导数的概念及运算
导数的定义与计算
导数的定义与计算导数是微积分中的重要概念,它用于描述函数在某一点处的变化率。
本文将介绍导数的定义和计算方法。
一、导数的定义在数学中,导数可以通过极限的方法来定义。
设函数y=f(x),若函数在点x处的导数存在且有限,则导数表示为f'(x),它表示函数f(x)在点x处的变化率。
导数可以理解为函数在某一点的瞬时变化率。
通过导数,我们可以研究函数的变化趋势、拐点、极值等重要性质。
二、导数的计算方法导数的计算方法有多种,下面将介绍一些常见的计算方法。
1. 函数可导情况下的基本运算法则(1)常数法则:若c为常数,则导数(常数)=0。
(2)幂函数法则:若f(x)=x^n,其中n为常数,则导数f'(x)=nx^(n-1)。
(3)指数函数法则:若f(x)=a^x,其中a为常数,则导数f'(x)=a^x*ln(a)。
(4)对数函数法则:若f(x)=log_a(x),其中a为常数,则导数f'(x)=1/(x*ln(a))。
(5)三角函数法则:若f(x)=sin(x),则导数f'(x)=cos(x)。
2. 导数的基本运算法则(1)和差法则:若f(x)=u(x)+v(x),则导数f'(x)=u'(x)+v'(x)。
(2)积法则:若f(x)=u(x)v(x),则导数f'(x)=u'(x)v(x)+u(x)v'(x)。
(3)商法则:若f(x)=u(x)/v(x),则导数f'(x)=(u'(x)v(x)-u(x)v'(x))/[v(x)]^2。
(4)复合函数法则:若f(x)=g(h(x)),则导数f'(x)=g'(h(x))*h'(x)。
3. 使用导数计算函数的极值为了找到函数的极值点,我们可以先求得函数的导数,然后解方程f'(x)=0。
解得的x值即为函数的极值点。
三、导数的应用导数是微积分的基本工具,它在许多实际问题中具有广泛的应用。
导数的概念、几何意义及其运算
导数的概念、几何意义及其运算
导数是微积分中一个重要的概念,它描述函数在某一点处变化的速率。
它也被称为微分系数或变化率。
一般来说,导数用来表示函数在特定点处发生变化的速率或斜率。
从几何意义上讲,导数可以看作是函数图像的斜率,即函数在某一点的切线的斜率。
例如,当函数y=f(x)的图像在某一点x=x_0时的斜率是k,那么在x=x_0处的导数就是k。
在运算上,导数可以用导数定义式来求解,该定义式如下:
$$f'(x)=\lim_{h \to 0}{\frac {f(x+h)-
f(x)}{h}}$$
此外,还有一种常用的求导法叫做链式法则,其可以把复杂的函数表达式分解成多个简单的函数,然后把每个简单函数分别求导,最后再把每个简单函数的导数相加。
更具体地说,对于函数$f(x)=g(h(x))$,链式法则表明:
$$f'(x)=g'(h(x))\cdot h'(x)$$。
导数的基本公式和运算法则
导数的基本公式和运算法则在微积分中,导数是描述函数变化率的重要概念。
导数的基本公式和运算法则是求解导数的基础,掌握这些公式和法则对于解决微积分中的各类问题至关重要。
本文将介绍导数的基本公式和运算法则,并通过具体的例子帮助读者更好地理解和应用。
导数的定义导数可以理解为函数在某一点处的变化率。
对于函数f(f),其在点f处的导数可以表示为f′(f)或 $\\frac{df}{dx}$。
导数的定义公式如下:$$ f'(x) = \\lim_{h \\to 0} \\frac{f(x+h) - f(x)}{h} $$这个公式表示函数f(f)在点f处的导数是函数在f点微小变化量f趋近于 0 时的极限值。
导数的基本公式常数函数对于一个常数函数f(f)=f,其中f为常数,则导数f′(f)=0。
这是因为常数函数的图像是一条水平的直线,斜率恒为 0。
幂函数对于幂函数f(f)=f f,其中f为常数,则导数f′(f)=ff f−1。
这是幂函数求导公式的基本形式。
指数函数指数函数f(f)=f f,其中f为常数且f>0,则导数$f'(x) = a^x \\cdot \\ln(a)$。
这是指数函数求导的基本公式。
对数函数对于自然对数函数 $f(x) = \\ln(x)$,则导数 $f'(x) =\\frac{1}{x}$。
自然对数的求导结果可以简单表达。
导数的运算法则导数具有一些运算法则,使得我们可以利用已知函数的导数求其它函数的导数。
以下是导数运算法则的一些常见规则:常数因子法则若f为常数,f(f)是可导函数,则 $(c \\cdot u(x))' = c\\cdot u'(x)$。
加法法则若f(f)和f(f)都是可导函数,则(f(f)+f(f))′=f′(f)+f′(f)。
乘法法则若f(f)和f(f)都是可导函数,则 $(u(x) \\cdot v(x))' =u'(x) \\cdot v(x) + u(x) \\cdot v'(x)$。
导数的概念及运算课件
Δx
.
如果 f(x)在开区间(a,b)内每一点 x 都是可导的,则称 f(x)
在区间(a,b)内可导.在区间(a,b)内,f ′(x)构成一个新的函
数,这个函数称为函数 f(x)的导数.
第三章 第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
4.导数的几何意义:函数 y=f(x)在点 x0 处的导数 f ′(x0),就是曲线 y=f(x)在点 P(x0,y0)处的_切__线__的__斜__率__. 导数的物理意义:物体的运动方程 s=s(t)在点 t0 处的导数 s′(t0),就是物体在 t0 时刻的__瞬__时__速__度____.
答案:A
第三章 第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
点评:求曲线在某点处的切线方程,应先求该点处的导数 值,得到切线斜率.再写出切线方程.
第三章 第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
导数公式及运算法则 [例 3] 设 f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…, fn+1(x)=fn′(x),n∈N,则 f2013(x)等于( ) A.sinx B.-sinx C.cosx D.-cosx
A.2
B.-1
C.1
D.-2
第三章 第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
解析:lim x→0
f1-2fx1-2x=lxi→m0
f1--2x2-x f1=-1,
即y′|x=1=-1,
则y=f(x)在点(1,f(1))处的切线斜率为-1,故选B.
答案:B
第三章 第一节
走向高考 ·高考一轮总复习 ·人教A版 ·数学
导数的定义及计算
导数的定义及计算导数是微积分中的重要概念之一,用于描述函数在某一点的变化率或斜率。
在本文中,我们将介绍导数的定义及计算方法,并通过一些具体的例子来加深理解。
一、导数的定义在数学中,函数f(x)在x点处的导数可以用以下极限定义表示:f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,lim表示极限操作,h表示自变量x的变化量,也可以解释为一个无限小的增量。
根据这个定义,我们可以得出导数的几何意义是函数在该点处的切线的斜率。
二、导数的计算方法1. 基本导数公式导数有一些基本的计算公式,这些公式可以帮助我们计算各种类型函数的导数。
下面是一些常用的基本导数公式:- 常数函数导数:常数函数的导数为0。
- 幂函数导数:幂函数f(x) = x^n 的导数为 f'(x) = n*x^(n-1)。
- 指数函数导数:指数函数f(x) = a^x(其中a>0且a≠1)的导数为f'(x) = ln(a) * a^x。
- 对数函数导数:对数函数f(x) = ln(x)(其中x>0)的导数为 f'(x) = 1/x。
- 正弦函数导数:正弦函数f(x) = sin(x)的导数为 f'(x) = cos(x)。
- 余弦函数导数:余弦函数f(x) = cos(x)的导数为 f'(x) = -sin(x)。
通过运用这些基本导数公式,我们可以计算更复杂函数的导数。
2. 导数的运算法则导数还具有一些运算法则,这些法则可以简化导数的计算过程。
下面是导数的运算法则:- 和差法则:若f(x)和g(x)是可导函数,则(f(x)±g(x))' = f'(x)±g'(x)。
- 积法则:若f(x)和g(x)是可导函数,则(f(x)·g(x))' = f'(x)·g(x) +f(x)·g'(x)。
导数的概念及计算
导数的概念及计算一.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→ f (x 0+Δx )-f (x 0)Δx=0lim x ∆→ Δy Δx 为函数y =f (x )在x =x 0处的导数,记作y ′|x =x 0 =f ′(x 0) =0lim x ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)值就是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).二.基本初等函数的导数公式三.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 四.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′.考向一 利用公式及运算法则求导【例2】求下列函数的导数2311(1)()y x x x x =++ (2) (3) ()234(21)x y x =+ (5)sin2xy e x -= 【举一反三】1.下列求导运算正确的是( )A .(3x )′=x •3x−1B .(2e x )′=2e x (其中e 为自然对数的底数)C .(x 2+1x )′=2x +1x 2 D .(x cosx)′=cosx−xsinx cos 2x2.求下列函数的导数: (1)y =√x 5+√x 7+√x 9√x ; (2)y =x ⋅tanx (3)y =x n ⋅lg x ;(4)y =1x +2x 2+1x 3;考向二 复合函数求导【例3】求下列函数导数(1)y =sin(2x +1) ()(2)cos2f x x x =⋅ (3)()cos ln y x =【举一反三】求下列函数的导数: (1)y =; (2)2()5log 21y x =+.(3)sin()eax b y +=;(提示:设e uy =,sin u v =,v ax b =+,x u v xy y u v ''''=⋅⋅)(4)2(πsin 2)3y x =+; 考向三 利用导数求值【例4】(1)f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0= . 2.若f (x )=x 2+2x ·f ′(1),则f ′(0)= .3. 已知函数()f x 的导函数为()f x ',且满足()()2e ln f x xf x +'=,则()e f '= 。
导数概念与运算
导数概念与运算知识清单 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即xy ∆∆=xx f x x f ∆-∆+)()(00。
如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x xy ∆∆=0lim→∆x xx f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,xy ∆∆有极限。
如果xy ∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0); (2)求平均变化率xy ∆∆=xx f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xy x ∆∆→∆0lim。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。
3.几种常见函数的导数:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦()1ln x x'=; ⑧()1l g log a a o x ex'=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛v u ‘=2''vuv v u -(v ≠0)。
导数定义运算知识点总结
导数定义运算知识点总结一、导数的定义在微积分中,导数是描述函数变化率的一个重要概念。
具体来说,如果一个函数在某一点处的导数存在,那么这个导数就描述了函数在该点处的变化速率。
导数的定义可以通过极限的概念来给出,具体来说,对于函数y=f(x),如果在某一点x处函数f(x)的变化率为:f'(x) = lim(h->0) (f(x+h) - f(x)) / h其中f'(x)表示函数f(x)在x处的导数,lim表示极限运算,h表示自变量x的增加量。
上面的定义是导数的一般形式,通过这个定义可以得到一些常用的导数计算方法。
比如对于幂函数、指数函数、对数函数、三角函数等一些基本函数,我们可以通过导数的定义来计算它们在某一点处的导数。
另外,还可以通过导数的定义来证明某一函数在某一点处的导数的存在性和计算导数的值。
二、导数的基本运算法则导数的基本运算法则是微积分中的一个重要内容,它包括导数的四则运算法则、复合函数的导数、反函数的导数、隐函数的导数等方面的内容。
1. 导数的四则运算法则对于两个函数y=f(x)和y=g(x),它们的导数满足一些基本运算法则。
具体来说,如果函数f(x)和函数g(x)分别在某一点x处的导数存在,那么它们的和、差、积、商的导数可以通过以下公式求得:- (f(x) ± g(x))' = f'(x) ± g'(x)- (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)- (f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x)) / [g(x)]^2这些公式可以帮助我们在实际计算中求解复合函数的导数、隐函数的导数等问题。
2. 复合函数的导数复合函数是指一个函数中包含了另一个函数。
如果函数y=f(g(x))是一个复合函数,那么它的导数可以通过链式法则来求解。
导数的概念及其运算
5.(2010·新课标全国)曲线y=x3-2x+1在点(1,0)处的切线方程为
()
A.y=x-1
B.y=-x+1
C.y=2x-2
D.y=-2x+2
解析:由题可知,点(1,0)在曲线y=x3-2x+1上,求导可得y′=3x2-2, 因此在点(1,0)处的切线的斜率k=1,切线过点(1,0),根据直线 的点斜式可得切线方程为y=x-1,故选A.
第16页 共 45 页
3
y
(lnx)( x 2
1) (x2
lnxo(x2 1)2
1)
1 (x2 1) lnx 2x x (x2 1)2
x2 1 2x2 lnx x(x2 1)2 ;
4 y 3sin2x 2 ?sin2x 6sin2 2xcos2x.
第17页 共 45 页
类型三
导数的几何意义及应用
式求导. (2)以根式或分式形式出现的函数求导问题,先化成指数的形
式再运用公式求导. (3)比较复杂的函数,往往需要先化简再求导. (4)对于某些没有给出求导公式的函数,能够先化为有求导公
式的函数表达再求导.
第30页 共 45 页
补充作业:
1.求下列函数的导数 :
(1) y 1 1 ;(2) y sin x (1 2 cos2 x );(3) y e x 1.
解题准备:求曲线切线方程的环节是:
①求导数f′(x);
②求斜率k=f′(x0);
③写出切线方程y-y0=f′(x0)(x-x0).但是要注意,当函数 f(x)在x=x0处不可导时,曲线在该点处并不一定没有切 线,同时还必须明确P(x0,y0)为切点.
第18页 共 45 页
导数的概念及运算
x0 x x0
x
存在,则称f(x)在点x0处可导,并称此极限为函数
y=f(x)在点x0处的导数,记为f (x)或y |x=x0.
说明:
1.导数是一个特殊的极限;
2. f (x)为函数所表示的曲线在相应点M(x0, f(x0))处的切线
斜率, 其切线方程为:y- f(x0)= f (x0)(x-x0);
v2
3.复合函数的导数:
设函数 u=(x) 在点 x 处有导数 ux=(x),函数 y=f(u) 在点 x 的对应点 u 处有导数 yu=f (u),则复合函数y=f((x)) 在点 x 处有导数, 且 yx=yu·ux 或写作 fx((x))=f(u)(x)。
即复合函数对自变量的导数, 等于已知函数对中间变 量的导数, 乘以中间变量对自变量的导数.
导数的概念及运算
麻城一中 彭稳章
一、基本内容
(一)导数的概念:
y
y=f(x)
Q
y 就是割线PQ的斜率
△y
x
P △x
0
M x
lim y 就是过P点切线的斜率 x0 x
概念:
如果函数y=f(x)在x0处增量△y与自变量的增
量△x的比值 y ,当△x→0时的极限 x
lim y lim f (x0 x) f (x0)
切线的方程为y 11x 18或y 17 (x 3) 15 4
即为:11x y 18 0或17x 4 y 8 0.
说明:
求切线方程应注意: ①判断点A是否在函数图象上; ②审题:在A(x0,f(x0))处切线
y-f(x0)=f(x0)(x-x0)过A(x0,f(x0)),先设切 点,再按上述方法求解。
导数的概念及运算
探究二
例2 求下列函数的导数 (1)y=(3x3-4x)(2x+1); (2)y=x2sinx; (3)y=3xex-2x+e; lnx (4)y= 2 x +1 (5)y=e2xcos3x; (6)y=ln x2+1
导数运算
【解析】 (1)方法一 y=(3x3-4x)(2x+1) =6x4+3x3-8x2-4x,∴y′=24x3+9x2-16x-4. 方法二 y′=(3x3-4x)′· (2x+1)+(3x3-4x)(2x+ 1)′=(9x2-4)(2x+1)+(3x3-4x)· 2 =24x3+9x2-16x-4. (2)y′=(x2)′sinx+x2(sinx)′=2xsinx+x2cosx.
1 3 4 ∴切线方程为y-( x0+ )=x2(x-x0), 0 3 3 2 3 4 2 即y=x0· x0+ . x- 3 3 2 3 4 2 ∵点P(2,4)在切线上,∴4=2x0- x0+ , 3 3
3 即x0-3x2+4=0,解得x0=-1或x0=2. 0
故所求切线方程为4x-y-4=0或x-y+2=0;
题型三
导数的几何意义
1 3 4 例3 已知曲线y=3x +3. (1)求曲线在点P(2,4)处的切线方程; (2)求曲线过点P(2,4)的切线方程; (3)求满足斜率为1的曲线的切线方程.
【解析】 (1)∵y′=x2, ∴在点P(2,4)处的切线的斜率k=y′|x=2=22=4, ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2), 即4x-y-4=0; 1 3 4 (2)设曲线y= x + 与过点P(2,4)的切线相切于点 3 3 1 3 4 2 A(x0,3x0+3),则切线的斜率k=y′| x=x0=x0.
s′(t0)
表
4.1 导数的概念及其运算
复合函数及其求导: 四.复合函数及其求导: 复合函数及其求导
高考总复习·数学 高考总复习 数学 (3) 复合函数的求导法则:复合函数y=f[g(x)]对自变量x的导数 y 'x 复合函数的求导法则: ,等于外函数y=f(u)对中间变量u的导数y’u,乘以中间变量u对自变 ′ x 量x(即内函数)的导数 u’x,即 y′ = yu ⋅ u ′ x
高考总复习·数学 高考总复习 数学
导数的基本运算
求下列函数的导数:
1 1 (1) y = x ( x + + 3 ) x x 1 (3) = ( x + 1)( y − 1) x
2
3
x x ;(2)y = x − sin cos 2 2
;
1 2 ' 2 Q 【解析】(1) y = x + 1 + 2 ∴ y = 3 x − 3 . x x x x 1 (2)先使用三角公式进行化简,得 y = x − sin cos = x − sin x 2 2 2
复合函数求导步骤:分解——求导——回代。 复合函数求导步骤: 法则的推广:若函数y=f(u)在u点处可导,u=g(v)在v 点处可导, 法则的推广 v=h(x)在x点处可导,则复合函数y=f{g[h(x)]}在x点处可导,并且
y ' = f '(u ) ⋅ g '(v) ⋅ h '( x) = y 'u ⋅ u 'v ⋅ v 'x .
高考总复习·数学 高考总复习 数学 2.导数四则运算法则: 导数四则运算法则: 导数四则运算法则
[u ( x) ± v( x)]' = u ' ( x) ± v ' ( x) ①和、差的导数:
导数公式及导数的运算法则
导数公式及导数的运算法则导数是微积分中的重要概念之一,它描述了函数在其中一点处的变化速率。
导数公式和导数的运算法则是求导过程中常用的工具。
本文将详细介绍导数的公式及运算法则,包括常见的导数公式、基本运算法则、链式法则、求高阶导数、隐函数求导、参数方程求导等。
一、导数公式1.常数的导数公式:若y=c(c为常数),则y'=0。
2.幂函数的导数公式:若y=x^n(n为常数),则y' = nx^(n-1)。
3.指数函数的导数公式:若y=a^x(a为常数且a>0),则y' =a^xlna。
4.对数函数的导数公式:若y=loga(x)(a为常数且a>0,且a≠1),则y' = 1/(xlna)。
5.三角函数的导数公式:若y=sin(x),则y' = cos(x);若y=cos(x),则y' = -sin(x);若y=tan(x),则y' = sec^2(x)。
6.反三角函数的导数公式:若y=arcsinx,则y' = 1/sqrt(1-x^2);若y=arccosx,则y' = -1/sqrt(1-x^2);若y=arctanx,则y' =1/(1+x^2)。
二、导数的基本运算法则1.和差法则:若y=u±v,则y'=u'±v'。
2.数乘法则:若y = cu(c为常数),则y' = cu'。
3.乘积法则:若y = u·v,则y' = u'v + uv'。
4.商法则:若y = u/v,则y' = (u'v - uv')/v^2(v≠0)。
5.复合函数法则(链式法则):若y=f(g(x)),则y'=f'(g(x))·g'(x)。
三、高阶导数高阶导数是指求得导函数后再对导函数求导的过程,常用的高阶导数符号有y''、y''',分别表示二阶导数、三阶导数等。
高中导数公式及导数的运算法则
高中导数公式及导数的运算法则导数是微积分中的重要概念,它描述了函数在其中一点的变化率。
在高中阶段的数学学习中,学生们一般会接触到导数的基本概念和求导的基本方法。
下面将详细介绍高中阶段导数的公式和运算法则。
一、导数的基本概念:导数表示了函数在其中一点上的变化率。
对于函数f(x),在x=a处的导数表示为f'(a),它的几何意义是函数图像在该点处的切线斜率。
导数的定义如下:f'(a) = lim┬(h→0)〖(f(a+h)-f(a))/h〗其中,lim代表极限,h代表自变量的微小增量,也可以理解成取极限时的无穷小增量。
导数表示了函数在无穷小范围内的平均变化率,当h 趋于0时,导数表示了函数在该点上的瞬时变化率。
二、导数的公式:导数的计算根据函数的不同形式有不同的公式。
在高中阶段,最常见的导数公式有以下几种:1.常数函数的导数对于常数函数f(x)=C,它的导数为f'(x)=0。
这是因为常数函数的图像是一条水平直线,它在任何点上的斜率都为0。
2.幂函数的导数对于幂函数 f(x) = x^n,其中n为常数,它的导数为 f'(x) =nx^(n-1)。
例如,f(x) = x^2 的导数为 f'(x) = 2x。
3.指数函数的导数对于指数函数 f(x) = a^x,其中a为常数且a>0,它的导数为 f'(x) = ln(a) * a^x。
其中ln(a)表示以自然对数e为底的对数,它是一个常数。
4.对数函数的导数对于对数函数 f(x) = logₐx,其中a为常数且a>0且不等于1,它的导数为 f'(x) = 1/(x * ln(a))。
其中ln(a)表示以自然对数e为底的对数,它是一个常数。
5.三角函数的导数对于三角函数 f(x) = sin(x) 和 f(x) = cos(x),它们的导数分别为 f'(x) = cos(x) 和 f'(x) = -sin(x)。
导数的概念及运算-2025高考数学复习
第三章 导数及其应用
高考一轮总复习 • 数学
返回导航
2.(2022·新高考Ⅱ卷)曲线y=ln|x|过坐标原点的两条切线的方程为 ___y_=__1e_x___y_=__-__1e_x________.
[解析] 先求当 x>0 时,曲线 y=ln x 过原点的切线方程,设切点坐 标为(x0,y0),则由 y′=1x,得切线斜率为x10,又切线的斜率为yx00,
xx′=-sin
x·sin x-cos sin2x
x·cos
x=-sin12x,C
错误;
(x23x)′=(x2)′·3x+x2×(3x)′=2x3x+x23xln 3,D 正确.
第三章 导数及其应用
高考一轮总复习 • 数学
2.求下列函数的导数. (1)y=x2sin x; (2)y=ln x+1x; (3)y=xsin2x+π2cos2x+π2; (4)f(x)= 2x+1.
导数的概念及运算
知识梳理·双基自测 考点突破·互动探究 名师讲坛·素养提升 提能训练 练案[15]
返回导航
知识梳理 · 双基自测
高考一轮总复习 • 数学
返回导航
知识梳理 知识点一 导数的概念与导数的运算 1.函数的平均变化率 一般地,已知函数 y=f(x),把式子fxx22--fx1x1称为函数 y=f(x)从 x1 到 x2 的平均变化率,还可以表示为ΔΔyx=fxx22--fx1x1.
高考一轮总复习 • 数学
(4)sin
π3′=cos
π 3.(×)来自(5)(2x)′=x·2x-1.( × )
(6)[ln(-x)]′=(ln x)′.( × )
返回导航
第三章 导数及其应用
高考一轮总复习 • 数学
高中数学导数公式及导数的运算法则
高中数学导数公式及导数的运算法则一、导数的定义导数是函数变化速率的一种描述方式,用函数f(x)在点x处的变化率来近似表示。
导数的定义如下:设函数y=f(x)在点x处有定义,如果当自变量x自小于且无限接近于x时,函数值的变化量Δy始终与自变量的变化量Δx之比近似为一个定值,即lim(Δx→0) Δy/Δx = lim(Δx→0) [f(x + Δx) - f(x)]/Δx这个极限值称为函数f(x)在点x处的导数,记作f'(x),也可以写成dy/dx。
二、常见函数的导数公式1.幂函数的导数若y = xⁿ,n为常数,则y' = nxⁿ⁻¹。
2.反函数的导数若y=f⁻¹(x),则y'=1/f'(f⁻¹(x))。
3.指数函数的导数若y = aˣ,a > 0,a ≠ 1,则y' = (lna) * aˣ。
4.对数函数的导数(a) 若y = logₐ(x),a > 0,且a ≠ 1,则y' = 1/(xlna)。
(b) 若y = ln(x),则y' = 1/x。
5.指数对数函数的导数(a) 若y = aˣ(x > 0),则y' = aˣ(lna)。
(b) 若y = logₐx(a > 0,且a ≠ 1),则y' = 1/(xlna)。
(c) 若y = ln,x,则y' = 1/x。
6.三角函数的导数(1) 若y = sinx,则y' = cosx。
(2) 若y = cosx,则y' = -sinx。
(3) 若y = tanx,则y' = sec²x。
1.基本运算法则(a)常数乘积法则:k*f(x)的导数是k*f'(x)。
(b)和差法则:[f(x)±g(x)]的导数是f'(x)±g'(x)。
(c)常数倍数法则:k*f(x)的导数是k*f'(x)。
导数的概念与基本运算
导数的概念与基本运算导数是微积分学中的重要概念,用以描述函数在某一点的变化率。
导数的概念和基本运算是学习微积分的基础,本文将介绍导数的定义、求导法则以及一些常见函数的导数,帮助读者掌握导数的概念与基本运算。
一、导数的定义函数的导数描述了函数在某一点附近的变化率,可以用数学符号表示为f'(x)。
在微积分中,导数的定义是:f'(x) = lim[∆x→0] (f(x+∆x) - f(x))/∆x其中,∆x表示自变量x的一个增量。
这个定义意味着当∆x无限趋近于0时,函数f(x)在点x处的变化率就可用导数f'(x)来表示。
二、求导法则对于常见的函数形式,可以利用求导法则来求导。
以下是一些常见的求导法则:1. 常数法则:如果f(x)是一个常数,那么它的导数f'(x)等于0。
2. 幂函数法则:如果f(x) = x^n (n为实数),那么它的导数f'(x) =nx^(n-1)。
3. 指数函数法则:如果f(x) = a^x (a>0, a≠1),那么它的导数f'(x) =a^x ln(a)。
4. 对数函数法则:如果f(x) = ln(x),那么它的导数f'(x) = 1/x。
5. 三角函数法则:如果f(x) = sin(x),那么它的导数f'(x) = cos(x),同样适用于cos(x)和tan(x)等三角函数。
6. 反函数法则:如果g(x)是函数f(x)的反函数,那么g'(x) =1/f'(g(x))。
以上是一些常见的求导法则,通过应用这些法则,可以求得更复杂函数的导数。
三、常见函数的导数除了常见的求导法则,还有一些特殊函数的导数需要记住。
以下列举了一些常见函数及其导数:1. 多项式函数:- f(x) = a0 + a1x + a2x^2 + ... + anx^n,其中a0, a1, ..., an为常数。
- f'(x) = a1 + 2a2x + 3a3x^2 + ... + nanx^(n-1)2. 指数函数:- f(x) = e^x- f'(x) = e^x3. 对数函数:- f(x) = ln(x)- f'(x) = 1/x4. 三角函数:- f(x) = sin(x)- f'(x) = cos(x)- f(x) = cos(x)- f'(x) = -sin(x)- f(x) = tan(x)- f'(x) = sec^2(x)通过记住这些函数的导数公式,可以简化函数的求导过程。
第三章 第1讲 导数的概念及运算
第1讲导数的概念及运算基础知识整合1.导数的概念(1)f(x)在x=x0处的导数就是f(x)在x=x0处的□01瞬时变化率,记作:y′|x=x0或f′(x0),即f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx.(2)当把上式中的x0看作变量x时,f′(x)即为f(x)的导函数,简称导数,即y′=f′(x)=□02limΔx→0f(x+Δx)-f(x)Δx.2.导数的几何意义函数f(x)在x=x0处的导数就是曲线y=f(x)在点□03P(x0,f(x0))处的切线的斜率,即曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k=f′(x0),切线方程为□04y -y0=f′(x0)(x-x0).3.基本初等函数的导数公式(1)C′=□050(C为常数);(2)(x n)′=□06nx-(n∈Q*);(3)(sin x)′=□07cos x;(4)(cos x)′=□08-sin x;(5)(a x)′=□09a ln_a;(6)(e x)′=□10e;(7)(log a x)′=1x ln a;(8)(ln x)′=□111x.4.导数的运算法则(1)[f(x)±g(x)]′=□12f′(x)±g′(x).(2)[f (x )·g (x )]′=□13f ′(x )g (x )+f (x )g ′(x ). 特别地:[C ·f (x )]′=□14Cf ′(x )(C 为常数). (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=□15f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数设函数u =φ(x )在点x 处有导数u ′=φ′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′=f ′(u ),则复合函数y =f [φ(x )]在点x 处也有导数y ′x =f ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.f ′(x 0)与x 0的值有关,不同的x 0,其导数值一般也不同. 2.f ′(x 0)不一定为0,但[f (x 0)]′一定为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.1.(2019·海南模拟)曲线y =x2x -1在点(1,1)处的切线方程为( )A .x -y -2=0B .x +y -2=0C .x +4y -5=0D .x -4y -5=0答案 B 解析 y ′=2x -1-2x (2x -1)2=-1(2x -1)2,当x =1时,y ′=-1,所以切线方程是y -1=-(x -1),整理得x +y -2=0.故选B.2.函数f (x )=x (2017+ln x ),若f ′(x 0)=2018,则x 0的值为( ) A .e 2 B .1 C .ln 2 D .e 答案 B解析 f ′(x )=2017+ln x +x ·1x =2018+ln x ,故由f ′(x 0)=2018,得2018+ln x 0=2018,则ln x 0=0,解得x 0=1.故选B.3.若曲线y =e x +ax +b 在点(0,2)处的切线l 与直线x +3y +1=0垂直,则a +b =( )A .3B .-1C .1D .-3 答案 A解析 因为直线x +3y +1=0的斜率为-13,所以切线l 的斜率为3,即y ′|x=0=e 0+a =1+a =3,所以a =2;又曲线过点(0,2),所以e 0+b =2,解得b =1.故选A.4.(2019·河北质检)已知直线y =kx 是曲线y =ln x 的切线,则k 的值是( ) A .e B .-e C.1e D .-1e 答案 C解析 依题意,设直线y =kx 与曲线y =ln x 切于点(x 0,kx 0),则有⎩⎨⎧kx 0=ln x 0,k =1x 0,由此得ln x 0=1,x 0=e ,k =1e .故选C.5.f (x )=2x +3x 的图象在点(1,f (1))处的切线方程为________. 答案 x -y +4=0解析 f ′(x )=-2x 2+3,f ′(1)=1,即切线的斜率为1,又f (1)=5,即切点坐标为(1,5),故切线方程为y -5=x -1,即x -y +4=0.6.(2019·郑州模拟)直线x -2y +m =0与曲线y =x 相切,则切点的坐标为________.答案 (1,1)解析 ∵y =x =x12 ,∴y ′=12x -12 ,令y ′=12x -12 =12,则x =1,则y =1=1,即切点坐标为(1,1).核心考向突破考向一 导数的基本运算 例1 求下列函数的导数:(1)y =cos x e x ;(2)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3;(3)y =sin 3x +sin3x ;(4)y =1(2x -1)3.解 (1)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x.(2)因为y =x 3+1x 2+1,所以y ′=3x 2-2x 3. (3)y ′=(sin 3x )′+(sin3x )′=3sin 2x cos x +3cos3x . (4)y ′=⎣⎢⎡⎦⎥⎤1(2x -1)3′=[(2x -1)-3]′=-3(2x -1)-4×2=-6(2x -1)-4. 触类旁通导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导.(3)对数形式:先化为和、差的形式,再求导. (4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. (6)复合函数:确定复合关系,由外向内逐层求导.即时训练 1.求下列函数的导数: (1)y =(3x 2-4x )(2x +1);(2)y =x 2sin x ; (3)y =11-2x;(4)y =ln xx 2+1.解 (1)因为y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x ,所以y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(3)y ′=[(1-2x ) -12]′=-12(1-2x )-32 ×(-2)=(1-2x ) -32 .(4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x(x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2.考向二 导数的几何意义角度1 求切线的方程例2 (1)(2019·四川成都模拟)曲线y =x sin x 在点P (π,0)处的切线方程是( )A .y =-πx +π2B .y =πx +π2C .y =-πx -π2D .y =πx -π2答案 A解析 因为y =x sin x ,所以y ′=sin x +x cos x ,在点P (π,0)处的切线斜率为k =sinπ+πcosπ=-π,所以曲线y =x sin x 在点P (π,0)处的切线方程是y =-π(x -π)=-πx +π2.故选A.(2)曲线y =f (x )=e 2x +1在点⎝ ⎛⎭⎪⎫-12,1处的切线方程为________.答案 2x -y +2=0解析 ∵f ′(x )=e 2x +1·(2x +1)′=2e 2x +1, ∴f ′⎝ ⎛⎭⎪⎫-12=2e 0=2,∴曲线y =e 2x +1在点⎝ ⎛⎭⎪⎫-12,1处的切线方程为y -1=2⎝ ⎛⎭⎪⎫x +12,即2x -y +2=0.角度2 求切点的坐标例3 (1)(2019·陕西模拟)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则点P 的坐标为( )A .(1,1)B .(-1,-1)C .(1,-1)D .(-1,1)答案 A解析 对y =e x 求导得y ′=e x ,令x =0,得曲线y =e x 在点(0,1)处的切线斜率为1,故曲线y =1x (x >0)上点P 处的切线斜率为-1,由y ′=-1x 2=-1,得x =1,则y =1,所以点P 的坐标为(1,1).故选A.(2)(2018·江西模拟)若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.答案 (e ,e)解析 设点P (x 0,y 0),∵y =x ln x ,∴y ′=ln x +x ·1x =1+ln x .∴曲线y =x ln x 在点P 处的切线斜率k =1+ln x 0.又k =2,∴1+ln x 0=2,∴x 0=e ,y 0=eln e =e.∴点P 的坐标是(e ,e). 角度3 求公切线的方程例4 (1)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2 答案 D解析 ∵f ′(x )=1x ,∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2.故选D.(2)若直线l 与曲线y =e x及y =-14x 2都相切,则直线l 的方程为________.答案 y =x +1解析 设直线l 与曲线y =e x 的切点为(x 0,e x 0),直线l 与曲线y =-14x 2的切点为⎝ ⎛⎭⎪⎫x 1,-x 214,因为y =e x 在点(x 0,e x 0)处的切线的斜率为y ′|x =x 0=e x0,y =-x 24在点⎝ ⎛⎭⎪⎫x 1,-x 214处的切线的斜率为y ′|x =x 1=⎝ ⎛⎭⎪⎫-x 2| x =x 1=-x 12,则直线l 的方程可表示为y =e x 0x -x 0e x 0+e x0或y =-12x 1x +14x 21,所以⎩⎪⎨⎪⎧e x0=-x 12,-x 0e x 0+e x0=x 214,所以e x 0=1-x 0,解得x 0=0,所以直线l 的方程为y =x +1.触类旁通(1)求曲线切线方程的步骤①求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率;②由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).(2)求曲线f (x ),g (x )的公切线l 的方程的步骤,①设点求切线,即分别设出两曲线的切点的坐标(x 0,f (x 0)),(x 1,g (x 1)),并分别求出两曲线的切线方程;,②建立方程组,即利用两曲线的切线重合,则两切线的斜率及在y 轴上的截距都分别相等,得到关于参数x 0,x 1的方程组,解方程组,求出参数x 0,x 1的值;,③求切线方程,把所求参数的值代入曲线的切线方程中即可.即时训练 2.(2019·衡水调研)已知曲线y =x 22-3ln x 的一条切线的斜率为2,则切点的横坐标为( )A .3B .2C .1 D.12 答案 A解析 设切点坐标为(x 0,y 0),且x 0>0,由y ′=x -3x ,得k =x 0-3x 0=2,∴x 0=3.故选A.3.曲线y =1-2x +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2答案 A 解析 ∵y =1-2x +2=x x +2,∴y ′=x +2-x(x +2)2=2(x +2)2,y ′|x =-1=2, ∴曲线在点(-1,-1)处的切线斜率为2, ∴所求切线方程为y +1=2(x +1),即y =2x +1.4.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =________.答案 1-ln 2解析 直线y =kx +b 与曲线y =ln x +2,y =ln (x +1)均相切,设切点分别为A (x 1,y 1),B (x 2,y 2),由y =ln x +2得y ′=1x ,由y =ln (x +1)得y ′=1x +1,∴k =1x 1=1x 2+1,∴x 1=1k ,x 2=1k -1,∴y 1=-ln k +2,y 2=-ln k .即A ⎝ ⎛⎭⎪⎫1k ,-ln k +2,B ⎝ ⎛⎭⎪⎫1k -1,-ln k ,∵A ,B 在直线y =kx +b 上, ∴⎩⎪⎨⎪⎧2-ln k =k ·1k +b ,-ln k =k ·⎝ ⎛⎭⎪⎫1k -1+b ⇒⎩⎪⎨⎪⎧b =1-ln 2,k =2.考向三 求参数的范围例5 (1)(2019·沈阳模拟)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( )A .1B .2C .5D .-1 答案 A解析 由题意可得3=k +1,3=1+a +b ,则k =2.又曲线的导函数y ′=3x 2+a ,所以3+a =2,解得a =-1,b =3,所以2a +b =1.故选A.(2)已知函数f (x )=e x -mx +1的图象为曲线C ,若曲线C 存在与直线y =e x 垂直的切线,则实数m 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫1e ,+∞解析 由题意知,方程f ′(x )=-1e 有解,即e x -m =-1e 有解,即e x=m -1e 有解,故只要m -1e >0,即m >1e 即可.故填⎝ ⎛⎭⎪⎫1e ,+∞.触类旁通处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.即时训练 5.已知函数f (x )=ax 2+2b ln x ,若曲线y =f (x )在点(2,f (2))处的切线方程为y =x +2-6ln 2,则a +b =( )A .-2B .-1C .2D .1 答案 A解析 由切线方程,得f (2)=4-6ln 2,f ′(2)=1. ∵f (x )=ax 2+2b ln x ,∴f ′(x )=2ax +2bx ,∴⎩⎪⎨⎪⎧4a +2b ln 2=4-6ln 2,4a +b =1,解得a =1,b =-3, ∴a +b =-2.故选A.6.若曲线y =13x 3+ax 2+x 存在垂直于y 轴的切线,则实数a 的取值范围为( )A.⎝ ⎛⎦⎥⎤-∞,-12∪[1,+∞) B .(-∞,-1]∪[1,+∞) C .(-∞,-1]∪[0,+∞) D.⎣⎢⎡⎭⎪⎫-12,+∞ 答案 B解析 令y =f (x )=13x 3+ax 2+x ,则f ′(x )=x 2+2ax +1,∵曲线y =f (x )存在垂直于y 轴的切线,∴f ′(x )=0有解,即x 2+2ax +1=0有解,∴Δ=(2a )2-4≥0,∴a ≥1或a ≤-1,即实数a 的取值范围为(-∞,-1]∪[1,+∞),故选B.。
高中数学常用函数的导数及导数公式
公式 6 . e x ' e x
公式
7 . log
a x '
1 x ln
a
公式 8 . ln x ' 1
x
2023/5/24
8
新课——导数的运算法则
1、和(或差)的导数
法则 1. 两个函数的和(或差)的导数,等于这 两个函数的导数的和(或差),即
f(x)g(x)f(x)g(x)
若u令 fx,vgx,则导数的运记 算 .
(uv)uvv2uv(v0)
(Cu)=Cu
2023/5/24
13பைடு நூலகம்
小结 1.基本初等函数的导数公式 2.导数的运算法则
课后必看 教材14-15页.
2023/5/24
14
10
新课——导数的运算法则
2、积的导数
法则2:两个函数的积的导数,等于第一个函数的导数 乘第二个函数,加上第一个函数乘第二个函数的导数 ,
即: [ f ( x ) g ( x ) ] f ( x ) g ( x ) f ( x ) g ( x ) .
特别地,常数与函数的积的导数,等于常数乘函数的 导数,即
1.2.1基本初等函数的导数、 导数公式及导数的运算法则
2023/5/24
1
复习回顾
1.导数的概念
函数 y = f (x) 在 x = x0 处的瞬时变化率是
lim ylim f(x0 x)f(x0)
x x 0
x 0
x
称为函数 y = f (x) 在 x = x0 处的导数, 记作f’(x0)
(uv)uv
2023/5/24
9
新课——导数的运算法则
1、和(或差)的导数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15讲 导数的概念及运算
1.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为(C)
A .(0,+∞)
B .(-1,0)∪(2,+∞)
C .(2,+∞)
D .(-1,0)
x >0,f ′(x )=2x -2-4x =2(x -2)(x +1)x >0, 所以x ∈(2,+∞).
2.已知函数y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是(B)
A .f ′(x A )>f ′(x
B ) B .f ′(x A )<f ′(x B )
C .f ′(x A )=f ′(x B )
D .不能确定
分别作出曲线y =f (x )在A ,B 两点的切线,设曲线y =f (x )在A ,B 两点的切线的斜率分别为k A ,k B ,则由图象可知k B >k A ,即f ′(x A )<f ′(x B ).
3.(2018·河北五校高三联考)曲线y =x -1x +1
在点(0,-1)处的切线与两坐标轴围成的封闭图形的面积为(B)
A.18
B.14
C.12
D .1 因为y ′=x +1-(x -1)(x +1)2=2(x +1)2
, 所以k =y ′x =0=2,
所以曲线在(0,-1)处的切线方程为y +1=2x ,即y =2x -1.
它与两坐标轴围成的面积为S =12×12×1=14
. 4.已知函数f (x )=ln x +tan α(α∈(0,π2
))的导函数为f ′(x ),若使得f ′(x 0)=f (x 0)成立的x 0满足x 0<1,则α的取值范围为(B)
A .(0,π4)
B .(π4,π2
) C .(π6,π4) D .(0,π3
) 因为f ′(x )=1x ,所以f ′(x 0)=1x 0
, 由f ′(x 0)=f (x 0),得1x 0
=ln x 0+tan α, 所以tan α=1x 0
-ln x 0. 又0<x 0<1,所以1x 0
-ln x 0>1,即tan α>1, 又α∈(0,π2),所以α∈(π4,π2
). 5.(2017·天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为 1 .
因为f ′(x )=a -1x
,所以f ′(1)=a -1. 又因为f (1)=a ,所以切线l 的斜率为a -1,且过点(1,a ),
所以切线l 的方程为y -a =(a -1)(x -1).
令x =0,得y =1,故l 在y 轴上的截距为1.
6.(2015·新课标卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a = 1 .
因为y ′=3ax 2+1,所以y ′|x =1=3a +1, 所以7-(a +2)2-1=3a +1,所以a =1. 7.(2016·四川卷改编)设直线l 1,l 2分别是函数f (x )=⎩⎪⎨⎪⎧
-ln x , 0<x <1,ln x , x >1图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,求△P AB 的面积的取值范围.
由图象易知P 1,P 2位于f (x )的两段上,不妨设P 1在f (x )=-ln x ,x ∈(0,1)的图象上,P 2在f (x )=ln x (x >1)的图象上,
设P 1(x 1,-ln x 1),x 1∈(0,1),P 2(x 2,ln x 2),x 2∈(1,+∞),
则l 1:y +ln x 1=-1x 1(x -x 1),l 2:y -ln x 2=1x 2
(x -x 2). 由l 1⊥l 2知,-1x 1·1x 2
=-1,所以x 1x 2=1. 又l 1,l 2分别与y 轴交于点A ,B ,
所以A (0,1-ln x 1),B (0,-1+ln x 2).
由⎩⎨⎧ y +ln x 1=-1x 1
(x -x 1),y -ln x 2=1x 2(x -x 2),
得P 点的横坐标x =2x 1+x 2
. 所以S △ABP =12×|1-ln x 1+1-ln x 2|×2x 1+x 2
=|2-ln x 1x 2|×1x 1+x 2=2x 1+x 2=2x 1+1
x 1
. 因为x 1∈(0,1),所以x 1+1x 1>2,所以0<2x 1+1x 1
<1. 即△P AB 的面积的取值范围是(0,1).
8.(2016·山东卷)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是(A)
A .y =sin x
B .y =ln x
C .y =e x
D .y =x 3
若y =f (x )的图象上存在两点(x 1,f (x 1)),(x 2,f (x 2)),使得函数图象在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.
对于A ,y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k ∈Z )时,结论成立;
对于B ,y ′=1x ,若有1x 1·1x 2
=-1,即x 1x 2=-1,因为x >0,所以不存在x 1,x 2,使得x 1x 2=-1;
对于C ,y ′=e x ,若有e x 1·e x 2=-1,即e x 1+x 2=-1,显然不存在这样的x 1,x 2;
对于D ,y ′=3x 2,若有3x 21·3x 22=-1,即9x 21x 22=-1,显然不存在这样的x 1,x 2.
综上所述,选A.
9.设函数f (x )=x 3-3ax +b (a ≠0).若曲线y =f (x )在点(2,f (2))处与直线y =8相切,则a ,b 的值分别为 4,24 .
f ′(x )=3x 2-3a .
因为曲线y =f (x )在点(2,f (2))处与直线y =8相切,
所以f (2)=8,f ′(2)=0,
即8-6a +b =8,3(4-a )=0,故a =4,b =24.
10.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).
(1)若函数f (x )的图象过原点,且在原点处的切线的斜率为-3,求a ,b 的值;
(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.
f ′(x )=3x 2+2(1-a )x -a (a +2).
(1)由题意得⎩⎪⎨⎪⎧
f (0)=b =0,
f ′(0)=-a (a +2)=-3,
解得b =0,a =-3或1.
(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,
所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0,即4a 2+4a +1>0,
所以a ≠-12
. 所以a 的取值范围是(-∞,-12)∪(-12,+∞).。