别连接,隐去所有的辅助线条,便可得到还原的几何体SABCD 如图所示:o5/ VDR的(左)觇阁 匸)现图 厂1例题2: —个多面体的三视图如图所示,则该多面体的表面积为()经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm3 解答:(24)答案:21+ .. 3计算过程:S=2x2X6-y X 1X1 >x6 + y xV2 x72 X^yX2= 21+^3步骤如下:第一步:在正方体底面初绘制ABCDEFMN如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点 E F、M、N处不可能有垂直拉升的线条,而在点A、B、C、D处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点G,G',B',D',E',F'地位置如图;第三步:由三视图中线条的虚实,将点G与点E、F分别连接,将G'与点E'、F 分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
高中数学立体几何三视图高效还原法:拔高法
⾼中数学⽴体⼏何三视图⾼效还原法:拔⾼法三视图在⾼考考查的实质是空间想象有些同学们的空间想象能⼒⽐较强,快速还原出对应的⽴体图形,这种题⽬得以解决,⽽且有的同学空间想象⼒稍微弱⼀些,这种题⽬是⾮常难做出来的。
同学,⽼师今天给⼤家讲解⼀种⽅法——拔⾼法 拔⾼法不需要同学们空间想象,⾮常快速就能还原出对应的⽴体图形。
只要同学能够掌握拔⾼法,其他还原⽴体图形⽅法感觉弱爆了,三线交汇等⽅法通通都不如拔⾼法来的直接、暴⼒。
那么拔⾼法能够还原90%左右的图形,还有⼀部分图形10%不能⽤拔⾼法还原出来的。
那么⽤什么⽅法呢?⽤正⽅体切,⽽正⽅体切⽤六字箴⾔,这种类型⽐较⾼效。
什么时候能⽤拔⾼法,其他⽅法在体系课程⾥,只要看了课程就知道什么时候⽤拔⾼,什么⽤正⽅体切。
⾸先⾸拔⾼法,没有⽅法的情况下使⽤正⽅体切。
把⽴体图形还原之后,有三种题型: 1、让你判断其形状; (给出三个图形正视图,侧视图,俯视图让你判断形状) 2、由两个试图读出另⼀视图; (⽐如:给正视和俯视,读出侧视) 3、考察的综合运算——让你去求多⾯体棱长最⼤值、求体积或者表⾯积。
(综合运算,综合运算在⾼考考查的频率是最⾼的,还原完三视图之后,让同学们算出⽴体图形中最长棱长,⾯积最⼤值。
或者求体积,表⾯积。
求体积表⾯积最经常考的⼜是什么题型——锥体的题型,因为锥体表⾯积考察的频率最⾼。
如果,不论底⾯是三⾓形还是四边形,上顶点前后左右稍微平动⼀些,那么这个⽴体图形的三视图会发⽣本质改变,所以锥体求体积求表⾯积出的⼏率⽐较⾼。
) 对于这些问题,你只要把⽴体图形还原出来,这个题⽬没有任何难度了。
那么有的同学空间想象稍微偏弱,那种问题就不会得到快速解决,那么怎样快速准确还原对应的三视图呢?⽅法有很多种,可以是凭你的空间想象直接去还原;三线交汇、或者正⽅体切等⽅法,但是我给同学们讲,这些⽅法都不能最⾼效、最准确的还原三视图,如果你所有的⽴体图形都⽤三线交汇、或者正⽅体切等⽅法,我告诉⼤家就想⼩题⼤做了,你会发现解题会⽐较困难。
高考有方法——三视图解题超级策略
高考有方法——三视图解题超级策略一、三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.二、还原三视图的常用方法1、方体升点法;2、方体去点法(方体切割法);3、三线交汇得顶点法方法一方体升点法例1:(2015·北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2 C. 3 D.2答案 C解析根据三视图,可知该几何体的直观图为如图所示的四棱锥V-ABCD,其中VB⊥平面ABCD,且底面ABCD是边长为1的正方形,VB=1.所以四棱锥中最长棱为VD.连接BD,易知BD=2,在Rt△VBD 中,VD=VB2+BD2= 3.跟踪训练1.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练2.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练3.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.方法二方体去点法例2:如图所示为三棱锥的三视图,主视图、俯视图是直角边长为2 的等腰直角三角形,求三棱锥的表面积或体积.跟踪训练4.如图所示为三棱锥的三视图,主视图、侧视图是直角边长为4,宽为3 的直角三角形,求三棱锥的表面积或体积.跟踪训练5.如图所示为三棱锥的三视图,三视图是直角边长为4 等腰直角三角形,虚线为中线,求三棱锥的表面积或体积.方法三三线交汇得顶点法例3:如图,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()A.B.6 C.D.4正确答案是B.解:由三视图可知,原几何体的长、宽、高均为4,所以我们可用一个正方体作为载体对三视图进行还原.先画出一个正方体,如图(1):第一步,根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,这里我们用红线表示.如图(2),即正视图的四个顶点必定是由图中红线上的点投影而成的.第二步,侧视图有三个顶点,画出它们的原象所在的线段,用蓝线表示,如图(3).第三步,俯视图有三个顶点,画出它们的原象所在的线段,用绿线表示,如图(4).最后一步,三种颜色线的公共点(只有两种颜色线的交点不行)即为原几何体的顶点,连接各顶点即为原几何体,如图(5).至此,易知哪条棱是最长棱,求出即可跟踪训练6.首先在正方体框架中描出主视图,并将轮廓的边界点平行延长,如图.类似地,将俯视图和侧视图也如法炮制.这样就可以找到三个方向的交叉点.由这些交叉点,不难得到直观图.练习1、练习2、练习1答案:练习2答案:跟踪训练7.如图所示为四棱锥的三视图,主视图是直角边长为4 等腰直角三角形,侧视图是边长为4 的正方形,求四棱锥的表面积或体积.跟踪训练8. 如图所示为四棱锥的三视图,主视图是边长为4 的正方形,侧视图是直角边长为4 等腰直角三角形,求四棱锥的表面积或体积.跟踪训练9.如图所示为四棱锥的三视图,主视图是长为4,高为5 的长方形,侧视图的长为3 的长方形,俯视图为直角三角形,求四棱锥的表面积或体积.三视图练习1、若某几何体的三视图如图所示,则此几何体的表面积是_____________.40+2、某几何体的三视图如图所示,则该几何体的体积为_____________.3、如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为( )DA 、8πB 、252π C 、12π D 、414π4、如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则四面体的体积为( )A侧视图俯视图正视图2A 、2B、4 C 、83D 、2 5、一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )D (A )81 (B )71 (C)61 (D )516、如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )C A. 1727 B. 59C. 1027D. 137、一个四面体的顶点在空间直角坐标系O xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )A(A) (B) (C)(D)8、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(B )1()A 6 ()B 9 ()C 12 ()D 189、在一个几何体的三视图中,正视图和俯视图如左图所示,则相应的侧视图可以为( )D10、某几何体的三视图如图所示,则该几何体的体积为_____________.11_____________.20或1612、若某几何体的三视图如图所示,则这个几何体中最长的棱长等于13、某几何体的三视图如图所示,则该几何体的体积为_____________.8314、某几何体的三视图如图所示,则该几何体的体积为_____________.15、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( B ) (A )1 (B )2 (C )4 (D )816、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( C )A. B. C .6 D .417.某几何体的三视图如图所示,则该几何体的体积为( A ) A .168π+ B .88π+ C .1616π+ D .816π+323。
太原高考数学王康民老师怎样把三视图又快又准还原成几何体
高考在考查三视图方面出题有两个方向,一是给出三视图及相关数据,求几何体的体积、表面积、内切球体积或外接球体积等;二是给出几何体,确定其中一个视图的图形.由于第二点比较简单,所以高考中考查的较少.高考中对给出三视图求相关体积、面积等题型考查较多,一般以小题形式出现,分值为5分,该类型题的本质是考查三视图还原几何体,所以能快速准确的将三视图还原几何体,是解决这类问题的关键.王康民老师给大家介绍几种快速还原几何体的方法.先来复习一下三视图的相关知识:位置主在上,俯在下,左在右大小长对正,高平齐,宽相等虚实看的见的为实线,看不见的为虚线我来介绍两种快速又好用的三视图还原方法.当然,我默认大家已经掌握了基本几何体的三视图形状,这一点很重要,没有掌握的同学请麻利的自己去翻课本或者小册子.一.升点升线法1.升点法题目特征:当主视图和侧视图的顶部都是点时,采用升点法.如:还原如图所示的三视图的直观图.分析:观察三视图知主视图和侧视图的顶部都是点,则该图形可由俯视图的一个点升高形成,升的高度为主、侧视图的高2.用斜二测法画出俯视图,如下图所示:再根据其主视图为直角三角形,且直角在左侧,所以确定上升的点只能是点A,上升高度为2,三视图还原为下图所示.方法总结主、侧视图顶为点,上升点法1、俯视画图;2、主、侧找最高点;3、在俯视图上将找到的点上升(上升高度为主视图的高)2.升线法当主视图和侧视图的顶部为一点一线时,采用升线法.如:分析观察三视图知主视图和侧视图的顶部为一点一线,则该图形可由俯视图的一条线升高形成,升的高度为主、侧视图的高.用斜二测法画出俯视图,如下图所示.根据其主视图为正方形,左视图为直角三角形,且顶点在其左侧,所以确定上升的直线为线段AB,上升高度为主视图的高,如下图(左)所示.连接上顶点和下底面对应点,三视图还原为上图(右)所示.方法总结主、侧视图顶为一点一线,以点为基准升线.1、俯视画图;2、主、侧找升高线;3、升高直线(上升高度为主视图的高),连接对应点即可二.长方体中找点找面法我们所学的立体图形中,有锥、柱、台、球及组合体,像柱体和球的三视图还原就靠你自己了,简单到我都不想说.好,那就不说吧.我们通过研究锥体和台体的三视图还原来介绍这种方法.1.锥体的三视图还原锥体的三视图的特点是三个视图中有两个三角形.也就是说,我们在看到三视图的时候,如果其中有两个是三角形,我们能确定其为锥体.并且你要去还原它的主观图,这两个三角形就是关键!如:三视图如图所示.分析:首先三视图中有三个三角形,所以可以确定该几何体是一个椎体.俯视图就是该椎体的底面,大家要知道,一个椎体,如果底面确定了,再确定了顶点,则这个锥体就确定了.这个顶点是由主视图和侧视图的上顶点确定的,确定这个点是关键.第一步,我们取三个视图的长、宽、高分别为长、宽、高做出一个长方体,本题画出的正好是一个正方体,如图1所示.图1 图2 图3第二步:把主视图放到立方体正对着我们的这个面上,如图2所示.主视图的上顶点为图2中的顶点A,但该点不一定是锥体的顶点,由于主视图是由正前方看过去的,所以锥体的顶点应该在直线AA1上;再把侧视图放到立方体的右侧面上,如图3所示(注意侧视图是从左往右看的,不要画反了哦)侧视图的上顶点为图3中的顶点B,同理,锥体的顶点应该在直线AB上.所以直线AA1与直线AB的交点A即为锥体的顶点.第三步:将俯视图画在立方体中,由确定的底面和顶点,连接顶点与底面的各个顶点,锥体就确定了,如下图所示.直观图还原完成.步骤:1.三视图中有两个视图为三角形,确定该几何体为锥体,剩下的视图为该锥体的底面.2.将主视图和侧视图画在对应的立方体中,根据各自上顶点的投影线找其交点,确定锥体的顶点.3.俯视图作为底面,连接各顶点,锥体便还原出来了.方法:两个三角形→锥体.1、确定底面;2、确定顶点(主、侧视图上顶点的投影线交点).3、各顶点连线.【变式训练】三视图如图所示,还原几何体的主观图.【提示】将侧视图作为锥体的底面,利用主视图和俯视图寻找顶点即可.【答案】如下图所示.2.台体的三视图还原台的特点是三视图中有两个梯形,剩下的视图作为台的下底面,还原时找上底面是关键。
三视图还原口诀
三视图还原口诀
三视图还原口诀如下:1、长对正:主视图与俯视图的长对正。
2、高平齐:主视图与左视图的高平齐。
3、宽相等:俯视图与左视图的宽必须相等。
三视图是观测者从上面、左面、正面三个不同角度观察同一个空间几何体而画出的图形。
三视图是哪三视
三视图是主视图,俯视图,左视图三个基本视图。
能够正确反映物体长、宽、高尺寸的正投影工程图(主视图,俯视图,左视图三个基本视图)为三视图,这是工程界一种对物体几何形状约定俗成的抽象表达方式。
三视图是观测者从上面、左面、正面三个不同角度观察同一个空间几何体而画出的图形。
将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来的图形称为视图。
三视图还原几何体常见类型的解题方法突破
三视图还原几何体常见类型的解题方法突破摘要:三视图作为高考中常考重点内容,其核心在于三视图还原几何体的直观图,便于学生更好的理解和突破此类型题,本文归纳和总结常见类型的三种解题方法:先猜后证,切割法和标数定点法。
其中标数定点法能够更容易让学生理解和掌握,让学生解题有法,有迹可循。
同时培养学生的空间想象力和逻辑思维能力,决胜高考。
关键词:三视图几何体切割法标数定点法空间想象力在近几年的高考中,三视图作为一个必考的考点,常见题型不外乎利用三视图求直观图的体积或表面积问题,其核心在于由三视图还原直观图(几何体),而这也恰恰是我们学生解决这类题型的困难之处。
因此,由三视图还原出几何体是我们这块内容的教学重难点,如何让学生更好的理解三视图,掌握简便易懂的还原方法和技巧,一直是我们教师致力研究的内容。
本文将对三视图还原几何体的常见方法进行归纳和总结,以便学生能够“知其型,思其法,掌其巧”,让学生在解答这类型问题时有迹可循,同时为学生培养空间想象力和逻辑思维能力打下坚实的基础。
1、由三视图还原简单组合几何体简单组合体主要是通过两种形式得到,一是由简单几何体拼接而成;二是由简单几何体截取或挖去一部分而成。
因此,简单组合体的三视图通常都是显得多样化、不规则。
其实此类三视图题型也是相对来说是比较容易还原几何体的。
常用的类型与方法:(1)三视图为多个多边形或圆(半圆)组合而成的,通常都是拼接类简单组合体。
我们可以采用先猜想,后验证的方法解决,只要熟悉生活中常见的空间几何体,例如圆柱、圆锥、正方体、长方体、球等,通过简单的空间想象力即可解决;(2)三视图为四边形内有虚实线,通常都是截取或挖去一部分的简单组合体。
这种类型题,通常采用“切割法”还原直观图。
其核心在于寻找切痕,“实线”定正面(即为前、上、左面),“虚线”定背面;关键在于确定切面,即三条相交的切痕形成的平面;最后还需检验。
例1:一个几何体的三视图如图所示,则该几何体的体积是解析:据三视图的长、宽、高画出正方体的直观图,由正视图可以得到两条切痕,实线在正面,虚线在背面(如图1所示);再由俯视图可以得到两条切痕,实线在正面,虚线在背面(如图2所示);再由侧视图可以得到两条切痕,实线在正面,虚线在背面(如图3所示),因此平面和平面就是切割面,即该几何体是由一个边长为2的正方体被切去了两个角(三棱锥)得到(如图4所示),所以该几何体的体积为.2、由三视图还原简单几何体三棱锥、四棱锥类型简单几何体的三视图还原直观图,一直都是三视图中的重难点,也是学生最难理解和掌握的题型,下面将总结出“有理可据,有法可循”的方法——标数定点法,破解此类三视图问题,借以帮助学生更好的备战高考。
三视图复原技巧
当物体某部分被其他部分遮挡时,需要在视图中进行相应的处理,如使用虚线表示被遮挡部分的轮廓。
处理遮挡关系
在复原三视图时,应注意细节部分的处理,如倒角、圆角、螺纹等。这些细节部分对于准确表达物体形状至关重要。
注意细节处理
在三视图中,各视图之间的比例关系应保持以确定长方体的宽度。
根据三个视图的信息,可以绘制出长方体的三维图。
主视图通常显示圆柱体的一个端面,呈现为一个圆。通过主视图可以确定圆的直径。
确定主视图
确定俯视图
确定左视图
绘制三维图
俯视图也显示圆柱体的上面,呈现为一个圆。这个圆应该与主视图的圆大小和位置一致。
左视图显示圆柱体的侧面,呈现为一个矩形。矩形的长度应该等于圆的直径,高度等于圆柱体的高度。
主视图
从物体的正面看去的视图,反映物体的主要形状和特征。
俯视图
从物体的上面看去的视图,反映物体的水平投影和上下位置关系。
左视图
从物体的左侧看去的视图,反映物体的左侧形状和左右位置关系。
02
CHAPTER
三视图复原步骤
仔细分析三视图中的每一个视图,理解其表达的空间形状和位置关系。
注意视图中的图线、符号等细节信息,特别是虚线和实线的含义。
根据三个视图的信息,可以绘制出圆柱体的三维图。
确定主视图
主视图通常显示圆锥体的一个侧面,呈现为一个等腰三角形。通过主视图可以确定圆锥体的高度和底面的直径。
确定俯视图
俯视图显示圆锥体的底面,呈现为一个圆。这个圆应该与主视图中三角形的底边大小和位置一致。
确定左视图
左视图也显示圆锥体的一个侧面,呈现为一个直角三角形。直角三角形的直角边应该等于圆的直径,斜边等于圆锥体的母线长。
(经典)高考数学三视图还原方法归纳
高考数学三视图还原方法归纳方法一:还原三步曲核心内容:三视图的长度特征——“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。
还原三步骤:(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示(1)将如图所示的三视图还原成几何体。
还原步骤:①依据俯视图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不可能有垂直拉升的线条,而在E处必有垂直拉升的线条ES,由正视图和侧视图中高度,确定点S的位置;如图③将点S与点ABCD分别连接,隐去所有的辅助线条,便可得到还原的几何体S-ABCD如图所示:经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm³。
解答:(24)例题2:一个多面体的三视图如图所示,则该多面体的表面积为()答案:21+3计算过程:步骤如下:第一步:在正方体底面初绘制ABCDEFMN 如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点E 、F 、M 、N 处不可能有垂直拉升的线条,而在点A 、B 、C 、D 处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点''''',,,,,F E D B G G 地位置如图;第三步:由三视图中线条的虚实,将点G 与点E 、F 分别连接,将'G 与点'E 、'F 分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
例题3:如图所示,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是( )答案:(6)还原图形方法一:若由主视图引发,具体步骤如下:(1)依据主视图,在长方体后侧面初绘ABCM如图:(2)依据俯视图和左视图中显示的垂直关系,判断出在节点A、B、C出不可能有垂直向前拉升的线条,而在M出必有垂直向前拉升的线条MD,由俯视图和侧视图中长度,确定点D的位置如图:(3)将点D与A、B、C分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图所示:解:置于棱长为4个单位的正方体中研究,该几何体为四面体D—ABC,且AB=BC=4,2,可得DA=6.故最长的棱长为6.AC=24,DB=DC=5方法2若由左视图引发,具体步骤如下:(1)依据左视图,在长方体右侧面初绘BCD如图:(2)依据正视图和俯视图中显示的垂直关系,判断出在节点C、D处不可能有垂直向前拉升的线条,而在B处,必有垂直向左拉升的线条BA,由俯视图和左视图的长度,确定点A的位置,如图:(3)将点A与点B、C、D分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图:方法3:由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个正方体做载体还原:(1)根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,用红线表示。
汇总三视图还原方法及练习题.pptx
.精品课件.
17
5、典型例题
.精品课件.
18
.精品课件.
19
.精品课件.
20
.精品课件.
21
.精品课件.
22
.精品课件.
23
.精品课件.
24
.精品课件.
25
无论哪一种方法,还原几何体时都必须时刻 谨记:
1. 实线是直接能看到的线,虚线是不能直接 看见的线;
2. 三视图对应几何体的方向是确定的;
(3)切割式组合体三视图还原的题目类型灵活易 变问题集中于两方面;第一、该组合体是由哪种简 单几何体切割形成的;第二,三视图中轮廓线内部 的实线和虚线在原来的几何体中是怎样切割形成的。
.精品课件.
3
① 牢记 三视图对应的方向
.精品课件.
4
② 分析出几何体的类型(先分析是简单 几何图还是组合体)
a) 定性:两尖为锥体,两平行四边形为 柱体,两梯形为台体
A.10 B.12 C.14 D.16
.精品课件.
8
对一些多面体的还原,往往可以借 助一个长方体或者正方体来帮助我们解 题,而往往在借助长方体正方体的时候 也是有一定技巧的! ① 画长方体 ② 排除点
③ 连线(注意结合三视图,尤其注意 三视图中有虚线的情况)
.精品课件.
9
(2)(2017·北京高考)某四棱锥的三视图如图所示,则该四 棱锥的最长棱的长度为( )
.精品课件.
12
① 画长方体或正方体 ② 根据主视图画出点所在直线 ③ 根据侧视图画点所在直线 ④ 根据俯视图画点所在直线 ⑤ 找出三线交点,结合三视图还原几何体 注意:直线用不同颜色 ;
三视图中有虚线时,若出现多顶情况,需 要观察三视图,确定几何体顶点,再连线, 便可准确画图。
专题01 关于三视图还原几何体的深度剖析与秒杀(解析版)
专题01关于三视图还原几何体的深度剖析与秒杀
一标准几何体还原
标准几何体还原口诀
1.如果一个几何体的三视图中有两个视图是矩形,那么这个几何体是直棱柱或圆柱;
2.如果一个几何体的三视图是两个平行四边形+一个交错结构,那么这个几何体是斜棱柱;
3.如果一个几何体的三视图中有两个视图是三角形,那么这个几何体是锥体;
4.如果一个几何体的三视图是两个梯形+一个位似结构,那么这个几何体是棱台;
5.三圆得球.
【例题选讲】
[例1]下图是一些标准几何体的三视图,写出其直观图的名称.。
高考数学中三视图还原空间几何体的解题技巧
高考数学中三视图还原空间几何体的解题技巧考纲解读与命题趋势探究空间立体几何的三视图是高中数学新课程的新增内容之一,也是近几年全国各地高考的热点内容,考纲不仅要求学生掌握『画空间几何体的三视图』还要求掌握它的逆过程,前者比较容易掌握,后者对空间想象力较弱的同学来说往往无从下手,特别是复杂一点的问题更是怎么也想象不出来。
Mr.Yang总结了一个简单可行的方法,虽不能解决所有三视图还原的问题,但对高中阶段的大部分问题都可解决,这里呈现出来,以期抛砖引玉,也请同行斧正。
一、简单几何体的三视图还原规律复杂的几何体是由简单几何体组合而成的,简单几何的分类:柱体(圆柱和棱柱);椎体(圆锥和棱锥);台体(圆台和棱台);球体.要掌握复杂几何体的三视图还原,先要搞清楚简单几何体的三视图还原规律,一般情况下简单几何体的三视图还原有如下规律:1. 三视图中如果其中两个视图是矩形(不要管内部的细节,只要外轮廓线为矩形就称该视图为矩形)那么该空间几何体为柱体.当第三个试图为圆时,该空间几何体为圆柱,否则为棱柱.2. 三视图中如果其中两个视图是三角形(不要管内部的细节,只要外轮廓线为矩形就称该视图为三角形)那么该空间几何体为锥体,当第三个试图为圆时,该空间几何体为圆锥,否则为棱锥.3. 三视图中如果其中两个视图是梯形(不要管内部的细节,只要外轮廓线为矩形就称该视图为梯形)那么该空间几何体为台体.当第三个试图两个同心圆时,该空间几何体为圆台,否则为棱台.球体的三视图很简单,这里就不加论述.以上规律简单好记,按照以上规律解决简单的三视图还原都不在话下,下面举例说明.例1:(2013年全国高考陕西卷理科试题)若某空间几何体的三视图如下,求其体积 .例2:(2012年全国高考江西卷理科试题)若某空间几何体的三视图如下,求其体积()例3:(2014年全国高辽宁卷理科试题)若某空间几何体的三视图如下求其体积()二、叠加式组合体的三视图还原方法组合体的组合形式可分为三种:叠加式、切割式、综合式.切割式与综合式在高中阶段见到的不是很多,这里只对高中阶段出现较多的叠加式组合体的三视图还原方法进行论述.既然组合体是由简单几何体组合而成的,那么就可以“化整为零”,把组合体的三视图划分为一个个简单几何体的三视图,再分别根据这些简单几何体的三视图按照上面论述的简单几何体三视图的还原规律把它们还原成简单几何体,再“积零为整',把这些简单几何体组合在一起就得了组合体的三视图.这样就将复杂的三视图问题转化成最基本的简单几何体的三视图还原问题来解决了,大大降低了对空间想象能力的要求,这一方法的难点在于如何把组合体的三视图划分为一个个简单几何体的三试图,该方法的具体过程如下:1. 分线框.一般从主视图入手,将主视图划分成一个个线框(一般是封闭的线框,但有时也可不完全封闭),这些线框就是组成组合体的一个个简单几何体的主视图.2. 对投影.在俯视图和左视图上把主视图中每个线框对应的投影找出来,主要是根据“长对正,高平齐,宽相等”和'三视图所反映的组合体各部分的方位”来找.3. 识形体.根据每一部分的三视图,逐个想象出每一部分所对应的几何体4. 合起来,想整体. 每一部分的形状确定后,再根据各部分的相对位置关系组合成整个组合体的形状.下面看该方法在高考题中的运用.例4 :(2015年全国高考天津卷试题)一个几何体的三视图如图4所示,则该几何体的体积为 .解析:如图4所示,第一步:分线框. 将主视图分为上面一个直角梯形与下面一个矩形两个线框.第二步:对投影. 这里只须用长对正,高平齐就可找到相对应的投影,如图5和图6中的加粗部分相对应.第三步:识形体. 由简单几何体三视图的还原规律知图5中加粗的三个视图对应的几何体为底面为直角梯形的直四棱柱. 图6中加粗的三个视图对应的几何体为长方体.第四步:合起来,想整体.由主视图知该组合体是一个底面为直角梯形的直四棱柱叠放在一个长方体上面组合而成的,如图7所示,进一步易求几何体体积为30.如果不用此方法,此题对很多同学来说都是一道较难想象的题,但用了以上方法后就可以化整为零,化难为易,将复杂的三视图还原问题转化为基本的简单几何体的三视图还原问题,大大降低了难度.例5 :(2015年全国高考山东卷试题)一个几何体的三视图如下图所示,则该几何体的体积为 .解析:如图下所示,第一步:分线框. 将主视图分为上面一个等腰三角形,下面一个正方形两个线框.第二步:对投影. 利用高平齐知主视图中的三角形与左视图中的三角形相对应,主视图中的正方形与左视图中的正方形相对应,利用长对正知主视图中的三角形与俯视图中的圆和正方形都是对正的,那到底哪一个与它相对应呢?这还要结合三视图所反应的各部分的方位来判断. 主视图中三角形在上,正方形在下,这说明原几何体中三角形所对应的简单几何体在正方形所对应的简单几何体的上面.在俯视图中正方形在圆的里面而且是用实线画的,所以俯视图中正方形所对应的简单几何体在圆所对应的简单几何体的上面.因此主视图中的三角形与俯视图中的正方形相对应,主视图中的正方形与俯视图中的圆相对应,第三步:识形体.由简单几何体三视图的还原规律知两部分所对应的几何体分别为正四棱锥和圆柱. 第四步,合起来想整体,由主视图知该组合体是上面一个正四棱锥下面一个圆柱组合而成的.进一步易求答案为C.。
(经典)高考数学三视图还原方法归纳
高考数学三视图还原方法归纳方法一:还原三步曲核心容:三视图的长度特征——“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。
还原三步骤:(1)先画体或长方体,在体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示(1)将如图所示的三视图还原成几何体。
还原步骤:①依据俯视图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不可能有垂直拉升的线条,而在E处必有垂直拉升的线条ES,由正视图和侧视图中高度,确定点S的位置;如图③将点S与点ABCD分别连接,隐去所有的辅助线条,便可得到还原的几何体S-ABCD如图所示:经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm³。
解答:(24)例题2:一个多面体的三视图如图所示,则该多面体的表面积为()答案:21+3计算过程:步骤如下:第一步:在体底面初绘制ABCDEFMN 如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点E 、F 、M 、N 处不可能有垂直拉升的线条,而在点A 、B 、C 、D 处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点''''',,,,,F E D B G G 地位置如图;第三步:由三视图中线条的虚实,将点G 与点E 、F 分别连接,将'G 与点'E 、'F 分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
例题3:如图所示,网格纸上小形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是( )答案:(6)还原图形方法一:若由主视图引发,具体步骤如下:(1)依据主视图,在长方体后侧面初绘ABCM如图:(2)依据俯视图和左视图中显示的垂直关系,判断出在节点A、B、C出不可能有垂直向前拉升的线条,而在M出必有垂直向前拉升的线条MD,由俯视图和侧视图中长度,确定点D的位置如图:(3)将点D与A、B、C分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图所示:2,解:置于棱长为4个单位的体中研究,该几何体为四面体D—ABC,且AB=BC=4,AC=24,DB=DC=5可得DA=6.故最长的棱长为6.方法2若由左视图引发,具体步骤如下:(1)依据左视图,在长方体右侧面初绘BCD如图:(2)依据正视图和俯视图中显示的垂直关系,判断出在节点C、D处不可能有垂直向前拉升的线条,而在B处,必有垂直向左拉升的线条BA,由俯视图和左视图的长度,确定点A的位置,如图:(3)将点A与点B、C、D分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图:方法3:由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个体做载体还原:(1)根据正视图,在体中画出正视图上的四个顶点的原象所在的线段,用红线表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学三视图还原方法归纳
方法一:还原三步曲 核心内容:
三视图的长度特征——“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。
还原三步骤:
(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;
(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;
(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示
(1)将如图所示的三视图还原成几何体。
还原步骤:
①依据俯视图,在长方体地面初绘ABCDE 如图;
②依据正视图和左视图中显示的垂直关系,判断出在节点A 、B 、C 、D 处不可能有垂直拉升的线条,而在E 处必有垂直拉升的线条ES ,由正视图和侧视图中高度,确定点S 的位置;如图
③将点S 与点ABCD 分别连接,隐去所有的辅助线条,便可得到还原的几何体S-ABCD 如图所示:
经典题型:
例题1:若某几何体的三视图,如图所示,则此几何体的体积等于( )cm ³。
解答:(24)
例题2:一个多面体的三视图如图所示,则该多面体的表面积为( )
答案:21+3计算过程:
步骤如下:
第一步:在正方体底面初绘制ABCDEFMN 如图;
第二步:依据正视图和左视图中显示的垂直关系,判断出节点E 、F 、M 、N 处不可能有垂直拉升的线条,而在点A 、B 、C 、D 处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点''''',,,,,F E D B G G 地位置如图;
第三步:由三视图中线条的虚实,将点G 与点E 、F 分别连接,将'G 与点'E 、'F 分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
例题3:如图所示,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是( )
答案:(6)
还原图形方法一:
若由主视图引发,具体步骤如下:
(1)依据主视图,在长方体后侧面初绘ABCM 如图:
(2)依据俯视图和左视图中显示的垂直关系,判断出在节点A 、B 、C 出不可能有垂直向前拉升的线条,而在M 出必有垂直向前拉升的线条MD ,由俯视图和侧视图中长度,确定点D 的位置如图:
(3)将点D 与A 、B 、C 分别连接,隐去所有的辅助线条便可得到还原的几何体D —ABC 如图所示:
解:置于棱长为4个单位的正方体中研究,该几何体为四面体D —ABC ,且AB=BC=4,AC=24,DB=DC=52,可得DA=6.故最长的棱长为6. 方法2
若由左视图引发,具体步骤如下:
(1)依据左视图,在长方体右侧面初绘BCD 如图:
(2)依据正视图和俯视图中显示的垂直关系,判断出在节点C 、D 处不可能有垂直向前拉升的线条,而在B 处,必有垂直向左拉升的线条BA ,由俯视图和左视图的长度,确定点A 的位置,如图:
(3)将点A 与点B 、C 、D 分别连接,隐去所有的辅助线条便可得到还原的几何体D —ABC 如图:
方法3:
由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个正方体做载体还原:
(1)根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,用红线表示。
如图,也就是说正视图的四个顶点必定是由原图中红线上的点投影而成;
(2)左视图有三个顶点,画出它们的原象所在的线段,用蓝线表示,如图;
(3)俯视图有三个顶点,画出它们的原象所在的线段,用绿线表示,如图;
(4)三种颜色的公共点(一定要三种颜色公共交点)即为几何体的顶点,连接各顶点即为原几何体,如图。
然后计算出最长的棱。
课后习题:
1、某四棱台的三视图如图所示,则该四棱台的体积是( ) B.
314 C.3
16
答案:B
2、某几何体的三视图,如图所示,则此几何体的表面积是( )cm ²
A. 90
B. 129
C. 132 答案:D
方法二:利用空间几何坐标系法
由三视图复原成几何体,一般采用下面的步骤:
第一步:把俯视图用斜二侧画法画出来,并画出z 轴;
第二步:让左视图与xoz 面平行,下底边与俯视图对应边重合,沿y 轴滑动(或让主视图与yoz 面平行,下底边与俯视图对应边重合,沿x 轴滑动),放在合适的位置上。
俯视图
主视图
主视左视
俯
视
第三步:让主视图与yoz 面平行,下底边与俯视图对应边重合,沿x 轴滑动,(或让左视图与xoz 面平行,下底边与俯视图对应边重合),沿y 轴滑动放在合适的位置上。
通过上面三个步骤,就可以画出或判断出是什么几何体了。
方法三:找规律法
1 简单几何体的三视图还原规律
“万变不离其宗”,要掌握组合体的三视图还原首先就要搞清楚简单几何体的三视图还原规律,简单几何体主要包括柱体(圆柱、棱柱)、锥体(圆锥、棱锥)、台体(圆台、棱台)、球体。
它们的三视图还原规律如下:
x
(1)三视图中如果有两个识图是矩形,那么该几何体为柱体。
若第三个视图是圆形,该几何体为圆柱,否则为棱柱。
(2)三视图中如果有两个视图是三角形,那么该几何体为锥体。
若第三个视图是圆形,则该几何体为圆锥,否则为棱锥。
(3)三视图中如果有两个视图是梯形,那么该几何体为台体,若第三个视图是圆形,则该几何体为圆台,否则为棱台。
球体的三视图都是圆形,最容易识别。
根据
以上规律,可以快速地还原简单几何体的三视图。
2 简单组合体的三视图还原方法
简单组合体有两种基本的组成形式;(1)将简单几何体拼接成组合体,称为叠加式;(2)从简单几何体中切掉或挖掉部分构成的组合体,称为切割式。
叠加式的组合体可以采用“化整为零”的方法,把组合体的三视图划分成一个个简单几何体的三视图,按照上面所说的“简单几何体三视图的还原规律”把它们还原成简单几何体,再组合在一起,就得到了组合体的三视图,该方法对于学生来说容易理解和掌握,在此就不举例说明了。
具体过程如下:
首先要确定是由哪种简单几何体切割形成的
“万变不离其宗”,我们仍然可以沿用简单几何体三视图还原规律来确定。
但需要注意的是,关注三视图的外轮廓线即可,其内部细节暂时不要细究。
有时可适当将切割体的三视图补成我们熟悉的简单几何体三视图形式。
其次:对照三视图,在确定好的简单几何体上确定好切割的切入点,以及线和面这一步骤中涉及到对应的点,线,面是从哪里切,如何切得问题,我们可以通过三视图的绘制方法逆向来推理。
在三视图中可见的轮廓线画实线,看不见得轮廓线画虚线。
根据这一特征进行逆向思维,三视图还原成实物图是,实线应当是正面可看到的,若是切割的话也应当是从正面切出来的,虚线意味着是从背面切出来的。
归结于
一句话“实线当面切,虚线背后切”。
最后,切完后,个对照三视图进行检验,下面举例说明该方法在高考题中的运用 例1已知某几何体的三视图(单位:cm )如图1所示,则该几何体的体积是( ) A .1083cm 3cm 3cm 3cm
分析:第一步:根据三视图可确定该几何体是由长方体切割形成。
第二步:画出长方体1111ABCD A
B C D -。
主视图内部有一条自上方到左下方的实线。
长方体中主视图对应面11ABB A ,据此在长方体中,从线段1AB 、1AA 上选取E ,F 两点,满足数量4AF =,
4AE =,并连接EF 。
左视图对应面11AA D D ,左视图内部自左顶点到右下方的实线对应
长方体中的线段DE 。
同理,俯视图内部的实线对应长方体中的线段DF 。
线段DE ,DF ,EF 确定面DEF.故该几何体是由长方体切割掉一个三棱锥而成。
第三步:该几何体体积为:31
166334410032
cm ⨯⨯-⨯⨯⨯⨯=,答案:B。
例2某几何体的三视图如图3所示,则该几何体的体积为( ) 1B
1A
1C
D
分析:第一步,三视图中有一个矩形一个直角梯形和一个直角三角形,没有简单几何体与之对应。
我们知道切割体是由简单几何体变化而来,两者之间的三视图具有某种关系,故我们可以先把直角梯形补成矩形,从而与直三棱柱的三视图对应 。
第二步:作出直三棱柱111ABC A B C -。
由正视图在线段1BB 上选取点D ,满足2BD =,并连接1A D 。
左视图内部自左顶点到右下方有一条虚线,虚线是从左方正投影看不到的边界线,故此条线一定不在左视图的对应面11AAC C 上,必在面11BB C C 上,即为线段1C D 。
此时可确定切割面即为面11AC D 。
故该几何体是由直三棱柱切割掉一个三棱锥而成。
第三步:该几何体体积为:1
1143533424232
⨯⨯⨯-⨯⨯⨯⨯=。
答案:C 。
1B
1A
1C。