2020-2021年中考数学一轮复习 第4章 第17讲 解直角三角形
中考总复习解直角三角形
解直角三角形一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解三角函数的定义和正弦、余弦、正切的概念,并能运用;●掌握特殊角三角函数值,并能运用特殊角的三角函数值进行计算和化简;●掌握互为余角和同角三角函数间关系;●掌握直角三角形的边角关系和解直角三角形的概念,并能运用直角三角形的两锐角互余、勾股定理和锐角三角函数解直角三角形;●了解实际问题中的概念,并会用解直角三角形的有关知识解决实际问题.复习策略:●复习本专题应从四方面入手:(1)直角三角形在角方面的关系;(2)直角三角形在边方面的关系;(3)直角三角形的边角之间的关系;(4)怎样运用直角三角形的边角关系求直角三角形的未知元素.同时,解答这类题目时,应注重借助图形来解题,它能使已知条件、所求结论直观化,以便启迪思维,快捷解题.二、学习与应用知识点一:锐角三角函数“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。
知识考点梳理认真阅读、理解教材,尝试把下列知识要点内容补充完整,若有其它补充可填在右栏空白处。
详细内容请参看网校资源ID:#tbjx4#248924知识框图通过知识框图,先对本单元知识要点有一个总体认识。
(一)锐角三角函数:在Rt△ABC中,∠C是直角,如图(1)正弦:∠A的与的比叫做∠A的正弦,记作sinA,即sinA= ;(2)余弦:∠A的与的比叫做∠A的余弦,记作cosA,即cosA= ;(3)正切:∠A的与的比叫做∠A的正切,记作tanA,即tanA= ;锐角三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(二)同角三角函数关系:(1)平方关系:sin2A+cos2A= ;(2)商数关系:tanA= .(三)互余两角的三角函数关系sinA=cos(),cosA=sin().(四)特殊角的三角函数值(五)锐角三角函数的增减性(1)角度在0°~90°之间变化时,正弦值(正切值)随角度的增大(或减小)而(或).(2)角度在0°~90°之间变化时,余弦值随角度的增大(或减小)而(或).要点诠释:∠A在0°~90°之间变化时,<sinA<,<cosA<,tanA>知识点二:解直角三角形在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.(一)三边之间的关系:a2+b2= (勾股定理)(二)锐角之间的关系:∠A+∠B= °(三)边角之间的关系:sinA= ,cosA= ,tanA=要点诠释:解直角三角形时,只要知道其中的个元素(至少有一个),就可以求出其余未知元素.知识点三:解直角三角形的实际应用(一)仰角和俯角:在视线与所成的角中,视线在上方的是仰角;视线在下方的是俯角.(二)坡角和坡度:坡面与的夹角叫做坡角.坡面的和的比叫做坡面的坡度(即坡角的值)常用i表示.(三)株距:相邻两树间的.(四)方位角与方向角:从某点的方向沿时针方向旋转到目标方向所形成的角叫做方位角.从方向或方向到目标方向所形成的小于°的角叫做方向角.经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。
2023年九年级中考数学一轮复习:解直角三角形及其应用(含解析)
2023年中考数学一轮复习:解直角三角形及其应用一、单选题1.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线kyx=(k≠0)上,则k的值为()A.4B.﹣2C D.2.如图,平行四边形ABCD中,对角线AC、BD相交于点O,AE平分△BAD,分别交BC,BD于点E,P,连接OE,△ADC=60°,122AB BC==,则下列结论:①△CAD=30°;②14OE AD=;③S平行四边形ABCD=AB·AC;④27BD=⑤S△BEP=S△APO;其中正确的个数是()A.2B.3C.4D.5 3.如图,为了保证道路交通安全,某段高速公路在A处设立观测点,与高速公路的距离AC为20米.现测得一辆小轿车从B处行驶到C处所用的时间为4秒。
若△BAC=α,则此车的速度为()A.5tanα米/秒B.80tanα米/秒C.5tanα米/秒D.80tanα米/秒二、填空题4.如图,在 ABC 中,AD 是BC 上的高, cos tanB DAC =∠ ,若 1213sinC =, 12BC = ,则AD 的长 .5.某人沿着坡角为α的斜坡前进80m ,则他上升的最大高度是 m . 6.如图,建筑物BC 上有一旗杆AB ,点D 到BC 的距离为20m ,在点D 处观察旗杆顶部A 的仰角为52°,观察底部B 的仰角为45°,则旗杆的高度为 m .(精确到0.1m ,参考数据:520.79sin ︒≈,52 1.28tan ︒≈ 1.41≈ 1.73≈.)三、综合题7.在Rt△ACB 中,△C=90°,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AB 、AC 分别交于点D 、E ,且△CBE=△A.(1)求证:BE 是△O 的切线; (2)连接DE ,求证:△AEB△△EDB ;(3)若点F 为 AE 的中点,连接OF 交AD 于点G ,若AO=5,3sin 5CBE ∠= ,求OG 的长.8.如图(1)放置两个全等的含有30°角的直角三角板 ABC 与(30)DEF B E ∠=∠=︒ ,若将三角板 ABC 向右以每秒1个单位长度的速度移动(点C 与点E 重合时移动终止),移动过程中始终保持点B 、F 、C 、E 在同一条直线上,如图(2), AB 与 DF 、 DE 分别交于点P 、M , AC 与 DE 交于点Q ,其中 AC DF ==,设三角板 ABC 移动时间为x 秒.(1)在移动过程中,试用含x 的代数式表示AMQ 的面积;(2)计算x 等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?9.已知AB 是△O 的切线,切点为B 点,AO 交△O 于点C ,点D 在AB 上且DB=DC .(1)求证:DC 为△O 的切线;(2)当AD=2BD ,CD=2时,求AO 的长.10.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高 AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶 A 的仰角为 35︒ ,此时地面上C 点、屋檐上 E 点、屋顶上A 点三点恰好共线,继续向房屋方向走 8m 到达点D 时,又测得屋檐 E 点的仰角为 60︒ ,房屋的顶层横梁 12EF m = ,//EF CB , AB 交 EF 于点G (点C ,D , B 在同一水平线上).(参考数据:sin350.6︒≈ , cos350.8︒≈ , tan350.7︒≈ ,1.7≈ )(1)求屋顶到横梁的距离 AG ;(2)求房屋的高 AB (结果精确到 1m ).11.如图,直线 (0)y mx n m =+≠ 与双曲线 (0)ky k x=≠ 交于 A B 、 两点,直线AB 与坐标轴分别交于 C D 、 两点,连接 OA ,若 OA = ,1tan 3AOC ∠= ,点 (3,)B b - .(1)分别求出直线 AB 与双曲线的解析式; (2)连接 OB ,求 AOBS.12.如图,某港口O 位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.(1)若它们离开港口一个半小时后分别位于A 、B 处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?说明理由.(2)若“远航”号沿北偏东60︒方向航行,经过两个小时后位于F 处,此时船上有一名乘客需要紧急回到PE 海岸线上,若他从F 处出发,乘坐的快艇的速度是每小时80海里.他能在半小时内回到海岸线吗?说明理由.13.如图,某人在山坡坡脚A 处测得电视塔尖点 C 的仰角为 60︒ ,沿山坡向上走到p 处再测得点C 的仰角为 45︒ ,已知 100OA = 米,山坡坡度 1:2i = ,且O A B 、、 在同一条直线上,其中测倾器高度忽略不计.(1)求电视塔OC 的高度;(计算结果保留根号形式)(2)求此人所在位置点 P 的铅直高度.(结果精确到0.1米,参考数据:1.41= , 1.73= )14.我国于2019年6月5日首次完成运载火箭海上发射,达到了发射技术的新高度.如图,运载火箭海面发射站点M 与岸边雷达站N 处在同一水平高度。
2023年中考数学一轮复习考点过关 解直角三角形的应用
2023年中考数学一轮复习考点过关解直角三角形的应用1. 3月份,长江重庆段开始进入枯水期,有些航道狭窄的水域通航压力开始慢慢增加.为及时掌握辖区通航环境实时情况,严防船舶搁浅、触礁等险情事故发生,沿江海事执法人员持续开展巡航检查,确保近七百公里的长江干线通航安全.如图,巡航船在一段自西向东的航道上的A处发现,航标B在A处的北偏东45°方向200米处,以航标B为圆心,150米长为半径的圆形区域内有浅滩,会使过往船舶有危险.(1)由于水位下降,巡航船还发现在A处北偏西15°方向300米的C处,露出一片礁石,求B、C两地的距离;(精确到1米)(2)为保证航道畅通,航道维护项目部会组织挖泥船对该条航道被浅滩影响的航段进行保航施工.请判断该条航道是否被这片浅滩区域影响?如果有被影响,请求出被影响的航道长度为多少米?如果≈)2 1.4147 2.6462. 如图,某船由西向东航行,在点A测得小岛O在北偏东60°,船航行了10海里后到达点B,这时测得小岛O在北偏东45°,船继续航行到点C时,测得小岛O恰好在船的正北方,求此时船到小岛的距离.3. 为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:23)4. 如图,笔直的海岸线l上有A、B两个观测站,A在B的正东方向.有一艘渔船在点P处,从A处测得渔船在北偏西60︒的方向,从B处测得渔船在其东北方向,且测得B、P两点之间的距离为20海里.(1)求观测站A、B之间的距离(结果保留根号);(2)渔船从点P处沿射线AP的方向航行一段时间后,到点C处等待补给,此时,从B测得渔船在北偏西15︒的方向.在渔船到达C处的同时,一艘补给船从点B出发,以每小时20海里的速度前往C 处,请问补给船能否在83分钟之内到达C3 1.73≈)5. 为做好疫情防控工作,确保师生生命安全,学校每日都在学生进校前进行体温检测.某学校大门AB高6.5米,学生DF身高1.5米,当学生准备进入体温检测有效识别区域时,在点D处测得摄像头A的仰角为30︒,当学生刚好离开体温检测有效识别区域CD段时,在点C处测得摄像头A的仰角为60︒,求体温检测有效识别区域CD 段的长(结果保留根号)6. 数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE 在高55m 的小山EC 上,在A 处测得塑像底部E 的仰角为34°,再沿AC 方向前进21m 到达B 处,测得塑像顶部D 的仰角为60°,求炎帝塑像DE 的高度.(精确到1m .参考数据:sin340.56︒≈,cos340.83︒=,tan340.67︒≈3 1.73)7. 如图1,和平大桥是徐州市地标建筑,也是国内跨铁路最多的大桥,某数学小组的同学利用课余时间对该桥进行了实地测量,如图2所示的测量示意图,测得如下数据;∠A =27°,∠B =31°,斜拉主跨度AB =368米.(1)过点C 作CD ⊥AB ,垂足为D ,求CD 的长(结果精确到0.1);(2)若主塔斜拉链条上的LED 节能灯带每米造价90元,求斜拉链条AC 上灯带的总造价是多少元?(参考数据tan27°≈0.5,sin27°≈0.45,cos27°≈0.9:tan31°≈0.6)8. 为了监控大桥下坡路段车辆行驶速度,通常会在下引桥处设置电子眼进行区间测速,如图,电子眼位于点P处,离地面的铅锤高度PQ为9米,区间测速的起点为下引桥坡面点A处,此时电子眼的俯角为30°;区间测速的中点为下引桥坡脚点B处,此时电子眼的俯角为60°(A、B、P、Q四点在同一平面).(1)求路段BQ的长(结果保留根号);(2)当下引桥坡度1:23i AB的长(结果保留根号).9. 某购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡AD与地平线的夹角为18°,一楼到地下停车场地面的距离CD=2.8米,地平线到一楼的垂直距离BC=1米.(1)应在地面上距点B多远的A处开始斜坡施工?(精确到0.1米)(2)如果给该购物广场送货的货车高度为2.5米,那么按这样的设计能否保证货车顺利进入地下停车场?请说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)10. 如图,某城市的一座古塔CD 坐落在湖边,数学老师带领学生隔湖测量古塔CD 的高度,在点A 处测得塔尖点D 的仰角∠DAC 为31°,沿射线AC 方向前进35米到达湖边点B 处,测得塔尖点D 在湖中的倒影E 的俯角∠CBE 为45°,根据测得的数据,计算这座灯塔的高度CD (结果精确到0.1).参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60.(结果精确到0.1)11. 如图1,是一款手机支架图片,由底座、支撑板和托板构成.图2是其侧面结构示意图,量得托板长AB =17cm ,支撑板长CD =16cm ,底座长DE =14cm ,托板AB 联结在支撑板顶端点C 处,且CB =7cm ,托板AB 可绕点C 转动,支撑板CD 可绕D 点转动.如图2,若70,60DCB CDE ∠=︒∠=︒,求点A 到直线DE 的距离(精确到0.1cm )(参考数值sin 400.64,cos400.77,tan 403 1.73︒︒︒≈≈≈)12. 图①是某车站的一组智能通道闸机,图②是两圆弧翼展开时的截面图,扇形ABC 和DEF 是闸机的“圆弧翼”,两圆弧翼成轴对称,BC 和EF 均垂直于地面,扇形的圆心角∠ABC =∠DEF =20°,半径BA =ED =60cm ,点A 与点D 在同一水平线上,且它们之间的距离为10cm .求闸机通道的宽度,即BC 与EF 之间的距离(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36).13. 如图,1号楼在2号楼的南侧,两楼高度均为90,m 楼间距为AB .冬至日正午,太阳光线与水平面所成的角为32.3︒.1号楼在2号楼墙面上的影高为CA ,春分日正午,太阳光线与水平面所成的角为55.7︒,1号楼在2号楼墙面上的影高为DA .已知42CD m =.(1)求楼间距AB ;(2)若2号楼共30层,层高均为3,m 则点C 位于第几层? ( 参考数据:32.30.53,sin ︒≈32.30.85cos ︒≈,32.30.6355.70.83tan sin ︒≈︒≈,,55.70.5655.7 1.47cos tan ︒≈︒≈,)14. 如图,小明站在江边某瞭望台DE 的顶端D 处,测得江面上的渔船A 的俯角为40°.若瞭望台DE 垂直于江面,它的高度为3米,CE =2米,CE 平行于江面AB ,迎水坡BC 的坡度i =1:0.75,坡长BC =10米.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,cot40°≈1.19)(1)求瞭望台DE 的顶端D 到江面AB 的距离;(2)求渔船A 到迎水坡BC 的底端B 的距离.(结果保留一位小数)15. 如图,小锋将一-架4米长的梯子AB 斜靠在竖直的墙AC 上,使梯子与地面所成的锐角α为60°.(1)求梯子的顶端与地面的距离AC (结果保留根号)(2)为使梯子顶端靠墙的高度更高,小锋调整了梯子的位置使其与地面所成的锐角α为70°,则需将梯子底端点B 向内移动多少米(结果精确到0.1米)?参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈.。
2025年湖南中考数学一轮复习考点研析 第四章 三角形技法4 解直角三角形的应用的常见模型
解:如解图,延长EF交AB于点H.
由题意可知,HB=DF=CE=1米,FE=CD=2米.
设HF=x米,则EH=HF+FE=x+2(米).
在Rt△AHF中,∠AFH=45°,∴AH=HF=x米.
3
在Rt△AHE中,tan∠AEH= ,即
= ,解得x=
+2 3
∴AB=AH+HB= 3+2(米).
3+1,
解图
答:AB的高为( 3+2)米.
解
答
A.10.5米
B.16.1米
C.20.7米
D.32.2米
答案
9.如图,数学实践小组测量某路段上一处标识脱落的车辆限高杆MN的高度
AB,如图,他们先用测角仪在C处测得点A的仰角∠AEG=30°,然后在D处测
得点A的仰角∠AFG=45°.已知点C,D,B在同一条直线上,测角仪离地面高度
CE=1 m,CD=2 m,求AB的高.
DE=(BE-BF)·tan β
已知线段BC的长度,AB⊥BC,
AB=BC·tan α,
DC⊥BC,∠ACB=α,∠DBC=β
CD=BC·tan β
已知线段BC,CE的长度,AB⊥
AB=BC·tan α,
BE,DE⊥BE,∠ACB=α,∠DCE=β
DE=CE·tan β
3.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得
A.25 3米
B.25米
C.25 2米
D.50米
答案
8.如图,为测量观光塔AB的高度,冬冬在坡度i=5 ∶12的斜坡CD的D点测得塔
顶A的仰角为52°,斜坡CD长为26米,C到塔底B的水平距离为9米.图中点
A,B,C,D在同一平面内,则观光塔AB的高度约为(结果精确到0.1米,参考数
2020年中考数学考点梳理:相似三角形和解直角三角形
知识点:一、比例线段1、比:选用同一长度单位量得两条线段。
a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或nm b a =) 2、比的前项,比的后项:两条线段的比a :b 中。
a 叫做比的前项,b 叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
3、比例:两个比相等的式子叫做比例,如dc b a = 4、比例外项:在比例d cb a =(或a :b =c :d )中a 、d 叫做比例外项。
5、比例内项:在比例d cb a =(或a :b =c :d )中b 、c 叫做比例内项。
6、第四比例项:在比例dcb a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。
7、比例中项:如果比例中两个比例内项相等,即比例为abb a =(或a:b=b:c 时,我们把b 叫做a 和d 的比例中项。
8、比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做成比例线段,简称比例线段。
9、比例的基本性质:如果a :b =c :d 那么ad =bc 逆命题也成立,即如果ad =bc ,那么a :b =c :d10、比例的基本性质推论:如果a :b=b :d 那么b 2=ad ,逆定理是如果b 2=ad 那么a :b=b :c 。
说明:两个论是比积相等的式子叫做等积式。
比例的基本性质及推例式与等积式互化的理论依据。
11、合比性质:如果d c b a =,那么d dc b b a +=+ 12.等比性质:如果n m d c b a ===K ,(0≠+++m d b Λ),那么ban d b m c a =++++++ΛΛ说明:应用等比性质解题时常采用设已知条件为k ,这种方法思路单一,方法简单不易出错。
13、黄金分割把一条线段分成两条线段,使较长的线段是原线段与较小的线段的比例中项,叫做把这条线段黄金分割。
2024年中考数学一轮复习考点精讲课件—锐角三角形及其应用
【详解】解:∵ tan − 3 + 2cos − 3 =0,
∴ tan − 3 = 0, 2cos − 3
2
= 0,
∴ tan = 3,2cos − 3 = 0,
∴ ∠ = 60°,cos =
3
,∠
2
= 30°,
在△ 中,∠ = 180° − 60° − 30° = 90°,且∠ ≠ ∠,
−2
.
考点一 锐角三角函数
题型09 求特殊角的三角函数值
3
【例9】(2023·山东淄博·统考一模)在实数 2,x0(x≠0),cos30°, 8中,有理数的个数是(
A.1个
B.2个
C.3个
D.4个
【变式9-1】(2023·广东潮州·二模)计算|1 − tan60°|的值为(
A.1 − 3
B.0
C. 3 − 1
3
∴tan∠ABE=tan30°= 3 ,
3
故答案为: 3 .
.
考点一 锐角三角函数
题型05 已知正弦值求边长
3
【例5】(2022·云南昆明·官渡六中校考一模)在△ 中,∠ = 90°,若 = 100, sin = 5,则的长是
(
)
500
3
A.
503
5
B.
C.60
D.80
【变式5-1】(2023·广东佛山·校联考模拟预测)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,
∠A的邻边
斜边
cos A =
b
c
正切
tanA =
∠A的对边
∠A的邻边
tan A =
a
b
3. 锐角三角函数的关系:
专题4.5锐角三角函数中考数学第一轮总复习课件
(3)sinA+cosA_>___1;sin2A+cos2A_=___1, sinα=cos(_9_0_º_-_α_);cosα=sin(_9_0_º_-_α_);
典例精讲
锐角三角函数
知识点一
【例1】(1)式子2cos30º-tan45º- (1 tan 60 )2 的值是__0__.
5.已知△ABC中,AB=10,AC= 2 7,∠B=30º,则△ABC的面积等于_1_5__3_或__1_0__3_.
6.四边形ABCD中,BD是对角线,∠ABC=90º,tan∠ABD=
3 4
,AB=20,
BC=10,AD=13,则线段CD=1_7__或___8_9__.
A
A A
E F
B
DC
B
C´
02
解直角三角形
精讲精练
03 解直角三角形应用
考点聚焦
解直角三角形的应用
知识点三
1.视角,2.方向角(方位角),3.坡度(坡比),坡角:i=tanα=h:l.
在测量高度,宽度,距离等问题中,常见的构造的基本图形如下:
③利用反射构造相似. ②同一地点看不同点 ①不同地点看同一点
典例精讲
直角三角形应用
A
K
I
H
N
M
D
A
K
I
NH M
D
A
K
I
H N
M
D
E
O
B 图1 G
FE O
CB 图2 G
FE
O
C B 图3 G
F C
B. 1
c os2
1
C.sin2α+1 D.cos2α+1
中考数学复习《解直角三角形》 知识讲解
《解直角三角形》全章复习与巩固(提高) 知识讲解【学习目标】1.了解锐角三角函数的概念,能够正确应用sinA 、cosA 、tanA 、cotA 表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦、正切和余切的三角函数值,并能由一个特殊角的三角函数值说出这个角的度数.2.能够正确地使用计算器,由已知锐角求出它的三角函数值,由已知三角函数值求出相应的锐角;3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、直角三角形斜边上中线等于斜边的一半,以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题.4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想;5.通过解直角三角形的学习,体会数学在解决实际问题中的作用.【知识网络】【要点梳理】要点一、直角三角形的性质(1) 直角三角形的两个锐角互余.(2) 直角三角形两直角边的平方和等于斜边的平方.(勾股定理)如果直角三角形的两直角边长分别为,斜边长为,那么.(3) 直角三角形斜边上的中线等于斜边的一半. 要点二、锐角三角函数1.正弦、余弦、正切、余切的定义如右图,在Rt △ABC 中,∠C=900,如果锐角A 确定:(1)∠A 的对边与斜边的比值是∠A 的正弦,记作sinA= ∠A 的对边斜边(2)∠A 的邻边与斜边的比值是∠A 的余弦,记作cosA = ∠A 的邻边斜边(3)∠A 的对边与邻边的比值是∠A 的正切,记作tanA = ∠A 的对边∠A 的邻边a b ,c 222a b c +=(4)∠A 的邻边与对边的比值是∠A 的余切,记作cotA = ∠A 的邻边∠A 的对边要点诠释:(1)正弦、余弦、正切、余切是在一个直角三角形中定义的,其本质是两条线段的比值,它只是一个数值,其大小只与锐角的大小有关,而与所在直角三角形的大小无关.(2)sinA 、cosA 、tanA 、cotA 是一个整体符号,即表示∠A 四个三角函数值,书写时习惯上省略符号“∠”,但不能写成sin ·A ,对于用三个大写字母表示一个角时,其三角函数中符号“∠”不能省略,应写成sin ∠BAC ,而不能写出sinBAC.(3)sin 2A 表示(sinA)2,而不能写成sinA 2. (4)三角函数有时还可以表示成等.2.锐角三角函数的定义锐角∠A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数. 要点诠释:1. 函数值的取值范围对于锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是∠A 的函数.同样,cosA 、tanA 、cotA 也是∠A 的函数,其中∠A 是自变量,sinA 、cosA 、tanA 、cotA 分别是对应的函数.其中自变量∠A 的取值范围是0°<∠A <90°,函数值的取值范围是0<sinA <1,0<cosA <1,tanA >0,cotA >0.2.锐角三角函数之间的关系:余角三角函数关系:“正余互化公式” 如∠A+∠B=90°,那么:sinA=cosB ; cosA=sinB ; tanA=cotB, cotA=tanB. 同角三角函数关系:sin 2A +cos 2A=1;3.30°、45°、60°角的三角函数值∠A 30°45°60°sinAcosAtanA1cotA1在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半.sin cos 1tanA=,cot ,tan .cos sin cot A A A A A A A==30°、45°、60°角的三角函数值和解含30°、60°角的直角三角形、含45°角的直角三角形为本章的重中之重,是几何计算题的基本工具. 要点三、解直角三角形在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形. 解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图:角角关系:两锐角互余,即∠A+∠B=90°; 边边关系:勾股定理,即;边角关系:锐角三角函数,即要点诠释:解直角三角形,可能出现的情况归纳起来只有下列两种情形: (1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.Rt △ABC由求∠A ,∠B=90°-∠A ,由求∠A ,∠B=90°-∠A ,sin ,cos ,tan ,cot a b a b A A A A c c b a====sin ,cos ,tan ,cot b a b a B B B B c c a b====,∠B=90°-∠A,,∠B=90°-∠A,,要点四、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.1.解这类问题的一般过程(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.2.常见的应用问题类型(1) 仰角与俯角:(2)坡度:;坡角:.(3)方向角:要点诠释:1.用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.2.锐角三角函数的应用用相似三角形边的比的计算具有一般性,适用于所有形状的三角形,而三角函数的计算是在直角三角形中解决问题,所以在直角三角形中先考虑三角函数,可以使过程简洁。
2024年中考数学总复习专题18解直角三角形复习划重点 学霸炼技法
叫做坡度(或坡比),用字母 i 表示;
比)、坡角
坡面与水平面的夹角 α 叫坡角,i=
h
tan α= .如图(3)
l
第16页
返回目录
专题十八
解直角三角形
中考·数学
一般指以观测者的位置为中心,将正
北或正南方向作为起始方向旋转到目
方向角
标方向所成的角(一般指锐角),通常
表达成北(南)偏东(西)××度.如图
专题十八
解直角三角形
中考·数学
(2)sin ∠ADC的值.
∵AD 是△ABC 的中线,
1
∴CD= BC=2,∴DE=CD-CE=1.
2
∵AE⊥BC,DE=AE,∴∠ADC=45°,
AE
2
∴sin ∠ADC=
=
.
DE
2
第25页
返回目录
专题十八
解直角三角形
中考·数学
[规律方法]
解此类题的一般方法
(1)构造直角三角形.
(2)理清直角三角形的边、角关系.
(3)利用特殊角的三角函数值解答问题.
第26页
返回目录
专题十八
研究4
解题模型分析
解直角三角形
中考·数学
常见解直角三角形模型
■命题角度1:母子型
基本
模型
AB=AB;BD+DC=BC
第27页
BC=BC;AD+DB=AB
返回目录
专题十八
解直角三角形
中考·数学
演变
模型
BC=EF;
解直角三角形
中考·数学
[对接教材]
人教:九下P60~P84;
北师:九下P2~P27;
中考数学一轮教材复习-第四章 三角形 锐角三角函数及其应用
∴AF=AE+EF=AE+BG=576+469=1 045(m).
答:水平距离AF的长约为1 045 m.
(第四章 三角形)
考点2 解直角三角形的实际应用(10年9考)
2-1 [2024黔东南州模拟]随着传统能源的日益紧缺,太阳能的应用将会越来
越广泛,如图(1)是一款太阳能路灯实物图,图(2)是某校兴趣小组测量太
点拨
tan D=tan A
5
2
.
(第四章 三角形)
考点2 解直角三角形的实际应用(10年9考)
2 [2023贵州22题10分]贵州旅游资源丰富.某景区为给游客提供更好
的游览体验,拟在如图(1)景区内修建观光索道.设计示意图如图(2)
所示,以山脚A为起点,沿途修建AB,CD两段长度相等的观光索道,最
方向角:如图(3),点A,B,C关于点0的方向角分别是北偏东 30°、
的实际
⑰ 南偏东60°
、北偏西45'(也称西北方向)
解直角
应用
【注意】通常需
要作辅助线构造
直角三角形解题
(第四章 三角形)
2 [人教九下P19第9题变式]如图,水库某段横截面迎水坡AB的坡度
i=1∶2,若坡高BC=20 m,则坡面AB的长为 20 5
∠A的正切:tan A=③
(第四章 三角形)
【规律记忆】30°,45°,60°角的正弦值的分母都是2,
分子依次为1, 2, 3;30°,45°,60°角的余弦值分别是
60°,45°,30°角的正弦值
特殊角的三角函数值
α
30°
2024年中考数学总复习考点梳理第四章第三节等腰三角形与直角三角形
第三节 等腰三角形与直角三角形
返回目录
考情及趋势分析
考情分析
类型 年份 题号 题型 分值 图形背景
设问
等边
25(1 解答题
2018
3 直角三角形 填空:角度
三角形
) (三)
2021 16 填空题 4 平行四边形 求正弦值
20(2 解答题
直角 2021
3 直角三角形
) (一)
三角形
求正切值
2020 17 填空题 4 直角三角形 求线段最值
返回目录
考情分析
类型 年份 题号 题型 分值 结合知识点 设问
方法
溯源教材 教材改编维度
人教八上
解答题
证等腰三 两底角相等
改变设问及条
等腰 2020 20
6 全等三角形
P40例3(图
(一)
角形
,两腰相等
件
三角
形)
形
解答题
证等腰三 两底角相等
2018 22(2)
4 全等三角形
/
/
(二)
角形
,两腰相等
【考情总结】
返回目录 第1题图
第三节 等腰三角形与直角三角形
返回目录
2. [人教八下P61习题改编]在Rt△ABC中,∠ACB=90°,D是
AB边上一点,连接CD.
(1)若∠B=30°,AC=2,则AB=____4____;
(2)若D是AB边的中点.
①当∠B=25°时,则∠ACD=___6_5_°___; ②当AC=3,BC=4时,则CD=___52_____;
返回目录
教材改编题课前测
1. [北师八下P30习题改编]如图,在△ABC中,AB=AC,AD为
第17讲直角三角形与锐角三角函数
第17讲直角三角形与锐角三角函数一、考点复习归纳:考点一:直角三角形的性质及判定考点二解直角三角形1.锐角三角函数(1)三角函数的定义及关系(2)特殊角的三角函数的值:2.解直角三角形及其应用(1)解直角三角形的类型:、(2)解直角三角形的实际应用:二、考法研析:考法130°角所对直角边是斜边的一半含30°角的直角三角形具有特殊的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.此结论是由等边三角形的性质推出,它在解直角三角形的相关问题中常用来求边的长度和角的度数.注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,在非直角三角形或一般直角三角形中不能应用;②应用时,要注意找准30°的角所对的直角边,以及斜边.例1已知:如图所示,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,EF交BC于F,交AB于E.求证:BF= FC.分析因为BF与FC不在同一三角形内,所以必须用相等的线段进行转化.因为EF是AB的垂直平分线,所以连接AF,可知BF=AF,在△ACF中,只要证明∠C=30°,∠CAF=90°,再利用有一个角是30°的直角三角形的性质进行证明即可.方法点拨:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.本性质适用的大前提是“在直角三角形中”.在题中如果有一个30°的角,而无直角时,必须依条件构造符合性质特征的直角三角形,才能由角的大小关系,得出边的倍分关系.考法2直角三角形的性质和判定例2在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2,4,3,则原直角三角形纸片的斜边长是()方法点拨直角三角形中线段和角之间的数量关系(1)边:直角三角形的三边满足勾股定理,是计算线段长度的重要工具,有时也用于证明线段相等;(2)角:直角三角形的两锐角互余,可用来计算角的大小,也是证明角相等的重要工具;(3)斜边中线:直角三角形斜边的中线等于斜边的一半也是几何证明或计算的重要工具.直角三角形的判定方法主要利用定义,即证明一个角是直角.另外还有两种方法:一是勾股定理的逆定理,即证明“a2+b2=c2”,则∠C=90°;二是利用“若三角形一边上的中线等于这边的一半,则这个三角形是直角三角形”这一判定方法,但这一方法不常用.考法3锐角三角函数值的求法例3(2016·贵州)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()方法点拨:格点图中求某个角的三角函数值的方法通常的做法是构造合适的直角三角形,然后根据格点来表示出各边的长,从而求出相应的三角函数值.在构造直角三角形时需注意,通常我们要去求的边或是角不要分割,另外就是构造的直角三角形的边尽可能的是整个的格点数,这样便于我们求值.考法4有关特殊角三角函数值的计算分析先分别算出的算术平方根、30°角的正弦值以及负指数幂与零指数幂的化简,再把所得的各结果相加减.方法点拨1.一般地, =|a|;2.特殊角的锐角三角函数值要记熟,或者把特殊角放置到直角三角形中利用相关定理与性质直接推导计算也可;考法5锐角三角函数的应用例5如图,在Rt△ABC中,∠C=90°,AB=2BC,则cos A的值为()答案C解析设BC=m,则AB=2m,根据勾股定理可求得AC= m,方法点拨:求直角三角形中某锐角的三角函数值,常需利用勾股定理求出有关边长,有时还要通过作高把非直角三角形中的边和角转化到直角三角形中.考法6解直角三角形的实际应用例6(2016·黑龙江大庆)一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为多少海里/时?方法点拨:1.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形;有时所给的角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.另外,当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题化归为直角三角形中边角关系问题加以解决.2.一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,构造出直角三角形,转化为解直角三角形问题).(2)根据题目已知特点选用适当锐角三角函数(或边角关系)去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三、作业:1.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC=.2.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)3.如图,在△ABC中,∠C=45°,点D在AB上,点E在BC上.若AD=DB=DE,AE=1,则AC的长为() A. B.2 C. D.4.如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是多少?。
2024中考数学一轮复习核心知识点精讲—直角三角形
2024中考数学一轮复习核心知识点精讲—直角三角形1.了解直角三角形的概念;2.证明并掌握直角三角形的性质定理:直角三角形的两个锐角互余(无需证明);直角三角形斜边上的中线等于斜边的一半;3.掌握直角三角形的判定定理:有两个角互余的三角形是直角三角形;4.掌握勾股定理;会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形;5.掌握直角三角形全等的判定定理:斜边和一组直角边对应相等的两个直角三角形全等;考点1:直角三角形的性质与判定直角三角形性质1.两锐角之和等于90°2.斜边上的中线等于斜边的一半3.30°角所对的直角边等于斜边的一半1.若有一条直角边等于斜边的一半,则这条直角边所对的锐角等于30°(应用时需先证明)2.勾股定理:若直角三角形的两直角边分别为a,b,斜边为c,则cba222=+判定1.有一个角为90°的三角形时直角三角形2.有两个角的和时90°的三角形是直角三角形1.一边上的中线等于这条边的一半的三角形是直角三角形考点2:勾股定理及逆定理(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方如图:直角三角形ABC 的两直角边长分别为a b ,,斜边长为c ,那么222a b c +=.(2)勾股定理的逆定理:如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形.(3)勾股数:像15,8,17这样,能够成为直角三角形三条边长的三个正整数,称为勾股数。
勾股数满足两个条件:①满足勾股定理②三个正整数【题型1:直角三角形的性质与判定】【典例1】(2022•绍兴)如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,∠C =30°,AC ∥EF ,则∠1=() 2.勾股定理的逆定理:如果三角形的三边长分别为a,b,c 若满足,那么这个三角形为直角三角形。
c b a 222=+面积公式,其中a 是底边常,hs 是底边上的高ch S 21ab 21==A.30°B.45°C.60°D.75°【答案】C【解答】解:∵AC∥EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,故选:C.1.(2022•岳阳)如图,已知l∥AB,CD⊥l于点D,若∠C=40°,则∠1的度数是()A.30°B.40°C.50°D.60°【答案】C【解答】解:在Rt△CDE中,∠CDE=90°,∠DCE=40°,则∠CED=90°﹣40°=50°,∵l∥AB,∴∠1=∠CED=50°,故选:C.2.(2023•贵州)5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120°,腰长为12m,则底边上的高是()A.4m B.6m C.10m D.12m【答案】B【解答】解:如图,作AD⊥BC于点D,在△ABC中,∠BAC=120°,AB=AC,∴∠B=∠C=(180°﹣∠BAC)=30°,又∵AD⊥BC,∴AD=AB=12=6(m),故选:B【题型2:勾股定理及逆定理】【典例2】(2023•恩施州)《九章算术》被称为人类科学史上应用数学的“算经之首”.书中记载:“今有户不知高、广,竿不知长短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?”译文:今有门,不知其高宽;有竿,不知其长短,横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽和对角线的长各是多少(如图)?答:门高、宽和对角线的长分别是8,6,10尺.【答案】8,6,10.【解答】解:设门对角线的长为x尺,则门高为(x﹣2)尺,门宽为(x﹣4)尺,根据勾股定理可得:x2=(x﹣4)2+(x﹣2)2,即x2=x2﹣8x+16+x2﹣4x+4,解得:x1=2(不合题意舍去),x2=10,10﹣2=8(尺),10﹣4=6(尺).答:门高8尺,门宽6尺,对角线长10尺.故答案为:8,6,10.1.(2023•天津)如图,在△ABC中,分别以点A和点C为圆心,大于的长为半径作弧(弧所在圆的半径都相等),两弧相交于M,N两点,直线MN分别与边BC,AC相交于点D,E,连接AD.若BD=DC,AE=4,AD=5,则AB的长为()A.9B.8C.7D.6【答案】D【解答】解:由题意得:MN是AC的垂直平分线,∴AC=2AE=8,DA=DC,∴∠DAC=∠C,∵BD=CD,∴BD=AD,∴∠B=∠BAD,∵∠B+∠BAD+∠C+∠DAC=180°,∴2∠BAD+2∠DAC=180°,∴∠BAD+∠DAC=90°,∴∠BAC=90°,在Rt△ABC中,BC=BD+CD=2AD=10,∴AB===6,故选:D.2.(2023•东营)一艘船由A港沿北偏东60°方向航行30km至B港,然后再沿北偏西30°方向航行40km至C港,则A,C两港之间的距离为50km.【答案】50.【解答】解:如图:由题意得:∠DAB=60°,∠FBC=30°,AD∥EF,∴∠DAB=∠ABE=60°,∴∠ABC=180°﹣∠ABE﹣∠FBC=90°,在Rt△ABC中,AB=30km,BC=40km,AC===50(km),∴A,C两港之间的距离为50km,故答案为:503.(2023•安徽)清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,AD是锐角△ABC的高,则BD=(BC+).当AB=7,BC=6,AC=5时,CD=1.【答案】1.【解答】解:∵BD=(BC+),AB=7,BC=6,AC=5,∴BD=(6+)=5,∴CD=BC﹣BD=6﹣5=1,故答案为:1.4.(2023•广安)如图,圆柱形玻璃杯的杯高为9cm,底面周长为16cm,在杯内壁离杯底4cm的点A处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm,且与蜂蜜相对的点B处,则蚂蚁从外壁B处到内壁A处所走的最短路程为10cm.(杯壁厚度不计)【答案】10.【解答】解:如图:将杯子侧面展开,作B关于EF的对称点B′,连接B′A,则B′A即为最短距离,B′A===10(cm).故答案为:10.【题型3:勾股定理与弦图、拼图】【典例3】(2020•随州)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有3个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=m2;②b与c的关系为b=c,a与d的关系为a+d=m.【答案】见试题解答内容【解答】解:(1)①如果直角三角形的两条直角边分别为a,b,斜边为c,那么a2+b2=c2.(或者:在直角三角形中,两条直角边的平方和等于斜边的平方.)②证明:在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即c2=ab×4+(b﹣a)2,化简得:a2+b2=c2.在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即(a+b)2=c2+ab×4,化简得:a2+b2=c2.在图3中,梯形的面积等于三个直角三角形的面积的和.即(a+b)(a+b)=ab×2+c2,化简得:a2+b2=c2.(2)①三个图形中面积关系满足S1+S2=S3的有3个;故答案为3;②结论:S1+S2=S3.∵S1+S2=()2+()2+S3﹣()2,∴S1+S2=π(a2+b2﹣c2)+S3,∴a2+b2=c2.∴S1+S2=S3.(3)①a2+b2+c2+d2=m2;②b与c的关系为b=c,a与d的关系为a+d=m.故答案为:m2;b=c,a+d=m.1.(2022•湘潭)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tanα=()A.2B.C.D.【答案】A【解答】解:由已知可得,大正方形的面积为1×4+1=5,设直角三角形的长直角边为a,短直角边为b,则a2+b2=5,a﹣b=1,解得a=2,b=1或a=1,b=﹣2(不合题意,舍去),∴tanα===2,故选:A.2.(2022•永州)我国古代数学家赵爽创制了一幅“赵爽弦图”,极富创新意识地给出了勾股定理的证明.如图所示,“赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是25,小正方形的面积是1,则AE=3.【答案】3.【解答】解:∵大正方形的面积是25,小正方形的面积是1,∴AB=BC=CD=DA=5,EF=FG=GH=HE=1,根据题意,设AF=DE=CH=BG=x,则AE=x﹣1,在Rt△AED中,AE2+ED2=AD2,∴(x﹣1)2+x2=52,解得:x1=4,x2=﹣3(舍去),∴x﹣1=3,故答案为:3.一.选择题(共7小题)1.在Rt△ABC中,若一个锐角等于40°,则另一个锐角的度数为()A.40°B.45°C.50°D.60°【答案】C【解答】解:∵直角三角形中,一个锐角等于40°,∴另一个锐角的度数=90°﹣40°=50°.故选:C.2.如图,在△ABC中,∠ACB=90°,点D在AB上,沿CD折叠,使A点落在BC边上的E点,若∠B=2 6°,则∠CDE的度数为()A.52°B.71°C.72°D.81°【答案】B【解答】解:∵∠ACB=90°,∠B=26°,∴∠A=90°﹣26°=64°,根据折叠,∠CDE=∠ADC,∠ACD=∠BCD=45°,∴∠ADC=180°﹣45°﹣64°=71°,∴∠CDE=∠ADC=71°,故选:B.3.如图,在△ABC中,∠C=90°,∠A=15°,点D是AC上一点,连接BD,∠DBC=60°,BC=2,则A D长是()A.4B.5C.6D.8【答案】A【解答】解:∵∠C=90°,∠DBC=60°,∴∠BDC=90°﹣∠DBC=30°,∴BD=2BC=4,∵∠A=15°,∴∠ABD=∠BDC﹣∠A=15°,∴∠A=∠ABD=15°,∴AD=BD=4,故选:A.4.以2,3为直角边的直角三角形斜边长为()A.B.C.4D.5【答案】B【解答】解:以2,3为直角边的直角三角形斜边长==,故选:B.5.下列各组数据是勾股数的是()A.,,B.4,5,6C.0.3,0.4,0.5D.9,40,41【答案】D【解答】解:A、()2+()2≠()2,不能构成直角三角形,故不符合题意;B、42+52≠62,不能构成直角三角形,故不符合题意;C、0.32+0.42=0.52,能构成直角三角形,但不是整数,故不符合题意;D、92+402=412,能构成直角三角形,且9,40,41是正整数,故符合题意.故选:D.6.如图,已知AB⊥BD,CD⊥BD,若用“HL”判定Rt△ABD和Rt△CDB全等,则需要添加的条件是()A.AD=CB B.∠A=∠C C.BD=DB D.AB=CD【答案】A【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,A.AD=CB,BD=DB,符合两直角三角形全等的判定定理HL,能推出Rt△ABD和Rt△CDB全等,故本选项符合题意;B.∠A=∠C,∠ABD=∠CDB,BD=DB,符合两直角三角形全等的判定定理AAS,不是两直角三角形全等的判定定理HL,故本选项不符合题意;C.∠ABD=∠CDB,BD=DB,不符合两直角三角形全等的判定定理,不能推出Rt△ABD和Rt△CDB 全等,故本选项不符合题意;D.AB=CD,∠ABD=∠CDB,BD=DB,符合两直角三角形全等的判定定理SAS,不是两直角三角形全等的判定定理HL,故本选项不符合题意;故选:A.7.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC=()A.28°B.59°C.60°D.62°【答案】B【解答】解:在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,且AE=AE,∴△CAE≌△DAE(HL),∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=28°,∴∠CAB=90°﹣28°=62°,∴∠AEC=90°﹣∠CAB=90°﹣31°=59°.故选:B.二.填空题(共6小题)8.如图,在△ABC中,∠ACB=90°,∠A=40°,D为线段AB的中点,则∠BCD=50°.【答案】50.【解答】解:∵在△ABC中,∠ACB=90°,∠A=40°,∴∠B=50°.∵D为线段AB的中点,∴CD=BD,∴∠BCD=∠B=50°.故答案为:50.9.我国古代数学著作《九章算术》记载了这样一个有趣的问题:“有一个水池,水面是边长为10尺的正方形,在水池中央有一根新生的芦苇,它高出水面1尺,如果将这根芦苇垂直拉向岸边,它的顶端刚好达到岸边的水面”,则水池的深度为12尺.【答案】见试题解答内容【解答】解:设水池的深度为x尺,由题意得:x2+(10÷2)2=(x+1)2,解得:x=12,答:水的深度是12尺.故答案为:12.10.如图△ABC中,∠A:∠B=1:2,DE⊥AB于E,且∠FCD=75°,则∠D=40°.【答案】见试题解答内容【解答】解:∵∠FCD=75°,∴∠A+∠B=75°,∵∠A:∠B=1:2,∴∠A=×75°=25°,∵DE⊥AB于E,∴∠AFE=90°﹣∠A=90°﹣25°=65°,∴∠CFD=∠AFE=65°,∵∠FCD=75°,∴∠D=180°﹣∠CFD﹣∠FCD=180°﹣65°﹣75°=40°.故答案为:40°11.如图,在一个三角形的纸片(△ABC)中,∠C=90°,则图中∠1+∠2的度数为270°.【答案】270.【解答】解:∵∠C=90°,∴∠A+∠B=90°,∵∠1+∠2+∠A+∠B=360°,∴∠1+∠2=360°﹣90°=270°,故答案为:270.12.如图,在Rt△ACB中,∠ACB=90°,以AC为边向外作正方形ADEC,若图中阴影部分的面积为9cm2,BC=4cm,则AB=5cm.【答案】5.【解答】解:∵正方形ADEC的面积为9,∴AC2=9,在Rt△ABC中,由勾股定理得,AB===5(cm),故答案为:5.13.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若BD=1,BC=3,则AC的长为5.【答案】5.【解答】解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵BD=1,BC=3,∴CE=3,∴AE=BE=2,∴AC=AE+EC=2+3=5.故答案为:5.三.解答题(共4小题)14.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,且DE=DF.求证:Rt △BDE≌Rt△CDF.【答案】见解析.【解答】证明:∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∵D是BC的中点,∴BD=CD,在Rt△BDE与Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL).15.如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.(1)证明:△ABC 是直角三角形.(2)请求图中阴影部分的面积.【答案】见试题解答内容【解答】(1)证明:∵在Rt △ADC 中,∠ADC =90°,AD =8,CD =6,∴AC 2=AD 2+CD 2=82+62=100,∴AC =10(取正值).在△ABC 中,∵AC 2+BC 2=102+242=676,AB 2=262=676,∴AC 2+BC 2=AB 2,∴△ABC 为直角三角形;(2)解:S 阴影=S Rt △ABC ﹣S Rt △ACD =×10×24﹣×8×6=96.16.如图1,荡秋千是中国古代北方少数民族创造的一种运动.有一天,小明在公园里游玩,如图2,他发现秋千静止时,踏板离地的垂直高度DE =1m ,将它往前推送6m (水平距离BC =6m )时,秋千的踏板离地的垂直高度BF =CE =3m ,秋千的绳索始终拉得很直,求绳索AD 的长度?【答案】10m .【解答】解:由题意得:∠ACB=90°,在Rt△ACB中,由勾股定理得:AC2+BC2=AB2,设绳索AD的长度为x m,则AC=(x﹣2)m,∴x2=62+(x﹣2)2,解得:x=10,答:绳索AD的长度是10m.17.一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?【答案】见试题解答内容【解答】解:(1)根据勾股定理:梯子距离地面的高度为:=24(米);(2)梯子下滑了4米,即梯子距离地面的高度为A'B=AB﹣AA′=24﹣4=20(米),根据勾股定理得:25=,解得CC′=8.即梯子的底端在水平方向滑动了8米.一.选择题(共5小题)1.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AC上一点,将△ABD沿线段BD翻折,使得点A落在A'处,若∠A'BC=20°,则∠CBD=()A.5°B.10°C.15°D.20°【答案】D【解答】解:由折叠得∠ABD=∠A'BD,∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,∵∠A'BC=20°,∴∠ABA'=80°,∴∠ABD=∠A'BD=40°,∴∠CBD=∠A'BD﹣∠A'BC=20°,故选:D.2.如图,Rt△ABC中,∠C=90°,∠ABC=60°,以顶点B为圆心、适当长为半径作弧,在边BC、BA上截取BE、BD;然后分别以点D、E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若AC=6,P为边AB上一动点,则GP的最小值为()A.3B.2C.1D.无法确定【答案】B【解答】解:由尺规作图步骤可得,BG平分∠ABC,∵∠C=90°,∠ABC=60°,∴∠CBG=∠ABG=30°,∠A=30°,∴AB=2BC,而AC=6,∴(2BC)2﹣BC2=62,解得:BC2=12,同理可得:BG=2GC,∴(2GC)2﹣GC2=BC2=12,∴GC=2,当GP⊥AB时,GP最短,此时根据角平分线的性质可得GP=GC=2,故选:B.3.如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P在斜边AB所在的直线m上运动,连接PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个【答案】C【解答】解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.4.如图,线段OP=1,过点P作PP1⊥OP且PP1=1,连结OP1;过点P1作P1P2⊥OP1且P1P2=1,连结OP2;过点P2作P2P3⊥OP2且P2P3=1,连结OP3,则OP3的长为()A.1B.C.D.2【答案】D【解答】解:由勾股定理得:=OP2+=2,=+=3,OP3==2.故选:D.5.如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定【答案】C【解答】解:如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,∵△ACG,△BCH,△ABF是等边三角形,∴S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,∴S1+S3=(a2+b2)﹣S5﹣S6,∵S2+S4=S△ABF﹣S5﹣S6=c2﹣S5﹣S6,∵c2=a2+b2,∴S1+S3=S2+S4,故选:C.二.填空题(共3小题)6.如图,在△ABC,∠ACB=90°,分别以三边为直径向上作三个半圆.若AB=5,AC=4,则阴影部分图形的面积为6.【答案】6.【解答】解:∵∠ACB=90°,AB=5,AC=4,∴BC2+AC2=AB2,BC===3,=BC•AC=×3×4=6,∴S△ABC设以BC为直径的半圆的面积为S1,以AB为直径的半圆的面积为S3,以AC为直径的半圆的面积为S2,∵S1=π•(BC)2=BC2,S2=π•(AC)2=AC2,S3=π•(AB)2=AB2,=S2+S1+S△ABC﹣S3=(BC2+AC2﹣AB2)+S△ABC=S△ABC=6,∴S阴影故答案为:6.7.如图,在一个长方形草坪ABCD上,放着一根长方体的木块.已知AD=12米,AB=8米,该木块的较长边与AD平行,横截面是边长为1米的正方形,一只蚂蚁从点A爬过木块到达C处需要走的最短路程是2米.【答案】见试题解答内容【解答】解:把立体图形展开为平面图形得:展开后AB方向上线段长度变长,长度为AB+1+1=8+2=1 0米,BC=AD=12米,AB⊥BC,∴AC==2(米),故答案为:2.8.如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为32cm.【答案】32.【解答】解:由题意得:BD=7cm,AB=CD=3cm,∴BC=7﹣3=4(cm),由勾股定理得:AC==5(cm),∴阴影的周长=4(AB+AC)=4×(3+5)=32(cm).故答案为:32.三.解答题(共4小题)9.如图,在△ABC中,∠C=90°,∠A=30°,AB=4cm,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为t s.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?【答案】(1);(2)或t=1.【解答】解:在△ABC中,∵∠C=90°,∠A=30°,∴∠B=60°.∵4÷2=2,∴0≤t≤2,BP=4﹣2t,BQ=t.(1)当BP=BQ时,△PBQ为等边三角形.即4﹣2t=t.∴.当时,△PBQ为等边三角形;(2)若△PBQ为直角三角形,①当∠BQP=90°时,BP=2BQ,即4﹣2t=2t,∴t=1.②当∠BPQ=90°时,BQ=2BP,即t=2(4﹣2t),∴.即当或t=1时,△PBQ为直角三角形.10.如图,等腰直角三角板如图放置.直角顶点B在直线CD上,分别过点A、E作AC⊥直线CD于点C,ED⊥直线CD于点D.(1)求证:CD=AC+ED.(2)若设△ABC三边长分别为a、b、c,利用此图证明勾股定理.【答案】(1)见解析;(2)见解析.【解答】证明:(1)∵∠ABC+∠EBD=90°,∠ABC+∠BAC=90°,∴∠BAC=∠EBD,∵△ABE是等腰直角三角形,∴AB=BE,在△ABC与△BED中,,∴△ABC≌△BED(AAS),∴BC=DE,BD=AC,∴CD=BC+BD=AC+ED;(2)由(1)知,DE=BC=a,BD=AC=b,=,∴S梯形ACDE=S△ABC+S△ABE+S△BDE又∵S梯形ACDE=ab++=ab+,∴,∴a2+b2=c2.11.如图,铁路上A,B两点相距25km,C,D为两庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,C B=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等.问:(1)在离A站多少km处?(2)判定三角形DEC的形状.【答案】见试题解答内容【解答】解:(1)∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x),∵DA=15km,CB=10km,∴x2+152=(25﹣x)2+102,解得:x=10,∴AE=10km;(2)△DEC是直角三角形,理由如下:∵△DAE≌△EBC,∴∠DEA=∠ECB,∠ADE=∠CEB,∠DEA+∠D=90°,∴∠DEA+∠CEB=90°,∴∠DEC=90°,即△DEC是直角三角形.12.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB=500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?【答案】(1)海港C受台风影响,理由见解答过程;(2)台风影响该海港持续的时间为小时.【解答】解:(1)海港C受台风影响,理由:∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;过点C作CD⊥AB于D,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围260km以内为受影响区域,∴海港C受台风影响;(2)当EC=260km,FC=260km时,正好影响C港口,∵ED=(km),∴EF=2ED=200km,∵台风的速度为28千米/小时,∴200÷28=(小时).答:台风影响该海港持续的时间为小时.1.(2023•株洲)一技术人员用刻度尺(单位:cm)测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,点D为边AB的中点,点A、B对应的刻度为1、7,则CD=()A.3.5cm B.3cm C.4.5cm D.6cm【答案】B【解答】解:由图可得,∠ACB=90°,AB=7﹣1=6(cm),点D为线段AB的中点,∴CD=AB=3cm,故选:B.2.(2022•永州)如图,在Rt△ABC中,∠ABC=90°,∠C=60°,点D为边AC的中点,BD=2,则BC的长为()A.B.2C.2D.4【答案】C【解答】解:在Rt△ABC中,∠ABC=90°,点D为边AC的中点,BD=2,∴AC=2BD=4,∵∠C=60°,∴∠A=30°,∴BC=AC=2,故选:C.3.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按如图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4【答案】B【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.4.(2022•陕西)如图,是一个棱长为1的正方体纸盒.若一只蚂蚁要沿着正方体纸盒的表面,从顶点A爬到顶点B去觅食,则需要爬行的最短路程是()A.B.2C.D.3【答案】C【解答】解:需要爬行的最短路程即为线段AB的长,如图:∵正方体棱长为1,∴BC=1,AC=2,∴AB===,∴需要爬行的最短路程为;故选:C.5.(2023•攀枝花)如图,在△ABC中,∠A=40°,∠C=90°,线段AB的垂直平分线交AB于点D,交AC 于点E,则∠EBC=10°.【答案】10°.【解答】解:∵∠C=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∵DE是线段AB的垂直平分线,∴AE=BE,∴∠EBA=∠A=40°,∴∠EBC=∠ABC﹣∠EBA=50°﹣40°=10°,故答案为:10°.6.(2023•郴州)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB的中点,求CM=5.【答案】5.【解答】解:连接CM,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB=,∵点M是AB的中点,∴CM=AB=5.故答案为:5.7.(2023•大连)如图,在平面直角坐标系中,点A,B的坐标分别为(1,0)和(0,2),连接AB,以点A 为圆心、AB的长为半径画弧,与x轴正半轴相交于点C,则点C的横坐标是+1.【答案】+1.【解答】解:∵点A,B的坐标分别为(1,0)和(0,2),∴OA=1,OB=2,∵∠AOB=90°,∴AB===,∵以点A为圆心,以AB长为半径画弧,∴AC=AB=,∴OC=AC+OA=+1,∵交x轴正半轴于点C,∴点C的坐标为(+1,0).故答案为:+1.8.(2023•随州)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,D为AC上一点,若BD是∠ABC的角平分线,则AD=5.【答案】5.【解答】解:如图,过点D作DE⊥AB于点E,∵∠C=90°,∴CD⊥BC,∵BD是∠ABC的角平分线,CD⊥BC,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,,∴Rt△BCD≌Rt△BED(HL),∴BC=BE=6,在Rt△ABC中,==10,∴AE=AB﹣BE=10﹣6=4,设CD=DE=x,则AD=AC﹣CD=8﹣x,在Rt△ADE中,AE2+DE2=AD2,∴42+x2=(8﹣x)2,解得:x=3,∴AD=8﹣x=5.故答案为:5.9.(2023•扬州)我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成.如图,直角三角形的直角边长为a、b,斜边长为c,若b﹣a=4,c=20,则每个直角三角形的面积为96.【答案】96.【解答】解:由图可得,a2+b2=c2,∴且a、b均大于0,解得,∴每个直角三角形的面积为ab=×12×16=96,故答案为:96.10.(2021•杭州)如图,在△ABC中,∠ABC的平分线BD交AC边于点D,AE⊥BC于点E.已知∠ABC =60°,∠C=45°.(1)求证:AB=BD;(2)若AE=3,求△ABC的面积.【答案】(1)证明见解答过程;(2).【解答】(1)证明:∵BD平分∠ABC,∠ABC=60°,∴∠DBC=∠ABC=30°,∵∠C=45°,∴∠ADB=∠DBC+∠C=75°,∠BAC=180°﹣∠ABC﹣∠C=75°,∴∠BAC=∠ADB,∴AB=BD;(2)解:在Rt△ABE中,∠ABC=60°,AE=3,∴BE==,在Rt△AEC中,∠C=45°,AE=3,∴EC==3,∴BC=3+,=BC×AE=.∴S△ABC。
中考数学复习学案课件(全国通用):第四单元 三角形(共145张PPT)【状元学案】
第21课时 直角三角形与勾股定理 第22课时 相似三角形及其应用 第23课时 锐角三角函数 第24课时 解直角三角形及其应用
第17课时┃ 几何初步及平行线、 相交线
第17课时┃ 中考解读
2 3 4 5
n n-1 n 条直线最多有________ 2 个交点
平面内有 n 条直线,最多可以把平面分成 n n+1 平面的份数 ____________ +1 个部分 2
第17课时┃ 考点聚焦
考点4 互为余角、互为补角
90° ,则这两个角 如果两个角的和等于 ________
互余
互为 定义 余角
邻补角 定义
第17课时┃ 考点聚焦
考点6 “三线八角”的概念
同位 角 内错 角 同旁 内角 如果两个角在截线 l 的同侧,且在被截直线 a、 b 的同一方向叫做同位角(位置相同).∠1 和∠ 5,∠4 和∠8,∠2 和∠6,∠3 和∠7 是同位角 如果两个角在截线 l 的两旁(交错 ), 在被截线 a、 b 之间 (内 )叫做内错角 (位置在内且交错 ).∠ 2 和∠8,∠3 和∠5 是内错角 如果两个角在截线 l 的同侧,在被截直线 a、b 之间(内 )叫做同旁内角.∠5 和∠2,∠3 和∠8 是同旁内角
第17课时┃ 考点聚焦 考点3 几何计数
1 数直线的 条数 数线段的 条数 数角的 个数 数交点的 个数 数直线分 过任意三个不在同一直线上的 n 个点中的两个 n n-1 点可以画________ 2 条直线 线段上共有 n 个点(包括两个端点)时,共有线 n n-1 段________ 2 条 n n-1 从一点出发的 n 条直线可组成______ 2 个角
中考数学 考点系统复习 第四章 三角形 微专题(一) 解直角三角形的实际应用
得起点 B 的仰角为 40°.斜坡 CD 的坡度为 i=1∶2.4,底端点 C 与顶端
点 D 的距离为 26 m.参赛运动员们将从点 A 出发乘车沿水平方向行驶 100
m 到达点 C 处,再沿斜坡 CD 行驶至点 D 处,最后乘垂直于水平方向的电
梯到达点 B 处,则电梯 BD 的高度约为(参考数据:sin 40°≈0.64,cos
结
BD=AB
CD=EA,BD+DA=BA AD+CE+FB=AB
1.(2021·南岸区校级期中)如图,某大楼 AB 正前方有一栋小楼 ED,小
明从大楼顶端 A 测得小楼顶端 E 的俯角为 45°,从大楼底端 B 测得小楼
顶端 E 的仰角为 24°,小楼底端 D 到大楼前梯坎 BC 的底端 C 有 90 m,
在坡比为 5∶12 的山坡上走了 1 300 m,此时小明看山顶的角度为 60°,
则山高为
( B)
A.(600-250 5)m
B.(600 3-250)m
C.(350+350 3)m
D.500 3 m
6.(2021·重庆一中三模)如图,小欢同学为了测量建筑物 AB 的高度,
从建筑物底端点 B 出发,经过一段坡度 i=1∶2.4 的斜坡,到达 C 点,
则高楼 AB 的高度为(参考数据:sin 22°≈0.37,cos 22°≈0.93,tan
22°≈0.40)
(D)
A.60 m
B.70 m
C.80 m
D.90 m
4.如图,斜坡 AB 长 20 m,其坡度 i=1∶0.75,BC⊥AC,斜坡 AB 正前
方一座建筑物 ME 上悬挂了一幅巨型广告,小明在点 B 测得广告顶部 M 点
梯坎 BC 长 65 m,梯坎 BC 的坡度 i=1∶2.4,则大楼 AB 的高度为(结果
2020中考直通车-数学-深圳-第17讲-解直角三角形
【要点总结】(课后由师生共同总结) 例题失误:(题号,失误原因,正解关键) 真题拾遗失误:(题号,失误原因,正解关键) 模拟演练失误:(题号,失误原因,正解关键) 复习要点:(课后需重点复习巩固的知识或题目类型) 备考建议:(教师根据课堂掌握情况提出考前复习建议)
11 / 11
2017 年, 仰角俯角问题继续考察,不过是出现在了选择题中,都是特殊角,12 题首次 出现了求解正切的问题。说明解直角三角形的知识,没有固定的题型,固定的知识点,考试
2 / 11
比较灵活多变,需要对基础知识和解题方法熟练掌握。 2018 年,特殊角的三角函数是每年的必考题,第 10 题就是考察了 60°角的三角函数值,
变。
选择题:12 道;填空题:4 道;解答题:7 道。
代数部分:几何部分:概率统计部分分值分布约为 56%:31%:13%。
重视基础,难度适中。重点突出函数、基本图形性质、图形间的基本关系等核心内容的
考察,加强了对基本的数学思想方法和应用问题的考察。
【考点分析】 2014 年,考察了解直角三角函数的一个常见的应用问题---仰角俯角问题,这个也是最
求:(1)P 到 OC 的距离. (2)山坡的坡度 tanα. (参考数据 sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)
8 / 11
8.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部 门对钓鱼岛 海域实现了常态化巡航管理。如图,某日在我国钓鱼岛附近海域有两艘自西向 东航行的海监船 A、B,B 船在 A 船的正东方向,且两船保持 20 海里的距离,某一时刻两海 监船同时测得在 A 的东北方向,B 的北偏东 15°方向有一我国渔政执法船 C,求此时船 C 与 船 B 的距离是多少?(结果保留根号)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考状元 ·生物
上页 栏目导航 下页
中考状元 ·生物
锐角三角函数的概念
1. 锐角三角函数
如图,在△ABC中,∠C=90°.
(1)正弦:sin
A=∠A斜的边对边=
a c
.
(2)余弦:cos
A=∠A斜的边邻边=
b c
.
(3)正切:tan
A=∠∠AA的的对邻边边=
a b
.
上页 栏目导航 下页
中考状元 ·生物
第四章 三角形
第17讲 解直角三角形
忆知识·巧导妙引 过考点·夯实基础 破重难·讲透练活 练好题·课堂达标
中考状元 ·生物
课标要求
版本导航
(1)利用相似的直角三角形,探索并认识锐角三角
函数(sin A,cos A,tan A),知道30°,45°,60°角
的三角函数值.
人教:九下第二十八章P60~P85;
1. 解直角三角形的理论依据 在Rt△ ABC中,∠C=90°,则: (1)三边之间的关系: a2+b2=c2 (勾股定理). (2)锐角之间的关系:∠A+∠B= 90° . (3)边角之间的关系:锐角三角函数. 2. 解直角三角形的基本类型:已知两边求第三边或锐角;已知一边和一锐角,求 另外两边.
(2)会使用计算器由已知锐角求它的三角函数值, 北师:九下第一章P2~P23;
由已知三角函数值求它的对应锐角.
华师:九上第24章P99~P124
(3)能用锐角三角函数解直角三角形,能用相关知
识解决一些简单的实际问题.
上页 栏目导航 下页
中考状元 ·生物
上页 栏目导航 下页
中考状元 ·生物
上页 栏目导航 下页
方向角 叫做方向角.如图,射线 OA 的方向为南偏西 25°;射线 OB 的方向为北偏西 70°;射线 OC 的方向为南偏东 60°
上页 栏目导航 下页
中考状元 ·生物 4.解直角三角形的实际应用 (1)斜坡的坡度是1∶ 3,则坡角α= 30° . (2)如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1 200米,从飞机上
上页 栏目导航 下页
中考状元 ·生物 重难点 三角函数与相似三角形 【例3】 如图,在矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°, 点A,C分别落在点A′,C′处,如果点A′,C′,B在同一直线上,那么tan∠ABA′的 5-1
值为 2 .
上页 栏目导航 下页
中考状元 ·生物 3.已知线段OA⊥OB,点C为OB的中点,D为线段OA上一点,连接AC,BD交于
B.
26 26
C.
26 13
D.
13 13
上页 栏目导航 下页
中考状元 ·生物
在网格中求锐角三角函数值都是通过构造寻找直角三角形,然后由定义求出相关 的函数值.
上页 栏目导航 下页
中考状元 ·生物 2.如图,在边长相同的小正方形组成的网格中,点A,B,C,D都在这些小正方
形的顶点上,AB,CD相交于点P,则tan∠APD的值是 2 .
上页 栏目导航 下页
中考状元 ·生物
(1)计算:2sin 30°-3tan 45°+4cos 60°;
(2)计算:cos
sin 45° 30°-tan
60°+cos
45°·sin
60°.
解:(1)原式=2×12-3×1+4× 12=0.
2
(2)
原式= 2 23-
+ 22× 23=-126. 3
上页 栏目导航 下页
中考状元 ·生物
解直角三角形
上页 栏目导航 下页
中考状元 ·生物
1.求 tan 22.5°的值. 解:tan 22.5°=(1+a 2)a= 2-1.
上页 栏目导航 下页
中考状元 ·生物 重难点 格点图形背景下的锐角三角函数
【例2】 (2020·南充)如图,点A,B,C在正方形网格的格点上,则sin∠BAC=
( B)
A.
2 6
看地面控制点B的俯角α=30°,则飞机A到控制点B的距离约为 2 400 米.
上页 栏目导航 下页
中考状元 ·生物 (3)如图,一艘轮船由西向东航行,在A处测得灯塔P在北偏东60°的方向,继续向
东航行40海里后到B处,测得灯塔P在北偏东30°的方向,此时轮船与灯塔之间的距离是 40 海里.
上页 栏目导航 下页
中考状元 ·生物
上页 栏目导航 下页
中考状元 ·生物
重难点 构造直角三角形求三角函数值
【例 1】 求 tan 15°的值. 解:如图,在Rt△ABC中,∠C=90°, ∠ABC=30°,延长CB至点D,使BD=BA,连接AD. 设AC=1,则BD=BA=2,BC= 3. tan D=tan 15°=2+1 3=2- 3.
2. 特殊角的三角函数值
锐角三角函数值
锐角α
sin α cos α tan α
30°
1
33
223
45°
2 2
2 2
1
60°31 223来自上页 栏目导航 下页中考状元 ·生物
1.锐角三角函数
8
15
8
如图,在Rt△ABC中,∠C=90°.则sin A=17,cos A=17,tan A=15 .
2.特殊角的三角函数值
(1)朝上看时,视线与水平线的夹角为仰角. (2)朝下看时,视线与水平线的夹角为俯角. (3)两者的范围都是0°~90°
坡度 (1)坡度(坡比):是指坡面的铅直高度与水平宽度 (坡比)、 之比.
坡角 (2)坡角:坡面与水平面的夹角
上页 栏目导航 下页
中考状元 ·生物
续表 从正北方向或正南方向到目标方向所形成的小于 90°的角
点P. (1)如图①,当OA=OB且AAOD=14时,求tan∠BPC的值; (2)如图②,当AD∶AO∶OB=1∶n∶2 n时,直接写出tan∠BPC的值.
上页 栏目导航 下页
中考状元 ·生物
解:如图,延长AC至点H,使CH=CA,连接BH. ∵C为OB中点,∠BCH=∠OCA, ∴△BCH≌△OCA(SAS). ∴∠CBH=∠O=90°,BH=OA. 由AAOD=14,设AD=t,则OD=3t, 则BH=OA=OB=4t. 在Rt△BOD中, BD= (3t)2+(4t)2=5t,
上页 栏目导航 下页
中考状元 ·生物 3. 解直角三角形的两种基本图形
上页 栏目导航 下页
中考状元 ·生物 3.解直角三角形 如图,在△ABC中,sin B=13,tan C= 22,AB=3,则AC的长为 3.
上页 栏目导航 下页
中考状元 ·生物
仰角、俯角;坡度(坡比)、坡角;方向角
仰角、 俯角