圆中最定值

合集下载

微专题12 与圆有关的定点、定值、最值、范围问题

微专题12 与圆有关的定点、定值、最值、范围问题

12-

32
2

∴ 82+|8a(--3|6)2=12,
又∵M(a,0)在l的下方,∴8a-3>0,∴8a-3=5,a=1. 故圆M的方程为(x-1)2+y2=1.
10
(2)由已知可设AC的斜率为k1,BC的斜率为k2(k1>k2),则直线AC的方程为y=k1x +t,直线BC的方程为y=k2x+t+6. 由方程组yy==kk12xx++tt,+6, 得 C 点的横坐标为 x0=k1-6 k2. ∵AB=t+6-t=6, ∴S=12k1-6 k2×6=k11-8k2.
的弦长为 3,且圆心 M 在直线 l 的下方. (1)求圆 M 的方程; (2)设 A(0,t),B(0,t+6)(-5≤t≤-2),若圆 M 是△ABC 的内切圆,求△ABC 的面积 S 的最大值和最小值.
9
解 (1)设圆心 M(a,0),由已知得圆心 M 到 l:8x-6y-3=0 的距离为 =12,
23
解 (1)连接OP,OA,OB,因为PA,PB为过点P的圆O的切线,切点为A,B, 所以OA⊥PA,OB⊥PB. 因为∠APB=60°,∠APO=30°,在Rt△APO中,OA=1,所以OP=2. 设点 P 的坐标为(t,t+2 2),则 t2+(t+2 2)2=4,t2+2 2t+2=0,即(t+ 2)2=0, 解得 t=- 2, 所以点 P 的坐标为(- 2, 2).
24
(2)假设存在符合条件的定点R. 设点 M(x,y),R(x0,y0),MMPR22=λ,则 x2+y2=1, 即(x-x0)2+(y-y0)2=λ[(x+ 2)2+(y- 2)2], 整理得-2x0x-2y0y+x20+y20+1=λ(2 2x-2 2y+5), 上式对任意x,y∈R,且x2+y2=1恒成立,

与圆有关的定点定值最值与范围问题

与圆有关的定点定值最值与范围问题
Δ_<__0
抓住2个考点
突破3个考向
揭秘3年高考
【助学·微博】 一个考情分析
与圆有关的综合性问题,其中最重要的类型有定点问题、定值 问题、最值与范围问题. 解这类问题可以通过建立目标函数、利用几何意义、直接求解 或计算求得.
抓住2个考点
突破3个考向
揭秘3年高考
考点自测
1.已知两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2x+ 2y-8=0,则经过两圆交点且面积最小的圆的方程为 ________________.
抓住2个考点
突破3个考向
揭秘3年高考
2.若直线 y=x+b 与曲线 y= 1-x2有两个公共点,则 b 的取值
范围是________.
解析 如图,当直线介于 l1 与 l2 之间时满
足题意,即圆心到直线
y=x+b
的距离
2 2
≤ |b|<1,解得 1≤b< 2. 2
答案 [1, 2)
抓住2个考点
突破3个考向
由yx=-02,2-3=0,
得x=2+ y=0
3,
或x=2- y=0.
3,
故以 MN 为直径的圆恒过定点(2+ 3,0)和(2- 3,0).
抓住2个考点
突破3个考向
揭秘3年高考
考向二 与圆有关的定值问题
【例2】 (2013·扬州调研)已知圆C:x2 +y2=9,点A(-5,0),直线l:x-2y =0. (1)求与圆C相切,且与直线l垂直的 直线方程; (2)在直线 OA 上(O 为坐标原点),存在定点 B(不同于点 A), 满足:对于圆 C 上任一点 P,都有PPAB为一常数,试求所有满 足条件的点 B 的坐标.
抓住2个考点

第6讲 与圆有关的定点、定值、最值与范围问题

第6讲  与圆有关的定点、定值、最值与范围问题

第6讲 与圆有关的定点、定值、最值与 范围问题一、填空题1.已知实数x ,y 满足⎩⎨⎧y ≥0,x -y ≥0,2x -y -2≥0,则点(x ,y )到圆(x +2)2+(y -6)2=1上点的距离的最小值是________. 答案 42-12.已知x ,y 满足x 2+y 2-4x -6y +12=0,则x 2+y 2最小值为________. 解析 法一 点(x ,y )在圆(x -2)2+(y -3)2=1上,故点(x ,y )到原点距离的平方即x 2+y 2最小值为(13-1)2=14-213.法二 设圆的参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =3+sin α则x 2+y 2=14+4cos α+6sin α,所以x 2+y 2的最小值为14-42+62=14-213.答案 14-2133.圆C 的方程为(x -2)2+y 2=4,圆M 的方程为(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ).过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF→的最小值是________.解析 如图所示,连接CE ,CF .由题意,可知圆心M (2+5cos θ,5sin θ),设⎩⎪⎨⎪⎧x =2+5cos θ,y =5sin θ,则可得圆心M 的轨迹方程为(x -2)2+y 2=25,由图,可知只有当M ,P ,C 三点共线时,才能够满足PE →·PF →最小,此时|PC |=4,|EC |=2,故|PE |=|PF |=23,∠EPF =60°,则PE →·PF →=(23)2×cos 60°=6.答案 64.直线2ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(0,1)之间的距离的最大值为________.解析△AOB是直角三角形等价于圆心(0,0)到直线2ax+by=1的距离等于2 2,由点到直线的距离公式,得12a2+b2=22,即2a2+b2=2,即a2=1-b22且b∈[-2,2].点P(a,b)与点(0,1)之间的距离为d=a2+(b-1)2=12b2-2b+2,因此当b=-2时,d取最大值,此时d max=3+22=2+1.答案2+15.已知P是直线3x+4y+8=0上的动点,P A、PB是圆x2+y2-2x-2y+1=0的切线,A、B是切点,C是圆心,那么四边形P ACB面积的最小值是________.解析如图所示,由题意,圆x2+y2-2x-2y+1=0的圆心是C(1,1),半径为1,由P A=PB易知四边形P ACB的面积=12(P A+PB)=P A,故P A最小时,四边形P ACB的面积最小.由于P A =PC2-1,故PC最小时P A最小,此时CP垂直于直线3x+4y+8=0,P为垂足,PC=|3+4+8|5=3,P A=PC2-1=22,所以四边形P ACB面积的最小值是2 2.答案2 26.过圆x2+y2=1上一点作圆的切线与x轴、y轴的正半轴交于A、B两点,则AB的最小值为________.解析设圆上的点为(x0,y0),其中x0>0,y0>0,切线方程为x0x+y0y=1,分别令x =0,y =0,得A ⎝ ⎛⎭⎪⎫1x 0,0、B ⎝ ⎛⎭⎪⎫0,1y 0,所以AB =1x 20+1y 20=(x 20+y 20)⎝ ⎛⎭⎪⎫1x 20+1y 20≥2. 答案 27.若圆C :(x -a )2+(y -1)2=1在不等式x +y +1≥0所表示的平面区域内,则a 的最小值为________.解析由题意,得⎩⎪⎨⎪⎧d =|a +2|2≥1,a +1+1≥0,解得a ≥2-2. 答案2-28.过点P ⎝ ⎛⎭⎪⎫12,1的直线l 与圆C :(x -1)2+y 2=4交于A 、B 两点,当∠ACB 最小时,直线l 的方程为________.解析 因点P 在圆C 内,所以当AB 长最小时,∠ACB 最小,此时AB ⊥PC .由k PC =-2可得k AB =12.所以直线l 的方程为2x -4y +3=0. 答案 2x -4y +3=09.过直线x +y -22=0上一点P 作圆O :x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析 因为点P 在直线x +y -22=0上,所以可设点P (x 0,-x 0+22),设其中一个切点为M .因为两条切线的夹角为60°,所以∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2,所以OP 2=4,即x 20+(-x 0+22)2=4,解得x 0= 2.故点P 的坐标是(2,2). 答案 (2,2)10.若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为________.解析 由题意,圆(x +2)2+(y +1)2=4的圆心(-2,-1)在直线ax +by +1=0上,所以-2a -b +1=0,即2a +b -1=0.因为(a -2)2+(b -2)2表示点(a ,b )与(2,2)的距离,所以(a -2)2+(b -2)2的最小值为|4+2-1|4+1=5,即(a -2)2+(b -2)2的最小值为5. 答案 5 二、解答题11.已知以点C ⎝ ⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点. (1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程. (1)证明 ∵圆C 过原点O ,∴OC 2=t 2+4t 2. 设圆C 的方程是(x -t )2+⎝ ⎛⎭⎪⎫y -2t 2=t 2+4t 2,令x =0,得y 1=0,y 2=4t ;令y =0,得x 1=0,x 2=2t . ∴S △OAB =12OA ·OB =12×⎪⎪⎪⎪⎪⎪4t ×|2t |=4,即△OAB 的面积为定值.(2)解 ∵OM =ON ,CM =CN ,∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12,∴直线OC 的方程是y =x2.∴2t =12t ,解得t =2或t =-2.当t =2时,圆心C 的坐标为(2,1),OC =5,此时圆心C 到直线y =-2x +4的距离d =95<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),OC =5,此时圆心C 到直线y =-2x +4的距离d =95>5,圆C 与直线y =-2x +4相离,∴t =-2不符合题意舍去.∴圆C 的方程为(x -2)2+(y -1)2=5.12.已知圆C 的方程为(x +4)2+y 2=16,直线l 过圆心且垂直于x 轴,其中G 点在圆上,F 点坐标为(-6,0).(1)若直线FG 与直线l 交于点T ,且G 为线段FT 的中点,求直线FG 被圆C 所截得的弦长;(2)在平面上是否存在定点P ,使得对圆C 上任意的点G 有|GF ||GP |=12?若存在,求出点P 的坐标;若不存在,请说明理由.解 (1)由题意,设G (-5,y G ),代入(x +4)2+y 2=16,得y G =±15,所以FG 的斜率为k =±15,FG 的方程为y =±15(x +6).设圆心C (-4,0)到FG 的距离为d ,由点到直线的距离公式得d =|±215|15+1=152. 则直线FG 被圆C 截得的弦长为216-⎝⎛⎭⎪⎫1522=7. 故直线FG 被圆C 截得的弦长为7.(2)设P (s ,t ),G (x 0,y 0),则由|GF ||GP |=12, 得(x 0+6)2+y 20(x 0-s )2+(y 0-t )2=12,整理得3(x 20+y 20)+(48+2s )x 0+2ty 0+144-s 2-t 2=0.①又G (x 0,y 0)在圆C :(x +4)2+y 2=16上,所以x 20+y 20+8x 0=0.②将②代入①,得(2s +24)x 0+2ty 0+144-s 2-t 2=0.又由G (x 0,y 0)为圆C 上任意一点可知,⎩⎨⎧2s +24=0,2t =0,144-s 2-t 2=0,解得s =-12,t =0.所以在平面上存在定点P (-12,0),使得结论成立.13.已知⊙C 过点P (1,1),且与⊙M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称. (1)求⊙C 的方程;(2)设Q 为⊙C 上的一个动点,求PQ →·MQ→的最小值;(3)过点P 作两条相异直线分别与⊙C 相交于A 、B ,且直线P A 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.解(1)设圆心C (a ,b ),则有 ⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1.解得⎩⎨⎧a =0,b =0.则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入,得r 2=2. 故圆C 的方程为x 2+y 2=2.(2)设Q (x ,y ),则x 2+y 2=2,且PQ →·MQ →=(x -1,y -1)·(x +2,y +2)=x 2+y 2+x +y -4=x +y -2.所以PQ →·MQ→的最小值为-4.(也可由线性规划或三角代换求得) (3)由题意知,直线P A 和直线PB 的斜率存在,且互为相反数,故可设P A :y -1=k (x -1),PB :y -1=-k (x -1). 由⎩⎨⎧y -1=k (x -1),x 2+y 2=2,得(1+k 2)x 2+2k (1-k )x +(1-k )2-2=0. 因为点P 的横坐标x =1一定是该方程的解, 故可得x A =k 2-2k -11+k 2.同理,x B =k 2+2k -11+k 2.所以k AB =y B -y A x B -x A =-k (x B -1)-k (x A -1)x B -x A=2k -k (x B +x A )x B -x A=1=k OP .所以直线AB 和OP 一定平行.14. 如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8. (1)求椭圆E 的方程;(2)设动直线l :y =kx +m 与椭圆E 有且只有一个公共点P ,且与直线x =4相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由. 解 (1)∵|AB |+|AF 2|+|BF 2|=8, 即|AF 1|+|F 1B |+|AF 2|+|BF 2|=8, 又|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a , ∴4a =8,a =2.又∵e =12,即c a =12,∴c =1,∴b =a 2-c 2= 3. 故椭圆E 的方程是x 24+y 23=1. (2)由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(4k 2+3)x 2+8kmx +4m 2-12=0.∵动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0), ∴m ≠0且Δ=0,即64k 2m 2-4(4k 2+3)(4m 2-12)=0, 化简得4k 2-m 2+3=0.(*) 此时x 0=-4km 4k 2+3=-4k m ,y 0=kx 0+m =3m , ∴P ⎝ ⎛⎭⎪⎫-4k m ,3m .由⎩⎨⎧x =4,y =kx +m ,得Q (4,4k +m ).假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上. 设M (x 1,0),则MP →·MQ→=0对满足(*)式的m ,k 恒成立.。

微专题12 与圆有关的定点、定值、最值、范围问题

微专题12 与圆有关的定点、定值、最值、范围问题

微专题12与圆有关的定点、定值、最值、范围问题真题感悟(2019·全国Ⅰ卷)已知点A,B关于坐标原点O对称,AB=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,MA-MP为定值?并说明理由.解(1)因为⊙M过点A,B,所以圆心M在AB的垂直平分线上.由已知A在直线x+y=0上,且A,B关于坐标原点O对称,所以M在直线y=x上,故可设M(a,a).因为⊙M与直线x+2=0相切,所以⊙M的半径为r=|a+2|.连接MA,由已知得AO=2.又MO⊥AO,故可得2a2+4=(a+2)2,解得a=0或a=4.故⊙M的半径r=2或r=6.(2)存在定点P(1,0),使得MA-MP为定值.理由如下:设M(x,y),由已知得⊙M的半径为r=|x+2|,AO=2.由于MO⊥AO,故可得x2+y2+4=(x+2)2, 化简得M的轨迹方程为y2=4x.因为曲线C:y2=4x是以点P(1,0)为焦点,以直线x=-1为准线的抛物线,所以MP=x+1.因为MA-MP=r-MP=x+2-(x+1)=1,所以存在满足条件的定点P.考点整合1.最值与范围问题(1)研究与圆有关的最值问题时,可借助圆的性质,利用数形结合求解.(2)常见的最值问题有以下几种类型:①形如μ=y-bx-a的最值问题,可转化为动直线斜率的最值问题;②形如t=ax+by的最值问题,可转化为动直线截距的最值问题;③形如μ=(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离的平方的最值问题.(3)对于圆的方程也可以利用三角代换,转化为三角函数问题:对于圆(x -a )2+(y -b )2=r 2,可设x =a +r cos θ,y =b +r sin θ.2.定点问题的求解步骤(1)选参变量:需要证明过定点的动直线(曲线)往往随着某一个量的变化而变化,可以选择这个量为参变量.(2)求动直线(曲线)方程:求出含上述参变量的动直线(曲线)方程,通过消元或整体思想,使得方程只含有一个参量(当根据几何条件建立的等式中含有多个参量时,要注意区别对待,与动点、动直线、动圆有关的参量是主要参量,其他参量可看作系数).(3)定点:求出定点坐标.利用方程ax +b =0恒成立来处理定点问题.在处理时也可以用从特殊到一般的思想,先求出一个特殊点,再代入进行验证.3.定值问题的处理(1)可以直接求出相关等式,再论证该等式与参数无关,类似于三角化简求值.(2)也可以用从特殊到一般的思想,先让参数取特殊值来论证性质,再将性质推广至一般情形.热点一 最值与范围问题【例1】 已知圆M 的圆心M 在x 轴上,半径为1,直线l :y =43x -12被圆M 所截的弦长为3,且圆心M 在直线l 的下方.(1)求圆M 的方程;(2)设A (0,t ),B (0,t +6)(-5≤t ≤-2),若圆M 是△ABC 的内切圆,求△ABC 的面积S 的最大值和最小值.解 (1)设圆心M (a ,0),由已知得圆心M 到l :8x -6y -3=0的距离为12-⎝ ⎛⎭⎪⎫322=12,∴|8a -3|82+(-6)2=12,又∵M (a ,0)在l 的下方,∴8a -3>0,∴8a -3=5,a =1.故圆M 的方程为(x -1)2+y 2=1.(2)由已知可设AC 的斜率为k 1,BC 的斜率为k 2(k 1>k 2),则直线AC 的方程为y =k 1x +t ,直线BC 的方程为y =k 2x +t +6.由方程组⎩⎨⎧y =k 1x +t ,y =k 2x +t +6, 得C 点的横坐标为x 0=6k 1-k 2. ∵AB =t +6-t =6,∴S =12⎪⎪⎪⎪⎪⎪6k 1-k 2×6=18k 1-k 2. ∵圆M 与AC 相切,∴1=|k 1+t |1+k 21,∴k 1=1-t 22t , 同理,k 2=1-(t +6)22(t +6),∴k 1-k 2=3(t 2+6t +1)t 2+6t, ∴S =6(t 2+6t )t 2+6t +1=6⎝ ⎛⎭⎪⎫1-1t 2+6t +1. ∵-5≤t ≤-2,∴-2≤t +3≤1,∴-8≤t 2+6t +1≤-4,∴S max =6×⎝ ⎛⎭⎪⎫1+14=152,S min =6×⎝ ⎛⎭⎪⎫1+18=274, ∴△ABC 的面积S 的最大值为152,最小值为274.探究提高 直线与圆中的最值问题主要包含两个方面(1)参量的取值范围:由直线和圆的位置关系或几何特征,引起的参量如k ,b ,r 的值变化.此类问题主要是根据几何特征建立关于参量的不等式或函数.(2)长度和面积的最值:由于直线或圆的运动,引起的长度或面积的值变化.此类问题主要是建立关于与参数如k 或(x ,y )的函数,运用函数或基本不等式求最值.【训练1】 已知实数x ,y 满足方程x 2+y 2-4x +1=0.(1)求y -x 的最大值和最小值;(2)求x 2+y 2的最大值和最小值.解 由x 2+y 2-4x +1=0得(x -2)2+y 2=3,它表示以(2,0)为圆心,3为半径长的圆.(1)y -x 可看作是直线y =x +b 在y 轴上的截距,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6. 所以y -x 的最大值为-2+6,最小值为-2- 6.(2)x 2+y 2表示圆上的点与原点距离的平方,由平面几何知识知,过原点和圆心的直线与圆有两个交点,在这两个交点处x 2+y 2取得最值.因为圆心到原点的距离为(2-0)2+(0-0)2=2, 所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.热点二 与圆有关的定点问题【例2】 (2019·北京卷)已知抛物线C :x 2=-2py (p >0)经过点(2,-1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.(1)解 由抛物线C :x 2=-2py 经过点(2,-1)得p =2.所以抛物线C 的方程为x 2=-4y ,其准线方程为y =1.(2)证明 抛物线C 的焦点为F (0,-1).设直线l 的方程为y =kx -1(k ≠0).由⎩⎨⎧y =kx -1,x 2=-4y ,得x 2+4kx -4=0. 设M (x 1,y 1),N (x 2,y 2),则解方程得 x 1,2=-2k ±2k 2+1,从而x 1x 2=-4.直线OM 的方程为y =y 1x 1x . 令y =-1,得点A 的横坐标x A =-x 1y 1, 同理得B 的横坐标x B =-x 2y 2.所以A ⎝ ⎛⎭⎪⎫-x 1y 1,-1,B ⎝ ⎛⎭⎪⎫-x 2y 2,-1. 设点D (0,n ),则DA →=⎝ ⎛⎭⎪⎫-x 1y 1,-1-n , DB →=⎝ ⎛⎭⎪⎫-x 2y 2,-1-n , DA →·DB →=x 1x 2y 1y 2+(n +1)2=x 1x 2⎝ ⎛⎭⎪⎫-x 214⎝ ⎛⎭⎪⎫-x 224+(n +1)2 =16x 1x 2+(n +1)2=-4+(n +1)2. 令DA →·DB→=0,即-4+(n +1)2=0,得n =1或n =-3. 故以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).探究提高 圆锥曲线中的定值与定点问题是高考的常考题型,运算量较大,题目逻辑性较强.解决这类问题一般有两种方法:一是根据题意求出相关的表达式,再根据已知条件列出方程组,消去参数,求出定值或定点坐标;二是先利用特殊情况确定定值或定点坐标,再从一般情况进行验证.【训练2】 已知圆x 2+y 2=9的圆心为P ,点Q (a ,b )在圆P 外,以PQ 为直径作圆M 与圆P 相交于A ,B 两点.(1)试判断直线QA 与圆P 的位置关系;(2)若QA =QB =4,试问点Q 在什么曲线上运动?(3)若点Q 在直线x +y -9=0上运动,问:直线AB 是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.解 (1)因为以PQ 为直径的圆M 与圆P 相交于A ,B ,所以P A ⊥QA ,又AP 为圆P 的半径,所以AQ 为圆P 的切线,从而直线QA 与圆P 相切.(2)因为P A ⊥QA ,AP =3,AQ =4,所以PQ =32+42=5,故点Q 在以P 为圆心,5为半径的圆上运动.(3)因为点Q (a ,b )在直线x +y -9=0上,所以点Q (a ,9-a ),所以,以PQ 为直径的圆M 的方程为x 2+y 2-ax -(9-a )y =0,又AB 为圆P 与圆M 的公共弦,所以直线AB 的方程为ax +(9-a )y -9=0,即a(x-y)-9y-9=0,从而此直线过x-y=0与9y-9=0的交点,即过定点(1,1).热点三与圆有关的定值问题【例3】(2018·高邮调研)如图,已知圆O的方程为x2+y2=1,直线l的方程为x-y+22=0,点P是直线l上的动点,过点P作圆O的切线P A,PB,切点为A,B.(1)若∠APB=60°,试求点P的坐标;(2)在(1)的条件下,对于圆O上任意一点M,平面内是否存在一定点R,使MR MP为定值?如果存在,求出点R的坐标;如果不存在,请说明理由.解(1)连接OP,OA,OB,因为P A,PB为过点P的圆O的切线,切点为A,B,所以OA⊥P A,OB⊥PB.因为∠APB=60°,∠APO=30°,在Rt△APO中,OA=1,所以OP=2.设点P的坐标为(t,t+22),则t2+(t+22)2=4,t2+22t+2=0,即(t+2)2=0,解得t=-2,所以点P的坐标为(-2,2).(2)假设存在符合条件的定点R.设点M(x,y),R(x0,y0),MR2MP2=λ,则x2+y2=1,即(x-x0)2+(y-y0)2=λ[(x+2)2+(y-2)2],整理得-2x0x-2y0y+x20+y20+1=λ(22x-22y+5),上式对任意x,y∈R,且x2+y2=1恒成立,则⎩⎨⎧-2x 0=22λ,-2y 0=-22λ,x 20+y 20+1=5λ,解得⎩⎪⎨⎪⎧λ=14,x 0=-24,y 0=24或⎩⎨⎧λ=1,x 0=-2,(舍去)y 0=2.所以R 的坐标为⎝ ⎛⎭⎪⎫-24,24, 经检验,符合条件MR MP =12,所以对于圆O 上任意一点M ,平面内存在一定点R ,使MR MP 为定值,且R 的坐标为⎝ ⎛⎭⎪⎫-24,24. 探究提高 本题考查直线与圆相切问题以及定值问题.相切问题的基本处理方法是将切点与圆心连接,从而它与切线相互垂直,利用这一直角来进行转化研究问题;第(2)问是探索性问题,在研究探索性问题时,先假设存在是一般性的处理方法,其次将所要研究的问题转化为关于点M 的坐标为元的方程问题,利用该方程的解与点M 的坐标无关来研究问题.【训练3】 (2019·泰州中学检测)已知圆O :x 2+y 2=4与坐标轴交于点A 1,A 2,B 1,B 2(如图).(1)点Q 是圆O 上除A 1,A 2外的任意点(如图1),A 2Q ,A 1Q 与直线y +3=0交于不同的两点M ,N ,求MN 的最小值;(2)点P 是圆O 上除A 1,A 2,B 1,B 2外的任意点(如图2),直线B 2P 交x 轴于点F ,直线A 1B 2交A 2P 于点E .设A 2P 的斜率为k ,EF 的斜率为m ,求证:2m -k 为定值.(1)解 由题意可设直线A 2Q 的方程为y =k ′(x -2),直线A 1Q 的方程为y =-1k ′(x+2),k ′≠0.由⎩⎨⎧y =k ′(x -2),y +3=0,解得⎩⎪⎨⎪⎧x =2-3k ′,y =-3,由⎩⎪⎨⎪⎧y =-1k ′(x +2),y +3=0,解得⎩⎨⎧x =3k ′-2,y =-3. 所以直线A 2Q 与直线y +3=0的交点为M ⎝ ⎛⎭⎪⎫2-3k ′,-3, 直线A 1Q 与直线y +3=0的交点为N (3k ′-2,-3),所以MN =⎪⎪⎪⎪⎪⎪3k ′+3k ′-4. 当k ′>0时,MN =⎪⎪⎪⎪⎪⎪3k ′+3k ′-4≥6-4=2,当且仅当k ′=1时等号成立; 当k ′<0时,MN =⎪⎪⎪⎪⎪⎪3k ′+3k ′-4≥|4-(-6)|=10,当且仅当k ′=-1时等号成立. 故线段MN 长度的最小值是2.(2)证明 由题意可知点A 1(-2,0),A 2(2,0),B 1(0,-2),B 2(0,2),A 2P 的斜率为k ,所以直线A 2P 的方程为y =k (x -2),由⎩⎨⎧y =k (x -2),x 2+y 2=4,得P ⎝ ⎛⎭⎪⎫2k 2-2k 2+1,-4k k 2+1, 则直线B 2P 的方程为y =-k +1k -1x +2, 令y =0,则x =2(k -1)k +1,即F ⎝ ⎛⎭⎪⎫2(k -1)k +1,0. 因为直线A 1B 2的方程为x -y +2=0,由⎩⎨⎧x -y +2=0,y =k (x -2),解得⎩⎪⎨⎪⎧x =2k +2k -1,y =4k k -1,所以E ⎝ ⎛⎭⎪⎫2k +2k -1,4k k -1, 所以EF 的斜率m =4kk -12k +2k -1-2(k -1)k +1=k +12, 所以2m -k =2·k +12-k =1(定值).【新题感悟】 (2019·苏北七市高三一模)在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆C :(x -4)2+y 2=4.若存在过点P (m ,0)的直线l ,l 被两圆截得的弦长相等,则实数m 的取值范围是________.解析 直线l 的斜率k 不存在或为0时均不成立,设直线l 的方程为kx -y -km =0,则圆心O (0,0)到直线l 的距离d 1=|km |k 2+1,圆心C (4,0)到直线l 的距离d 2=|4k -km |k 2+1.因为l 被两圆截得的弦长相等,所以21-d 21=24-d 22,即d 22-d 21=3,所以16k 2+k 2m 2-8k 2m -k 2m 2k 2+1=3,化为:16k 2-8k 2m =3k 2+3,k 2=313-8m>0,得:m <138.又d 21=k 2m 2k 2+1=m 21+1k 2=m 21+13-8m 3=3m 216-8m <1,即3m 2+8m -16<0,解得:-4<m <43.综上,-4<m <43.答案 ⎝ ⎛⎭⎪⎫-4,43一、填空题1.(2015·江苏卷)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________.解析直线mx-y-2m-1=0恒过定点(2,-1),由题意,得半径最大的圆的半径r=(1-2)2+(0+1)2= 2.故所求圆的标准方程为(x-1)2+y2=2.答案(x-1)2+y2=22.(2019·靖江调研)已知圆C:x2+y2-2x-2y+1=0,直线l:3x+4y-17=0.若在直线l上任取一点M作圆C的切线MA,MB,切点分别为A,B,则AB的长度取最小值时直线AB的方程为________.解析圆C的标准方程为(x-1)2+(y-1)2=1,当AB的长度最小时,圆心角∠ACB最小,设为2θ,则由cos θ=ACCM=1CM,知当θ最小时,cos θ最大,即CM最小,那么CM⊥l,所以k AB=k l=-34.设直线AB的方程为3x+4y=m.又由CM=|3+4-17|5=2,此时cos θ=12,则点C到直线AB的距离为AC cos θ=12,即1 2=|3+4-m|5,解得m=192或m=92,经检验m=192,则直线AB的方程为6x+8y-19=0.答案6x+8y-19=03.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为________.解析由题意可知以线段AB为直径的圆C过原点O,要使圆C的面积最小(D 为切点),只需圆C的半径或直径最小,又圆C与直线2x+y-4=0相切,所以由平面几何知识,当OC所在直线与直线2x+y-4=0垂直时,OD最小(D为切点),即圆C的直径最小,此时OD=|2×0+0-4|5=45,所以圆的半径为25,圆C的面积的最小值为S=πr2=4 5π.答案4 5π4.(2018·全国Ⅲ卷改编)直线x+y+2=0分别与x轴、y轴交于A,B两点,点P 在圆(x-2)2+y2=2上,则△ABP面积的取值范围是________.解析由题意知圆心的坐标为(2,0),半径r=2,圆心到直线x+y+2=0的距离d=|2+2|1+1=22,所以圆上的点到直线的最大距离是d+r=32,最小距离是d-r= 2.易知A(-2,0),B(0,-2),所以AB=22,所以2≤S△ABP≤6. 答案[2,6]5.(2019·常州调研)在平面直角坐标系xOy中,若圆(x-2)2+(y-2)2=1上存在点M,使得点M关于x轴的对称点N在直线kx+y+3=0上,则实数k的最小值为________.解析圆(x-2)2+(y-2)2=1关于x轴的对称圆的方程为(x-2)2+(y+2)2=1,由题意得圆心(2,-2)到直线kx+y+3=0的距离d=|2k-2+3|k2+1≤1,解得-43≤k≤0,所以实数k的最小值为-4 3.答案-4 36.(2019·南京、盐城模拟)在平面直角坐标系xOy中,已知点P为函数y=2ln x的图象与圆M:(x-3)2+y2=r2的公共点,且它们在点P处有公切线,若二次函数y=f(x)的图象经过点O,P,M,则y=f(x)的最大值为________.解析设P(x0,2ln x0),x0>0,则函数y=2ln x在点P处的切线斜率为2x0,则2x0·2ln x0x0-3=-1,即4ln x0=-x0·(x0-3)①.由二次函数y=f(x)的图象经过点O和M可设f (x )=ax (x -3),代入点P (x 0,2ln x 0),x 0>0,得2ln x 0=ax 0(x 0-3) ②.由①②比较可得a =-12,则f (x )=-12x (x -3),则f (x )max =f ⎝ ⎛⎭⎪⎫32=-12×32×⎝ ⎛⎭⎪⎫-32=98.答案 987.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间距离的最小值为________.解析 根据题意画出图形,如图所示,过点O 作OC ⊥AB 于C ,因为△AOB 为等腰直角三角形,所以C 为弦AB 的中点,又OA =OB =1,根据勾股定理得AB =2, ∴OC =12AB =22.∴圆心(0,0)到直线2ax +by =1的距离为12a 2+b 2=22,即2a 2+b 2=2,即a 2=-12b 2+1≥0.∴-2≤b ≤ 2.则点P (a ,b )与点(0,1)之间的距离d =(a -0)2+(b -1)2=a 2+b 2-2b +1=12b 2-2b +2.设f (b )=12b 2-2b +2=12(b -2)2,此函数图象为对称轴为b =2的开口向上的抛物线,∴当-2≤b ≤2<2时,函数为减函数.∴f (b )min =f (2)=12(2-2)2, ∴d 的最小值为12(2-2)2=(2-1)2=2-1.答案2-18.(2019·南京师大附中模拟)已知直线x -y +b =0与圆x 2+y 2=9交于不同的两点A ,B .若O 是坐标原点,且|OA →+OB →|≥22|AB →|,则实数b 的取值范围是________. 解析 设AB 的中点为D ,则OA→+OB →=2OD →,故|OD →|≥24|AB →|,即|OD →|2≥18|AB →|2.再由直线与圆的弦长公式可得,AB =2r 2-d 2(d 为圆心到直线的距离),又直线与圆相交,故d <r ,得|b |2<3,所以-32<b <32,根据|OD→|2≥18|AB →|2,|AB →|2=4(9-OD →2),得|OD →|2≥3.由点到直线的距离公式可得|OD →|2=b 22,即b 22≥3,所以b ≥6或b ≤- 6.综上可得,b 的取值范围是(-32,-6]∪[6,32). 答案 (-32,-6]∪[6,32) 二、解答题9.如果实数x ,y 满足(x +2)2+y 2=3. (1)求yx 的最大值; (2)求2x -y 的最小值.解 (1)问题可转化为求圆(x +2)2+y 2=3上任意一点到原点连线的斜率k =yx 的最大值,由图形性质可知,由原点向圆(x +2)2+y 2=3作切线,其中切线斜率的最大值即为yx 的最大值.设切线方程为y =kx ,即kx -y =0,由|-2k -0|k 2+1=3,解得k =3或k =-3,所以yx 的最大值为 3.(2)将2x -y 看作直线y =2x +b 在y 轴上的纵截距的相反数,当直线y =2x +b 与圆(x +2)2+y 2=3相切时,纵截距b 取得最大值或最小值.此时|-4+b |22+1=3,所以b =4±15,所以2x -y 的最小值为-4-15. 10.(2019·扬州模拟)已知圆O :x 2+y 2=4.(1)直线l 1:3x +y -23=0与圆O 相交于A ,B 两点,求弦AB 的长度; (2)如图,设M (x 1,y 1),P (x 2,y 2)是圆O 上的两个动点,点M关于原点的对称点为M 1,点M 关于x 轴的对称点为M 2,如果直线PM 1,PM 2与y 轴分别交于(0,m )和(0,n ),问mn 是否为定值?若是,求出该定值;若不是,请说明理由.解 (1)由于圆心(0,0)到直线l 1:3x +y -23=0的距离d =|-23|2= 3.圆的半径r =2,所以AB =2r 2-d 2=2.(2)由于M (x 1,y 1),点M 关于原点的对称点为M 1,点M 关于x 轴的对称点为M 2,可得M 1(-x 1,-y 1),M 2(x 1,-y 1), 由M (x 1,y 1),P (x 2,y 2)是圆O 上的两个动点,可得x 21+y 21=4,x 22+y 22=4.直线PM 1的方程为y +y 1y 2+y 1=x +x 1x 2+x 1,令x =0,求得y =m =x 1y 2-x 2y 1x 2+x 1.直线PM 2的方程为y +y 1y 2+y 1=x -x 1x 2-x 1,令x =0,求得y =n =-x 1y 2-x 2y 1x 2-x 1.所以mn =x 22y 21-x 21y 22x 22-x 21=x 22(4-x 21)-x 21(4-x 22)x 22-x 21=4. 故mn 为定值.11.如图所示,已知圆A 的圆心在直线y =-2x 上,且该圆上存在两点关于直线x +y -1=0对称,又圆A 与直线l 1:x +2y +7=0相切,过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .(1)求圆A 的方程;(2)当MN =219时,求直线l 的方程;(3)(BM →+BN →)·BP→是否为定值?如果是,求出此定值;如果不是,请说明理由.解 (1)由圆上存在两点关于直线x +y -1=0对称知圆心A 在直线x +y -1=0上.由⎩⎨⎧y =-2x ,x +y -1=0,得A (-1,2). 设圆A 的半径为R ,∵圆A 与直线l 1:x +2y +7=0相切,∴R =|-1+4+7|5=25, ∴圆A 的方程为(x +1)2+(y -2)2=20.(2)当直线l 与x 轴垂直时,易知x =-2符合题意; 当直线l 与x 轴不垂直时, 设直线l 的方程为y =k (x +2),即kx -y +2k =0,连接AQ ,则AQ ⊥MN , ∵MN =219,∴AQ =20-19=1. 由AQ =|k -2|k 2+1=1,得k =34, ∴直线l 的方程为y =34(x +2),即3x -4y +6=0, ∴所求直线l 的方程为x =-2或3x -4y +6=0. (3)∵AQ ⊥BP ,∴AQ →·BP→=0,∴(BM →+BN →)·BP →=2BQ →·BP →=2(BA →+AQ →)·BP →=2BA →·BP →; 当直线l 与x 轴垂直时,得P ⎝ ⎛⎭⎪⎫-2,-52,则BP →=⎝ ⎛⎭⎪⎫0,-52,又BA →=(1,2), ∴(BM →+BN →)·BP →=2BA →·BP→=-10;当直线l 的斜率存在时,设直线l 的方程为y =k (x +2), 由⎩⎨⎧y =k (x +2),x +2y +7=0,解得P ⎝ ⎛⎭⎪⎫-4k -71+2k ,-5k 1+2k , ∴BP →=⎝⎛⎭⎪⎫-51+2k ,-5k 1+2k , ∴(BM →+BN →)·BP →=2BA →·BP→=2⎝ ⎛⎭⎪⎫-51+2k -10k 1+2k =-10. 综上所述,(BM →+BN →)·BP→为定值-10.。

与圆有关的定点、定值、最值与范围问题

与圆有关的定点、定值、最值与范围问题
答案 x-122+(y+1)2=245
抓住2个考点
突破3个考向
揭秘3年高考
5.(2013·连云港模拟)一束光线从点A(-1,1)出发经x轴反射,到 达圆C:(x-2)2+(y-3)2=1上一点的最短路程是________. 解析 因为点 A(-1,1)关于 x 轴的对称点为 B(-1,-1),圆心 为(2,3),所以从点 A(-1,1)出发经 x 轴反射,到达圆 C 上一点 的最短路程为 -1-22+-1-32-1=4.
BN,得A→M·B→N=0,即(3,t1)·(1,t2)=0,所以 3+t1t2=0,即 t1t2
=-3.
所以 MN=t1-t2=t1+(-t2)≥2 -t1t2=2
当且仅当 t1= 3,t2=- 3时等号成立.
故 MN 的最小值为 2 3.
抓住2个考点
3.
突破3个考向
揭秘3年高考
(2)证明 由(1)得 t1t2=-3.以 MN 为直径的圆的方程为(x-2)2 +(y-t1)(y-t2)=0, 即(x-2)2+y2-(t1+t2)y+t1t2=0, 也即(x-2)2+y2-(t1+t2)y-3=0.
第6讲 与圆有关的定点、定值、最值与 范围问题
抓住2个考点
突破3个考向
揭秘3年高考
考点梳理
1.直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)
相离
相切
相交
图形
量化
方程观点 几何观点
Δ_<__0 d_>__r
Δ_=__0 d_=__r
Δ_>__0 d_<__r
抓住2个考点
突破3个考向
揭秘3年高考
答案 4
抓住2个考点
突破3个考向
揭秘3年高考

初中数学圆中最值定值问题专题(推荐)

初中数学圆中最值定值问题专题(推荐)

初中数学圆中最值定值问题专题(推荐)圆中最值域定值问题研究类型一:例1:在图中,AB是⊙O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接MP、NP。

求MP+NP的最小值。

例2:已知圆O的面积为3π,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB上任一点。

求PC+CD的最小值。

例3:在菱形ABC中,∠A=60度,AB=3,圆A、圆B的半径为2和1,P、E、F分别是CD、圆A和圆B上的动点。

求PE+PF的最小值。

类型二:折叠隐圆基本原理】:点A为圆外一点,P为圆O上动点,连接AO并延长交圆于P1,则AP的最小值为AP2,最大值为AP1.例1:在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△XXX沿MN所在的直线翻折得到△A′MN,连接A′C,求A′B长度的最小值。

例2:已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(1,1),点B(5,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,则CB’的最小值为多少?例3:在四边形ABCD中,AD∥BC,∠A=90,AD=1,AB=2,BC=3,P是线段AD上一动点,将△ABP沿BP所在直线翻折得到△QBP,则△CQD的面积最小值为多少?类型三:随动位似隐圆例:在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6,点D是边AC上一点且AD=23,将线段AD绕点A旋转得线段AD′,点F始终为BD′的中点,则将线段CF最大值为多少?分析]:易知D’轨迹为以A为圆心AD为半径的圆,则在运动过程中AD’为定值23,故取AB中点G,则FG为中位线,FG=3,故F点轨迹为以G为圆心,3为半径的圆。

问题实质为已知圆外一点C和圆G上一点F,求CF的最大值。

方法归纳:1.如图,点A和点O1为定点,圆O1半径为定值,P为圆O1上动点,M为AP中点。

圆中的定值问题

圆中的定值问题

圆中的定值问题(一)探究a b⋅型定值问题定值问题是近年来中考和竞赛中的热点和难点,它要求学生能运用动与静、变与不变的辨证关系进行分析、猜想、论证,从而使问题获得解决.图形背景:如图,在平面直角坐标系中,M为x轴正半轴上一点,以M为圆心的圆分别交x轴、y轴于A、B、C、D四点.此图虽简单,但内涵极为丰富,它可以与直角三角形、射影定理、垂径定理等有关知识联系,演变成一系列定值问题.例1.如图,圆心M的坐标(3,0),半径为5。

点P是上一动点,连接CP并延长交x轴⋅为定值,并求其于点Q,连接PD交x轴于点H,当点P在上运动时,试探究MQ MH值。

练习2、(2010•深圳)如图1所示,以点M(-1,0)为圆心的圆与y轴,x轴分x交y轴于点F.(1)请直接写出OE,⊙M的半径r,CH的长;(2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M 于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足M N•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.练习3——已知:如图,直线y=kx+3(k>0)交x轴于B点,交y轴于A点,以A为圆心,AB为半径作⊙A交x轴于另一点D,交y轴于E、F两点,交直线AB 于C点,连接BE、CE,∠CBD的平分线交CE于I点.(1)求证:BE=IE;(2)若AI⊥CE,①求⊙A的半径;②设Q为弧BF上一点,连接DQ交y轴于T,连接BQ并延长交y轴于G 点,求AT•AG的值;4、如图,PA为⊙O的切线,A为切点,连接PO并延长,与圆相交于点B、C,PA=10,PB=5,∠BAC的平分线与BC和⊙O分别相交于点D和E.求:(1)⊙O的半径;(2)sin∠BAP的值;(3)AD•AE的值.圆中的定值问题(二)探究a b 型定值问题定值问题是近年来中考和竞赛中的热点和难点,它要求学生能运用动与静、变与不变的辨证关系进行分析、猜想、论证,从而使问题获得解决.图形背景:如图,在平面直角坐标系中,M为x轴正半轴上一点,以M为圆心的圆分别交x轴、y轴于A、B、C、D四点.此图虽简单,但内涵极为丰富,它可以与直角三角形、射影定理、垂径定理等有关知识联系,演变成一系列定值问题.例.如图,若以M(1,0)为圆心,2为半径的⊙M分别交坐标轴于A、B、C、D四点,点P 是上一动点,过点D作⊙M的直径DH交AP于F点,连接PH交x轴于点E,当点P在上运动时,试探究ME+MF为定值,并求其值.变式练习.如图,若以M(1,0)为圆心,2为半径的⊙M分别交坐标轴于A、B、C、D四点,若P是上一动点,连接HP交x轴于E,当点P在上运动时,试探究ME-MF为定值,并求其值.例.如图,点P是上一动点,连接PC、PB、PD,当点P在上运动时,探究PC PDPB+为定值,并求其值.练习1、如图,点P是上一动点,连接PC、PB、PD,若点P在上运动时,探究PC PDPB-为定值,并求其值.练习2、如图,E点为x轴正半轴上一点,⊙E交x轴于A、B两点,交y轴于C、D两点,P点为劣弧BC 上一个动点,且A(-1,0),E(1,0).(1)如图1,求点C的坐标;(2)如图2,连接PA,PC.若CQ平分∠PCD交PA于Q点,当P点在运动时,线段AQ的长度是否发生变化;若不变求出其值,若发生变化,求出变化的范围;(3)如图3,连接PD,当P点在运动时(不与B、C两点重合),给出下列两个结论:①确的,请你判断哪一个是正确的,并求其值。

直线和圆中的最值求解方法

直线和圆中的最值求解方法

直线和圆中的最值求解方法作者:赵建勋来源:《中学生理科应试》2014年第04期直线和圆是解析几何的重要内容,而最值问题是其重要题型,解这类题不仅要灵活用到直线和圆的有关知识,而且还要用到求最值的各种方法,解法相当灵活,现举例方法说明,供同学们复习时参考.一、建立二次函数用顶点法例1在直线L∶y=2x上求一点P,使P点到两定点A(3,0)、B(0,4)的距离的平方和为最小.解设P(x,2x),则有|PA|2+|PB|2=(x-3)2+(2x)2+x2+(2x-4)2=10x2-22x+25∵a=10>0,∴抛物线开口向上,∴函数在顶点处取得最小值.∴当x=-b2a=--222×10=1110时,|PA|2+|PB|2取最小值,故P点坐标为(1110,115).点评二次函数求最值一般用配方法,本题只求x的值,所以用顶点法要简单.二、设角为自变量用三角法例2过点P(2,1)作直线l交x轴、y轴的正向于A、B两点,求|PA|·|PB|最小时的直线l 的方程.分析此直线过已知点,求出斜率即可,若直接设斜率为k,求|PA|·|PB|的最小值很繁.设角为自变量即可转化为三角函数求最值,易求斜率.图1解如图1,过P做PC⊥x轴于C,PD⊥y轴于D,设∠BAO=θ,则∠BPD=θ,则|PA|=1sinθ,|PB|=2cosθ,于是|PA|·|PB|=1sinθ·2cosθ=2sinθcosθ=42sinθcosθ=4sin2θ.要使|PA|·|PB|最小,只需sin2θ最大,即sin2θ=1,2θ=90°,∠BAO=θ=45°,∴kAB=kl=tan135°=-1.故直线l的方程为y-1=-(x-2),即x+y-3=0.三、建立一元二次方程用判别式法例3已知直线l1∶y=4x,和点P(6,4),在直线l1上求一点Q,使过P、Q的直线与l1以及x轴在第一象限内所围成的三角形面积最小.图2解如图2,设Q(x1,4x1),则直线PQ的方程y-44x1-4=x-6x1-6.令y=0,得x=5x1x1-1,故点A的坐标为(5x1x1-1,0).∴S=12·4x1·5x1x1-1=10x21x1-1.即10x21-Sx1+S=0(1)∵x1为实数,∴Δ=S2-40S≥0,∵S>0,∴S≥40,将S=40代入(1)得x21-4x1+4=0.解方程得x1=2,y1=4x1=4×2=8.故点Q(2,8).点评问题转化为函数后为分式函数,可考虑用判别式法求最值.四、注意变元为正,用均值不等式法例4过已知点P(1,4)引一条直线,要使它在两坐标轴上的截距都为正,且它们的和为最小,求这条直线的方程.解设在两个坐标轴上的截距分别为a、b,则所求直线方程为xa+yb=1.(1)将P(1,4)代入方程(1)得1a+4b=1,解得a=bb-4,∵a>0,b>0,∴b>4.设截距之和为L,则L=a+b=bb-4+b=b-4+4b-4+b-4+4=1+4b-4+(b-4)+4=5+(b-4)+4b-4≥5+2(b-4)·4b-4=5+24=5+4=9.当且仅当b-4=4b-4时取等号,即b=6或b=2.此时a=3或a=-1.又a>0,b>0,∴a=-1舍去.故所求直线方程是x3+y6=1,即2x+y-6=0.点评构造变元积为定值,求和的最小值.关键是作b=b-4+4的技巧性的变形.五、注意转化,巧用函数的单调性图3例5如图3,在平面直角坐标系中,在y轴正半轴上(坐标原点除外)给定两点A、B,C点在x轴正半轴上移动,问C点在何处时∠ACB最大,并求最大值.分析要求角的最值,先取一个函数,求函数的最值,关键是用函数的单调性.解设A(0,a)、B(0,b),00.令∠ACB=α,于是tanα=kBC-kAC1+kBCkAC=-bx+ax1+abx2=a-bx+abx=a-bab(xab+abx)记y=xab+abx≥2,当且仅当x=ab时,y取最小值2.因此,当x=ab时,tanα取最大值a-b2ab.∵在(0,π2)内y=tanα是增函数,∴C点在(ab,0)时,α取最大值arctana-b2ab.即C点在(ab,0)时,∠ACB取最大值,这个最大值为arctana-b2ab.点评此题是求角的最大值,形式新颖,解法灵活、技巧性强,值得一学.六、注意数形结合,巧用对称法例6已知圆C:(x-3)2+(y-1)2=4和直线l:x-y-5=0,在C上求两点,使它们和l的距离分别是最近和最远.解已知圆的圆心为C(3,1),过C点作直线l′⊥l于D,且l′交圆C于A1、A2,又圆是中心对称图形,所以A1、A2是与l的距离分别是最近和最远的点.离垂足近者为最近距离点,离垂足远者为最远距离点.∵直线l的方程为y=x-5,∴kl=1,则kl′=-1.故直线l′的方程为y-1=-(x-3),即y=-x+3+1,解方程组y=-x+3+1(x-3)2+(y-1)2=4①②把①代入②后,化简整理,得2(x-3)2=4,即(x-3)2=2,∴x-3=±2,x=3±2,代入①得y1=1-2,y2=1+2.故所求两点是(3+2,1-2),(3-2,1+2).七、注意转化,巧用公式a2+b2≥2ab法例7设满足:(1)截y轴所得弦长为2;(2)被x轴分成两段圆弧,其弧长的比为3∶1.在满足条件(1)、(2)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.解设圆的圆心为P(a,b),半径为r,则点P到x轴、y轴的距离分别为|b|、|a|.由题设知圆P截x轴所得劣弧的圆心角为90°,知圆截x轴所得弦长为2r,故r2=2b2.又圆P截y轴所得长为2,所以有r2=a2+1.从而2b2-a2=1.又点P(a,b)到直线x-2y=0的距离为d=|a-2b|5.所以5d2=|a-2b|2=(a-2b)2=a2-4ab+4b2=a2+4b2-4ab≥a2+4b2-2(a2+b2)=a2+4b2-2a2-2b2=2b2-a2=1.当且仅当a=b时,上式等号成立,此时5d2=1,从而d有最小值.此时a=b2b2-a2=1,解方程组得a=1b=1,或a=-1b=-1.由于r2=2b2=2,∴r=2.于是所求圆的方程是(x-1)2+(y-1)2=2,或(x+1)2+(y+1)2=2.八、巧变形,用一次函数的单调性法例8在△ABC中,∠A、∠B、∠C的对边分 别为a、b、c,且c=10,cosAcosB=ba=43,P 为△ABC内切圆上的动点,求点P到顶点A、B、C的距离的平方和的最大值和最小值.解由cosAcosB=ba,根据正弦定理,有cosAcosB=sinBsinA,sinAcosA=sinBcosB,sin2A=sin2B.∵A≠B,2A≠2B,∴A+B=π2,故△ABC是直角三角形.由c=10,ba=43,a2+b2=102及a>0,b>0,得a=6,b=8.图4如图4,设△ABC内切圆的圆心为O′,切点为D、E、F,内切圆半径为r,则2r=a+b-c=6+8-10=4,∴r=2.建立如图4的直角坐标系,则内切圆方程为(x-2)2+(y-2)2=4.设圆上动点P的坐标为(x,y),则P点到A、B、C的距离的平方和为W=|PA|2+|PB|2+|PC|2=(x-8)2+y2+x2+(6-y)2+x2+y2=3[(x-2)2+(y-2)2]-4x+76=88-4x∵P点在内切圆上,故必有0≤x≤4.∴W最大值=88;W最小值=72.点评解此题的关键是证明△ABC为直角三角形,写出内切圆方程(x-2)2+(y-2)2=4,在建立函数式中凑出(x-2)2+(y-2)2=4,整体代入4,为用一次函数单调性创造条件,方法灵活、技巧性强,值得一学.(收稿日期:2013-06-15)。

与圆有关的定点定值最值与范围问题

与圆有关的定点定值最值与范围问题

抓住2个考点
突破3个考向
揭秘3年高考
【训练 2】 (2012·徐州市调研(一))在平面直角坐标系 xOy 中, 直线 x-y+1=0 截以原点 O 为圆心的圆所得弦长为 6. (1)求圆 O 的方程; (2)若直线 l 与圆 O 切于第一象限,且与坐标轴交于点 D、E, 当 DE 长最小时,求直线 l 的方程; (3)设 M、P 是圆 O 上任意两点,点 M 关于 x 轴的对称点为 N,若直线 MP、NP 分别交 x 轴于点(m,0)和(n,0),问 mn 是否为定值?若是,请求出该定值;若不是,请说明理由.

以PPAB22=
xx++95522++yy22=xx22+ +11580xx++92-5+x29+-82x152=
12285··55xx++1177=
9 25
.
从而PB=3为常数. PA 5
抓住2个考点
突破3个考向
揭秘3年高考
法二 假设存在这样的点 B(t,0),使得PPAB为常数 λ,则 PB2= λ2PA2,所以(x-t)2+y2=λ2[(x+5)2+y2],将 y2=9-x2 代入,得 x2-2xt+t2+9-x2=λ2(x2+10x+25+9-x2), 即 2·(5λ2+t)x+34λ2-t2-9=0 对 x∈[-3,3]恒成立,
抓住2个考点
突破3个考向
揭秘3年高考
解 (1)设所求直线方程为 y=-2x+b,即 2x+y-b=0. 因为直线与圆相切, 所以 |2-2+b|12=3,得 b=±3 5. 所以所求直线方程为 y=-2x±3 5. (2)法一 假设存在这样的点 B(t,0). 当点 P 为圆 C 与 x 轴的左交点(-3,0)时,PPAB=|t+2 3|;
故 mn=2 为定值.

圆中的定点、定值问题

圆中的定点、定值问题

圆中的定点定值问题问题1.直线2y -3-m (2x +y -2)=0必过一定点,定点的坐标为 .(14,32)2.圆方程为:x 2+y 2-2y -m (2x +y -2)=0,其必过定点,定点的坐标为 .(0,2)和(45,25)例1.已知圆M 的方程为x 2+(y -2)2=1,直线l 的方程为x -2y =0,点P 在直线l 上,过P 点作圆M 的切线P A ,PB ,切点为A ,B .求证:经过A ,P ,M 三点的圆必过定点,并求出所有定点的坐标.解:设P (2m ,m ),MP 的中点Q (m ,m2+1),因为P A 是圆M 的切线所以经过A ,P ,M 三点的圆是以Q 为圆心,以MQ 为半径的圆,故其方程为:(x -m )2+(y -m 2-1)2=m 2+(m2-1)2,化简得:x 2+y 2-2y -m (2x +y -2)=0,此式是关于m 的恒等式, 故2220,220.x y y x y ⎧+-=⎨+-=⎩解得02x y =⎧⎨=⎩,或4525x y ⎧=⎪⎪⎨⎪=⎪⎩.所以经过A ,P ,M 三点的圆必过定点(0,2)或(45,25).变式:直线AB 是否过定点?如果存在定点,求出所有定点;如果不存在,说明理由.解:直线AB 即为圆Q 与圆M 的公共弦所在直线,两圆方程相减得AB :mx +my -2y -2m +3=0,整理为:m (2x +y -2)-2y +3=0,此式是关于m 的恒等式,故220,230.x y y +-=⎧⎨-+=⎩解得1432x y ⎧=⎪⎪⎨⎪=⎪⎩.例2.已知圆M 的方程为x 2+(y -2)2=1和y 轴相交于A ,B 两点,点P 为圆M 上不同于A ,B 的任意一点,直线P A ,PB 交x 轴于E ,F 两点.当点P 变化时,以EF 为直径的圆H 是否经过圆M 内一定点?请证明你的结论.证明:设P (m ,n ),则m 2+(n -2)2=1,∵A (0,3),B (0,1),∴l AP :y -3=n -3m x ,l BP :y -1=n -1m x ,∴E (3m3-n,0), F (m 1-n ,0),故以EF 为直径的圆方程:(x -3m 3-n )( x -m1-n)+y 2=0, 把m 2+(n -2)2=1代入整理得:x 2+y 2+6-4nmx -3=0, 令x =0得y =±3,∵在圆内,∴过定点(0,3).法二:可设AP 斜率为k ,则PB 斜率为-1k ,分别求出直线方程和交点,计算更简单.例3.已知圆M 的方程为x 2+(y -2)2=1,点A (0,-3),若在直线OA 上(O 为坐标原点)存在定点B (不同于点A ),满足:对于圆M 上任意一点P ,都有PBP A为一常数,求所有满足条件的点B 的坐标. 解:设B (0,t )(t ≠-3),使得PBP A为常数λ,则PB 2=λ2P A 2,∴x 2+(y -t )2=λ2[x 2+(y +3)2],将x 2=1-(y -2)2代入得, (4-2t -10λ2)y +t 2-3-6λ2=0对y ∈[1,3]恒成立,xy. BAP OM yxB A P OM EFyx∴22242100,360.t t λλ⎧--=⎪⎨--=⎪⎩解得1,59.5t λ⎧=⎪⎪⎨⎪=⎪⎩或1,3.t λ=⎧⎨=-⎩(舍去), 所以存在点B (0,95)对于圆M 上任一点P ,都有PB P A 为常数15.例4. 已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)过点P 作两条相异直线分别与圆C 相交于A 、B ,且直线P A 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.解:(1)设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2,故圆C 的方程为x 2+y 2=2.(2)由题意知,直线P A 和直线PB 的斜率存在,且互为相反数,故可设P A :y -1=k (x -1),PB :y -1=-k (x -1),由⎩⎪⎨⎪⎧y -1=k (x -1),x 2+y 2=2得(1+k 2)x 2+2k (1-k )x +(1-k )2-2=0.因为点P 的横坐标x =1一定是该方程的解,故可得x A =k 2-2k -11+k 2.同理可得x B =k 2+2k -11+k 2,所以k AB =y B -y A x B -x A =-k (x B -1)-k (x A -1)x B -x A =2k -k (x B +x A )x B -x A=1=k OP ,所以,直线AB 和OP 一定平行.例5.已知圆C :(x -3)2+(y -4)2=4,直线l 1过定点A (1,0).(1)若l 1与圆相切,求l 1的方程;(2)若l 1与圆相交于P 、Q 两点,线段PQ 的中点为M ,又l 1与l 2:x +2y +2=0的交点为N ,判断AM ·AN 是否为定值?若是,则求出定值;若不是,请说明理由. 解:(1)①若直线l 1的斜率不存在,即直线是x =1,符合题意. ②若直线l 1斜率存在,设直线l 1为y =k (x -1),即kx -y -k =0.由题意知,圆心(3,4)到已知直线l 1的距离等于半径2,即||3k -4-k k 2+1=2,解得k =34. ∴所求直线方程是x =1或3x -4y -3=0.(2)(解法1)直线与圆相交,斜率必定存在,且不为0,可设直线方程为kx -y -k =0.由⎩⎪⎨⎪⎧x +2y +2=0,kx -y -k =0,得N ⎝ ⎛⎭⎪⎫2k -22k +1,-3k 2k +1.又直线CM 与l 1垂直,由⎩⎪⎨⎪⎧y =kx -k ,y -4=-1k (x -3), 得M ⎝ ⎛⎭⎪⎫k 2+4k +31+k 2,4k 2+2k 1+k 2.∴AM ·AN =⎝ ⎛⎭⎪⎫k 2+4k +31+k 2-12+⎝ ⎛⎭⎪⎫4k 2+2k 1+k 22·⎝ ⎛⎭⎪⎫2k -22k +1-12+⎝⎛⎭⎫-3k 2k +12=2|2k +1|1+k 21+k 2·31+k 2|2k +1|=6为定值.故AM ·AN 是定值,且为6.(解法2)直线与圆相交,斜率必定存在,且不为0,可设直线方程为kx -y -k =0. 由⎩⎪⎨⎪⎧x +2y +2=0,kx -y -k =0,得N ⎝ ⎛⎭⎪⎫2k -22k +1,-3k 2k +1.再由⎩⎪⎨⎪⎧y =kx -k ,(x -3)2+(y -4)2=4,得(1+k 2)x 2-(2k 2+8k +6)x +k 2+8k +21=0.∴x 1+x 2=2k 2+8k +61+k 2,得M ⎝ ⎛⎭⎪⎫k 2+4k +31+k 2,4k 2+2k 1+k 2.以下同解法1.。

高中数学-圆中的最值问题

高中数学-圆中的最值问题

圆中的最值问题例:平面上有两点A(-1,0),B(1,0),P为圆上的一点,试求的最大值与最小值,并求相应的P点坐标。

错解1:把已知圆的一般方程化为标准方程得,设点P的坐标为,则点P()在已知圆上,同理,,即。

的最大值为116,最小值为4。

错解2:设点P的坐标为(),则当时等号成立,把代入圆的方程化简,得,解得,取较小值得,这时。

的最小值为,而无最大值。

错因分析1:在错解1中,产生错误的原因,在于把看成相互独立的,能同时达到最大值、最小值的量。

实际上作为两个“变量”是相互联系的,它们同时受的约束,这个约束条件表示了与的最大取值区间。

但是,当、成为没有联系的独立变量后,就不一定同时满足约束条件了,离开了约束条件的变量肯定会扩大解集。

例如当取得最大值5时,只能等于4,不能取得最大值6;当取得最大值6时,只能等于3,不能取得最大值5。

同样也不能同时取得最小值。

在不等式的性质中,若“”,但反之,由“”,也就是说,的充分不必要条件。

错解用的是放缩变形,不是同解变形,故改变了解集,比如:设,,可以得到:然而,由却得不出,只能得出。

这是因为中的不是独立的,而是相互制约的,从而扩大了所求S的取值范围。

比如,,但是是不成立的,因为,这也是由于与都受条件约束,当与离开约束条件以后,的范围明显发生了改变,即扩大了取值范围。

错因分析2:在错解2中,利用不等式求最值,不等式的一边必须为定值,若乘积为定值m,则当时,平方和的最小值为;若平方和为定值n,则当时,乘积的最大值为。

但因错解2中乘积不是定值,因而不能应用这一方法求最值。

正解:把已知圆的一般方程化为标准方程得,设点P的坐标为,则点P在已知圆上,的最大值是100,这时点P的坐标是。

S的最小值是20,这时点P的坐标是()。

印象文华:不等式的性质是解题的理论基础,要深刻理解与正确应用不等式的性质,不仅要弄清每一个性质的条件和结论各是什么,还需要弄清条件和结论之间是“单向”的(如就是单向的,即条件是结论的充分不必要条件;还有,但等也是单向的)、不可逆的,还是“双向”的(如的充分必要条件,即)。

几种常见的有关圆的最值问题

几种常见的有关圆的最值问题

责任编辑:彭深2020748334@几种常见的有关圆的最值问题圃石爱英有关圆的最值问题,在中考中常常以选择、填空的形式出现,这类试题“小而精”,但涉及的知识面广,综合性强。

很多同学对解决这类问题常会感到束手无策。

本文以常见的几种类型入手,带大家一起感悟解决这类问题的思路和方法。

一、利用垂线段最短求最值例1(2019-嘉兴)如图1,在(00中,弦4B=1,点C在AB上移动,连接0C,过点C作CD丄0C交于D点,则CD的最大值为________O【分析】首先连接0D,因为OC1CD.根据勾股定理得CD2^OD2-OC2,因为0D 是定值,所以当0C最小时,CD取到最大值。

解:^OD,.-.OC±CD,根据勾股定理,有cD^oiy-oc2,•••0。

是定值,当0C最小时,CD最大,此时D与B重合,由垂径定理可得:CD=^AB=|o[点评】本题考查了垂径定理以及勾股定理,难度适中。

掌握辅助线的作法,得到当OC1AB时,0C最短是关键o二、利用对称求最值例2如图2,在中,AB是G>0的直径,AB=8cm,AC^CD=BD,M是<4/?上一动点,则CM+DM的最小值是【分析】如图3,作点C关于的对称点C,连接CD与相交于点M.根据轴对称确定最短路线问题,点M为CM+DM最力、时的位置,根据垂径定理可得AC=AC',然后求出C'D为直径,从而得解。

解:作C关于的对称点C',连接CD,与仙相交于点M,如图3,此时,点M为CM+DM最小时的位置,由垂径定理得紀=紀,,策略方法•••犹=丽=而肿为直径,:.C'D为直径,CM+DW的最小值是8cm。

【点评】本题考查了用轴对称确定最短路线问题、垂径定理,熟记定理并作出图形,判断出CM+DM的最小值等于圆的直径的长度是解题的关键。

三、利用坐标求最值例3如图4,在平面直角坐标系中,已知点4(l,0),B(l-a,0),C(l+a,0) (a>0),点P在以0(4,4)为圆心,1为半径的圆上运动,且始终满足Z_BPC=90°,图4【分析】首先得到AB=AC=a,根据条件可知PA=AB=AC=a,求出上的点P 到点4的最大距离即可解决问题。

初中数学圆中最值定值问题专题(推荐)

初中数学圆中最值定值问题专题(推荐)

圆中最值域定值问题研究类型一、例1、如图,AB是⊙O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB 的一个六等分点,P是直径AB上一动点,连接MP、NP,则MP+NP的最小值是_______1、已知圆O的面积为3 ,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB上任一点,则PC+CD的最小值为______2、如图,菱形ABC中,∠A=60度,AB=3, 圆A、圆B的半径为2和1,P、E、F分别是CD,圆A和圆B上的动点,则PE+PF的最小值为_________类型二、折叠隐圆【基本原理】(一箭穿心)点A为圆外一点,P为圆O上动点,连接AO并延长交圆于P1、P2,则AP的最小值为AP2,,最大值为A P1例、如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′B长度的最小值.1、已知一个矩形纸片OACB,将该纸片放置在平面直角坐标洗中,点A(11,0),点B (0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,则CB’的最小值为______2、四边形ABCD中,AD∥BC,∠A=90,AD=1,AB=2,BC=3,P是线段AD上一动点,将△ABP沿BP所在直线翻折得到△QBP,则△CQD的面积最小值为____类型三、随动位似隐圆例、在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6.点D是边AC上一点D且AD=23,将线段AD绕点A旋转得线段AD′,点F始终为BD′的中点,则将线段CF最大值为_________[分析]:易知D’轨迹为以A为圆心AD为半径的圆,则在运动过程中AD’为定值23,故取AB中点G,则FG为中位线,FG=12AD'=3,故F点轨迹为以G为圆心,3为半径的圆。

圆中最值问题的常见解法

圆中最值问题的常见解法
例2.已知点 点 是圆 上的动点,求 的最大值与最小值,并求此时的点 的坐标.
分析:由于 都不是定值,加之平方式,所以直接用函数、均值不等式、几何法求解,都无能为力.于是考虑先设点 的坐标,先代数化,再看有没有几何意义.
解:设点 ,则
, 表示点 到定点 距离的平方,而
, 的最大
值是 ,此时点 的坐标满足 .
一.利用三角形性质求最值
众所皆知:三角形中任意两边之和大于第三边,任意两边之差小于第三边,极端情况下,当三点共线时,两边之和等于第三边,两边之差等于第三边,这正是取得最值的时刻,这就是圆中解决最值问题的常用方法之一.主要模型是:求一定点与圆上动点之间距离的最大值与最小值.即有:设圆心为C,圆的半径为 ,定点为A,圆上动点为P,则 =
的最小值是 ,此时点 的坐标满足
.
评析:在几何方法受阻的情况下,可以先做代数化处理,在构造几何意义,本题的解决,得
益于构造圆外一点到圆上动点距离的最值模ቤተ መጻሕፍቲ ባይዱ.
相关问题:(1)已知圆 ,圆 , 分别是圆 上的动点, 为 轴上的动点,则 的最小值为( )A
A. B. C. D.
(2)P为双曲线 的右支上一点,M、N分别是圆 ,
解决圆中最值问题的常见方法
圆问题是高中解析几何中的重点问题,在这类问题中的最值问题又是常见题型,由于在解决过程中所需要的数学素养层次比较高,特别是对学生的直观想象素养、抽象素养、运算素养、逻辑推理素养有较高要求,所以学生在学习中常常感到比较困难.基于此,非常有必要对这类问题的常见解法做一些总结,以供参考.
.
例1.点 在椭圆 上运动,点 在圆 上运动,求 .
分析:由于有两个动点,所以需要分步完成,可以先固定点 ,这样就可以利用三角形性质求得 ,然后再利用函数法求得最终结果.

解题技巧专题:圆中的最值问题(含隐圆问题)

解题技巧专题:圆中的最值问题(含隐圆问题)
思路分析:
8.如图,已知⊙O的半径为m,点C为直径AB延 长线上一点,BC=m.过点C任作一直线l,若l上总 存在点P,使过P所作的⊙O的两切线互相垂直, 则∠ACP的最大值等于 45°.
解析:设PM、PN是过P所作的⊙O的两切线且互 相垂直,则∠MON=90°.∴四边形PMON是正方 形.根据勾股定理求得OP= 2m.∴P点在以O为圆 心,以 2m长为半径的大圆⊙O上.过C点作大 ⊙O的切线,切点即为P点,此时∠ACP有最大值, 如图所示.∵PC是大圆⊙O的切线, ∴OP⊥PC.∵OC=2m,OP= 2 m, ∴PC= OC2 OP2= 2m.∴OP=PC. ∴∠ACP=45°. ∴∠ACP的最大值等于45°.故答案为45°.
(2)解:∵OF⊥AC,∴AF=CF.
而OA=OB,
∴OF为△ACB的中位线. ∴OF= 1 BC=3.
2 ∴DF=OD-OF=5-3=2.
(3)若⊙O的半径为5,∠DOA=80°,点P是线段 AB上任意一点,试求出PC+PD的最小值. (3)解:作C点关于AB的对称点C′,连接C′D交AB于 P,连接OC,如图. ∵PC=PC′, ∴PD+PC=PD+PC′=DC′. ∴此时PC+PD的值最小. ∵ AD=CD,∴∠COD=∠AOD=80°.
9.如图,P是矩形ABCD内一点,AB=4,AD=2, AP⊥BP,则当线段DP最短时,CP= 2 3 .
解析:以AB为直径作半圆O,连接OD,与半圆O交 于==O2点BP2=,′,12∠当AAB点D=PO2与=.∵P∠′A重ADO合=D时2=,,∠∠DOBPDA最CD短==,4950则°°A.,∴O∴=DPOO′=DP′ OD-OP′=2 2-2.过P′作P′E⊥CD于点E,则易得 P′E=DE=2- 2.∴CE=CD- DE= 2+2.∴CP′= PE2 CE2 =2 3.故答案为2 3.

圆中的定弦定角和最大张角模型(解析版)--中考数学满分突破

圆中的定弦定角和最大张角模型(解析版)--中考数学满分突破

圆中的定弦定角和最大张角模型模型分析【模型1】定弦定角模型如图28-1,在ΔABC中,BC的长为定值a,∠A=α为定角度,(1)确定点A的运动轨迹,有3种情况:①如图28-2,当α<90°时,点A的运动轨迹为优弧BAC(不与B、C点重合);②如图28-3,当α=90°时,点A的运动轨迹为⊙O(不与点B、C重合);③如图28-4,当α>90°时,点A的运动轨迹为劣弧BAC(不与B、C点重合)。

(2)构成等腰三角形(AB=AC)时:点A到BC的距离最大,且此时ΔABC的面积最大。

【模型变式1】如图28-5,已知点A、B是∠EPF的边PF上的两个定点,点Q是边PE上一动点,则当点Q在何处时,∠AQB最大。

⇒当ΔAQB的外接圆与边PE相切于点Q时,∠AQB最大。

【证明】如图28-6,作ΔAQB的外接圆⊙O,设点Q 为PE上不同与Q点的任意一点,连接Q A、Q B,Q A与⊙O交于点D,连接BD,∵∠ADB>∠AQ'B,∠AQB=∠ADB∵∠AQB>∠AQ'B∴当ΔAQB的外接圆与边PE相切于点Q时,∠AQB最大。

典例分析【例1】如图,在△ABC中,AC=6,BC=83,∠ACB=60°,过点A作BC的平行线l,P为直线l上一动点,⊙O 为△APC 的外接圆,直线BP 交⊙O 于E 点,则AE 的最小值为.【答案】2【分析】如图,连接CE .首先证明∠BEC =120°,根据定弦定角,可得点E 在以M 为圆心,MB 为半径的BC 上运动,连接MA 交BC于E ′,此时AE ′的值最小.【解析】解:如图,连接CE .∵AP ∥BC ,∴∠PAC =∠ACB =60°,∴∠CEP =∠CAP =60°,∴∠BEC =120°,∵BC =83,为定值,则点E 的运动轨迹为一段圆弧如图,点E 在以M 为圆心,MB 为半径的BC上运动,过点M 作MN ⊥BC ∴⊙M 中优弧BC 度数为2∠BEC =240°,则劣弧BC度数为120°∴△BMC 是等腰三角形,∠BMC =120°,∵∠BCM =30°,BC =83,MB =MC∴BN =BM 2-MN 2==3MN =12BC =43∴MB =MC =8,∴连接MA 交BC于E ′,此时AE ′的值最小.∵∠ACB =60°,∠BCO =30°,∴∠ACM =90°,∴MA =MC 2+AC 2=82+62=10,∴AE 的最小值为=10-8=2.故答案为:2【例2】数学概念若点P 在ΔABC 的内部,且∠APB 、∠BPC 和∠CPA 中有两个角相等,则称P 是ΔABC 的“等角点”,特别地,若这三个角都相等,则称P 是ΔABC 的“强等角点”.理解概念(1)若点P 是ΔABC 的等角点,且∠APB =100°,则∠BPC 的度数是°.(2)已知点D 在ΔABC 的外部,且与点A 在BC 的异侧,并满足∠BDC +∠BAC <180°,作ΔBCD 的外接圆O ,连接AD ,交圆O 于点P .当ΔBCD 的边满足下面的条件时,求证:P 是ΔABC 的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB =DC②如图②,BC =BD深入思考(3)如图③,在ΔABC 中,∠A 、∠B 、∠C 均小于120°,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有.(填序号)【答案】(1)100、130或160;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【解析】(1)(i )若∠APB =∠BPC 时,∴∠BPC =∠APB =100°(ii )若∠BPC =∠CPA 时,∴∠BPC =∠CPA =12(360°-∠APB )=130°;(iii )若∠APB =∠CPA 时,∠BPC =360°-∠APB -∠CPA =160°,综上所述:∠BPC =100°、130°或160°故答案为:100、130或160.(2)选择①:连接PB ,PC∵DB =DC ∴DB =DC∴∠BPD =∠CPD∵∠APB +∠BPD =180°,∠APC +∠CPD =180°∴∠APB =∠APC∴P 是ΔABC 的等角点.选择②连接PB ,PC∵BC =BD ∴BC =BD∴∠BDC =∠BPD∵四边形PBDC 是圆O 的内接四边形,∴∠BDC +∠BPC =180°∵∠BPD +∠APB =180°∴∠BPC =∠APB∴P 是ΔABC 的等角点(3)作BC 的中垂线MN ,以C 为圆心,BC 的长为半径作弧交MN 与点D ,连接BD ,根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD的垂直平分线交MN于点O以O为圆心OB为半径作圆,交AD于点Q,圆O即为△BCD的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=12(360°-∠BQC)=120°∴∠BQA=∠CQA=∠BQC如图③,点Q即为所求.(4)③⑤.①如下图所示,在RtABC中,∠ABC=90°,O为△ABC的内心假设∠BAC=60°,∠ACB=30°∵点O是△ABC的内心∴∠BAO=∠CAO=12∠BAC=30°,∠ABO=∠CBO=12∠ABC=45°,∠ACO=∠BCO=12∠ACB=15°∴∠AOC=180°-∠CAO-∠ACO=135°,∠AOB=180°-∠BAO-∠ABO=105°,∠BOC=180°-∠CBO-∠BCO=120°显然∠AOC≠∠AOB≠∠BOC,故①错误;②对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故②错误;③正三角形的每个中心角都为:360°÷3=120°,满足强等角点的定义,所以正三角形的中心是它的强等角点,故③正确;④由(3)可知,点Q为△ABC的强等角,但Q不在BC的中垂线上,故QB≠QC,故④错误;⑤由(3)可知,当ΔABC的三个内角都小于120°时,ΔABC必存在强等角点Q.如图④,在三个内角都小于120°的ΔABC内任取一点Q ,连接Q A、Q B、Q C,将ΔQ AC绕点A逆时针旋转60°到ΔMAD,连接Q M,∵由旋转得Q A=MA,Q C=MD,∠Q AM=60°∴ΔAQ M是等边三角形.∴Q M=Q A∴Q A+Q B+Q C=Q M+Q B+MD∵B、D是定点,∴当B、Q 、M、D四点共线时,Q M+Q B+MD最小,即Q A+Q B+Q C最小.而当Q 为ΔABC的强等角点时,∠AQ B=∠BQ C=∠CQ A=120°=∠AMD,此时便能保证B、Q 、M、D四点共线,进而使Q A+Q B+Q C最小.故答案为:③⑤.模型演练一、单选题1.如图,C,D是⊙O上直径AB两侧的两点,若∠ABC=20°,则∠BDC的度数是()A.50°B.60°C.80°D.70°【答案】D【分析】由AB是直径可得∠ACB=90°,由∠ABC=20°可知∠CAB=70°,再根据圆周角定理可得∠BDC的度数,即可得出答案.【解析】∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=20°,∴∠CAB=70°,∴∠BDC=∠CAB=70°,故选:D.2.如图,四边形ABCD内接于⊙O,连接AC,BD,且AC=BC,∠ADC=130°,则∠ADB的度数为()A.50°B.60°C.70°D.80°【答案】D【分析】利用等边对等角,同弧上的圆周角相等,三角形内角和定理联合解题即可.【解析】∵AC=BC,∴∠CAB=∠CBA,2∠CAB+∠BCA=180°,∵∠ADC=130°,∴∠ADB+∠BDC=130°,∵∠BDC=∠CAB,∠BCA=∠ADB,∴2∠ADB+2∠CAB=260°①,2∠CAB+∠ADB=180°②,①-②,得∠ADB=80°,故选D.3.如图,C,D是⊙O上直径AB两侧的两点.设∠ABC=25°,则∠BDC=()A.85°B.75°C.70°D.65°【答案】D【分析】先利用直径所对的圆周角是直角得到∠ACB=90°,从而求出∠BAC,再利用同弧所对的圆周角相等即可求出∠BDC.【解析】解:∵C,D是⊙O上直径AB两侧的两点,∴∠ACB=90°,∵∠ABC=25°,∴∠BAC=90°-25°=65°,∴∠BDC=∠BAC=65°,故选:D.4.如图,AB为⊙O的直径,CD是⊙O的弦,∠CAB=60°,则∠ADC的度数为()A.20°B.30°C.40°D.60°【答案】B【分析】由圆周角定理,得到∠ACB=90°,则∠ABC=30°,即可求出答案.【解析】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=60°,∴∠ABC=30°,∴∠ADC=30°;故选:B.二、填空题5.如图,点D在半圆O上,半径OB=5,AD=4,点C在弧BD上移动,连接AC,作DH⊥AC,垂足为H,连接BH,点C在移动的过程中,BH的最小值是.【答案】222-2【分析】先确定点H的运动轨迹,再根据点与圆的位置关系可得BH取最小值时,点H的位置,然后利用圆周角定理、线段的和差即可得.【解析】如图,设AD的中点为点E,则EA=ED=12AD=12×4=2由题意得,点H的运动轨迹在以点E为圆心,EA为半径的圆上由点与圆的位置关系得:连接BE,与圆E交于点H,则此时BH取得最小值,EH=2连接BD∵AB为半圆O的直径∴∠ADB=90°∴BD=AB2-AD2=(5+5)2-42=221∴BE=BD2+ED2=(221)2+22=222∴BH=BE-EH=222-2故答案为:222-2.6.如图,已知C、D在以AB为直径的⊙O上,若∠CAB=30°,则∠D的度数是.【答案】60°【分析】由AB为⊙O的直径,根据直径所对的圆周角是直角,即可求得∠ACB=90°,又由∠CAB= 30°,即可求得∠B的度数,然后由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠D的度数.【解析】∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=30°,∴∠B=90°-∠CAB=60°,∴∠D=∠B=60°.故答案为:60°.7.如图,直线l与⊙O相交于点B、D,点A、C是直线l两侧的圆弧上的动点,若⊙O的半径为1,∠A =30°,那么四边形ABCD的面积的最大值是.【答案】1【分析】当A点和C点到BD的距离最大时,四边形ABCD的面积最大,此时A点和C点为BD所对弧的中点,则AC⊥BD,利用圆周角定理得到∠BOC=30°,接着计算出BH的长,则可计算出S△ABC=12,从而得到四边形ABCD的面积的最大值.【解析】解:当A点和C点到BD的距离最大时,四边形ABCD的面积最大,此时A点和C点为BD 所对弧的中点,∴AC为⊙O的直径,如图,∴AC ⊥BD ,∵∠BAC =30°,∴∠BOC =30°,在Rt △OBH 中,BH =12OB =12,∴S △ABC =12•BH •AC =12×2×12=12,∴四边形ABCD 的面积=2×12=1,∴四边形ABCD 的面积的最大值为1.故答案为1.8.如图,在⊙O 中,弦AB 、CD 相交于点E ,∠BAC =50°,∠AED =75°,则AD 的度数是°.【答案】50【分析】连接OA ,OD ,首先根据同弧所对圆周角相等可得∠BDC =∠BAC =50°,再根据三角形外角的性质即可求得∠ABD 的度数,再根据圆周角定理可求得∠AOD =50°,由此即可求得答案.【解析】解:如图,连接OA ,OD ,∵∠BDC =∠BAC ,∠BAC =50°,∴∠BDC =∠BAC =50°,又∵∠AED =75°,∴∠ABD =∠AED -∠D =75°-50°=25°,∴∠AOD =2∠ABD =50°,∴AD的度数是50°,故答案为:50.9.如图,∠MAN =45°,B 、C 为AN 上两点,AB =1,BC =3,D 为AM 上的一个动点,过B 、C 、D 三点作⊙O ,当sin ∠BDC 的值最大时,⊙O 的半径为【答案】52-42【分析】由题意知,∠BDC 小于90o ,,当⊙O 与AM 相切时,∠BDC 最大,此时AD 2=AB ·AC ,则AD=2,延长DO 交AN 于点E ,DE =AD =2,设半径为x ,OE =2-x ,过O 点作OH ⊥BC ,垂足为H ,则OH =2(2-x )2,BH =32,在Rt △OHB 中,2x -2 22+322=x 2,最后求得半径x =52-42.【解析】解:当⊙O 与AM 相切时,∠BDC 最大,此时sin ∠BDC 的值最大,∵⊙O 与AM 相切于点D ,AB =1,BC =3,∴AD 2=AB ·AC =AB ∙AB +BC =4,∴AD =2,延长DO 交AN 于点E ,过O 点作OH ⊥BC ,垂足为H ,连接BO ,∴∠ADE =90°,∵∠A =45°,∴△AED 为等腰直角三角形,∴DE =AD =2,设⊙O 半径为x ,则OE =2-x ,∵∠DEA =45°,∠OHE =90°,∴OH =sin45°∙OE =2(2-x )2,BH =12BC =32,在Rt △BOH 中,BO 2=BH 2+OH 2,即2x -2 22+322=x 2,解得:x 1=52-42,x 2=-52-42,∵⊙O 半径大于0,∴x 2=-52-42舍去,∴x =52-42.故答案为:52-42.三、解答题10.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”.如图所示,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,已知点D 的坐标为0,-3 ,AB 为半圆的直径,半圆圆心M 的坐标为1,0 ,半圆半径为2.(1)求“蛋圆”抛物线部分的解析式及“蛋圆”的弦CD 的长;(2)已知点E 是“蛋圆”上的一点(不与点A ,点B 重合),点E 关于x 轴的对称点是点F ,若点F 也在“蛋圆”上,求点E 坐标;(3)点P 是“蛋圆”外一点,满足∠BPC =60°,当BP 最大时,直接写出点P 的坐标.【答案】(1)“蛋圆”抛物线部分的解析式为y =x 2-2x -3,CD 的长3+3;(2)E 1(1+3,1),E 2(1-3,1),E 3(1+3,-1),E 4(1-3,-1);(3)点P 的坐标为(1,23).【分析】(1)求出点A ,B 的坐标,运用待定系数法求出函数解析式;将x =0代入抛物线的解析式得y =-3,故此可得到DO 的长,可得到AB 的长,由M 为圆心可得到MC 和OM 的长,然后依据勾股定理可求得OC 的长,最后依据CD =OC +OD 求解即可.(2)假设点E 在x 轴上方的“蛋圆”上,EF 与x 轴交于点H ,连接EM .由HM 2+EH 2=EM 2,点F 在二次函数y =x 2-2x -3的图象上,可得方程组,以及对称性求解;(3)根据∠BPC =60°保持不变,点P 在一圆弧上运动和直径是最大的弦进行解答即可.【解析】解:(1)∵圆心M 的坐标为1,0 ,半圆半径为2.∴A (-1,0),B (3,0)设“蛋圆”抛物线部分的解析式为y =ax 2+bx +c把A (-1,0),B (3,0),D (0,-3)代入解析式得,a -b +c =09a -3b +c =0c =-3解得,a =1b =-2c =-3∴“蛋圆”抛物线部分的解析式为y =x 2-2x -3连接AC ,BC ,MC ∵点D 的坐标为(0,-3),∴OD 的长为3.∵A (-1,0),B (3,0).∴AO =1,BO =3,AB =4,∵M (1,0).∴MC =2,OM =1.在Rt △COM 中,OC =CM 2-OM 2=3.∴CD =CO +OD =3+3,即这个“蛋圆”被y 轴截得的线段CD 的长3+3.(2)假设点E 在x 轴上方的“蛋圆”上,设E (m ,n ),则点F 的坐标为(m ,-n ).EF 与x 轴交于点H ,连接EM .∴HM 2+EH 2=EM 2,∴(m -1)2+n 2=4,⋯①;∵点F 在二次函数y =x 2-2x -3的图象上,∴m 2-2m -3=-n ,⋯②解由①②组成的方程组得:m =1+3n =1 ;m =1-3n =1.(n =0舍去)由对称性可得:m=1+3 n=-1;m=1-3n=-1.∴E1(1+3,1),E2(1-3,1),E3(1+3,-1),E4(1-3,-1).(3)如图,∵∠BPC=60°保持不变,因此点P在一圆弧上运动.此圆是以K为圆心(K在BC的垂直平分线上,且∠BKC=120°),BK为半径.当BP为直径时,BP最大.在RtΔOCB中,MO=1,MC=2∴OC=MC2-MO2=3,BC=OC2+OB2=23∴tan∠BCO=OBOC =33=3∴∠BCO=60°∵∠BCP=90°∴∠PCR=30°在RtΔPCB中,∠BPC=60°∴BCPC=tan60°∴PC=BCtan60°=233=2在Rt△PCR中,∠PCR=30°∴PR=12PC=1∴RC=PC2-PR2=3∴OR=OC+CR=3+3=23∴点P的坐标为(1,23).11.如图,抛物线y=ax2+bx-3交x轴于点A(-1,0),B(3,0),D是抛物线的顶点,P是抛物线上的动点,点P的横坐标为m(0≤m≤3),AE⎳PD交直线l:y=12x+2于点E,AP交DE于点F,交y轴于点Q.(1)求抛物线的表达式;(2)设△PDF的面积为S1,△AEF的面积为S2,当S1=S2时,求点P的坐标;(3)连接BQ,点M在抛物线的对称轴上(位于第一象限内),且∠BMQ=45°,在点P从点B运动到点C的过程中,点M也随之运动,直接写出点M的纵坐标t的取值范围.【答案】(1)y=x2-2x-3;(2)P52,-74;(3)22≤t≤3+172.【分析】(1)运用待定系数法将A(-1,0),B(3,0)代入y=ax2+bx-3,即可求得答案;(2)利用配方法可求得抛物线顶点坐标D(1,-4),由AE⎳PD得△AEF∽△PDF,再根据△PDF与△AEF的面积相等,可得△AEF≌△PDF,故点F分别是AP、ED的中点,设E e,12e+2,P(m, m2-2m-3),结合中点坐标公式建立方程求解即可;(3)根据题意,分别求出t的最大值和最小值:①当点P与点B重合时,点Q与点O重合,此时t的值最大,如图2,以OB为斜边在第一象限内作等腰直角△O′OB,以O′为圆心,OO′为半径作⊙O′,交抛物线对称轴于点M(1,t),过点O′作O′H⊥y轴于点H,运用勾股定理即可求得答案,②当点P与点C重合时,点Q与点C重合,此时t的值最小,如图3,连接BC,以O为圆心,OB为半径作⊙O交抛物线对称轴于点M,连接OM,设抛物线对称轴交x轴于点E,运用勾股定理即可求得答案.【解析】解:(1)∵抛物线y=ax2+bx-3交x轴于点A(-1,0),B(3,0),∴将A、B坐标分别代入抛物线解析式得:a-b-3=0 9a+3b-3=0,解得:a=1 b=-2,∴抛物线的表达式为:y=x2-2x-3;(2)如图,∵D是抛物线的顶点,抛物线的表达式为:y=x2-2x-3=(x-1)2-4,∴D(1,-4),∵AE⎳PD交直线l:y=12x+2于点E,P是抛物线上的动点,点P的横坐标为m(0≤m≤3),∴△AEF∽△PDF,设E e,12e+2,P(m,m2-2m-3),又∵△PDF的面积为S1,△AEF的面积为S2,S1=S2,∴△AEF≌△PDF,∴AF=PF,EF=DF,即点F分别是AP、ED的中点,又∵A(-1,0),P(m,m2-2m-3),E e,12e+2,D(1,-4),∴由中点坐标公式得:m-12=e+12m2-2m-3+02=12e+2-42,解得:m1=0(与“AE⎳PD”不符,应舍去),m2=5 2,∴e2=12,∴P52,-74,E12,94;(3)①当点P与点B重合时,点Q与点O重合,此时t的值最大,如图2,以OB为斜边在第一象限内作等腰直角△O′OB,则O′32,32,OO′=O′B=322,以O′为圆心,OO′为半径作⊙O′,交抛物线对称轴于点M(1,t),过点O′作O′H⊥y轴于点H,则∠O′HM=90°,O′H=12,O′M=OO′=322,∴MH=O M2-O H2=3222-12 2=172,∴t=32+172=3+172,②当点P与点C重合时,点Q与点C重合,此时t的值最小,如图3,连接BC,以O为圆心,OB为半径作⊙O交抛物线对称轴于点M,∵OB=OC=3,∴⊙O经过点C,连接OM,设抛物线对称轴交x轴于点E,则OM=OB=3,OE=1,∵∠MEO=90°,∴ME=OM2-OE2=32-12=22,∴t=22,综上所述,22≤t≤3+172.12.一个角的顶点在圆外,两边都与该圆相交,则称这个角是它所夹的较大的弧所对的圆外角.(1)证明:一条弧所对的圆周角大于它所对的圆外角;(2)应用(1)的结论,解决下面的问题:某市博物馆近日展出当地出土的珍贵文物,该市小学生合唱队计划组织120名队员前去参观,队员身高的频数分布直方图如图1所示.该文物PQ高度为96cm,放置文物的展台QO高度为168cm,如图2所示.为了让参观的队员站在最理想的观看位置,需要使其观看该文物的视角最大(视角:文物最高点P、文物最低点Q、参观者的眼睛A所形成的∠PAQ),则分隔参观者与展台的围栏应放在距离展台多远的地方?请说明理由.(说明:①参观者眼睛A与地面的距离近似于身高;②通常围栏的摆放位置需考虑参观者的平均身高)【答案】(1)见解析;(2)围栏应摆在距离展台167cm处,见解析【分析】(1)写出“已知”“求证”,设BP交⊙O于点Q,连接AQ,画出图象,用三角形外角大于不相邻的内角即可证明;(2)先计算120名队员平均身高,再根据题意把实际问题“数学化”,画出图形,在QO 上取一点B ,使得BO =152cm ,则BQ =16cm ,过B 作射线l ⊥QO 于B ,过P ,Q 两点作⊙C 切射线l 于M ,由(1)的结论可知队员的眼睛A 与M 重合时,观看该展品的视角最大,此时队员站在MN 处,故求出ON 长度即可.【解析】解:(1)已知:如图所示,点A ,B ,C 在⊙O 上,点P 在⊙O 外.求证:∠ACB >∠APB .证明:设BP 交⊙O 于点Q ,连接AQ ,∵∠ACB 与∠AQB 同对AB,∴∠ACB =∠AQB .∵在△APQ 中,∠AQB =∠APB +∠PAQ ,∴∠AQB >∠APB ,∴∠ACB >∠APB ;(2)解:设合唱队员平均身高为x cm ,则x =142×15+146×18+150×18+154×30+158×3915+18+18+30+39=152.在QO 上取一点B ,使得BO =152cm ,则BQ =16cm ,过B 作射线l ⊥QO 于B ,过P ,Q 两点作⊙C 切射线l 于M .依题意可知,参观的队员的眼睛A 在射线上.而此时,射线l 上的点只有点M 在⊙C 上,其他的点在⊙C 外.根据(1)的结论,视角∠PMQ 最大,即队员的眼睛A 与M 重合(也即队员站在MN 处)时,观看该展品的视角最大.所以围栏应摆放在N 处.连接CM 并延长交地面OD 于N ,过C 作CH ⊥PQ 于H ,连接CP ,CQ ,从而四边形HBMC 和四边形HONC 均为矩形.∵在⊙C 中,CP =CQ ,CH ⊥PQ ,∴PH =HQ =12PQ =48.∴ CQ =CM =HB =48+16=64.∵在Rt △CHQ 中,∠CHQ =90°,CQ 2=CH 2+HQ 2,∴CH =CQ 2-HQ 2=642-482=167.∴ON =CH =167.即围栏应摆在距离展台167cm 处.13.如图,⊙O 是△ABC 的外接圆,EF 与⊙O 相切于点D ,EF ∥BC 分别交AB ,AC 的延长线于点E 和F ,连接AD 交BC 于点N ,∠ABC 的平分线BM 交AD 于点M .(1)求证:AD 平分∠BAC ;(2)若AB :BE =5:2,AD =14,求线段DM 的长.【答案】(1)见解析;(2)DM =2【分析】(1)连接OD ,根据切线的性质得OD ⊥EF ,由EF ∥BC 得OD ⊥BC ,由垂径定理得BD =CD ,进而即可得出结论;(2)由平行线分线段定理得DN =2147,再证明△BDN ∽△ADB ,可得BD =2,最后证明∠BMD =∠DBM ,进而即可求解.【解析】(1)证明:连接OD 交BC 于点H .∵EF 与⊙O 相切于点D∴OD ⊥EF ,∴∠ODF =90°,∵BC ∥EF ,∴∠OHC =∠ODF =90°,∴OD ⊥BC ,∴BD =CD ,∴∠BAD =∠CAD 即AD 平分∠BAC ;(2)解:∵BC ∥EF ,∴BE AE =ND AD,∵AB :BE =5:2,AD =14,∴DN=2147,∵∠BAD=∠CAD,∠CAD=∠CBD,∴∠BAD=∠CBD,∵BM平分∠ABC,∴∠ABM=∠CBM,∴∠BAD+∠ABM=∠CBD+∠CBM,∴∠BMD=∠MBD,∴BD=DM,∵∠NBD=∠BAD,∠BDM=∠ADB,∴△BDN∽△ADB,∴ND BD =DB AD∴BD2=ND⋅AD=2147×14=4,∴BD=2(负值舍去),∴DM=BD=2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆中最定值类型一、圆中将军饮马例1、如图,AB是。

O的直径,AB=10cm , M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接 MP、NP ,_则MP+NP的最小值是_______________分析:作N关于嗣前对称点M「连接鵬交阳于点P ,则点P即为翫求的点「再根据M是半園嗣的i 三等分点,N是半圍嗣的f 六等分点可求出川ON的值f再由勾股定理即可求出M姑的长.B解:作N关于期的对称点冲x连接炳N交锂于点P「则点P即为所求的点」讪是半圆AE的一T三等分点,N是半圆的_个六等分点, 180°ISO0'.M0E =—=60° f zBON =—=30° f=90°「vAB^IOcrn ,/■OM=ON =5cm f___________川N—两為二阿注返cm「即MP+NP的最少值是.故答案为:5返.原谱「本题考查的是最短路线问题及圆心角、弧弦的关系”根据阳是半圆AB的一T三等分点,N是半圆嗣前一个六等分点「求出川0NT(T是解答此题的关键.1、已知圆0的面积为3二,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB 上任一点,则PC+CD 的最小值为____________________________A/分折:先设園0的半径怖,‘由圆0的面积再3TI 求出尺的值「再作点匸关于AB 的对称点U ;连接0D ,. OO _DC' f 则DU 的长即为PC + PD 的最小值f 由圆心角、弧、弦的关系可知AC=AC^=8^ t 故 BC' = 100° ;由53 = 20°可知L BD = 12^ ..由OC' = OE 河求出/ODC/的.氨数;进而可得出结论..-.AC = AC^ =80° ; .\BC S =100° ;■/BB = 20D ;.'.C D = BC'^ +B 3 = 100° + 20° = 120° ;■.■OC' = OD , .■■ZODC' = 30D.■.DC' = 2OD*cos30° = 2v /3x A r = 3 ;即PC+ PD 的最小值为3 .故笞宰为:3 •2、如图,菱形 ABCD 中,/ A=60 ° , AB=3 , Q A 、O B 的半径分别为2和1, P 、E 、F 分别是边CD 、OA 和QB 上的动点,贝U PE+PF 的最小值是 ___________解苔:解:设圆O 的半径知,.■■■00的面积为, .'.3n: = n:R 2『^PR = \/3 .作点匚关于鮎的对称点U 「连接0D ; 0C ; ; DC-' 小值,/A r --:厂*_s则DC-'BK 即为PC + PD 的最\汀了丿 \C'考点:轴对称-最區至戋问题-菱形的性质,相切两圖圧]性质 专题:"L 何图形冋题圧袖题分析:利用菱形的性贡以及相切两圖的性质得出FWD 重合时PE + PF 的最小值「舍而求出即可. 解答:解:由题倉可得出:当P2口重合时* E 点在AD 上… F 在上(此时 PE +FF>d-•.•菱形ABCD 中 r ZA=6O° , .'.AB =AD ..贝卜ABD 是等边三角形; .-.BD=AB=AD = 3「■■ GA. EB 的半径分别沟2和1,.-.PE = 1』DF = 2 r .'■PE+PF 的最小值是E . 类型二、折叠隐圆【基本原理】(一箭穿心)|点A 为圆外一点,P 为圆0上动点,连接AO 并延长交圆于P i - P 2,则AP 的最小值为AP 2,,最大值为A P iB,A试题別斤:如图1 f 達按SI f 过M 為乍MH 丄CD 交CD 的匹氏线于点H则由得”在Rt 丄DH 创中(DM = 1, zHDM=60*, /.HD =1 HXI =^1-/-HC = 2^- = A ・2 2 2 2又•■相据司折对称的性质,A^M=AM = 1 ,. .-CA M 中_两边一走要使XC 长厦的協小即要辰制X 最,」J 此时点A'落在MC 上..如匡IZ■-■M A^NA=1 r /.,YC-NC-MY = V?ZE 的最小值是1、已知一个矩形纸片 OACB ,将该纸片放置在平面直角坐标洗中,点 为BC 边上的动点(点P 不与点B 、C 重合),经过点 0、P 折叠该纸片,则 CB '勺最小值为 ______________B '在以0为圆心,0B 为半径的圆上.B '在0C 上时,C B'最小.2、四边形 ABCD 中,AD // BC ,Z A=90,AD=1,AB=2,BC=3,P 是线段 AD 上一动点,将△ ABP 沿 BP 所在 直线翻折得到△ QBP ,则△ CQD 的面积最小值为 _______A (11,0),点B (0,6),点 P例、如图4,在边长为2的菱形ABCD 中,/ A=60 , M 是AD 边的中点,N 是AB 边上一动点,将△ AMN 沿MN 所在的直线翻折得到△ A' MN ,连接A'C ,请求出AC 长度的最小值.类型三、 随动位似隐圆例、在 Rt △ ABC 中,/ ACB=90 ,/ BAC=30 ,BC=6 .点 D 是边AC 上一点D 且AD=2 3,将线段AD 绕点A 旋转得线段AD',点F 始终为BD' 的中点,则将线段 CF 最大值为 _______________________________[分析]:易知D'轨迹为以A 为圆心AD 为半径的圆,则在运动过程中AD'为定值2 3 ,故取AB 中点G,则FG 为中位线,FG=— AD'= 3 ,故F 点轨迹为以G 为圆心,•、3为半径的圆。

问题实质 2 为已知圆外一点C 和圆G 上一点F ,求CF 的最大值。

—思路2:倍长BC 到B',则B' D 的中位线,CF — B ,当 , 最大时,CF 也取最大值,问题实质2为D 在圆A 上运动至何处时,BD 取最大。

【方法归纳】③、如图,点A 和点O1为定点,圆01半径为定值,P 为圆O —上动点,M 为AP 中点?点M1、如图,在 Rt A ABC 中,Z ACB= 90,° D 是AC 的中点,M 是BD 的中点,将线段 AD 绕A 点任意旋转(旋 转过程中始终保持点 M 是BD 的中点),若AC = 4,BC = 3,那么在旋转过程中,线段 CM 长度的取值范围 是2、 如图,△ ABC 是边长为2的等边三角形,以 AC 为直径作半圆,P 为半圆上任意一点, M 为BP 中点, 则在点P 由A 到C 运动过程中,点 M 运动路径长为 ________________________运动轨迹为圆02,且02为A0—中点CB构造中位线【着点】旋转的性质F直第三角形斜辺上的中线"【分析】连接切’,延长CA交①也于“连接旳匚.根据直角三角形斜边上的中线等于斜边的一半,求出匚町3』CM的长度在二看之间.TAD尸AJ>2・AC=4HJ J V E.'.c 汕二?BDf X32 <CM< 2【点评】本题着査了軌迹*要结合匈股宦理、直粛三角形斜边上的中娃等于斜边的一半解答.类型四、定性分析一一垂线段最短例、如图,半圆0的半径为1 , AC丄AB , BD丄AB,且AC=1 , BD=3 , P是半圆上任意一点,则封闭图形ABDPC面积的最大值是___________________________【分析】:思路1、连接CD、梯形ABCD面积为定值,要使封闭图形ABDPC 面积取最大值,则使△ CPD面积取最小即可,△ CPD中,底边CD为定值,则当高取最小值时,面积有最小值,故问题变成当点P在圆上运动至何处时,点 P到CD距离最小。

C、D、0为定点,则点 0到CD距离为定值,计算CD、OC、0D长,由勾逆知 0C丄CD,设【解答】解:连接EDi,延长CA交OA于D印连接E%.'.CD1=4- 2=2i 6亍4+2书,点P到CD距离为h,则h+r >0C二h> OC-r,即当O P、M三点共线时,h有最小值,此时M与点C重合,故0C与圆0交点即为所求点Po思路2: P点的确定也可以这样想,平移 CD设平移后的直线为 m,则直线m与 CD间的距离即为 CD边上的高,显然,当直线 m与圆0相切时,高h有最小值。

1、如图,半径为3,OP=J3,则弦BC的最大值为__________________________________ 2、如图,AB为。

0的直径,C为半圆的中点,。

C的半径为2,AB=8,点P是直径AB上的一动点,PM与O C切于点M ,_则PM的取值范围为______________用?如图2、点A、B为定点,点C为线段AB外一点,且/ ACB= 9 (9为固定值)?点C在以AB为弦的圆上运动(不与A、B重合)图1 图2例、如图,AB为定长,点C为线段AB外一点,且满足/ ACB=60度,请在图中画出点 C的运动轨迹, 简要说明作图步骤步骤1、________________________________________________________步骤2、________________________________________________________练习、1、如图,AB为定长,点C为线段AB外一点,且满足/ ACB=120度,请在图中画出点 C的运动轨迹,并写出圆心角/ AOB= ___________BP为圆O内一个定点,A为圆0上一个动点,射线AP,AO分别与圆0交于B, C两点,若圆0的类型五、定弦定角【基本原理】如图O O中,A、B为定上任一点,在C点运动过B点,贝U AB为定弦,点C为优弧程中则/ ACB的度数不变?逆运2、如图,AB为定长,点C 为线段AB 外一点,且满足/ ACB=120度,请在图中画出点 C 的运动轨迹 【实战应用】例、如图,。

O 的半径为1,弦AB=1,点P 为优弧AB 上一动点,AC 丄AP 交直线PB 于点。

,则厶ABC 的最 大面积是_________________________2的等边三角形,D 是边BC 上的动点,BE 丄AD 于E,则CE 的最小值为2、如图,Rt A ABC 中,AB 丄BC, AB=6,BC=4, P 是厶ABC 内部的一个动点,且满足/ PAB=Z PBC 则线段 CP 长的最小值为 ___________类型六、定弦定角 反客为主例、如图,/ XOY= 45 ° 一把直角三角尺 ABC 的两个顶点A 、B 分别在OX 0Y 上移动,其中 AB = 10,那 么点O 到顶点A 的距离最大值为 ________________ 点O 到AB 的距离的最大值为 _______【分析】:题意中AB 为定长线段在角的两边滑动, O 为定点,滑动中C 为动点, AB 两点位置发生变化,点 O 到AB 距离的最大值的确定有难度,若改变思路, 借助物理中运动的相对性可知,若将△ ABC 固定,将/ XOY 的两边绕AB 滑动,与原题中运动效果等价,题目中数量关系不会发生改变。

相关文档
最新文档