层次分析法判断矩阵

合集下载

层次分析法判断矩阵求权值以及一致性检验程序

层次分析法判断矩阵求权值以及一致性检验程序

层次分析法判断矩阵求权值以及一致性检验程序层次分析法(Analytic Hierarchy Process,AHP)是一种用于多准则决策的数学模型和方法。

它是由美国管理学家托马斯·L·赛蒙在20世纪70年代提出的。

AHP方法能够帮助决策者在多个准则和多个选择之间进行有效的决策,通过定量和定性的方式来对选择进行评估和比较。

在AHP方法中,决策问题被分解成一个层次结构,其中包含目标层、准则层和选择层。

每个层次都有不同的准则和可能的选择。

决策者需要对每个层次中的准则和选择进行配对比较,从而确定它们之间的重要性和权重。

通过对一系列两两比较的判断矩阵求权值,最终得到每个准则和选择的权重,进而做出最终决策。

下面是一种求解AHP中矩阵权值和进行一致性检验的程序:1. 建立判断矩阵:根据决策问题的结构,建立一个判断矩阵。

判断矩阵的大小是n×n,其中n是比较对象的数量。

矩阵的每个元素(a_ij)表示第i个对象相对于第j个对象的重要性或影响程度。

2. 进行两两比较:对矩阵的每个元素(a_ij),决策者需要进行两两比较,确定它们之间的相对重要性。

比较的结果可以使用系数1-9进行量化,其中1表示相等重要性,9表示绝对重要性的差异。

3.归一化判断矩阵:将比较得到的判断矩阵归一化,使得每一列的元素之和等于1、这可以通过将每个元素除以其所在列的元素之和来实现。

4.求解权值:通过归一化后的判断矩阵,可以计算每个对象的权重。

权重可以通过计算每一行的元素之和来得到。

5.计算一致性指标:在AHP方法中,一致性是指判断矩阵中的数值是否在合理范围内。

为了检验一致性,需要计算一致性指标。

一致性指标的计算方法是通过求解最大特征值和一致性比率来得到。

6.进行一致性检验:计算一致性指标后,需要将其与预先给定的随机一致性指标进行比较。

如果计算得到的一致性指标小于预先给定的一致性指标,则认为判断矩阵中的数值具有一致性。

构造判断矩阵的讲解层次分析法

构造判断矩阵的讲解层次分析法
定义一致性指标: CI n
n 1
CI=0,有完全的一致性
CI接近于0,有满意的一致性
CI 越大,不一致越严重
为衡量CI 的大小,引入随机一致性指标 RI。方法为
随机构造500个成对比较矩阵 A1, A2 ,L, A500
则可得一致性指标 CI1,CI2 ,L,CI500
RI
CI1 + CI2
bij=bik/bjk
为了考察AHP决策分析方法得出的结果是否基本合理,需要对判断矩阵进行一 致性检验。
目标层
O(选择旅游地)
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
设要比较各准则C1,C2,… , Cn对目标O的重要性
Ci : C j aij A (aij )nn , aij 0, a ji
② 将归一化的判断矩阵按行相加:
n
wi bij.........( i 1,2,..., n) j1
③ 对向量wi (w1, w2,..., wn) T归一化:
n
wi wi / w j.........( i 1,2,..., n) j1
所得的 w (w1, w2,...,wn)T即为所求得特征向量,亦即
CR
CI RI
0.1
时,认为
A
的不一致程度在容许范围之内,有满意的一致性,通过 一致性检验。可用其归一化特征向量作为权向量,否则 要重新构造成对比较矩阵A,对 aij 加以调整。
一致性检验:利用一致性指标和一致性比率<0.1
及随机一致性指标的数值表,对 A进行检验的过程。
“选择旅游地”中 准则层对目标的权 向量及一致性检验
对应于判断矩阵最大特征根λmax的特征向量, 经归一化(使向量中各元素之和等于1)后记为W。

层次分析法AHP之判断矩阵经典讲解

层次分析法AHP之判断矩阵经典讲解

比较次数
0
1
3
6
10 15 21
构造判断矩阵

矩阵一般形式
标度aij的含义:Ai比Aj 的重要程度
构造判断矩阵

构造3×3的矩阵
A
Apple
Banana Cherry
Apple
Banana
Cherry
a11 a21
a12 a22
a13 a23
a31
a32
a33
构造判断矩阵
矩阵的对角线元素 I. aii=1; 先填写矩阵的右上三角元素,规则如下: I. 如果比较数值在1的左边,则直接填该数值; II. 反之,则填该数值的倒数。
信息分析与预测 档案系
AHP之判断矩阵
旅游的层次结构模型
目标层
选择旅游地
准则层
景色
费用
饮食
居住
旅途
方案层
桂林
黄山
北戴河
就业选择的层次结构模型
目标层
工作选择
准则层
地 理 位 置
工 资 待 遇
发 展 前 途


工 作 环 境
生 活 环 境
方案层
可供选择的单位P1、 P2
、Байду номын сангаас
Pn
2015中国大学本科专业评价层次结构模型
Cherry Cherry Cherry
Banana Banana Banana
9 9 9
V 7
7 7
5 5 5
3 3 3
1 1 1
3 3 3
5 5 5
7 7 7
9 9 9
Cherry Cherry Cherry
表1:对象数量与比较次数的关系 对象数量 1 2 3 4 5 6 7 n n(n-1) 2

层次分析法中判断矩阵一致性的改进方法

层次分析法中判断矩阵一致性的改进方法

[ 摘要】 判断矩阵也叫 成对比较阵, 它是通过对定 性指标进行 量化得到的; 通过一个敷学 建模的实例, 建立相应的判 断矩阵并判定 其一致性,进 而对达不到要 求的
翔断矩阵提m笔者的改进方 法。
[ 关键词】层次分析法判断矩阵一致性数学建模
中图分类号:01- o
文献标识码; A 文章 编号 :167 1- - 7 597( 2 008) 1 22018 1- - 01
其中R=Ⅸ=( 而, 屯,…,善。) 7 l毛>0,i =1,2,…,一}· 引理2设彳=( 口Ⅳ) 。.是判断矩阵.A。是A的最大特征值,则五。
≥刀, 等号成立 当且仅当^是 一致性矩 阵.
定理设彳=( 口口) 。是判断矩阵,红是A的最大特征值,历=( w1, w2,…,毗)7为k对应的特征向量,取口E( o’1) ,并令占=( 钆) 。,其中
取=0. 1,得修改 后的矩阵和 各项指标 如下
l
●9
9
;, r 。 On 9 5 n● 诌2
I .391 l ,5
6.522 2
1
O.3l l
3.216 l
( 下转第170页)
圃Байду номын сангаас
教■ 科学



●_§;
浅谈音乐教学中情感的培养
马淑 华 ( 白城职业技术学院吉林白城137000)
[ 擅要】在音 乐教育中,教师要善于 动脑,组织好各个环 节的教学,用生动、形 象、甜美的教学语言和 动听的歌声与伴奏打动 学生的心库,唤起学生 的美感. [ 关键词]音乐教学 情感 培养 中图分类号:G4 2文献标识码:A 文章 编号 ;167 1- - 7 507( 2 008) 1 22017 0—01

层次分析及综合评价方法

层次分析及综合评价方法
数据收集与处理
采用适当的方法,将各个指标综合起来,得出一个总体的评价结果。
综合评价
对评价结果进行分析,为决策提供依据。
结果分析
07
综合评价指标体系的建立
构建步骤
明确评价目标、设计初步指标、筛选与确定指标、确定权重、建立完整的指标体系。
导向性原则
指标应具有导向性,能够引导被评价对象向正确的方向发展。
方案层可以包含多个元素,每个元素代表一个具体的方案或措施。
方案层需要具体、可行,能够针对准则层中的各个因素提出相应的解决方案。
方案层
03
构造判断矩阵
判断矩阵的定义与元素确定
判断矩阵定义
判断矩阵是层次分析法中用于表示各因素之间相对重要性的矩阵,通常采用正互反矩阵形式。
元素确定方法
判断矩阵的元素通常采用专家打分、历史数据比较等方法确定,根据实际情况选择合适的方法。
将决策问题分解成不同的组成因素,并根据因素间的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次的分析结构模型。
将决策问题分解成不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次的分析结构模型。
通过较少的定量信息使决策者的思维过程数学化,为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
计算加权评价值
根据加权评价值的大小,确定最优的决策方案。
确定决策方案
将决策方案付诸实施,并根据实际情况进行反馈和调整。
决策实施与反馈
基于层次总排序的决策分析
06
综合评价方法概述
定义
综合评价是一种对多个指标进行综合分析的方法,通过对各个指标进行权重分配,得出一个综合的评价结果。

层次分析法判断矩阵求权值以及一致性检验程序

层次分析法判断矩阵求权值以及一致性检验程序

function [w,CR]=mycom(A,m,RI)[x,lumda]=eig(A);r=abs(sum(lumda));n=find(r==max(r));max_lumda_A=lumda(n,n);max_x_A=x(:,n);w=A/sum(A);CR=(max_lumda_A-m)/(m-1)/RI;end本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。

其中A为判断矩阵,不同的标度和评定A将不同。

m为A的维数RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。

当CR<时符合一致性检验,判断矩阵构造合理。

下面是层次分析法的简介,以及判断矩阵构造方法。

一.层次分析法的含义层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂()正式提出。

它是一种定性和定量相结合的、系统化、层次化的分析方法。

由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。

它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。

二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。

(1)层次分析法的原理层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。

这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。

层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。

层次分析中判断矩阵排序的最小偏差二乘法

层次分析中判断矩阵排序的最小偏差二乘法
i= 1 T
本文于 1997 年 2 月 3 日收到 , 修改稿于 1997 年 6 月 24 日收到
1998
层次分析中判断矩阵排序的最小偏差二乘法
— 73 —
然而, 层次分析法中断判矩阵的获得一般都是由专家给定 , 因此, 判断矩阵的一致性必然要 受到专家知识结构、 判断水平和个人偏好等众多主观因素的影响, 再加之判断事物本身的复 杂性和不确定性, 实际应用中的判断矩阵往往很难满足式 ( 2) , 因此, 式( 4) 在通常情况下是 不成立的, 为此, 引入偏差项 f ij , 即令 : f
1 3 A A A A
a 1 1/ a
1/ a a 1 的标准形。
1/ a a
其中 a =

1998
层次分析中判断矩阵排序的最小偏差二乘法
— 75 —
4 一般性质
定义 6 一个排序方法称为是强条件下保序的, 如果由 aik ≥ aj k ( P k ∈ 8 ) 能得出排序权 值 w i ≥ w j , 且当前者所有等式严格成立时有 w i = w j 这里 w= ( w 1 , w 2 , …, w n ) T 为排序向量。 定义 7 正互反矩阵称为是序传递的 , 如果 a ij ≥1, 则对所有的 k , 有 aik ≥aj k ; 如果 aij = 1, 则或对所有的 k , a ik ≥aj k , 或 a ik ≤a j k 。 定理 3 最小偏差二乘法具有文献 [ 2] 所定义的置换不变性 , 相容性, 对称性和完全协 调性。 定理 4 对于所有一致性判断矩阵, 最小偏差二乘法与特征根排序方法具有相同的排 序向量。 定理 5 最小偏差二乘法是强条件下保序的。 定理 6 对于具有序传递的判断矩阵 A, 最小偏差二乘法与特征根法给出相同的方案 排序。

层次分析法实例11

层次分析法实例11

和积法具体计算步骤
将判断矩阵的每一列元素作归一化处 理,其元素的一般项为:
bij= ____b_i_j ____ ∑n bij
1
(i,j=1,2..........n)
B p1
p2
p3
p4
p1 1 1 1 4
p2 1 1 2 4
p3 1 1/2 1 5
p4 1/4 1/4 1/5 1
p5 1 1 1/3 3
‫ג‬max=∑1ⁿ
(BW)i
—n—W—i—-
=1.025/(6*0.16)+1.225/(6*0.18)+1.30
5/(6*0.20)+0.309/(6*0.05)+1.066/(6*0.
16)+1.640/(6*0.25)
‫ג‬max=∑1ⁿ
(BW)i
—n—W—i—-
=1.068+1.134+1.0875+0.858+1.110+
200810902126 (组长) 200810902124 200810902140 200810902119 200810902121 200810902127 200810902105 200810902120 200810902141
(BW)
=
=
1 1 1 4 1 1/2 0.16 1 1 2 4 1 1/2 0.18 1 1/2 1 5 3 1/2 0.20 1/4 1/4 1/5 1 1/3 1/3 0.05 1 1 1/3 3 1 1 0.16 2 2 2 3 1 1 0.25
1.025 1.225 1.305 0.309 1.066 1.64
7
9
1/7 1

层次分析法-判断矩阵的构造-德尔菲法

层次分析法-判断矩阵的构造-德尔菲法

德尔菲法的具体实施步骤
1 组成专家小组。按照课题所需要的知识范围,确定专家。专家人数的多 少,可根据预测课题的大小和涉及面的宽窄而定,一般不超过20人。 2 向所有专家提出所要预测的问题及有关要求,并附上有关这个问题的所 有背景材料,同时请专家提出还需要什么材料。然后,由专家做书面答复 3 各个专家根据他们所收到的材料,提出自己的预测意见,并说明自己是 怎样利用这些材料并提出预测值的。 4 将各位专家第一次判断意见汇总,列成图表,进行对比,再分发给各位 专家,让专家比较自己同他人的不同意见,修改自己的意见和判断。也可 以把各位专家的意见加以整理,或请身份更高的其他专家加以评论,然后 把这些意见再分送给各位专家,以便他们参考后修改自己的意见。 5 将所有专家的修改意见收集起来,汇总,再次分发给各位专家,以便做 第二次修改。 逐轮收集意见并为专家反馈信息是德尔菲法的主要环节。 收集意见和信息反馈一般要经 过三、四轮。在向专家进行反馈的时候, 只给出各种意见,但并不说明发表各种意见的专家的具体姓名。这一过程 重复进行,直到每一个专家不再改变自己的意见为止。 6 对专家的意见进行综合处理。
中位数预测: 用中位数计算,可将第三次判断按预测值高低 排列如下: 最低销售量: 300 370 400 500 550 最可能销售量: 410 500 600 700 750 最高销售量: 600 610 650 750 800 900 1250 最高销售量的中位数为第四项的数字,即750。 将可最能销售量、最低销售量和最高销售量分 别按0.50、0.20和0.30的概率加权平均,则预测平 均销售量为: 600*0.5+400*0.2+750*0.3=695
德尔菲法与其他决策法相比较
效果标准/决策方法 体法 德尔菲法 观点的数量 低 观点的质量 低 社会压力 高 财务成本 低 互动群体法 电子会议法 中等 高 中等 高 低 中等 低 低 脑力激荡法 名义群 高 高 低 低 高 高 低 高

层次分析法的计算步骤

层次分析法的计算步骤

层次分析法的计算步骤层次分析法(Analytic Hierarchy Process, AHP)是一种用于多准则决策的定量分析方法,由美国学者Thomas L. Saaty于1970年代提出。

它通过将一个复杂的多准则问题分解为一系列的层次结构,然后利用专家判断来确定每个层次的权重以及相对优先级,最终得出最佳决策。

下面将详细介绍层次分析法的计算步骤。

1.确定决策的目标和准则:首先明确决策的目标,以及实现这一目标所需的准则。

例如,如果我们要决定购买一台新的汽车,目标可能是选择性价比最高的汽车,准则可能包括价格、燃油经济性、安全性、舒适性等。

3.构建判断矩阵:为了确定每个层次之间的重要性比较,需要构建判断矩阵。

判断矩阵是一种由专家根据经验、知识或直觉所得到的关于准则之间相对重要性的矩阵。

对于每个层次,需要构建一个判断矩阵。

例如,在准则层次,专家需要判断每个准则与其他准则之间的相对重要性。

4.对判断矩阵进行标准化:将判断矩阵进行标准化是为了消除专家主观性的影响。

标准化的方法可以有多种,最常用的方法是将每列元素除以该列元素之和,使每列元素之和等于15.计算权重向量:通过对标准化的判断矩阵进行特征值分解,可以得到特征值和对应的特征向量。

特征向量的元素表示各个准则相对于目标的权重。

为了保证权重之和等于1,需要将特征向量进行归一化。

归一化的方法是将每个元素除以所有元素之和。

6.一致性检验:进行一致性检验是为了评估专家的判断是否一致和合理。

一致性指标(Consistency Index, CI)是用来度量判断矩阵的一致性程度的指标,其计算方法为CI=(λmax-n)/(n-1),其中λmax为最大特征值,n为准则数目。

为了验证判断矩阵的一致性,还需要计算一个随机一致性指标(Random Index, RI)作为对照。

如果CI<0.1,则认为判断矩阵是一致的。

7.一致性修正:如果判断矩阵不一致,可以通过进行一致性修正来提高一致性。

层次分析法判断矩阵

层次分析法判断矩阵

层次分析法判断矩阵层次分析法判断矩阵程序先确定判断矩阵;然后用以下程序就好了:%层次分析法的matlab程序%%%%diertimoxingyiclc,cleardisp(输入判断矩阵);% 在屏幕显示这句话A=input(A=);% 从屏幕接收判断矩阵[n,n]=size(A);% 计算A的维度,这里是方阵,这么写不太好x=ones(n,100);% x为n行100列全1的矩阵y=ones(n,100);% y同xm=zeros(1,100);% m为1行100列全0的向量m(1)=max(x(:,1));% x第一列中最大的值赋给m的第一个分量y(:,1)=x(:,1);% x的第一列赋予y 的第一列x(:,2)=A*y(:,1);% x的第二列为矩阵A*y(:,1)m(2)=max(x(:,2));% x 第二列中最大的值赋给m的第二个分量y(:,2)=x(:,2)/m(2);% x的第二列除以m(2)后赋给y的第二列p=0.0001;i=2;k=abs(m(2)-m(1));% 初始化p,i,k为m(2)-m(1)的绝对值while k>p% 当k>p是执行循环体i=i+1;% i 自加1x(:,i)=A*y(:,i-1);% x的第i列等于A*y的第i-1列m(i)=max(x(:,i));% m的第i个分量等于x第i列中最大的值y(:,i)=x(:,i)/m(i);% y的第i列等于x的第i列除以m的第i个分量k=abs(m(i)-m(i-1));% k等于m(i)-m(i-1)的绝对值enda=sum(y(:,i));% y的第i列的和赋予aw=y(:,i)/a;% y的第i 列除以at=m(i);% m的第i个分量赋给tdisp(权向量:);disp(w);% 显示权向量wdisp(最大特征值:);disp(t);% 显示最大特征值t %以下是一致性检验CI=(t-n)/(n-1);% t-维度再除以维度-1的值赋给CIRI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];% 计算的标准CR=CI/RI(n);% 计算一致性if CR摘要在定性问题的决策中,AHP是一种优秀的方法,其基础是对评价对象的两两比较,并用比较结果构造判断矩阵,而这些都依赖于决策者选用的偏好关系。

层次分析法判断矩阵求权值以及一致性检验程序

层次分析法判断矩阵求权值以及一致性检验程序

层次分析法判断矩阵求权值以及一致性检验程序以下是一种基于层次分析法的判断矩阵求权值以及一致性检验的程序:第一步:确定目标和准则层首先,明确分析的目标以及需要进行比较和排序的准则。

例如,在选择旅游目的地的决策中,目标可以是选择最适合个人喜好的目的地,而准则可以包括交通便利性、旅游景点的丰富程度、美食水平等。

第二步:构建判断矩阵根据目标和准则,构建判断矩阵,矩阵的大小为n*n,其中n是准则的个数。

判断矩阵中的元素对应于两两准则之间的比较结果。

例如,对于两个准则i和j,可以使用1-9的尺度来表示它们之间的重要程度,其中1表示相同重要,9表示极端重要。

如果准则i相对于准则j更重要,则在判断矩阵的(i,j)位置上填写9、判断矩阵的对角线元素全为1,因为每个准则相对于自身的重要性是相同的。

第三步:求判断矩阵的权值利用判断矩阵求解初始权值的过程主要分为两个步骤:特征根法和一致性检验。

1.特征根法求解判断矩阵的特征值和对应的特征向量,通过特征向量的归一化,得到各个准则的权重。

2.一致性检验判断矩阵是否具有一致性,即各个准则的权重是否合理。

这里使用一致性指标CI(Consistency Index)和一致性比例CR(Consistency Ratio)来进行检验。

CR的计算公式为CR = CI/RI,其中RI是一个随着准则个数n而变化的随机一致性指数,可以在AHP的标准表格中查找。

第四步:一致性检验与调整如果CR小于一些事先设定的阈值(通常为0.1),则认为判断矩阵通过一致性检验,各个准则的权重是合理的;否则,需要对判断矩阵进行调整。

判断矩阵的调整可以通过以下步骤进行:1.计算判断矩阵的平均列向量2.计算平均列向量的加权平均向量3.计算调整后的判断矩阵4.重复进行一致性检验和调整,直至通过一致性检验为止第五步:权值的应用经过一致性检验和调整后,各个准则的权重即为最终结果。

可以将权重应用于具体的决策问题中,进行多个准则的比较和排序。

层次分析法判断矩阵的构成方法及比较

层次分析法判断矩阵的构成方法及比较

运用层次分析法(’()*+,-./0120)3,31(.4351)66, *24)确定权重系数,大体可分为四个步骤:
!建立复杂问题的递阶层次结构。 "构造两两比较的判断矩阵。 #由判断矩阵计算被比较元素的相对权重。 $计算各层元素的组合权重。 其中"是将人的比较判断量化的过程,受人的主 观因素影响很大,而判断矩阵又是计算权重的根据,是
与另一个指标相比,其重要性等级相差的级数为信息;
而数值比较法只是利用数值的比值为信息。
"345要求填写矩阵时采用“,$0”之间的正整 数及其倒数,简易表格法满足该特点;而数值比较法构 造的阵中万存方在数非据正整数倒数。
优序图(567879787:;"6*,简称 5:)是美国人 5<=< >??9+,01’年首次提出的,在我国目前尚未推广。它 也是建立在两两比较的基础之上,调查表中表格的设 计与原始矩阵相同,只是不采用“,$0”标度。它用“,” 表示行比列相对重要,用“&”表示行比列相对不重要, 用“&!.”表 示 行 与 列 同 等 重 要。 金 新 政〔%〕在《 优 序 图 和层次分析法在确定权重时的比较研究及应用》一文 中,详细阐述了优序图的优点,即省时、省力、易操作。 他也同时提到,由于优序图中只有“,,&,&!.”三个数字 来表示何者为优,对程度描述不足,因此适合于大样本 的调查。
(表%、表8),以此说明两种方法的区别与联系。 对表%、8的结果,做如下分析:
($)从一致性程度考虑,数值比较法稍优: 由矩阵理论可知〔;〕,若 + 阶判断矩阵! 的最大
特征值比+ 大得越多,! 的不一致程度就越严重;相 反,!?,@越接近于 + 时,! 的一致性程度就越好。当 !?,@:+ 时,! 为完全一致阵。计算二者的 !?,@:数

构造判断矩阵的讲解(层次分析法)课件

构造判断矩阵的讲解(层次分析法)课件

根据对两两比较结果,参 照相对重要程度,对每一 层次各元素的相对重要性 进行评估,构造两两比较 判断矩阵。
根据判断矩阵计算对于上 一层某元素而言,本层次 有关元素的重要性次序的 权值,即层次单排序。然 后进行一致性检验。
计算某一层次所有元素对 最高层(总目标)的相对 重要性权值,即层次总排 序。
根据层次总排序进行决策 。
02
构造判断矩阵
判断矩阵的定义与元素取值
定义
判断矩阵是层次分析法中,将决策问题分解成不同的组成因 素,并根据因素间的相互关联影响以及隶属关系将因素按不 同的层次聚集组合,形成一个多层次的分析结构模型。
元素取值
判断矩阵的元素$a_{ij}$表示对于上一层元素$U$,下层元素 $u_{i}$与$u_{ j}$之间的相对重要性。通常采用1-9标度法或 其倒数(1-9的倒数)进行赋值,表示两元素间相对重要性的 比例。
判断矩阵
通过比较因素之间的相对 重要性,构造出判断矩阵

特征向量
计算判断矩阵的特征向量 ,得到各因素相对于上层
因素的权重。
一致性检验
对判断矩阵进行一致性检 验,确保权重分配合理。
层次总排序的计算步骤
层次单排序
对每个判断矩阵进行单排序,得 到各因素相对于上层因素的权重 。
层次总排序
将各层单排序的结果逐层汇总, 得到最底层因素相对于目标层的 权重。
对判断矩阵的权重分配主观性较大
02
层次分析法的权重分配主要依赖于专家的主观判断,因此有时
候会存在较大的主观性。
对复杂问题的处理能力有限
03
对于一些特别复杂的问题,层次分析法的处理能力可能有限,
需要结合其他方法进行解决。
未来研究方向与应用前景

层次分析法

层次分析法

准则层对于目标层的判断矩阵及但排序单排序和一致性检验树种选择经济效益社会效益生态效益技术要求按行相乘开n次方经济效益123424 2.2133638社会效益0.51233 1.316074生态效益0.33333330.5120.3333333330.7598357技术要求0.250.33333330.510.0416666670.4518014.7410745方案层对于经济效益的判断矩阵及但排序和一致性检验经济效益松树杉树桉树按行相乘开n次方权重Wi松树120.14285710.285714290.6586337560.1569961杉树0.510.250.1250.50.1191832桉树741283.0365889720.72382074.195222728及单排序和一致性检验方案层对于社会效益准则的判断矩阵及社会效益松树杉树桉树按行相乘开n次方权重Wi松树10.50.20.10.4641588830.1220202杉树210.33333330.666666670.8735804650.2296508桉树531152.4662120740.6483293.803951422生态效益松树杉树桉树按行相乘开n次方权重Wi松树12361.8171205930.5278361杉树0.513 1.51.1447142430.3325159桉树0.33333330.333333310.111111110.4807498570.13964793.442584692层次总排序计算四准则ai经济效益社会效益生态效益技术要求三方案bi0.482050.117020.217790.18314aibi松树0.1570.122020.527840.38065杉树0.119180.229650.332520.52785桉树0.723820.648330.139650.0915层次总排序一致性检验CIiRii0.51490.51490.51490.5149CR i权重Wi Awi Awi/Wi CI=(MAX-n)/(n-1)CR=CI/RI0.4668486 1.8840081 4.03558730.0103260.011562 0.2775898 1.1174324 4.02548050.16026660.6452678 4.02621610.09529510.3846704 4.03662484.0309772Awi Awi/Wi CI=(MAX-n)/(n-1)CR=CI/RI0.4987655 3.17692820.08846410.171808 0.3786364 3.17692822.29952643.17692823.1769282Awi Awi/Wi CI=(MAX-n)/(n-1)CR=CI/RI0.3665114 3.00369460.00184730.0035880.6898008 3.00369461.9473824 3.00369463.0036946Awi Awi/Wi CI=(MAX-n)/(n-1)CR=CI/RI1.6118118 3.05362160.02681080.05207 1.0153778 3.05362160.426432 3.0536216总排序∑aibi。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档