小学奥数方阵问题专题训练(含答案)

合集下载

【奥数专项】人教版小学数学奥数思维拓展四年级上册方阵问题(试题)含答案与解析

【奥数专项】人教版小学数学奥数思维拓展四年级上册方阵问题(试题)含答案与解析

奥数专项——方阵问题(试题)一.选择题(共8小题)1.在一个正方形花坛四周种树,每边种5棵(四个顶点也要种),一共要种()棵.A.20B.28C.16D.152.一个方阵每边站20人,(四个顶点都有人),那么这个方阵一共有()人.A.400B.76C.361D.803.一个方阵共有49人,那么这个方阵最外层有()A.28人B.24人C.30人D.36人4.用花盆摆一个方阵,最外层共有60盆花,方阵最外层每边有()盆花.A.14B.13C.15D.165.同学们围成一个正方形做游戏,每边站20人,四个顶点都有人,最外圈一共有()人.A.72B.76C.806.学校要美化校园,要在正方形水池四周摆花,四个角都摆一盆,每边都摆5盆,那么一共要准备()盆花.A.16B.20C.24D.267.同学们做操,站成7行,每行6人,现在要求站成方队,最少要去掉()人.A.5B.6C.78.在一个正方形的操场上四周植树,要求4个角各植1棵,每边都植12棵,一共要植树()棵.A.40B.44C.48二.填空题(共7小题)9.为美化校园,同学们在学校正方形花圃四周摆放菊花,如果每边摆5盆,至少要准备盆。

10.团体操方阵表演,最外层每边15人,最外层一共有人,这个方阵一共有人。

11.小芳用黑棋在围棋盘的左上方和右下方各摆了一个方阵,每个方阵每行摆5粒,摆5行,再在每个方阵的最外面摆一圈白棋。

白棋一共摆了粒,黑棋一共摆了粒。

12.儿童节前夕,学校后勤人员在童话广场用盆花摆出了一个8×8的方阵,外三层用的是蝴蝶兰,里面用的是大叶海棠.蝴蝶兰要准备盆,大叶海棠要准备盆.13.运动会开幕式上,“花环”队同学在操场上排成方队表演,每行7人,有7行,“花环”方队最外边一圈有人。

14.同学们排成一个正方形方阵,这个方阵的最外层每边都有10人,最外层一共有人。

15.四年级同学举行队列表演,共组成8个方队。

每个方队排成5行,每行5人。

三年奥数 植树与方阵问题 有答案

三年奥数 植树与方阵问题 有答案

植树与方阵问题一、植树问题要想了解植树中的数学并学会怎样解决植树问题,首先要牢记三要素:①总路线长.②间距(棵距)长.③棵数.只要知道这三个要素中任意两个要素.就可以求出第三个。

关于植树的路线,有封闭与不封闭两种路线。

1.不封闭路线例:如图间距总长①若题目中要求在植树的线路两端都植树,则棵数比段数多1.如上图把总长平均分成5段,但植树棵数是6棵。

全长、棵数、株距三者之间的关系是:棵数=段数+1=全长÷株距+1全长=株距×(棵数-1)株距=全长÷(棵数-1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距×棵数;棵数=全长÷株距;株距=全长÷棵数。

③如果植树路线的两端都不植树,则棵数就比②中还少1棵。

株距全长棵数=段数-1=全长÷株距-1.如上图所示.段数为5段,植树棵数为4棵。

株距=全长÷(棵数+1)。

2.封闭的植树路线棵数=段数=周长÷株距.二、方阵问题学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。

方阵的基本特点是:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2。

②每边人(或物)数和四周人(或物)数的关系:四周人(或物)数=[每边人(或物)数-1]×4;每边人(或物)数=四周人(或物)数÷4+1。

③中实方阵总人(或物)数=每边人(或物)数×每边人(或物)数。

例1有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆,可栽多少根电线杆?分析要以两棵电线杆之间的距离作为分段标准.公路全长可分成若干段.由于公路的两端都要求栽杆,所以电线杆的根数比分成的段数多1。

解:以10米为一段,公路全长可以分成900÷10=90(段)共需电线杆根数:90+1=91(根)答:可栽电线杆91根。

奥数方阵问题

奥数方阵问题
1、育才小学三年级原准备排成一个正方形队列参加表演 广播操表演,每行6人,每列也是6人,问四年级多少人参 加表演? 6×6=36(人) 2、育才小学三年级(1)班做早操排成一个长方形队列, 每行4人,每列有12人,问三年级(1)班有多少人?
4×12=48(人)
3、育才小学三年级(2)班做团体操表演排成一个正方形 队列,每行7人,问三年级(2)班有多少人?
最外层人数:(13-1)×4=48(人) 第二层人数:(13 - 2- 1)×4=40(人)
48+40=88(人 )
实心方阵人数=每边人数×每边人数
6×6=36
(8-3)×3×4 =5×3×4 =15×4 =60
中空方阵总人数=(外层每边人数-层数)×层数×4
聪聪用棋子摆空心方阵,最外面一 层每排摆12个,共摆了3层,一共用 了多少个棋子?
第四讲 方阵问题
多个方阵图形
多个方阵组成
长方形方阵
实心方阵
例1、光明小学四年级原准备排成一个正方 形队列参加广播操表演,每行10人每列也是10 人,问四年级多少人参加表演 ?
分析:用图分析。
10×10=100(人)
答:这个方阵一共有100人。
实心方阵人数=每边人数×每边人数
练习
某部队排成方阵行军,另 一支部队17人加入他们的方 阵后,正好使这个方阵横竖 各增加一行,现在共有多少 人?
每边人数:(17+1)÷2=9(人) 总人数: 9×9=81(人)
游行队伍中,手持气球的少先队员 在周围的少先 队员有多少人?
24 ÷4=6(颗) √ 24 ÷4+1=7(颗)
哪种方法对?
最外层棋子数÷4+1=每边棋子数
练习: 小明在一个正方形的棋盘里摆棋子。 他最先把最外层摆满,用了36个棋子。 求最外层有多少个棋子?如果全部摆满 共需要多少棋子?

四年级下册数学奥数练习-第四讲方阵问题 全国通用(含答案)

四年级下册数学奥数练习-第四讲方阵问题 全国通用(含答案)

第四讲方阵问题[同步巩固演练]1、121人排成一个实心方阵,这个方阵每边多少人?2、每边站13人,可以排成一个共有多少人的实心方阵?3、一个正方形花坛,原来放了一些花,组成一个实心方阵,后来又运来21盆花添上去,使每行、每列各增加一排,成了一个大一点的实心方阵,问原来放了多少盆花?4、给一个方形建筑物插彩旗,每边插了7面彩旗,共插了多少面彩旗?5、用棋子排成一个二层空心方阵,里层每边6个棋子,求这个空心方阵的棋子总数。

6、用棋子摆成一个三层空心方阵,中间一层每边棋子数为9个,求一共用了多少个棋子。

[能力拓展平台]1、有若干枚棋子,若排成三层空心方阵,则多出5枚;若中空增加一层,则少11枚。

这堆棋子共有多少枚?2、同学们用小红花排成一个四层空心方阵,最外层每边12朵,共有红花多少朵?3、街心雕塑四周用432盆鲜花摆成了一个六层空心方阵,最内层共有多少盆鲜花?4、64名同学在游行彩车的四周排成了一个二层空心方阵,若外面再增加一层,还需要多少名同学?4、用一堆棋子摆成空心方阵,最外层共有棋子52枚,最内层共有棋子28枚。

这堆棋子共有多少枚?5、用一堆棋子摆成一个五层空心方阵,最内层每边12枚,求这堆棋子的总数。

[全讲综合训练]1、军训的学生进行队列表演,排成了一个7行7列的正方形队伍,如果去掉一行一列,要去掉多少人?还剩下多少人?2、幼儿园小朋友在教师的指导下,把棋子排成3个正方形方阵,如果在这个方阵中去掉横、竖各一排,则这个方阵少了13枚棋子,那么这个方阵共有多少枚棋子?3、在一次活动中,老师把学生组成一个正方形方队,其中有两行、两列都是男生,男生共有84人,其余是女生,问参加组成这个方队的学生共有多少人?4、在一块正方形草地四周种树,四个角上都种一棵,每边种13棵,这块草地四周共种多少棵?5、军训师生进行队伍表演,排成一个正方形队列,如果这个队列横、竖再增加一排,还需要补充15人,问原来参加队列表演的师生有多少人?6、棋子若干枚,恰好可以排成每边9枚的方阵,棋子总数是多少?7、一堆一分硬币排成正方形,多余4枚,若正方形纵横两个方面各增加一层,则缺少9枚,问这堆硬币有多少枚?8、三年级广播操比赛时排成一个正方形方阵,后来因场地原因减少了一行一列共39人。

(完整)小学奥数之方阵问题—例题习题及含答案,推荐文档

(完整)小学奥数之方阵问题—例题习题及含答案,推荐文档

方阵问题知识导航学生排队,士兵列队,横着排叫做行,竖着排叫做列。

如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。

核心公式:一、实心方阵1.方阵总人数=最外层每边人数的平方(方阵问题的核心)=每边数×每边数2.方阵最外层每边人数=(方阵最外层总人数÷4)+13.方阵外一层每边人数比内一层每边人数多24.去掉一行、一列的总人数=去掉的每边人数×2-15、每层数=(每边数-1)×4二、空心方阵1、外边人数=总人数÷4÷层数+层数2、总数=最外层人数2 - 最内层人数2=(最外层每边数-层数)×层数×4=(最外层数+最内层数)×层数÷23、内层数=外层数-84、每层数=(每边数-1)×45、实心方阵的总人数是一个完全平方数,空心方阵的总人数是4的倍数。

例1 四年级同学参加广播操比赛,要排列成每行8人,共8行方阵。

排列这个方阵共需要多少名同学?解题分析这是一道实心方阵问题,求这个方阵里有多少名同学,就是求实心方阵中布点的总数。

排列成每行8人点,共8行,就是有8个8点。

求方阵里有多少名同学,就是求8个8人是多少人?解:8×8=64(人)答:排列这个方阵,共需要64名同学。

例2 有一堆棋子,刚好可以排成每边6只的正方形。

问棋子的总数是多少?最外层有多少只棋子?解题分析依题意可以知道:每边6只棋子的正方形,就是棋子每6只1排,一共有6排的实心方阵。

根据方阵问题应用题的解题规律,求实心方阵总数的数量关系,总人数=每边人数×每边人数,从而可以求出棋子的总数是多少只。

而最外层棋子数则等于每边棋子数减去1乘以行数4,即(6-1)×4只。

解:(1)棋子的总数是多少?6×6=36(只)(2)最外层有多少只棋子?(6-1)×4=20(只)答:棋子的总数是36只,最外层有20只棋子。

小学三年级奥数题方阵问题【三篇】

小学三年级奥数题方阵问题【三篇】

小学三年级奥数题方阵问题【三篇】
导读:本文小学三年级奥数题方阵问题【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇】练习题:某部队战士排成方阵行军,另一支队伍共17人加入他们的方阵,正好使横竖各增加一排,现共有多少战士?
答案与解析:
后来的战士加入方阵时,是在原方阵外侧横竖方向各增加一排,那么有一个战士要站在这两排的交界处,计算横排竖排的人数时,对他进行了重复计算,也就是说现在每一排实际人数是(17+1)÷2=9(人),因此可以求出总人数:9×9=81(人)。

【第二篇】习题:最新的三年级奥数题及答案:方阵问题:现有松树和柏树以隔株相间的种法,种成9行9列的方阵,问这个方阵最外层有松树和柏树各多少棵?方阵*有松树柏树各多少棵?
答案:最外层松柏各是:(9-1)×4÷2=16(棵)
共有松柏树是:(9×9+1)÷2=41(棵)
81-41=40(棵)
答:柏树41棵,松树40棵,或松树41棵,柏树40棵。

【第三篇】习题:六一儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方阵求最外面一层每边有鲜花多少盆?
答案:最外层每边人数=总数÷4÷层数+层数
204÷4÷3+3=20(盆)。

三年级奥数题及参考答案:方阵问题1

三年级奥数题及参考答案:方阵问题1
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。
三年级奥数题及参考答案:方阵问题1
一周的人数为20人,问方阵最外层每边的人数是多少?这个方阵共有多少人?
分析:根据四周人数与每边人数的关系可知:
每边人数=四周人数÷4+1,可以求出这个方阵最外层每边的人数,那么这个方阵队列的总人数就可以求了。
一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。解:(1)方阵最外层Байду номын сангаас边的人数:20÷4+1=5+1=6(人)

三年级下册数学试题-奥数方阵问题(练习含答案)全国通用

三年级下册数学试题-奥数方阵问题(练习含答案)全国通用

方阵问题【课前引入】学生排队,士兵列队,横着排叫做行,竖着排叫做列。

如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵。

方阵包括:空心方阵和实心方阵。

而实心方阵的每一层又可以单独看成一个空心方阵,因此空心方阵的规律对它也是适用的。

版块一例1小明养了一些花,他将这些花排成3行3列的方阵,后来小明又买了一些花,形成一个新的方阵,这样正好比原来的多2行2列,求小明后来买了多少盆花?拓展四年级一班同学参加了广播操比赛,排成每行8人,每列8人的方阵,问方阵中共有多少学生?如果去掉一行一列,还剩多少同学?例2同学们做操,小林站在左起第5列,右起第3列;从前数前面有4个同学,从后数后面有6个同学。

每行每列的人数同样多,做操的同学一共有多少人?拓展小美在一长方形的队伍里,她数了一下她左边有13人,右边有14人,前边有11人,后边有12人,请问你知道这队伍有多少人么?例3二年级舞蹈队为全校做健美操表演,组成一个正方形队列,后来由于表演的需要,又增加一行一列,增加的人数正好是17人,那么原来准备参加健美操表演的有多少人?拓展学生进行队列表演,排成了一个正方形队列,如果去掉一行一列,要去掉11人,问这个方阵共有多少人?版块二前铺最外层总数每层总数:(每边人数-1)×4(风车法)每边人数:每层总数÷4+1(风车法)例4某校三年级学生排成一个方阵,最外一层的人数为36人,问方阵外层每边有多少人?这个方阵共有三年级学生多少人?前埔每向里一层:每边少2,每层少8(单数层最中心1个,第二层8个,是特例)前埔在一次团体操表演中,有一个空心方阵最外层有60人,最内层有36人,参加团体操表演的共多少人?例5将120个棋子摆成一个3层空心方阵,最内层每边有多少枚棋子?拓展人民公园有一实心方阵花坛,最外两层有32盆花,求这个花坛共有多少盆花?求总数=(最外层每边-层数)×层数×4求最外层每边=总数÷4÷层数+层数例6李小姐想将原本8行8列的实心方阵花坛改成一个2层的空心方阵,求此空心方阵的最外层每边有多少盆花枚棋子?将一个最外层每边20枚棋子的2层空心方阵转换成一个6层空心方阵,求新的方阵最外层每边有多少枚棋子?版块三在一次运动会开幕式上,有一大一小2个方阵合并变换成一个10行10列的方阵,求原来这2个方阵各有多少人?测试题1.一群小猴排成整齐的队伍做操。

三年级小学奥数方阵问题【五篇】

三年级小学奥数方阵问题【五篇】

三年级小学奥数方阵问题【五篇】导读:本文三年级小学奥数方阵问题【五篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇:士兵方阵】习题:有一队士兵,排成了一个方阵,最外层一周共有240人,问这个方阵共有多少人?答案:(240÷4)-1=59(人)59×59=3481(人) 【第二篇:空心方阵】习题:某校少先队员可以排成一个四层空心方阵如果最外层每边有20个学生,问这个空心方阵最里边一周有多少个学生?这个四层空心方阵共有多少个学生?答案:(20-2×3-1)×4=42(个)(20-40×4×4=256(个) 【第三篇:鲜花方阵】习题:六一儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方阵求最外面一层每边有鲜花多少盆?答案:最外层每边人数=总数÷4÷层数+层数204÷4÷3+3=20(盆) 【第四篇:体操表演】习题:三年级(1)班的学生参加体操表演,排成队形正好是由每7个人为一边的6个三角形组成的一个正六边形,求正六边形一周共有多少名学生?三(1)班参加体操表演的共有多少人?答案:7×6-6=36(人)7×12-6×2-5=67(人) 【第五篇:松柏方阵】习题:最新的三年级奥数题及答案:方阵问题:现有松树和柏树以隔株相间的种法,种成9行9列的方阵,问这个方阵最外层有松树和柏树各多少棵?方阵*有松树柏树各多少棵?答案:最外层松柏各是:(9-1)×4÷2=16(棵)共有松柏树是:(9×9+1)÷2=41(棵)81-41=40(棵)答:柏树41棵,松树40棵,或松树41棵,柏树40棵。

四年级数学(上)奥数思维拓展《方阵问题》测试题(含答案)

四年级数学(上)奥数思维拓展《方阵问题》测试题(含答案)

四年级数学(上)奥数思维拓展《方阵问题》测试题(含答案)一.选择题(共8小题)1.希望小学进行体操比赛,五(2)班的同学站成6×6的方阵,这个方阵的最外层有()名同学。

A.20B.24C.162.用棋子在棋盘上摆放正方形,正方形的4条边上都要有4枚棋子,最少要用多少枚棋子?()A.12枚B.14枚C.16枚3.学校运动会开幕式上,彩旗方阵,横、竖每行都是8个学生,它的最外围有()个学生.A.32B.64C.28D.304.把12枚棋子均匀围成一个正方形,下面说法正确的是()A.每边3枚B.每边4枚C.每边5枚5.一队学生围成一个正方形,每边站了16人(四个顶点都有人),共有()名学生.A.68B.64C.606.一队学生围成一个正方形,每边站了12人(四个顶点都有人),共有()名学生。

A.44B.48C.52D.407.同学们在一个正方形的操场边围成一周,每边站10人,四个角各站一人,操场四周一共站了()人.A.40B.36C.328.在一个正方形场地四周植树,四个顶点各植1棵,这样每边各有24棵树,场地四周共植()棵树.A.96B.92C.88二.填空题(共6小题)9.五年级同学排成方阵做操,最外层每边站了10人,最外层一共有名同学,整个方阵一共有名学生.10.观察下列点阵,第10个点阵有个点,第24个点阵有个点.11.一个正方形的棋盘,一共放了24枚棋子(四个顶点都有一枚),每边放枚棋子.12.在一个正方形的每条边上摆4枚棋子,四条边上最多能摆枚,最少能摆枚.13.有一个正方形的池塘,四个角上都栽一棵树,如果每边栽9棵树,四边一共栽棵树.14.三(4)班排成每行人数相同的队伍入场参加校运动会,小聪的位置从前数是第6个,从后数是第5个,从左数,从右数都是第3个,三(4)班共有个同学.三.应用题(共7小题)15.曲妍把一些5角硬币均匀排列在一张正方形纸的四周(四个顶点处各放置一枚).每边的硬币枚数相等.这些硬币面值一共是12元.每边放置了几枚硬币?16.二年级同学参加合唱表演,现在有55个同学参加表演,至少增加几个同学就能排成正方形的队形?(简单的方阵问题)17.同学们排成第一层每边13人、第二层每边11人、第三层每边9人的中空方阵,求有多少名同学?18.学校运动会的开幕式上,小龙班上的同学组成了一个方阵.在方阵中,小龙的东、南、西、北四个方向各有3个人.你知道这个方阵有多少人吗?算一算吧!19.小刚在用棋子摆好的实心阵上又填了17枚棋子,使它的横竖各增加一排,成了大一点的实心方阵,求原来实心方阵有多少枚棋子?20.学校舞蹈队64人排成方阵,最外层的队员都要手持鲜花,一共要准备多少束鲜花?后来队形变换成长方形,每排16人,这时要准备多少束鲜花?21.刘叔叔在正方形鱼塘边上栽树,每边等距离栽树10棵(四个角都有栽树),每相邻两棵树之间相距5m.这个正方形鱼塘的周长是多少米?参考答案与试题解析一.选择题(共8小题)1.【解答】解:6×4﹣4=24﹣4=20(名)答:这个方阵的最外层有20名同学。

小学奥数-方阵问题专项练习30题(有答案)

小学奥数-方阵问题专项练习30题(有答案)

第四讲二方阵问题专项练习30 题(有答案)1.全校学生排成 5个方阵做操,每个方阵有 8行,每行有 10 人,5 个方阵一共有多少人?2.四年级共选 49 位同学参加校运会开幕式,他们排成一个方阵.这个方阵的最外层一共有多少人?3.一个实心体操方阵,最外层有72 人.这个体操方阵有多少人?4. 36 名学生在操场上做游戏.大家围成一个正方形,每边人数相等,四个顶点都有人.每边各有几名学生?5.四( 3)班同学排队做操,如果排 6 队,每队 6人,如果排 4 队,每队几人?6.有一队士兵,排成了一个实心方阵,最外层一周共有240 人,这个方阵最外层每边有多少人?7.小强用棋子排成了一个每边 11 枚的中空方阵,共 2 层,求这个方阵共用多少枚棋子?8.活动课上,小华用围棋摆了一个空心方阵,最外层每边有16 枚棋子,最内层每边有 10 枚棋子,这个空心方阵一共有多少枚围棋子?9.做广播体操时,某年级的学生站成一个实心方阵时(正方形队列)还多10人,如果站成一个每边多 1 人的实心方阵,则还缺少 15 人,求原来有多少人?10.“六一”儿童节,同学们在学校门口用花盆摆了一个正方形空心花坛,四个角各一盆,每边各放8盆花,那么请算算,四周放了________ 盆花.11.在正方形的广场四周装彩灯,四个角上都装一盏,每25 盏,问这个广场一共需装彩灯多少盏?边装12.设计一个团体操表演队形,想排成 6 层的中空方阵,已知参加表演的有 360 人,求最外层每边应安排多少人?13.在“情系玉树、赈灾义演”的活动中,春晖小学举行团体操表演.四年级同学排成一个方阵,最外层每边站了 16 名同学,最外层一共有多少名同学?整个方阵一共有多少名同学?14.学校组织一次团体操表演,把男生排列成一个实心方阵,又在这个实心方阵四周站一排女生.女生有72 人参加表演,男生有多少人?15.有 272 个棋子,想摆成 4 层空心方阵,最外层和最内层每边各放多少棋子?16.五( 3)班的同学排成一个方队做操,小明的前、后、左、右都有 7 人.五( 3)班有多少人?17.“六一”儿童节那天,学校举行团体操表演.四年级学生排成一个方阵,最外层每边站了13 个人,最外层一共有多少名学生?整个方阵一共有多少名学生?18.同学们排成方形队做操,无论从前数从后数,还是从左数,从右数,小平都是第4 个,共有多少人做操?19.一个正方形喷水池的边长为 6 米,四周有一条一米宽的小路,在小路靠着水池的一边每隔 1 米插一面红旗,四个顶点都要插;在小路的另一边每隔 1 米插一面黄旗,四个顶点处也要插.一共插多少面小旗?20.有一列方队,不管从前、后、左、右数,小聪都是在第四位,这列方队共有多少人?21.小朋友站成一个每边 10 人的方阵,若去掉一行一列,去掉多少人?还剩多少人?22.用 24 枚棋子围一个一层的正方形空心方阵,每边应放几枚棋子?(画图思考)23.有一队同学排成一个中心空的方阵,最外层是 52 人,最内层是 28 人,这队学生有多少人?24.六一节前夕,光明小学用若干盆鲜花排成了一个方阵花坛.这个花坛的最外层每边有花盆 有多少盆花?整个花坛一共有多少盆花?26.教室里有很多桌子,都整齐地排列着,每列桌子数相等,每排的桌子数相等,小秋的桌从前面数第面数第 4 张,他的左边有 3 张,右边有 1 张,小秋的教室一共有多少张?27.用 1 分的硬币排成一个最大的正方形(每行和每列个数相同) ,结果余下 10 枚硬币;如果每行与每列都增加一枚,那么又缺少 9 枚.1 分硬币有多少枚?28.在学校运动会上,五、六年级的学生站成方阵做集体体操表演.小亮站的位置从左数是第 8 位,从右数是第 13位.这个方阵每排有 _______ 人,整个方阵一共有 ________ 人.29.参加军事训练的学生练习 排下方形方阵,排成一个大方阵余 12 人,若将大方阵纵横各减少一行,则余下的人 可以组成一个 5 行 5 列的方阵,这队学生共有 人.30.在第五届运动会上,红星小学组成了一个大型方块队,方块队最外边每边由 20 个同学抬着这次运动会的会徽,这个方块队共由多少个同学组成?10盆,最外层一共 25.育英小学的全校学生排成一个实心方阵列队,还剩下5 人,如果横竖各增加一排,排成一个稍大的实心方阵,3 张,从后 30人,共有 10 层,中间 5 层的位置参考答案:1. 10×8×5=400(人);答: 5 个方阵一共有 400 人2.因为 7×7=49,所以 49 人组成的方阵的每边人数是 7人, 7×4﹣4=28﹣4=24(人);答:这个方阵的最外层有 24 人3.最外层每边人数:(72+4)÷4=76÷4=19(人);19×19=361(人);答:这个体操方阵有 361 人4.(36+4)÷4=40÷4=10(人);答:每边各有 10 名学生5. 6×6÷4=36÷4=9(人),答:每队 9 人 6.240÷4=60(人),60+1=61(人).答:这个方阵最外层每边有 61 人 7.11×4﹣4=44﹣4=40(枚),(11﹣2)×4﹣4=36﹣4=32(枚),40+32=72(枚),答:这个方阵共有 72 枚棋子 8.最外层一共有 16×4﹣4=60 枚,最内层一共有棋子数: 10×4﹣ 4=36 枚;(60﹣36)÷8=3 个间隔,所以这是一个 4 层的中空方阵,则中间的 2 层的棋子数 36+8=44 个枚; 44+8=52 枚,所以方阵中的棋子总数是: 60+52+44+36=192 (枚).答:这个空心方阵一共有 192 枚围棋子9.扩大的方阵每边上有:(10+15+1)÷2=26÷2=13(人);原来人数: 13×13﹣15=169﹣15=154(人);答:原来有 154 人 10.8×4﹣4=32﹣4=28(盆),答:四周放了 28 盆花 11.25×4﹣4=100﹣4=96(盏);答:这个广场一共需要彩灯96 盏12.设最外层的每边人数是 x 人,则:(x﹣ 6)×6×4=360 ,24x﹣144=360,24x=504 , x=21,答:最外层每边人数是 21 人 13. 16×4﹣4=60 (人), 16×16=256(人),答:最外层人数有 60 人,整个方阵一共有 256 名同学 14.每边点数为: 72÷4+1=18+1=19 (人),总点数为: 19×19=361(人),男生人数为: 361﹣ 72=289(人),答:男生有 289 人15.设最内层每边有 x 个棋子,则从里到外每层依次有 x+2、x+4、x+6 个棋子,可得方程: 4(x﹣1)+4(x+2﹣1) +4(x+4﹣1)+4(x+6﹣1)=272,4x﹣ 4+4x+4+4x+12+4x+20=272 ,16x=240 ,x=15;则最外层棋子有: 15+6=21 (个);答:最外层有 21 个,最内层有 15 个 16.(7+7+1)×(7+7+1)=15×15=225(人);答:五( 3)班有 225 人.17. 13×4﹣4=48 (人), 13×13=169(人),答:最外层人数有 48 人,整个方阵一共有 169 名同学18.解: 4+4﹣ 1=7(人), 7×7=49(人),答:共有 49 人做操19.(1)沿靠水池的一边每边可以插: 6÷1+1=7 (面),所以一共可以插红旗: 7×4﹣4=24(面);(2)靠小路的另一边,每边可以插:(1+6+1 )÷1+1=8+1=9 (面),所以一共可以插黄旗: 9×4﹣4=32(面), 24+32=56 (面),答:一共插 56 面小旗20.4﹣1=3(人),3+3+1=7 (人),7×7=49(人);答:这列方队共有 49 人 21.(1)10+10﹣1=20﹣1=19(人);(2)10×10﹣(10+10﹣1)=100﹣19=81(人);答:若去掉一行一列,去掉 19 人,还剩 81 人24+4)÷4=28÷4=7(枚),答:每边应放 7 枚棋子23.(52+4)÷4=14(人),14×14=196(人)(28+4)÷4=8(人),(8﹣2)×6=36(人),196﹣36=160(人);答:学生有 160 人24.最外层的花盆数为: 10×4﹣4=36 (盆),整个花坛的花盆数为: 10×10=100(盆);答:最外层一共有 36 盆花;整个花坛一共有 100 盆花25.26+5=31(人),(31+1 )÷2=16(人),16×16﹣26=230(人);答:育英小学有学生 230 人26.解:(3+4﹣1)×(3+1+1)=6×5=30(张);答:小秋的教室一共有 30 张桌子 27.解:每行每列都增加一排实际就是增加了:10+9=19(枚),所以原来每行每列有:(19﹣ 1)÷2=9(枚),所以原来的正方形方阵有: 9×9=81(枚),81+10=91 (枚),答:原来一共有 91 枚28.解:每排人数是: 8+13﹣1=20 (人),这个方阵一共有: 20×20=400(人),答:这个方阵每排有 20 人,整个方阵一共有 400 人29.大方阵的每边人数为:(5×5﹣ 12+1)÷2=(25﹣12+1)÷2=14÷2=7(人),总人数为: 7×7+12=49+12=61 (人),答:这队学生共有 61 人2230.( 30﹣5)×5×4+20=500+20=520 (人);或 30 ﹣(30﹣2×5) +20=900 ﹣ 400+20=520 (人);答:这个方块队共由 520 个同学组成.。

三年级奥数方阵问题A级参考答案

三年级奥数方阵问题A级参考答案

2018秋季数学集训三队A教材每周习题(11)参考答案星期一1.填空题。

①同学们做操,排成正方形的队伍,从前、后、左、右数,小虹都是第5个。

那么,这个队伍共有 81 人。

②小冬用棋子排成一个实心方阵,后来又用21枚棋子排上去,使横、竖各增加一排,成为个大一点的实心方阵。

原来实心方阵有 100 个棋子。

③红山小学三年级学生排成一个实心方阵,最外一层人数为60人。

方阵第二层每边有 14 人,这个方阵共有三年级学生 256 人。

2.学校开联欢晚会,要在正方形的操场四周等距离地装彩灯,且四个角都装一盏。

已知每边装7盏。

一共需准备多少盏彩灯?解:(7-1)×4=24(盏)或 7×4-4=24(盏)答:一共需准备24盏彩灯。

3.实验小学三(1)班同学进行队列表演,排成一个20行20列的方阵。

如果去掉5行5列,共要减少几人?解:20×5×2-5×5=175(人)或 20×20-(20-5)×(20-5)=175(人)答:共要减少175人。

星期二4.一些棋子被摆成一个实心方阵,最外层有40枚棋子。

这个方阵共用了多少枚棋子?解:最外层每边棋子数:40÷4+1=11(枚) 或 (40+4)÷4=11(枚)共有棋子:11×11=121(枚)答:这个方阵共用了121枚棋子。

5.在一次活动中,老师把学生组成一个实心方队,其中有两行、两列都是男生,男生共有84 人,其余是女生。

组成这个方队的学生共有多少人?解:最外层每边人数:(84+2×2)÷(2+2)=22(人)共有人数:22×22=484(人)答:组成这个方队的学生共有484人。

6.参加小学生运动会团体操表演的运动员组成了一个正方形队列,共排了18行,每行18人。

后因场地原因,把最外一圈的同学去掉了。

一共去掉了多少人?还剩下多少人?解:去掉的人数:(18-1)×4=68(人) 或 18×4-4=68(人)剩下的人数:18×18-68=256(人) 或 (18-2)×(18-2)=256(人)答:一共去掉了68人,还剩下256人。

三年级奥数题及解析:方阵问题

三年级奥数题及解析:方阵问题

三年级奥数题及解析:方阵问题现在奥数被被人们越来越认可,方阵问题是三年级同学比较难掌握的一个要点,下面就是小编为大家整理的方阵问题的奥数题,希望对大家有所帮助!第一篇:围棋练习题:晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个.晶晶摆这个方阵共用围棋子多少个?答案与解析:方阵每向里面一层,每边的个数就减少2个.知道最外面一层每边放14个,就可以求第二层及第三层每边个数.知道各层每边的个数,就可以求出各层总数。

解:最外边一层棋子个数:(14-1)×4=52(个)第二层棋子个数:(14-2-1)×4=44(个)第三层棋子个数:(14-2×2-1)×4=36(个).摆这个方阵共用棋子:52+44+36=132(个)还可以这样想:中空方阵总个数=(每边个数一层数)×层数×4进行计算。

解:(14-3)×3×4=132(个)答:摆这个方阵共需132个围棋子。

第二篇:台阶习题:父子俩一起攀登一个有300个台阶的山坡,父亲每步上3个台阶,儿子每步上2个台阶。

从起点处开始,父子俩走完这段路共踏了多少个台阶?(重复踏的台阶只算一个)。

解:因为两端的台阶只有顶的台阶被踏过,根据已知条件,儿子踏过的台阶数为300÷2=150(个),父亲踏过的台阶数为300÷3=100(个)。

由于2×3=6,所以父子俩每6个台阶要共同踏一个台阶,共重复踏了300÷6=50(个)。

所以父子俩共踏了台阶150+100-50=200(个)。

答:父子俩共踏了200个台阶。

第三篇:检阅习题:一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后每辆车相隔5米。

这列车队共排列了多长?如果车队每秒行驶2米,那么这列车队要通过535米长的检阅场地,需要多少时间?解:车队间隔共有30-1=29(个),每个间隔5米,所以,间隔的总长为:(30-1)×5=145(米),而车身的总长为30×4=120(米),故这列车队的总长为(30-1)×5+30×4=265(米)。

三年级奥数题及答案方阵问题

三年级奥数题及答案方阵问题

三年级奥数题及答案:方阵问题
1.有一队士兵,排成了一个方阵,最外层一周共有240人,问这个方阵共有多少人?
2.某校少先队员可以排成一个四层空心方阵如果最外层每边有20个学生,问这
个空心方阵最里边一周有多少个学生?这个四层空心方阵共有多少个学生?
3.六一儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方
阵求最外面一层每边有鲜花多少盆?
4.三年级(1)班的学生参加体操表演,排成队形正好是由每7个人为一边的6个
三角形组成的一个正六边形,求正六边形一周共有多少名学生?三(1)班参加体操表演的共有多少人?
5.最新的三年级奥数题及答案:方阵问题:现有松树和柏树以隔株相间的种法,种成9行9列的方阵,问这个方阵最外层有松树和柏树各多少棵?方阵中共有松
树柏树各多少棵?
答案:
(1)(240÷4)-1=59(人) 59×59=3481(人)
(2)(20-2×3-1)×4=42(个) (20-40×4×4=256(个)
(3)最外层每边人数=总数÷4÷层数+层数
204÷4÷3+3=20(盆)
(4)7×6-6=36(人) 7×12-6×2-5=67(人)
(5)最外层松柏各是:(9-1)×4÷2=16(棵)
共有松柏树是:(9×9+1)÷2=41(棵) 81-41=40(棵)
答:柏树41棵,松树40棵,或松树41棵,柏树40棵。

小学奥数方阵问题专题训练含答案

小学奥数方阵问题专题训练含答案

小学奥数方阵问题专题训练姓名:1.某班抽出一些学生参加节日活动表演,想排成一个正方形的方阵,结果多出7人;如果每行每列增加一个再排,却少了4人,问共抽出学生多少人2.棋子假设干粒,恰好可排成每边8粒的正方形,棋子的总数是多少棋子最外层有多少粒3.设计一个团体操表演队,想排成6层的中空方阵,参加表演的有360人,问最外层每边应安排多少人4.在第五届运动会上,红星小学组成了一个大型方块队,方块队最外层每边30人,共有10层,中间5层的位置由20个同学抬着这次运动会的会徽,问这个方块队共有多少同学组成5.有一队学生,排成中空方阵,最外层的人数共56人,最内层的人数共32人,这一队学生共有多少人6.学校举行团体操表演,四年一班的少先队员排成4层的中空方阵,最外层每边人数是10人,问参加团体操表演的少先队员共有多少人7.用棋子摆成方阵,恰好每边24粒的实心方阵,假设改为3层的空心方阵,它的最外层每边应改放多少粒8.将棋子排成正方形,甲、乙两人自其外周起,轮流取一周,结果甲比乙多得粒,问棋子总数有多少粒9.学生假设干人,排成五层的中空方阵,最外层每边人数是12人,问有多少学生10.某校学生刚好排成一个方阵,最外层的人数是 96人,问这个学校共有学生11.明明用围棋子摆成一个三层空心方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少棋子摆这个三层空心方阵共用了多少个棋子小学奥数方阵问题专题训练〔答案〕1.某班抽出一些学生参加节日活动表演,想排成一个正方形的方阵,结果多出7人;如果每行每列增加一个再排,却少了4人,问共抽出学生多少人〔7+4+1〕÷2=6〔人〕,6×6-4=32〔人〕答:共抽出学生32人2.棋子假设干粒,恰好可排成每边8粒的正方形,棋子的总数是多少棋子最外层有多少粒8×8=64〔粒〕〔8-1〕×4=28〔粒〕答:棋子总数64粒,最外层28粒。

精选三年级奥数题及答案:方阵问题

精选三年级奥数题及答案:方阵问题

优选三年级奥数题及答案:方阵问题同学们学习奥数有益于我们数学思想的提高,查词典数学网为大家分享三年级奥数题及答案方阵问题,我们要多做题,勤加练习才能在成绩上有更大的提高!1.有一队士兵 ,排成了一个方阵,最外层一周共有240 人 ,问这个方阵共有多少人?2.某校少先队员能够排成一个四层空心方阵假如最外层每边有 20 个学生 ,问这个空心方阵最里边一周有多少个学生 ?这个四层空心方阵共有多少个学生 ?3.六一小孩节前夜,在校园雕塑的四周,用 204 盆鲜花围成了一个每边三层的方阵求最外面一层每边有鲜花多少盆?4.三年级 (1)班的学生参加体操表演 ,排成队形正好是由每 7 个人为一边的 6 个三角形构成的一个正六边形 ,求正六边形一周共有多少名学生 ?三 (1)班参加体操表演的共有多少人 ?5.最新的三年级奥数题及答案:方阵问题:现有松树和柏树以隔株相间的种法,种成 9 行 9 列的方阵 ,问这个方阵最外层有松树和柏树各多少棵?方阵中共有松树柏树各多少棵?答案 :(1)(2404)÷-1=59( 人)59 ×59=3481(人)(2)(20-2 3×-1) ×4=42( 个 ) (20-404×4=256( 个)(3)最外层每边人数=总数÷4÷层数 +层数204÷4÷3+3=20( 盆 )(4)7 ×6-6=36( 人 ) 7 ×12-6 ×2-5=67(人 )其 ,任何一学科都离不开死硬背,关是有技巧, “死”以后会“活用”。

不住那些基知 ,怎么会向高次 ?特别是文学科涉的范很广 ,要真实提高学生的写作水平 ,靠剖析文章的写作技巧是不的 ,必从基知抓起 ,每日一点学生“死”名篇佳句、名言警句,以及丰富的、新的资料等。

,就会在有限的、空里学生的海里注入无穷的内容。

日月累 ,少成多 ,进而收到磨铁成针 ,木断的功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数方阵问题专题训练
姓名:
1.某班抽出一些学生参加节日活动表演,想排成一个正方形的方阵,结果多出7人;如果每行每列增加一个再排,却少了4人,问共抽出学生多少人?
2.棋子若干粒,恰好可排成每边8粒的正方形,棋子的总数是多少?棋子最外层有多少粒?
3.设计一个团体操表演队,想排成6层的中空方阵,已知参加表演的有360人,问最外层每边应安排多少人?
4.在第五届运动会上,红星小学组成了一个大型方块队,方块队最外层每边30人,共有10层,中间5层的位置由20个同学抬着这次运动会的会徽,问这个方块队共有多少同学组成?
5.有一队学生,排成中空方阵,最外层的人数共56人,最内层的人数共32人,这一队学生共有多少人?
6.学校举行团体操表演,四年一班的少先队员排成4层的中空方阵,最外层每边人数是10人,问参加团体操表演的少先队员共有多少人?
7.用棋子摆成方阵,恰好每边24粒的实心方阵,若改为3层的空心方阵,它的最外层每边应改放多少粒?
8.将棋子排成正方形,甲、乙两人自其外周起,轮流取一周,结果甲比乙多得24粒,问棋子总数有多少粒?
9.学生若干人,排成五层的中空方阵,最外层每边人数是12人,问有多少学生?
10.某校学生刚好排成一个方阵,最外层的人数是96人,问这个学校共有学生?
11.明明用围棋子摆成一个三层空心方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少棋子?摆这个三层空心方阵共用了多少个棋
子?
小学奥数方阵问题专题训练(答案)
1.某班抽出一些学生参加节日活动表演,想排成一个正方形的方阵,结果多出7人;如果每行每列增加一个再排,却少了4人,问共抽出学生多少人?
(7+4+1)÷2=6(人),6×6-4=32(人)
答:共抽出学生32人
2.棋子若干粒,恰好可排成每边8粒的正方形,棋子的总数是多少?棋子最外层有多少粒?
8×8=64(粒)(8-1)×4=28(粒)
答:棋子总数64粒,最外层28粒。

3.设计一个团体操表演队,想排成6层的中空方阵,已知参加表演的有360人,问最外层每边应安排多少人?
解:设最外层的每边人数是x人,则:
(x-6)×6×4=360,x=21 答:最外层每边人数是21人
4.在第五届运动会上,红星小学组成了一个大型方块队,方块队最外层每边30人,共有10层,中间5层的位置由20个同学抬着这次运动会的会徽,问这个方块队共有多少同学组成?
[30×5-2-4-6-8-5]×4+20=520(人)
答:这个方块队共有520名同学组成。

5.有一队学生,排成中空方阵,最外层的人数共56人,最内层的人数共32人,这一队学生共有多少人?
32÷4=8(人)56÷4=14(人)(10+12)×4=88(人)56+32+88=176(人)
答:这一对学生共有176人。

6.学校举行团体操表演,四年一班的少先队员排成4层的中空方阵,最外层每边人数是10人,问参加团体操表演的少先队员共有多少人?
(10×4-2-4-6-4)×4=96(人)
答:参加团体操表演的少先队员共有96人。

7.用棋子摆成方阵,恰好每边24粒的实心方阵,若改为3层的空心方阵,它的最外层每边应改放多少粒?解:设最外边应放X粒
3×4X-8-16-12=24×24
答:它的最外层每边应改放51粒。

X=51
8.将棋子排成正方形,甲、乙两人自其外周起,轮流取一周,结果甲比乙多得24粒,问棋子总数有多少粒?
答:棋子总数为144个。

9.学生若干人,排成五层的中空方阵,最外层每边人数是12人,问有多少学生?
(5×12-2-4-6-8-5)×4=140(名)
答:有140名学生。

10.某校学生刚好排成一个方阵,最外层的人数是96人,问这个学校共有学生?
(96÷4+1)×(96÷4+1)=625(名)
答:这个学校有学生625名
11.明明用围棋子摆成一个三层空心方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少棋子?摆这个三层空心方阵共用了多少个棋子?
(15-5)×4=40(个)3×40+3×8=144(个)
答:这个方阵最里层一周共有40个棋子,三层空心方阵共用144个棋子。

相关文档
最新文档