初三数学全等三角形专项训练及答案解析
中考数学复习《全等三角形》专题训练-附带参考答案
中考数学复习《全等三角形》专题训练-附带参考答案一、选择题1.下列选项中表示两个全等的图形的是()A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形2.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,则不一定能使△ABE≌△ACD的条件是()A.AB=AC B.∠B=∠CC.∠AEB=∠ADC D.CD=BE3.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.25°B.30°C.35°D.65°5.如图EF=CF,BF=DF则下列结论不一定正确的是()A.△BEF≌△DCF B.△ABC≌△ADEC.DC=AC D.AB=AD6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2 B.3 C.4 D.57.如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有()A.2对B.3对C.4对D.5对8.如图,AD 是△ABC中∠BAC的平分线,DE⊥AB于点E,△ABC的面积为12,DE =2,AB = 7,则 AC 的长是()A.3 B.4 C.5 D.6二、填空题9.如图,∠ACD=∠BCE,BC=EC,要使△ABC≌△DEC,则可以添加的一个条件是.10.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为.11.如图,在Rt△ABC中,∠BAC=90°,分别过点B,C作过点A的直线的垂线BD,若BD=4cm,CE=3cm则DE= cm.12.如图,把两根钢条AB,CD的中点连在一起做成卡钳,已知AC的长度是6cm,则工件内槽的宽BD是cm.13.如图,△ABC为等腰直角三角形AC=BC,若A(−3,0),C(0,2),则点B的坐标为.三、解答题14.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°(1)求证:△ADE≌△CDE.(2)求∠BDC度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A =25°,∠D =15°,求∠ACB 的度数.16.如图,AB =AC ,AD =AE ,∠BAC =∠DAE.(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,在ABC 中90C ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥于点E ,点F 在BC 上,连接DF ,且AD DF =. (1)求证:CF AE =;(2)若3AE =,BF=4,求AB 的长.18.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD =2BF+DE .1.D2.D3.D4.A5.C6.B7.C8.C9.AC =DC (答案不唯一)10.811.712.613.(2,-1)14.(1)证明:∵DE 是线段AC 的垂直平分线 ∴DA=DC ,AE=CE在△ADE 与△CDE 中:DA=DCAE=CEDE=DE∴△ADE ≌△CDE (SSS );(2)解:∵△ADE ≌△CDE .∴∠DCA=∠A=50°∴∠BDC=∠DCA+∠A=100°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:(1)∵90C ∠=︒∴DC BC ⊥又∵BD 是ABC ∠的平分线DE AB ⊥∴DE DC = 90AED ∠=︒在Rt AED △和Rt FCD △中∵AD DFDE DC =⎧⎨=⎩∴()Rt Rt AED FCD HL ≌△△∴CF AE =.(2)解:由(1)可得3CF AE ==∴437BC BF CF =+=+=∵DE AB ⊥∴90DEB ∠=︒∴DEB C ∠=∠∵BD 是ABC ∠的平分线∴ABD CBD ∠=∠在BED 和BCD △中∵DEB C EBD CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED BCD AAS ≌△△ ∴7BE BC ==∴7310AB BE AE =+=+=∴AB 的长为10.18.(1)证明:∵90BAD CAE ∠=∠=︒∴90BAC CAD ∠+∠=︒ 90CAD DAE ∠+∠=︒ ∴BAC DAE ∠=∠在△BAC 和△DAE 中∵AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴()BAC DAE SAS ≌△△;(2)解:∵90CAE ∠=︒,AC=AE∴45E ∠=︒由(1)知BAC DAE ≌△△∴45BCA E ∠=∠=︒∵AF BC ⊥∴90CFA ∠=︒∴45CAF ∠=︒∴4590135FAE FAC CAE ∠=∠+∠=︒+︒=︒;(3)证明:延长BF 到G ,使得FG FB = ∵AF BG ⊥∴90AFG AFB ∠=∠=︒在△AFB 和△AFG 中∴BF GF AFB AFG AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AFB AFG SAS ≌△△∴AB AG = ABF G ∠=∠∵BAC DAE ≌△△∴AB AD = CBA EDA ∠=∠ CB=ED ∴AG AD = ABF CDA ∠=∠∴CGA CDA ∠=∠∵45GCA DCA ∠=∠=︒∴在△CGA 和△CDA 中GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CGA CDA AAS ≌△△∴CG CD =∵22CG CB BF FG CB BF DE BF =++=+=+ ∴2CD BF DE =+.。
初中数学《全等三角形》基本模型训练含解析
全等三角形基本模型专项训练一、单选题1如图,在Rt△ABC中,AB=AC,∠BAC=90°,点D,E分别在边BC及其延长线上,BD2+CE2=DE2,F为△ABC外一点,且FB⊥BC,FA⊥AE,则结论:①FA=AE;②∠DAE=45°;③S△ADE=14AD⋅EF;④CE2+BE2=2AE2,其中正确的是()A.①②③④B.①②④C.①③④D.①②【答案】A【分析】根据全等三角形的性质,证明△ABF和△ACE全等,即可得到FA=AE;连接DF如图见解析,证明△ADE和△ADF全等,即可得到∠DAE=45°;延长AD交EF于H如图见解析,利用等腰直角△AFE三线合一的性质,∠FAE=90°,∠DAE=45°∠DAE=45°,可知AH⊥EF,S△ADE=12AD⋅EH,HE=HF=12EF,即可判断③;在Rt△EBF和Rt△EAF中,利用勾股定理以及等式的性质,即可判断④.【详解】解:∵AB=AC,∠BAC=90°∴∠ABC=∠ACB=45°∴∠ACE=180°-∠ACB=135°∵FB⊥BC∴∠FBE=90°∴∠ABF=∠ABC+∠FBE=135°∴∠ABF=∠ACE∵FA⊥AE∴∠FAE=90°=∠BAC∴∠FAE-∠FAC=∠BAC-∠FAC即∠CAE=∠BAF在△ABF和△ACE中,∠ACE=∠ABF AC=AB∠CAE=∠BAF∴△ACE≌△ABF ASA∴FA=EA,故①正确;连接DF,如图:∵△ACE≌△ABF∴BF=CE在Rt△BDF中,BD2+BF2=DF2∴BD2+CE2=DF2∵BD2+CE2=DE2∴DE=DF∵AE=AF,AD=AD∴△ADE≌△ADF SSS∴∠DAE=∠DAF∴∠DAE=12∠EAF=45°,故②正确;延长AD交EF于H,如图:∵AE=AF,∠EAD=∠FAD∴AH⊥EF,HE=HF=12EF∴S△ADE=12AD⋅EH=12AD⋅12EF=14AD⋅EF,故③正确;在Rt△EBF中,BE2+BF2=EF2∵CE=BF∴BE2+CE2=EF2∵AE=AF,∠FAE=90°∴EF2=AE2+AF2=2AE2∴BE2+CE2=2AE2,故④正确,综上所述,正确的有①②③④,故选:A.【点睛】本题考查了全等三角形的判定与性质、勾股定理、等腰直角三角形性质等知识,解题的关键是灵活运用所学知识.2如图所示,△ABC中,AC=BC,M、N分别为BC、AC上动点,且BM=CN,连AM、CN,当AM +BN最小时,CMCN=( ).A.2B.32C.54D.1【答案】D 【分析】过B 点在BC 下方作BH ∥AC ,且BH =AC ,链接BH ,AH ,先证明△BCN ≌△HBM ,即有BN =HM ,则AM +BN =AM +MH ,当A 、M 、H 三点共线时,AM +MH 值最小,再证明△ACM ≌△HBM ,问题随之得解.【详解】如图,过B 点在BC 下方作BH ∥AC ,且BH =AC ,链接BH ,AH ,∵BH ∥AC ,∴∠C =∠CBH ,∵BH =AC ,BM =CN ,∴△BCN ≌△HBM ,∴BN =HM ,∴AM +BN =AM +MH ,当A 、M 、H 三点共线时,AM +MH 值最小,如图,此时∵BH ∥AC ,∴∠C =∠CBH ,∠CAM =∠BHM ,∵AC =BC ,∴△ACM ≌△HBM ,∴CM =BM ,∵BM =CN ,∴CM CN=CM BM =1,故选:D .【点睛】本题主要考查了全等三角形的判定与性质,作出辅助线,构造全等三角形是解答本题的关键.3如图,正五边形ABCDE 中,点F 是边CD 的中点,AF ,BC 的延长线交于点N ,点P 是AN 上一个动点,点M 是BN 上一个动点,当PB +PM 的值最小时,∠BPN =()A.72°B.90°C.108°D.120°【答案】C【分析】本题考查了正多边形的定义,全等三角形的判定与性质等知识.连接BF ,EF ,PE ,EM ,根据全等三角形的判定与性质可得EP =BP ,则当E 、P 、M 三点共线,且EM ⊥BC 时,PB +PM 的值最小,过点E 作EH ⊥BC 于H ,交AF 于P ,分别求出∠BAP 和∠ABP 的度数,然后利用三角形外角的性质求解即可.【详解】解:连接BF ,EF ,PE ,EM ,∵正五边形ABCDE ,∴AE =AB =BC =ED ,∠BAE =∠AED =∠BCD =∠EDC =5-2 ×180°5=108°,∵点F 是边CD 的中点,∴CF =DF ,∴△BCF ≌△EDF SAS ,∴BF =EF ,又AE =AB ,AF =AF ,∴△AEF ≌△ABF SSS ,∴∠EAF =∠BAF =12∠BAE =54°,∴△AEP ≌△ABP SAS∴EP =BP ,∴PB +PM =EP +PM ≥EM ,∴当E 、P 、M 三点共线,且EM ⊥BC 时,PB +PM 的值最小,过点E 作EH ⊥BC 于H ,交AF 于P ,同理可求∠ABP =∠AEP =12∠AED =54°,∴∠BP N =∠BAP +∠ABP =108°,即当PB +PM 的值最小时,∠BPN =108°.故选:C .4如图,在Rt △ABC 中,∠ACB =90°,以该三角形的三条边为边向外作正方形ABEF ,正方形BCGH 和正方形ACMN ,给出下列结论:①AB =MG ;②S △ABC =S △AFN ;③过点B 作BI ⊥EH 于点I ,延长B 交AC 于点J ,则AJ =CJ .④若AB =1,则EH 2+FN 2=5.其中正确的结论个数是()A.1个B.2个C.3个D.4个【答案】D 【分析】本题考查勾股定理,全等三角形的性质和判定,解题的关键是正确作出辅助线.首先根据题意证明出△ACB ≌△MCG SAS ,进而得到AB =MG ,即可判断①;过点F 作FO ⊥NA 交NA 延长线于点O ,证明出△AFO ≌△ABC AAS ,得到OF =BC ,然后利用三角形面积公式即可得到S △ABC =S △AFN ,即可判断②;过点A 作AP ⊥BJ 交BJ 的延长线于点P ,过点C 作CQ ⊥BJ ,证明出△ABP ≌△BEI AAS ,得到AP =BI ,同理得到CQ =BI ,得到CQ =AP ,然后证明出△AJP ≌△CJQ AAS ,得到AJ =CJ ,即可判断③;根据全等三角形的性质得到EH =2BJ ,然后利用勾股定理证明出EH 2=AC 2+4BC 2,同理得到NF 2=4AC 2+BC 2,然后得到EH 2+NF 2=5AB 2=5,即可判断④.【详解】∵在Rt △ABC 中,∠ACB =90°,以该三角形的三条边为边向外作正方形ABEF ,正方形BCGH 和正方形ACMN ,∴AC =MC ,BC =GC ,∠MCA =∠GCB =90°∵∠ACB =90°∴∠MCG =∠ACB =90°∴△ACB ≌△MCG SAS∴AB =MG ,故①正确;如图所示,过点F 作FO ⊥NA 交NA 延长线于点O ,∵∠FAO +∠BAO =∠CAB +∠BAO =90°∴∠FAO =∠CAB又∵∠O =∠ACB =90°,AF =AB∴△AFO ≌△ABC AAS∴OF =BC∵AN =AC∵S △ANB =12AN ⋅OF ,S △ACB =12AC ⋅BC ∴S △ABC =S △AFN ,故②正确;如图所示,过点A 作AP ⊥BJ 交BJ 的延长线于点P ,过点C 作CQ ⊥BJ∵∠ABP +∠BEI =90°,∠EBI +∠BEI =90°∴∠ABP =∠BEI又∵∠P =∠BIE =90°,AB =BE∴△ABP ≌△BEI AAS∴AP =BI同理可证,△BCQ ≌△HBI AAS ∴CQ =BI∴CQ =AP∵∠P=∠CQJ=90°,∠AJP=∠CJQ∴△AJP≌△CJQ AAS∴AJ=CJ,故③正确;∵△ABP≌△BEI AAS∴BP=EI∵△BCQ≌△HBI AAS∴BQ=HI∵△AJP≌△CJQ AAS∴PJ=QJ∵EH=EI+HI=PB+BQ=PJ+QJ+BQ+BQ=2BJ ∵AJ=CJ∴BJ2=CJ2+BC2=14AC2+BC2∴EH2=2BJ2=4BJ2=414AC2+BC2=AC2+4BC2同理可证,NF2=4AC2+BC2∴EH2+NF2=AC2+4BC2+4AC2+BC2=5AC2+BC2=5AB2=5×12=5,故④正确.综上所述,正确的结论个数是4.故选:D.5如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠E=∠F=90 °,∠EAC=∠FAB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE= CF;④△ACN≅△ABM.其中正确的结论是()A.①③④B.①②③④C.①②③D.①②④【答案】A【分析】本题考查了两个全等三角形的判定及性质,根据已知条件判定两个三角形全等,可得到对应边及对应角相等,据此可判断①③,再结合条件证明两个三角形全等,可得到④,即可求得结果,灵活运用两个全等三角形的条件及性质是解题的关键.【详解】解:∵∠EAC=∠FAB,∴∠EAB=∠FAC,在△EAB 和△FAC 中,∠E =∠F =90 °AE =AF ∠EAB =∠FAC,∴△EAB ≌△FAC ASA ,∴∠B =∠C ,BE =CF ,AB =AC ,∴①③都正确,在△ACN 和△ABM 中,∠B =∠CAB =AC ∠CAN =∠BAM,∴△ACN ≌△ABM ASA ,故④正确,根据已知条件无法证明②是否正确,故①③④正确,故选:A .二、填空题6如图,在△ABC 中,AH 是高,AE ⎳BC ,AB =AE ,在AB 边上取点D ,连接DE ,DE =AC ,若S △ABC =5S △ADE ,BH =1,则BC =.【答案】2.5【分析】过点E 作EF ⊥AB ,交BA 的延长线于点F ,先分别证明△ABH ≌△EAF ,Rt △ACH ≌Rt △EDF ,由此可得S △ABH =S △EAF ,S △ACH =S △EDF =S △EAF +S △ADE ,再结合S △ABC =S △ABH +S △ACH =5S △ADE 可得S △ACH S △ABH =32,由此可得CH BH=32,进而即可求得答案.【详解】解:如图,过点E 作EF ⊥AB ,交BA 的延长线于点F ,∵EF ⊥AB ,AH ⊥BC ,∴∠EFA =∠AHB =∠AHC =90°,∵AE⎳BC ,∴∠EAF =∠B ,在△ABH 与△EAF 中,∠AHB =∠EFA∠B =∠EAFAB =EA∴△ABH ≌△EAF (AAS ),∴AH =EF ,S △ABH =S △EAF ,在Rt△ACH与Rt△EDF中,AH=EF AC=DE∴Rt△ACH≌Rt△EDF(HL),∴S△ACH=S△EDF=S△EAF+S△ADE,∵S△ABC=S△ABH+S△ACH=5S△ADE,∴S△ABH+S△EAF+S△ADE=5S△ADE,∴2S△ABH+S△ADE=5S△ADE,解得:S△ABH=2S△ADE,∴S△ACH=5S△ADE-S△ABH=3S△ADE,∴S△ACHS△ABH=3S△ADE2S△ADE=32,∴12CH⋅AH12BH⋅AH=32,即CHBH=32,又∵BH=1,∴CH=1.5,∴BC=BH+CH=2.5,故答案为:2.5.【点睛】本题考查了全等三角形的判定与性质以及三角形的面积公式,作出正确的辅助线并能灵活运用全等三角形的判定与性质是解决本题的关键.7如图,在△ADE和△ABC中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE,垂足为F,DE交CB的延长线于点G,连接AG.四边形DGBA的面积为12,AF=4,则FG的长是.【答案】3【分析】过点A作AH⊥BC于H,证△ABC≌△AED,得AF=AH,再证Rt△AFG≌Rt△AHG,同理Rt△ADF≌Rt△ABH,得S四边形DGBA=6,进而得到FG的长.【详解】解:过点A作AH⊥BC于H,如图所示:在△ABC 和△ADE 中,BC =DE∠C =∠E CA =EA,∴△ABC ≌△AED SAS∴AD =AB ,S △ABC =S △AED ,又∵AF ⊥DE ,∴12×DE ×AF =12×BC ×AH ,∴AF =AH ,∵AF ⊥DE ,AH ⊥BC ,∴∠AFG =∠AHG =90°,在Rt △AFG 和Rt △AHG 中,AG =AG AF =AH ,∴Rt △AFG ≌Rt △AHG HL ,同理:Rt △ADF ≌Rt △ABH HL ,∴S 四边形DGBA =S 四边形AFGH =12,∵Rt △AFG ≌Rt △AHG ,∴S Rt △AFG =6,∵AF =4,∴12×FG ×4=6,解得:FG =3;故答案为:3.【点睛】本题考查了全等三角形的判定与性质以及三角形面积等知识,解决问题的关键是作辅助线构造全等三角形,解题时注意:全等三角形的面积相等.8如图,动点C 与线段AB 构成△ABC ,其边长满足AB =9,CA=2a +2,CB =2a -3.点D 在∠ACB 的平分线上,且∠ADC =90°,则a 的取值范围是,△ABD 的面积的最大值为.【答案】a >52454【分析】在△ABC 中,由三角形三边关系“在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边”可知AC +BC >AB ,代入数值即可确定a 的取值范围;延长AD 、CB交于点E ,首先利用“ASA ”证明△ACD ≌△ECD ,由全等三角形的性质可得AC =EC =2a +2,AD =ED ,进而可求得BE =5,结合三角形中线的性质易知S △ABD :S △ABE =1:2,确定△ABE 面积的最大值,即可获得答案.【详解】解:∵在△ABC 中,AC +BC >AB ,∴2a +2+2a -3>9,解得a >52;如下图,延长AD 、CB 交于点E ,∵CD 为∠ACB 的平分线,∴∠ACD =∠ECD ,在△ACD 和△ECD 中,∠ACD =∠ECDCD =CD ∠ADC =∠EDC =90°,∴△ACD ≌△ECD (ASA ),∴AC =EC =2a +2,AD =ED ,∵CB =2a -3,∴BE =2a +2-(2a -3)=5,∵AD =ED ,∴S △ABD :S △ABE =1:2,当BE ⊥AB 时,△ABE 的面积取最大值,即S △ABE max =12×9×5=452,∴S △ABD max =454.故答案为:a >52,454.【点睛】本题主要考查了三角形三边关系、解一元一次不等式、角平分线、全等三角形的判定与性质、三角形中线的性质等知识,熟练掌握相关知识,正确作出辅助线是解题关键.9如图,AB =AC ,AD=AE ,∠BAC =∠DAE =40°,BD 与CE 交于点F ,连接AF ,则∠AFB 的度数为.【答案】70°/70度【分析】本题考查了全等三角形的判定与性质,三角形内角和定理,构造全等三角形是解答本题的关键.过点A作AM⊥BD于点M,AN⊥CE于点N,根据手拉手模型证明△BAD≌△CAE,得到∠ADM=∠AEN,然后证明△AMD≌△ANE,得到∠DAM=∠EAN,AM=AN,进一步推得∠MAN=∠DAE= 40°,再证明△AMF≌△ANF,可得∠FAM=20°,最后根据三角形内角和定理即得答案.【详解】过点A作AM⊥BD于点M,AN⊥CE于点N,∵∠BAC=∠DAE=40°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE SAS,∴∠ADM=∠AEN,∵∠AMD=∠ANE=90°,AD=AE,∴△AMD≌△ANE AAS,∴∠DAM=∠EAN,AM=AN,∴∠DAM+∠DAN=∠EAN+∠DAN,即∠MAN=∠DAE=40°,∵∠AMF=∠ANF=90°,AM=AN,AF=AF,∴△AMF≌△ANF HL,∴∠FAM=∠FAN=1∠MAN=20°,2∴∠AFB=180°-90°-∠FAM=70°.故答案为:70°.10如图所示,已知△ABC,∠BAC=90°,AB=AC,点D和点E分别是AB和AC边上的动点,满足AD=CE,连接DE,点F是DE的中点,则CDAF的最大值为.【答案】5+1/1+5【分析】作EM⊥ED,且EM=ED,连DM,MC,取ME中点N,连ND、NC、NF,可根据“SAS”证明△ADE≌△CEM,可得∠ECM=90°,再设AF=1,并表示DE,EM,及CN,然后根据勾股定理求出DN,最后根据三角形的三边关系ND+NC≥DC,求出CD最大值,可得答案.【详解】解:过E作EM⊥ED,且EM=ED,连DM,MC.取ME中点N,连ND、NC、NF.∵∠ADE+∠AED=90°,∠AED+∠MEC=90°,∴∠ADE=∠MEC.∵AD=CE,DE=EM,∴△ADE≌△CEM,∴∠ECM=∠DAE=90°.设AF=1,∵F为DE中点,∴DE=2AF=2,∴EM=2.∵N为EM中点,∴CN=EN=1.∴DN=DE2+EN2= 5.∵ND+NC≥DC,∴CD最大值5+1,=5+1.∴CDAF故答案为:5+1.【点睛】本题主要考查了全等三角形的性质和判定,勾股定理,根据三角形的三边关系求最大值,作出辅助线是解题的关键.三、解答题11数学兴趣小组在活动时,老师提出了这样,一个问题:如图1:在△ABC中,AB=3,AC=5,D是BC的中点,求BC边上的中线AD的取值范围.【问题初探】:第一小组经过合作交流,得到如下解决方法:如图2延长AD至E.使得DE=AD,连接BE.利用三角形全等将线段AC转移到线段BE,这样就把线段AB,AC,2AD集中到△ABE中.利用三角形三边的关系即可得到中线AD的取值范围,第二小组经过合作交流,得到另一种解决方法:如图3过点B作AC的平行线交AD的延长线于点F,利用三角形全等将线段AC转移到BF,同样就把线段AB,AC,2AD集中到△ABF中,利用三角形三边的关系即可得到中线AD的取值范围.(1)请你选择一个小组的解题思路.写出证明过程【方法感悟】当条件中出现“中点”“中线”等条件时,可考虑将中线延长一倍或者作一条边的平行线.构造出“平行八字型”全等三角形;这样就把分散的已知条件和所证的结论集中到一个三角形中,顺利解决问题【类比分析】(2)如图4:在△ABC中,∠B=90°,AB=6,AD是△ABC的中线,CE⊥BC,CE=10且∠ADE=90°.求AE的长度.【思维拓展】(3)如图5:在△ABC中,AF⊥BC于点F在AB右侧作AD⊥AB,且AD=AB,在AC的左侧作AE⊥AC,且AE=AC,连接DE,延长AF交DE于点O,证明O为DE中点.【答案】(1)见解析(2)16(3)见解析【分析】(1)选择第一个小组的解题思路:延长AD到点E,使DE=AD,证明△ADC≌△EDB(SAS),得到BE=AC=10,再根据在△ABE中,5-3<AE<5+3,即2<2AD<8,求解即可;选择第二个小组的解题思路:过点B作AC的平行线交AD的延长线于点F,先证明△BDF≌△CDA (AAS),得到DF=AD,BF=AC=5,则2AD=AF,再根据在△ABF中,5-3<AF<5+3,即2<2AD<8,求解即可;(2)延长AD到点F,使DF=AD,连接CF,先证明△ABD≌△FCD SAS,得到∠FCD=∠ABD=90°,CF=AB=6,再证明E、C、F三点共线,得到EF=EC+CF=10+6=16,然后证明△ADE≌△FDE SAS,得到AE=EF=16解决问题;(3)过点E作EM∥AD交AD延长线于M,先证明△AEM≌△CAB AAS,得到EM=AB,再证明△AOD≌△MOE AAS,得到OD=OE,即可得出结论.【详解】解:(1)选择第一个小组的解题思路:如图2,延长AD到点E,使DE=AD,∵D是BC的中点,∴BD=CD,∵∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=10,△ABE中,5-3<AE<5+3,∴2<2AD<8,∴1<AD<4;选择第二个小组的解题思路:如图3,过点B作AC的平行线交AD的延长线于点F,∵D是BC的中点,∴BD=CD,∵BF∥AC,∴∠FBD=∠C,∠F=∠CAD,∴△BDF≌△CDA(AAS),∴DF=AD,BF=AC=5,∴2AD=AF,在△ABF中,5-3<AF<5+3,∴2<2AD<8,(2)延长AD到点F,使DF=AD,连接CF,如图4,∵D是BC的中点,∴BD=CD,∵∠ADB=∠FDC,DF=AD,∴△ABD≌△FCD SAS,∴∠FCD=∠ABD=90°,CF=AB=6,∵CE⊥BC,∴∠BCD=90°,∴∠FCD+∠ECD=180°,∴E、C、F三点共线,∴EF=EC+CF=10+6=16,∵∠ADE=90°,∴∠FDE=∠ADE=90°,∵DE=DE,AD=DF,∴△ADE≌△FDE SAS,∴AE=EF=16;(3)证明:过点E作EM∥AD交AD延长线于M,如图4,∵AD⊥AB,AE⊥AC,∴∠3+∠2+∠CAD=∠3+∠2+∠BAE=90°,∴∠CAD=∠BAE,又∵AF⊥BC,∴∠3+∠2+∠CAD=∠3+∠BAE+∠B=90°,∴∠2=∠B,∵EM∥AD,∴∠2=∠M,∴∠B=∠M,∵AE⊥AC,AF⊥BC,∴∠3+∠CAM=∠C+∠CAM=90°,∴∠3=∠C,∵AE=AC,∴△AEM≌△CAB AAS,∵AB =AD ,∴EM =AD ,∵∠2=∠M ,∠AOD =∠EOM ,∴△AOD ≌△MOE AAS ,∴OD =OE ,∴O 为DE 中点.【点睛】本题考查三角形三边的关系,全等三角形的判定与性质,余角的性质,平行线的性质,熟练掌握倍长中线,构造出“平行八字型”全等三角形是解题的关键.12已知,在等腰直角三角形ABC 中,AB =AC ,∠BAC =90°,∠ABC =∠ACB =45°,点D 是线段BC 上一点,点D 不与点B ,点C 重合,连接AD ,以AD 为一边作△ADE ,AD =AE ,∠DAE =90°,且点E 与点D 在直线AC 两侧,DE 与AC 交于点H ,连接CE .(1)如图1,求证:△ABD ≌△ACE .(2)如图2,在CE 的延长线上取一点F ,当∠AEF =∠AFE 时,求证:CD =CF .(3)过点A 作直线CE 的垂线,垂足为G ,当CD =6EG 时,直接写出△CDH 与△CEH 的面积比.【答案】(1)见详解(2)见详解(3)32或34【分析】本题主要考查了全等三角形的判定与性质,涉及SAS 、AAS 以及HL 等判定方法,(1)利用“SAS ”证明△ABD ≌△ACE 即可作答;(2)结合(1)的结论,再利用“AAS ”证明△ACD ≌△ACF 即可作答;(3)分类讨论,第一种情况:点G 在点E 的下方,过点A 作AO ⊥BC 于点O ,点H 作HM ⊥BC 于点M ,点H 作HN ⊥CG 于点N ,先证明△AOC ≌△AGC ,即有AO =AG ,CO =CG ,同理可证明:MH =NH ,再证明Rt △AOD ≌Rt △AGE HL ,可得OD =GE ,问题即可作答;第二种情况:点G 在点E 的上方,过点A 作AO ⊥BC 于点O ,点H 作HM ⊥BC 于点M ,点H 作HN ⊥CG 于点N ,按照第一种情况作答即可.【详解】(1)∵∠DAE =90°,∠BAC =90°,∴∠DAE -∠DAH =∠BAC -∠DAH ,∴∠CAE =∠BAD ,又∵AB =AC ,AD =AE ,∴△ABD ≌△ACE SAS ;(2)∵△ABD ≌△ACE SAS ,∴∠ADB =∠AEC ,∠ABD =∠ACE =45°,∴180°-∠ADB =180°-∠AEC ,∠ACB =∠ACE =45°,∴∠ADC =∠AEF ,∵∠AEF =∠AFE ,∴∠ADC =∠AFE ,在△ACD 和△ACF 中,∴∠ACD =∠ACF∠ADC =∠AFC AC =AC,∴△ACD ≌△ACF AAS ,∴CD =CF ;(3)分类讨论:第一种情况:点G 在点E 的下方,过点A 作AO ⊥BC 于点O ,点H 作HM ⊥BC 于点M ,点H 作HN ⊥CG 于点N ,如图,∵AO ⊥BC ,AG ⊥CE∴∠AOC =∠AGC =90°,又∵∠ACB =∠ACE =45°,AC =AC ,∴△AOC ≌△AGC ,∴AO =AG ,CO =CG ,同理可证明:MH =NH ,又∵AD =AE ,∴Rt △AOD ≌Rt △AGE HL ,∴OD =GE ,∵CD =6EG ,∴CO =CD -OD =5EG ,∴CG =CO =5EG ,∴CE =CG -EG =4EG ,∵S △CHD =12×CD ×MH ,S△CHE =12×CE ×NH ,MH =NH ,∴S △CHD S △CHE =12×CD ×MH 12×CE ×NH =CD ×MH CE ×NH ,∵CD =6EG ,CE =4EG ,MH =NH ,∴S △CHD S △CHE =CD ×MH CE ×NH=32;第二种情况:点G 在点E 的上方,过点A 作AO ⊥BC 于点O ,点H 作HM ⊥BC 于点M ,点H 作HN ⊥CG 于点N ,如图,同理可得:OD =GE ,OC =CG ,MH =NH ,∵CD =6EG ,∴CO =CD +OD =7EG ,∴CG =CO =7EG ,∴CE =CG +EG =8EG ,∴S △CHD S △CHE =CD ×MH CE ×NH=34;综上:△CDH 与△CEH 的面积比为32或者34.13如图,在平面直角坐标系中,O 为坐标原点,△ABC 的边BC 在x 轴上,A 、C 两点的坐标分别为A (0,m ),C (n ,0),B (-5,0),且m ,n 满足方程组m +2n =103m -n =9 ,点P 从点B 出发,以每秒2个单位长度的速度沿射线BO 匀速运动,设点P 运动时间为t 秒.(1)求A 、C 两点的坐标;(2)连接P A ,用含t 的代数式表示△AOP 的面积,并直接写出t 的取值范围;(3)当点P 在线段BO 上运动时,在y 轴上是否存在点Q ,使△POQ 与△AOC 全等?若存在,请求出t 的值并直接写出Q 点标;若不存在,请说明理由.【答案】(1)A (0,4),C (3,0);(2)0≤t <52,S △AOP =10-4t ;t >52,S △AOP =4t -10.(3)存在,Q (0,3)或(0,-3)或Q (0,4)或(0,-4).【分析】本题考查了全等三角形的性质和判定,二元一次方程组的解法,坐标与图形性质等知识点的综合运用,关键是利用分类讨论求出符合条件的所有情况.(1)解二元一次方程组求出m ,n 的值即可;(2)分为两种情况:当0≤t <52时,P 在线段OB 上,②当t >52时,P 在射线OC 上,求出OP 和OA ,根据三角形的面积公式求出即可;(3)分为四种情况:①当BP =1,OQ =3时,②当BP =2,OQ =4时,③④利用图形的对称性直接写出其余的点的坐标即可.【详解】(1)解方程组m +2n =103m -n =9 得m =4n =3 ,∴ A 的坐标是0,4 ,C 的坐标是3,0 ;(2)由已知,BP =2t ,OB =5.①0≤t <52,P 在线段OB 上.OP =OB -BP =5-2tS △AOP =12×OP ×OA 2=12×(5-2t )×4=10-4t .②t >52,P 在射线OC 上,OP =BP -OP =2t -5S △AOP =12×OA ×OP =12×4×(2t -5)=4t -10(3)在y 轴上存在点Q ,使△AOC 与△POQ 全等.①△POQ ≌△AOC 时,OQ =OC =3.OP =OA =4.t =5-42=12,Q (0,3)或Q (0,-3)②△POQ ≌△COA 时,OQ =OA =4,OP =OC =3.t =5-32=1 Q (0,4)或(0,-4)t =12,Q (0,3)或(0,-3);t =1,Q (0,4)或(0,-4);综上所述,t =12,Q (0,3)或(0,-3);t =1,Q (0,4)或(0,-4).14某校课后延时兴趣小组尝试用尺规来“作一条线段的三等分点”,请认真阅读下面的操作过程并完成相应的学习任务.如图1,①分别以点A ,B 为圆心,大于12AB 的长为半径在AB 两侧画弧,四段弧分别交于点C ,点D ;②连接AC ,BC ,AD ,作射线BD ;③以D 为圆心,BD 的长为半径画弧,交射线BD 于点E ;④连接CE ,交于AB 点F .点F 即为AB 的一个三等分点(即AF =13AB ).学习任务:(1)填空:四边形ADBC的形状是,你的依据是;(2)证明:AF=13AB;(3)如图2,若CE交AD于点H,∠CAD=60°,AC=6,将CH绕着点C旋转,当点H的对应点H 落在直线FD上时,求DH 的长.【答案】(1)菱形;四条边相等的四边形为菱形(2)见解析(3)DH′的长为33+32或33-32【分析】本题考查了菱形的判定与性质、相似三角形的判定与性质、等边三角形的判定与性质、全等三角形的判定与性质、勾股定理,善于利用特殊叫以及直角三角形中的关系是解题的关键.(1)根据菱形的性质判定即可.(2)证明△AFC∽△BFE,得出AFFB =ACBE,再根据线段关系即可求出.(3)利用菱形及已知条件推出相关信息,证明△ACD为等边三角形,再根据AAS证明△AHC≌△DHE,求得CH ;然后证明△AKF∽△BDF,根据相似三角形的性质得出AK、CK;最后用勾股定理解三角形即可.CH绕着点C旋转,点H的对应点H 需要分情况讨论.【详解】(1)解:由图的作法可知:AC=AD=BC=BD,∴四边形ADBC的形状是菱形,依据是:四条边相等的四边形为菱形.故答案为:菱形;四条边相等的四边形为菱形;(2)证明:∵四边形ADBC的形状是菱形,∴AC∥BE,∴△AFC∽△BFE,∴AF FB =ACBE.∵AC=BD,BD=DE,∴BE=2AC,∴AF FB =12,∴FB=2AF,∴AB=3AF.∴AF=13AB.(3)解:①当点H 在线段FD上时,连接CD,如图,∵AC=AD,∠CAD=60°,∴△ACD为等边三角形,∴CD=AD=6,∠ADC=60°.∵AC∥BE∴∠ACF =∠DEC .在△AHC 和△DHE 中,∠AHC =∠DHE∠ACE =∠DEC AC =DE,∴△AHC ≌△DHE AAS ,∴AH =HD =3,∵△ACD 为等边三角形,∴CH ⊥AD ,∠ACH =∠DCH =30°,∴CH =33.∴CH =CH =33.设FD 与AC 交于点K ,∵AC ∥BE ,∴△AKF ∽△BDF ,∴AK BD =AF FB=12.同理:CK ED =AF FB=12,∴AK BD =CK ED.∵BD =ED ,∴AK =CK =3,∴HK ⊥AC ,∠CDK =12∠ADC =30°.∴H K =CH 2-CK 2=32,DK =33.∴DH =DK -H K =33-32.②当点H 在射线FD 上时,连接CD ,如图,由①知CH =CH =33,HK ⊥AC ,AK =KC =3,∴DK =AD 2-AK 2=33,∴H K =CH 2-CK 2=32.∴DH =H K +DK =33+32.综上,DH 的长为33+32或33-32.15(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D 、E .证明:DE =BD +CE .(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线l 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC 的边AB 、AC 向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高,延长HA 交EG 于点I ,求证:I 是EG 的中点.【答案】(1)见解析;(2)DE =BD +CE ,见解析;(3)见解析【分析】本题主要考查全等三角形的判定和性质,由条件证明三角形全等得到BD =AE 、CE =AD 是解题的关键.(1)由条件可证明△ABD ≌△CAE ,可得DA =CE ,AE =BD ,可得DE =BD +CE ;(2)由条件可知∠BAD +∠CAE =180°-α,且∠DBA +∠BAD =180°-α,可得∠DBA =∠CAE ,结合条件可证明△ABD ≌△CAE ,可得出结论;(3)由条件可知EM =AH =GN ,可得EM =GN ,结合条件可证明△EMI ≌△GNI ,可得出结论I 是EG 的中点.【详解】解:(1)如图1,∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,∠ABD =∠CAE∠BDA =∠CEA AB =AC,∴△ABD ≌△CAE AAS ,∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE ;(2)成立,理由如下:如图,证明如下:∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠CAE =180°-α,∴∠DBA =∠CAE ,在△ABD 和△CAE 中.∠BDA =∠AEC∠DBA =∠CAE AB =AC.∴△ABD ≌△CAE AAS∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE ;(3)如图3,过E 作EM ⊥HI 于M ,GN ⊥HI 的延长线于N .∴∠EMI =∠EMA =∠GNA =90°,∠BAE =90°,∴∠EAM +BAH =90°,∵AH 是BC 边上的高,∴∠AHB =90°,∴∠BAH +∠ABH =90°,∴∠ABH =EAM ,∵AE =AB ,∴△ABH ≌△EAM ,∴EM =AH ,同理△ACH ≌△GAN ,∴AH =GN ,∴EM =GN ,在△EMI 和△GNI 中,∠EIM =∠GIN∠EMI =∠GNI EM =GN,∴△EMI ≌△GNI AAS ,∴EI =GI ,∴I 是EG 的中点.16如图,在△ABC 中,BC =5,高AD 、BE 相交于点O ,BD =2,且AE =BE.(1)请说明△AOE ≌△BCE 的理由;(2)动点P 从点O 出发,沿线段OA 以每秒1个单位长度的速度向终点A 运动,动点Q 从点B 出发沿射线BC 以每秒4个单位长度的速度运动,P 、Q 两点同时出发,当点P 到达A 点时,P 、Q 两点同时停止运动.设点P 的运动时间为t 秒,求当t 为何值时,△AOQ 的面积为3.(3)在(2)的条件下,点F 是直线AC 上的一点且CF =BO .当t 为何值时,以点B 、O 、P 为顶点的三角形与以点F 、C 、Q 为顶点的三角形全等?(请直接写出符合条件的t 值).【答案】(1)见解析(2)当t 为15或45时,△AOQ 的面积为3(3)t =1或53s 时,△BOP 与△FCQ 全等【分析】本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,(1)首先推导出∠EAO =∠EBC ,通过ASA 即可证明△AOE ≌△BCE ;(2)分两种情形讨论求解即可①当点Q 在线段BD 上时,QD =2-4t ,②当点Q 在射线DC 上时,DQ =4t -2时;依据三角形面积计算公式解答即可;(3)分两种情形求解即可①如图2中,当OP =CQ 时,BOP ≌△FCQ .②如图3中,当OP =CQ 时,△BOP ≌△FCQ .【详解】(1)如图1中,∵AD 是高,∴∠ADC =90°,∵BE 是高,∴∠AEB =∠BEC =90°,∴∠EAO +∠ACD =90°,∠EBC +∠ECB =90°,∴∠EAO =∠EBC ,在△AOE 和△BCE 中,∠EAO =∠EBCAE =BE ∠AEO=∠BEC,∴△AOE ≌△BCE ASA ,(2)解:由(1)知△AOE ≌△BCE ,∴OA =BC =5,∵BD =2,∴CD =3,由题意OP =t ,BQ =4t ,①当点Q 在线段BD 上时,QD =2-4t ,∴S △AOQ =12OA ⋅QD =12×5×2-4t =3,解得:t =15;②当点Q 在BD 延长线上时,DQ =4t -2,∴S △AOQ =12OA ⋅DQ =12×5×4t -2 =3,解得:t =45,综上,当t 为15或45时,△AOQ 的面积为3;(3)存在.①如图2中,当OP =CQ 时,∵OB =CF ,∠POB =∠FCQ ,∴△BOP ≌△FCQ .∴CQ =OP ,∴5-4t =t ,解得t =1,②如图3中,当OP =CQ 时,∵OB =CF ,∠POB =∠FCQ ,∴△BOP ≌△FCQ .∴CQ =OP ,∴4t -5=t ,解得t =53.综上所述,t =1或53s 时,△BOP 与△FCQ 全等.17如图1,在△ABC 中,BD 为AC 边上的高,BF 是∠ABD 的角平分线,点E 为AF 上一点,连接AE ,∠AEF =45°.(1)求证:AE平分∠BAF(2)如图2,连接CE交BD于点G,若△BAE与△CAE的面积相等,求证:BG=CF【答案】(1)见解析;(2)见解析【分析】本题主要考查了全等三角形的证明以及性质运用,角平分线的判定以及基本性质,熟练掌握全等三角形的几种判定方法以及角平分线的判定是解答该题的关键.(1)根据BF是∠ABD的角平分线和,BD为AC边上的高,可得12∠BAD=45°-12∠ABD,由∠AEF=45°得∠BAE=45°-∠ABE=45°-12∠ABD,即可证明∠BAE=12∠BAD;(2)过点E作EM⊥AB于点M,EN⊥AC于点N,由角平分线性质可以得EM=EN,由△BAE与△CAE的面积相等可得AB=AC,证明△ABE≌△ACE(SAS),得出∠AEB=∠CEB=135°,BE=EC,即可得出∠BEG=∠CEF=360°-∠AEB-∠AEC=90°,再根据垂直模型证明△BEG≌△CEF(ASA),即可得出结论.【详解】(1)证明:∵BD为AC边上的高,即∠ADB=90°,∴∠ABD+∠BAD=90°,∴12(∠ABD+∠BAD)=45°,∴1 2∠BAD=45°-12∠ABD∵∠AEF=∠ABF+∠BAE=45°,∴∠BAE=45°-∠ABF,∵∠ABF=12∠ABD,∴∠BAE=45°-12∠ABD,∴∠BAE=12∠BAF,即:AE平分∠BAF.(2)过点E作EM⊥AB于点M,EN⊥AC于点N,∵AE平分∠BAC,且EM⊥AB,EN⊥AC,∴EM=EN.∵S△ABE=S△ACE,∴AB=AC,∵AE平分∠BAC,∴∠BAE=∠CAE,在△ABE和△ACE中,AB=BC∠BAE=∠CAE AE=AE∴△ABE≌△ACE(SAS),∴∠AEB=∠CEB,BE=EC,∵∠AEF=45°,∴∠AEB=∠AEC=135°,∴∠BEG=∠CEF=360°-∠AEB-∠AEC=90°,∵BD为AC边上的高,∴∠ADB=90°,∴∠FBD+∠BFC=∠BFC+∠FCE,∴∠EBG=∠ECF.在△BEG和△CEF中,∠BEG=∠CEF BE=CE∠EBG=∠ECF∴△BEG≌△CEF(ASA).∴BG=CF .18如图,已知A a,0,B0,b,AB=AC且AB⊥AC,AC交y轴于E点.(1)如图1,若a2+b2-4a-8b+20=0,求C点坐标;(2)如图2,A,B两点分别在x轴,y轴正半轴上,E为AC的中点,BC交x轴于G点,连EG,若a=3,求G点的坐标;(3)如图3,A在x轴的负半轴上,以BC为边在BC的右侧作等边△BCD,连OD,当∠BOD=60°时,请探究线段OA、OB、OD之间的数量关系,并证明.【答案】(1)(-2,-2)(2)(-2,0)(3)OD=OB+2OA【分析】(1)利用完全平方公式将等式变形为两个数平方和的形式,即可求出a=2,b=4,如图1中,过点C作CH ⊥x轴于点H,证明△AHC≌△BOA,可得CH=OA=2,AH=OB=4,即可得到点C坐标.(2)根据(1)可得CH=OA=a,AH=OB=b,再由a=3,E为AC的中点,可得点C(-3,-3),AH=OB=6,再利用面积法求出AG =5,即可解题;(3)过点C 作CH ⊥x 轴于点H ,在OD 上取一点M ,使得OM =OB ,证明△OBM 是等边三角形,进而证明△MBD ≌△OBC ,得∠BMD =∠BOC =120°,MD =OC ,再证明∠COH =30°,得OC =2CH =2OA ,即可得出OD =OB +2OA .【详解】(1)解:∵a 2+b 2-4a -8b +20=0,∴(a 2-4a +4)+(b 2-8b +16)=0,即(a -2)2+(b -4)2=0,∴a =2,b =4,∴A 2,0 ,B 0,4如图1中,过点C 作CH ⊥x 轴于点H ,∵∠AHC =∠BOA =∠BAC =90°,∴∠CAH +∠BAO =90°,∠BAO +∠ABO =90°,∴∠CAH =∠ABO ,在△AHC 和△BOA 中,∠AHC =∠BOA∠CAH =∠ABO AC =BA,∴△AHC ≌△BOA (AAS ),∴CH =OA =2,AH =OB =4,∴OH =AH -OA =4-2=2∴点C 坐标为(-2,-2);(2)如图2,同理(1)可证明:CH =OA =a ,AH =OB =b ,∵a =3,E 为AC 的中点,OE 平行于CH ,∴OA =OH =3,CH =3,∴点C (-3,-3),AH =OB =6,AB =AC =OA 2+OB 2=62+32=35,∵S △ABC =S △AGC +S △AGB ,即12×35×35=12×3⋅AG +12×6⋅AG ,∴AG =5,∴GO =AG -OA =5-3=2,∴点G 坐标为(-2,0);(3)结论:OD =OB +2OA ,如图3,过点C 作CH⊥x轴于点H ,同理可得:CH =OA ,AH =OB ,在OD 上取一点M ,使得OM =OB ,∵OM =OB ,∠BOD =60°,∴△OBM 是等边三角形,∴BO =BM ,∠OMB =60°,∴∠BMD =120°,∵△BCD 是等边三角形,∴BC =BD ,∠CBD =∠OBM =60°,∴∠DBM =∠CBO ,在△MBD 和△OBC 中,BM =OB∠DBM =∠CBO BD =BC,∴△MBD ≌△OBC (SAS ),∴∠BMD =∠BOC =120°,MD =OC ,∴∠COH =120°-90°=30°,∵CH ⊥x 轴,∴OC =2CH =2OA ,∵OD =OM +MD ,∴OD =OB +OC =OB +2OA【点睛】本题考查了等腰直角三角形的性质,等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.19已知△ABC 为等边三角形,D 是边AC 上的一点,连接BD ,E 为BD 上的一点,连接CE.(1)如图1,延长CE 交AB 于点G .若∠DCG =15°,BG =2,求BC 的长;(2)如图2,将△BEC 绕点B 逆时针旋转60°至△BFA ,延长CB 至点M ,使得BM =DC ,连接AM 交BF 于点N ,探究线段FN ,DE ,BE 之间的数量关系,并说明理由;(3)如图3,在(2)问的条件下,过点A 作AH ⊥BC 于点H ,过点B 作BK ∥AH 且BK =AH ,连接HK ,NK ,NH ,NC .若BC =4,当12BD +NK 的值最小时,请直接写出CD NH的值.【答案】(1)1+3(2)2FN +DE =BE .理由见解析(3)277【分析】(1)作CF⊥BC,解直角三角形BFG求得BF和FG,进而解直角三角形CFG求得CF,从而得出结果;(2)延长BF至G,使FG=DE,连接AG,作BH∥AF,交BF于H,证明△ABG≌△CBD,进而证明△ANG≌ΔMNB,△AFN≌△MHN,△BMH≌△DCE,进一步得出结论;BD+NK最小,此时BG⊥AG,即BD⊥AC,进一步得出(3)可得出当K、N、G共线且与AG垂直时,12结果.【详解】(1)解:如图1,作CF⊥BC于F,∴∠CFG=∠BFG=90°,∵△ABC是等边三角形,∴∠ACB=∠ABC=60°,在Rt△BFG中,BG=2,∠ABC=60°,=1,∴BF=2cos60°=2×12=3,FG=2⋅sin60°=2×32在Rt△CFG中,FG=3,∠FCG=∠ACB-∠ACG=60°-15°=45°,∴CF=FG=3,tan∠FCG∴BC=BF+FC=1+3;(2)证明:如图2,延长BF至G,使FG=DE,连接AG,作BH∥AF,交BF于H,∴∠MHN=∠AFN,∠NMH=∠FAN,∴∠MHB=∠AFG∵△BEC绕点B逆时针旋转60°至△BFA,∴BF=BE,∠ABF=∠CBE,AB=BC,∴BG=BD,∴△ABG≌△CBD,∴AG=CD=BM,∠G=∠BDC=180°-∠CBE-∠ACB=120°-∠CBE,∵∠MBN=180°-∠ABC-∠ABF=120°-∠CBE,∴∠G=∠MBN,∴△ANG≌△MNB,∴AN=MN,∴△AFN≌△MHN,∴FN=NH,∵△ANG ≌△MNB ,∴NG =BN ,∵FN =NH ,∴BH =FG ,∵FG =DE∴BH =DE ,∵旋转,∴CE =AF ,∵△AFN ≌△MHN ,∴AF =MH ,∴MH =CE ,∵CD =BM ,∴△BMH ≌△DCE ,∴BH =DE ,∵FN +NH +BH =BF ,∴2FN +DE =BE ;(3)解:如图3,由(2)知:BD =BG =2BN ,∴12BD +NK =GN +NK ,∴当K 、N 、G 共线且与AG 垂直时,12BD +NK 最小,此时BG ⊥AG ,即BD ⊥AC ,如图4,连接NH ,∵AC =BC =4,∴CD =BH =2,BD =32BC =23,BN =GN =12BG =12BD =3,∵NH =BH 2+BN 2=2+(3)2=7,∴CD NH=277.【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,解直角三角形等知识,解决问题的关键是作辅助线,构造全等三角形.。
中考数学总复习《全等三角形》专项测试卷-附参考答案
中考数学总复习《全等三角形》专项测试卷-附参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.下列说法正确的是( )A.位置相同的两个三角形全等B.完全重合的两个三角形全等C.面积相等的两个三角形全等D.所有的等边三角形全等2.已知等腰△ABC的周长为18cm,BC=8cm若△ABC与△AʹBʹCʹ全等,则△AʹBʹCʹ的腰长等于( )A.8cm B.2cm或8cmC.5cm D.8cm或5cm3.如图∠BAD=∠BCD=90∘,AB=CB可以证明△BAD≌△BCD的理由是( )A.HL B.ASA C.SAS D.AAS4.如图,OP平分∠AOB,PD⊥OA,PE⊥OB垂足分别为D,E下列结论正确的是( )A.PD=PE B.PE=OEC.∠DPO=∠EOP D.PD=OD5.如图AB,BC,CD,DE是四根长度均为5cm的火柴棒,点A,C,E共线.若AC= 6cm,CD⊥BC则线段CE的长度是( )A.6cm B.7cm C.6√2cm D.8cm6.如图,在△ABC中∠C=90∘,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E若BC=4,DE=1.6则BD的长为( )A.1.6B.1.2C.2.4D.2.87.如图△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65∘,则∠CAF的度数为( )A.30∘B.25∘C.35∘D.65∘8.如图,已知反比例函数的图象过A,B两点,点A的坐标(2,3),直线AB经过原点,将线段AB绕点B顺时针旋转90∘得到线段BC,则C点坐标为( )A.(3,−6)B.(4,−7)C.(4,−6)D.(3,−7)二、填空题(共5题,共15分)9.如图,已知AB⊥BD,垂足为B,ED⊥BD垂足为D,AB=CD,BC=DE则∠ACE的度数为.10.如图AB=CD,AB∥CD则下列结论正确的是(填序号).① ∠A=∠C;② AD∥BC;③ AD=BC;④ BD平分∠ABC.11.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到点C的方向平移到△DEF的位置AB=10,DO=4平移距离BE为6,则图中阴影部分面积为.12.如图,在△ABC中∠ACB=90∘,AC=BC,BE⊥CE于点E,AD⊥CE于点D,DE=4cm,AD=6cm,则BE的长是.13.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M,N两点,则以下结论:① PM=PN恒成立;② OM+ON的值不变;③四边形PMON的面积不变;④ MN的长不变,其中正确的序号为.三、解答题(共3题,共45分)14.如图∠ACB=90∘,AC=BC,AD⊥CE,BE⊥CE垂足分别为D,E,AD=2.5,DE= 1.8求BE的长.15.已知:如图AB∥CD,AB=CD,BE∥CF,BE,CF分别交AD于点E,F,求证:AF= DE.16.如图,四边形ABCD的对角线AC,BD交于点O,已知O是AC的中点AE= CF DF∥BE.(1) 求证:△BOE≌△DOFAC,则四边形ABCD是什么特殊四边形?请证明你的结论.(2) 若OD=12参考答案1. 【答案】B2. 【答案】D3. 【答案】A4. 【答案】A5. 【答案】D6. 【答案】C7. 【答案】B8. 【答案】B9. 【答案】90∘10. 【答案】①②③11. 【答案】4812. 【答案】2cm13. 【答案】①②③14. 【答案】∵BE⊥CE,AD⊥CE∴∠E=∠ADC=90∘∴∠EBC+∠BCE=90∘∵∠BCE+∠ACD=90∘∴∠EBC=∠DCA.在△CEB和△ADC中{∠E=∠ADC,∠EBC=∠ACD, BC=AC.∴△CEB≌△ADC(AAS)∴BE=DC AD=CE=2.5∴BE=CD=CE−DE=2.5−1.8=0.7.15. 【答案】∵AB∥CD∴∠A=∠D∵BE∥CF∴∠BEF=∠CFD在△ABE和△DCF中∵{∠A=∠D,∠BEA=∠CFD, AB=DC,∴△ABE≌△DCF(AAS)∴AE=DF∴AF=DE.16. 【答案】(1) ∵DF∥BE∴∠FDO=∠EBO∠DFO=∠BEO∵O为AC的中点∴OA=OC∵AE=CF∴OA−AE=OC−CF,即OE=OF 在△BOE和△DOF中{∠FDO=∠EBO,∠DFO=∠BEO, OE=OF,∴△BOE≌△DOF(AAS).(2) ∵△BOE≌△DOF∴OB=OD∵OD=12AC∴OA=OB=OC=OD,且BD=AC ∴四边形ABCD为矩形.。
2024年中考数学《全等三角形》专题练习附带答案
2024年中考数学《全等三角形》专题练习附带答案学校:___________班级:___________姓名:___________考号:___________知识重点1、全等三角形的概念:(1)能够完全重合的两个三角形叫做全等三角形。
(2)把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
2、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。
3、三角形全等的判定:(1)边边边(SSS):三边分别相等的两个三角形全等。
(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。
(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。
(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。
(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。
一、选择题1.下列各选项中的两个图形属于全等形的是()A.B.C.D.2.如图,△ABC≌△EDC,AC=3cm,DC=5cm,则BE=()A.1cm B.2cm C.3cm D.4cm3.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.30°C.35°D.25°4.小亮设计了如下测量一池塘两端AB的距离的方案:先取一个可直接到达点A,B的点O,连接AO,BO,延长AO至点P,延长BO至点Q,使得OP=AO,OQ=BO再测出PQ的长度,即可知道A,B之间的距离.他设计方案的理由是()A.SAS B.AAS C.ASA D.SSS5.如图,点F,E在AC上AD=CB,∠D=∠B添加一个条件,不一定能证明△ADE≌△CBF的是()A.AD∥BC B.DE∥FB C.DE=BF D.AE=CF6.如图所示∠E=∠D,CD⊥AC于点C,BE⊥AB于点B,AE交BC于点F,且BE=CD,则下列结论不一定正确的是()A.AB=AC B.BF=EF C.AE=AD D.∠BAE=∠CAD 7.如图,OD平分∠AOB,DE⊥AO于点E,DE=5 F是射线OB上的任意一点,则DF的长度不可能是()A.4 B.5 C.5.5 D.68.如图,AD是△BAC的平分线,DE⊥AB于点E,S△ABC=32,DE=4,AB=9,则AC的长是()A.5 B.6 C.7 D.8二、填空题9.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯的水平长度DF 相等,那么判定△ABC与△DEF全等的依据是.10.若△ABC≌△DEF,A与D,B与E分别是对应顶点∠A=50°,∠B=60°则∠F=. 11.如图,△ABC的面积为25cm2,BP平分∠ABC,过点A作AP⊥BP于点P,则△PBC的面积为;12.如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,已知BC=8,DE=2则△BCE 的面积等于.13.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=7cm,CE=5cm,则DE= cm.三、解答题14.如图,点B,C,E,F在同一直线上,AB=DF,AC=DE,BE=CF.求证:AB∥DF.15.如图,在Rt△ABC中∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED≅△ABC.16.如图,在四边形ABCD中,∠B=∠C=90°,E是BC的中点,AE平分∠DAB.求证:CD+AB=AD.17.已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC,求证:(1)OD=OE;(2)OB=OC.18.如图,在△ABC中AC>AB,射线AD平分∠BAC,交BC于点E,点F在边AB的延长线上AF=AC,连接EF.(1)求证:△AEC≌△AEF.(2)若∠AEB=50°,求∠BEF的度数.19.如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AD,CE分别平分∠BAC,∠ACB.(1)求∠AOE得度数;(2)求证:AC=AE+CD.参考答案1.A2.B3.C4.A5.D6.B7.A8.C9.HL10.70°11.12.5cm212.813.1214.解:∵ BE=CF∴BE−CE=CF−CE∴BC=FE∵ AB=DF,AC=DE∴△ABC≌△DFE(SSS)∴∠B=∠F∴AB∥DF.15.证明:∵DE⊥AC,∠DEC=90°又∵∠B=90°∴∠DEC=∠B=90°∵CD∥AB,∴∠A=∠DCE在△CED和△ABC中{∠DCE=∠A CE=AB∠DEC=∠B∴△CED≅△ABC(ASA).16.证明:如图,过点E作EF⊥AD于F∵∠B=90°,AE平分∠DAB∴BE=EF在Rt△EFA和Rt△EBA中{EF=EBAE=AE∴Rt△EFA和≌Rt△EBA(HL).∴AF=AB∵E是BC的中点∴BE=CE=EF在Rt△EFD和Rt△ECD中{EF=ECDE=DE∴Rt△EFD和≌Rt△ECD(HL).∴DF=CD∴CD+AB=DF+AF=AD∴CD+AB=AD.17.(1)证明:∵AO平分∠BAC,CD⊥AB,BE⊥AC ∴OD=OE(2)证明:∵CD⊥AB,BE⊥AC∴∠BDO=∠CEO=90°在△BDO和△CEO中{∠BDO=∠CEO DO=CO∠BOD=∠COE∴△BDO≌△CEO(ASA)∴OB=OC18.(1)证明:射线AD平分∠BAC∴∠CAE=∠FAE 在△AEC和△AEF中{AC=AF∠CAE=∠FAE AE=AE∴△AEC≌△AEF(SAS);(2)解:∵△AEC≌△AEF(SAS)∴∠AEC=∠AEF∵∠AEB=50°∴∠AEC=180°−∠AEB=180°−50°=130°∴∠AEF=∠AEC=130°∴∠BEF=∠AEF−∠AEB=80°∴∠BEF为80°.19.18.(1)解:∵∠BAC=90°,∠ABC=60°∴∠ACB=30°∵AD平分∠BAC,CE平分∠BAC∴∠CAD=12∠BAC=45°,∠ACE=12∠ACB=15°∵∠AOE是△AOC的外角∴∠AOE=∠CAD+∠ACE=60°;(2)证明:在AC上截取CF=CD,连接OF∵CE平分∠ACB∴∠DCO=∠FCO在△DCO和△FCO中{CD=CF∠DCO=∠FCOOC=OC∴△DCO≌△FCO(SAS)∴∠COD=∠COF∵∠AOE=60°∴∠COD=∠COF=60°∴∠AOF=180°−∠AOE−∠COF==60°∴∠AOE=∠AOF∵AD平分∠BAC∴∠EAO=∠FAO在△EAO和△FAO中{∠EAO=∠FAO AO=AO∠AOE=∠AOF∴△EAO≌△FAO(ASA)∴AE=AF∵AC=AF+CF∴AC=AE+CD.。
人教版九年级数学中考全等三角形专项练习及参考答案
基础达标
一、选择题
1.下列各图中 a,b,c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是(
A.甲和乙
B.乙和丙
C.甲和丙
D.只有丙
)
答案 B
解析在△ABC 和图乙的三角形中,满足三角形全等的判定方法:SAS,
所以乙和△ABC 全等;
在△ABC 和图丙的三角形中,满足三角形全等的判定方法:AAS,
上,C 符合题意;
利用 HL 判断出△PCA≌△PCB,∴CA=CB,∴点 P 在线段 AB 的垂直平分线上,D 符合题意;
过线段外一点作已知线段的垂线,不能保证也平分此条线段,B 不符合题意.
故选 B.
2.
(2018 贵州安顺)如图,点 D,E 分别在线段 AB,AC 上,CD 与 BE 相交于 O 点,已知 AB=AC,现添加以下的
∴AE+EF=CF+FE,即 AF=CE.
又四边形 ABCD 是平行四边形,
∴AD=CB,AD∥BC.
∴∠DAF=∠BCE,
在△ADF 与△CBE 中
= ,
{∠ = ∠,
= .
∴△ADF≌△CBE(SAS).
(2)∵△ADF≌△CBE,
∴∠DFA=∠BEC,
∴DF∥EB.
3
C.取 AB 中点 C,连接 PC
D.过点 P 作 PC⊥AB,垂足为 C
答案 B
解析利用 SAS 判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点 P 在线段 AB 的垂直平分线
上,A 符合题意;
利用 SSS 判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点 P 在线段 AB 的垂直平分线
中考数学总复习《全等三角形解答题》专题训练-附答案
中考数学总复习《全等三角形解答题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,在Rt ABC △中90C ∠=︒.(1)尺规作图:作AB 的垂直平分线DE ,交BC 于点D ,交AB 于点E (不写作法,保留作图痕迹);(2)在(1)题图中,连接AD ,若AD 平分CAB ∠,且30B ∠=︒,DE=3,求BC 的长.2.如图,点B 、E 、C 、F 在同一直线上,其中BE CF =,A D ∠=∠和B DEF ∠=∠.求证:AB DE =.3.在ABC 中,90BAC ∠=︒和AB AC =(1)如图①,D 为BC 边上一点,连接AD ,以AD 为边作ADE 和=90DAE ∠︒,AD=AE ,连接EC .求证:BD CE =和BD CE ⊥(2)如图①,D 为ABC 外一点.若=45ADC ∠︒,BD=13,CD=5.则AD 的长为______.4.如图,AB CD ∥和BAE DCF ∠=∠,AC 与EF 相交于点G ,点G 为AC 中点,请说明AE CF =.5.综合与实践:初步认识筝形后,实践小组动手制作了一个“筝形功能器”,如图,在笔形ABCD 中,AB AD CB CD ==.(1)【操作应用】如图1,将“筝形功能器”上的点A 与PRQ ∠的顶点R 重合,,AB AD 分别放置在角的两边,RP RQ 上,并过点,A C 画射线AE ,求证:AE 是PRQ ∠的平分线;(2)【实践拓展】实践小组尝试使用“筝形功能器”检测教室门框是否水平.如图2,在仪器上的点A 处栓一条线绳,线绳另一端挂一个铅锤,仪器上的点,B D 紧贴门框上方,观察发现线绳恰好经过点C ,即判断门框是水平的.实践小组的判断对吗?请说明理由.6.如图所示,点D 在AB 上,点E 在AC 上,AB AC =和B C ∠=∠,求证:AD AE =.7.如图,C 为线段AB 上一点,分别以AC BC ,为底边,在AB 的同侧作等腰ACD 和等腰BCE ,且A CBE ∠=∠,在线段EC 上取一点F ,使EF AD =,连接BF DE ,.(1)如图1,判断DE 与BF 的数量关系,并说明理由;(2)如图2,若A α∠=,延长BF 交DE 于点G ,探究BGE ∠与GBC ∠的关系,并说明理由.8.已知ABC 中2ABC C ∠=∠,BG 平分ABC ∠,AB=8,163AG =点D ,E 分别是边BC ,AC 上的点(点D 不与点B ,C 重合),且ADE ABC =∠∠,AD ,BG 相交于点F .(1)求BC 的长; (2)如图1,如果2BF CE =,求:BF GF 的值;(3)如果ADE 是以AD 为腰的等腰三角形,求BD 长.9.如图,在ABC 中90ACB ∠=︒,AC=3,BC=5.(1)在线段BC 上找一点P ,使2APC B (要求:尺规作图,不写作法,保留作图痕迹);(2)求线段BP 的长.10.已知:Rt ABC △中AC BC =,在Rt ADE 中AD DE =,连BE ,取BE 的中点M ,连接CM DM 、.(1)若点D 在AB 上,点E 在AC 上(不与C 点重合),如图,试探究CM 和DM 的关系;(2)将ADE 绕点A 逆时针旋转小于45︒的角,上述探究的结论还成立吗?若不成立,请举出反例;若成立,请给出证明.11.已知,如图,AD 是ABC 的角平分线,DE AB ⊥和DF AC ⊥,垂足为E 、F .求证:AD 垂直平分EF .12.如图,AD 是等腰ABC 底边上的高,BE 平分ABC ∠交AC 于点E ,EF BC ⊥于点F ,EG BE ⊥交BC于点G .求证:4BG DF =.13.如图,在ABC 中,AB=AC ,点D 在ABC 的外部,90ABD C D ∠=∠∠=︒.求证2BC BD =.14.如图,ACE △是等腰直角三角形,90ACE ∠=︒和42AC =,B 为AE 边上一点,连接BC ,将ABC 绕点C 旋转到EDC △的位置.(1)若25ACB ∠=︒,求CDE ∠的度数;(2)连接BD ,求BD 长的最小值.15.已知:如图,在ABC 中,AB=AC ,点D 在AB 上,点E 在边AC 的延长线上,DE 与BC 相交于点P .若BD CE =,求证:PD PE =.参考答案:1.(2)9BC =.【详解】(1)解:如图所示,DE 即为所求;; (2)解:①DE 是AB 边上的垂直平分线30B ∠=︒①AD BD = AE BE =①30DAB B ∠=∠=︒①26BD DE ==①AD 平分CAB ∠ 90C ∠=︒①3CD DE ==①369BC =+=.2.【详解】证明:BE CF =∴BE EC CF EC +=+即BC EF =A D ∠=∠B DEF ∠=∠∴()AAS ABC DEF ≌∴AB DE =.3.(2)62【详解】(1)证明:①90BAC DAE ∠=∠=︒ BAC DAC DAE DAC ∴∠-∠=∠-∠即BAD CAE ∠=∠在ABD △和ACE △AB ACBAD CAEAD AE=⎧⎪∠=∠⎨⎪=⎩①(SAS)ABD ACE ≌,BD CE B ACE ∴∠==∠90,BAC AB AC ∠=︒=45B BCA ACE ∴∠︒∠===∠90BCE BCA ACE ︒∴∠=∠+∠=即BD CE ⊥;(2)解:如图所示 以AD 为边作ADE=90DAE ∠︒ AD AE =同(1)可得ABE ACD ≌①AE AD = 45AEB ACD ∠=∠=︒ ①AED △是等腰直角三角形①45AED ∠=︒ 2ED AD =①90BED ∠=︒在Rt BED △中 13,5BD BE CD === ①2212ED BD BE =-=①212622AD =⨯=故答案为:62.4.【详解】证明:①AB CD①BAC DCA ∠=∠①BAE DCF ∠=∠①BAC BAE DCA DCF ∠∠=∠-∠-即GAE GCF ∠=∠①点G 为AC 中点①AG CG =又①AGE CGF ∠=∠①()ASA AEG CFG ≌①AE CF =.5.【详解】(1)证明:在ABC 和ADC 中 AB ADBC DCAC AC=⎧⎪=⎨⎪=⎩()SSS ABC ADC ∴≌BAC DAC ∴∠=∠AE ∴是PRQ ∠的平分线;(2)解:实践小组的判断对 理由如下: ABD 是等腰三角形 AB AD =由(1)知:AC 平分BAD ∠AC BD ∴⊥AC 是铅锤线BD ∴是水平的.∴门框是水平的.∴实践小组的判断对.6.【详解】证明:在ACD 和ABE 中 A AAC ABC B∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ACD ABE ∴≌AD AE∴=.7.(1)DE BF=(2)2GGE CB B∠∠=【详解】(1)解:DE BF=理由如下:等腰ACD和等腰BCE中AC和BC是底边∴DA DC=EC EB=∴A DCA∠=∠A CBE∠=∠∴CBE DCA∠=∠∴DC BE∥∴DCE FEB∠=∠DA DC=EF AD=∴CD EF=在DCE△和FEB中CD EFDCE FEBEC BE=⎧⎪∠=∠⎨⎪=⎩∴()SASDCE FEB≌△△∴DE BF=;(2)解:2GGE CB B∠∠=理由如下:DCE FEB≌△△∴CED EBF∠=∠EC EB=A CBEα∠==∠∴ECB EBCα==∠∠∴EBF GBCα=-∠∠180GFE GEF FGE∠+∠+∠=︒180CFB FBC FCB∠+∠+∠=︒CFB GFE=∠∠∴GEF FGE FBC FCB∠+=+∠∠∠∴EBF FGE FBC FCB∠+=+∠∠∠∴GBC FGE GBCαα-+=+∠∠∠∴2FGE GBC=∠∠即2GGE CB B∠∠=.(2)278 (3)325【详解】(1)BG 平分ABC ∠ 22ABC ABG GBC ∴∠=∠=∠ 2ABC C ∠=∠ABG C GBC ∴∠=∠=∠BAG CAB ∠=∠ABG ACB ∴∽AB AG BG AC AB CB∴== 16838BG AC CB∴== 12AC ∴= 32BC BG = 16201233CG AC AG ∴=-=-= C GBC ∠=∠203BG CG ∴==3102BC BG ∴==; (2)过点F 作FM AB ⊥于点M FN BD ⊥于点N ADE ABC ∠=∠ ADE CDE ABC FAB ∠+∠=∠+∠ FAB EDC ∴∠=∠又ABG C ∠=∠ABF DCE ∴∽AB AF BF CD DE CE∴== 2BF CE =142CD AB ∴== 2AF DE = 1046BD BC CD ∴=-=-= BG 平分ABC ∠142132ABFDBFAB FMS AFS DFBD FN⋅∴===⋅设4AF x=则3DF x=7AD x=2DE x=2AGF GBC C C ABC∠=∠+∠=∠=∠ADE ABC=∠∠AGF ADE∴∠=∠又FAG EAD∠=∠FAG EAD∴∽AG FGAD ED∴=16372FGx x∴=3221FG∴=367BF BG FG∴=-=3627732821BFGF∴==;(3)ADE是以AD为腰的等腰三角形AD AE∴=ADE AED∴∠=∠AGF ADE∠=∠AGF AED∴∠=∠BG DE∴∥CDE CBG∴∽CE CD CG CB ∴=20103CE CD∴=32CD CE∴=BG DE∥AFG ADE∴∠=∠GBC EDC∠=∠AFG AGF∴∠=∠163AF AG∴==FAB EDC∠=∠ABG GBC C∠=∠=∠FAB ABG∴∠=∠EDC C∠=∠163BF AF∴==CE DE=43FG BG BF∴=-=BG DE∥AFG ADE∴∽AG FGAE DE∴=1643312CE CE∴=-解得125CE=3321225BD BC CD CE∴=-=-=.9.(2) 3.4BP=【详解】(1)解:如图所示P点即为所求:分别在A、B两点上以大于12AB为半径在AB 两侧画圆弧 圆弧交点连接后与BC 的交点即为P此时所做的虚线是线段AB 的垂直平分线AP BP ∴=PAB B ∴∠=∠APC ∠是ABP 的外角2APC PAB B B ∴∠=∠+∠=∠.(2)解:设BP AP x ==5CP BC BP x ∴=-=-90ACB ∠=︒222AC CP AP ∴+=即()22235x x +-=解得 3.4x = 3.4BP ∴=.10.(1)CM DM =且CM DM ⊥(2)成立【详解】(1)解:Rt ABC △中 AC BC =45ABC ∴∠=︒又CM DM 、分别是Rt BCE 、Rt BDE △斜边上的中线12CM BE BM DM ∴=== ①MBC MCB DBM BDM ∠=∠∠=∠,CMD CME DME ∠=∠+∠MBC MCB DBM BDM =∠+∠+∠+∠22MBC DBM =∠+∠2ABC =∠90=︒CM DM ∴=且CM DM ⊥.(2)解:成立 如图 延长CM 至点N 使MN CM = 连接DC DN EN 、、,点M 为BE 的中点①MB ME =①CMB NME ∠=∠∴CMB NME ≌EN BC AC NEB CBM ∴==∠=∠,①EN BC ∥①BC AC ⊥EN AC ∴⊥①ED AD ⊥①21∠=∠ 又AD DE =①ADC EDN ≌3390DC DN ADC EDN CDN EDN ADC ∴=∠=∠∠=∠-∠=∠-∠=︒,, CDN ∴为等腰直角三角形又点M 为CN 的中点CM DM ∴=且CM DM ⊥.11.【详解】AD 是ABC 的角平分线 DE AB ⊥ DF AC ⊥ DE DF ∴= 12∠=∠ 90AED AFD ∠=∠=︒34∴∠=∠①ADE ADF ≅①,AE AF DE DF ==①AD 垂直平分EF .12.【详解】证明:延长BA 交GE 的延长线于点H 取BH 中点N 连接EN 交AD 于点M BE 平分,ABC BE HG ∠⊥①90EBH EBG BEH BEG ===︒∠∠,∠∠又①BE BE =①()ASA BEH BEG △≌△①BH BG EH EG ==,EN ∴为BHG 的中位线①12EN BG EN BG =,∥ ①AD BC ⊥ AB AC =①AD NE ⊥ MAN MAE ∠=∠①90AMN AME ==︒∠∠又①AM AM =①()ASA AMN AME △≌△①1124ME NE BG == ①AD BC EF BC ⊥⊥,①AD EF①EM AD DF AD ⊥,⊥①DF EM =①14DF BG =即4BG DF =. 13.【详解】解:如图 过A 作AE BC ⊥于E 而AB AC = ①BE CE = A ABC CB =∠∠ 90AEB AEC ∠=∠=︒①,90ABD C D ∠=∠∠=︒①90D AEB ∠=∠=︒ ABD ABE ∠=∠①AB AB =①ABD ABE △≌△①BD BE =①2BC BD =.14.(1)110CDE ∠=︒;(2)BD 长的最小值42.【详解】(1)①ACE △是等腰直角三角形 90ACE ∠=︒ ①45A AEC ∠=∠=︒①25ACB ∠=︒①1801804525110ABC A ACB ∠=︒-∠-∠=︒-︒-︒=︒ 由旋转性质可知:ABC EDC △≌△①110CDE CBA ∠=∠=︒;(2)由ABC 绕点C 旋转到EDC △的位置①ACB DCE ∠=∠ BC DC =①90BCD DCE BCE ACB BCE ACE ∠=∠+∠=∠+∠=∠=︒ ①BCD △是等腰直角三角形由勾股定理得:222BD BC CD BC =+=当BC AE ⊥时 BC 的值最小 即BD 的值最小 ①42AC =①242AB BC AC === ①242BD BC ==即BD长的最小值42. 15.【详解】证明:过点D 作DF AC ∥交BC 于点FAB AC = DF AC ∥ B ACB DFB ∴∠=∠=∠ CE DB DF ∴== DFP ECP ∠=∠ 在PDF △和PEC 中 DFP ECP DPF EPC DF CE∠=∠⎧⎪∠=∠⎨⎪=⎩ ()AAS PDF PEC ∴≌ PD PE ∴=。
九年级中考临考专题训练:全等三角形(含答案)
2021中考临考专题训练:全等三角形一、选择题1. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画∠HDE=∠A,∠GED=∠B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS2. 如图所示,∠C=∠D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD3. 如图,李颖同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最合理的办法是带哪块玻璃去()A.只带①B.只带②C.只带③D.带①和②4. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()A .3B .-3C .2D .-25. (2019•张家界)如图,在ABC △中,90C ∠=︒,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于A .4B .3C .2D .16. 如图,已知在四边形ABCD 中,∠BCD=90°,BD 平分∠ABC ,AB=6,BC=9,CD=4,则四边形ABCD 的面积是 ( )A .24B .30C .36D .427. 现已知线段a ,b (a<b ),∠MON=90°,求作Rt △ABO ,使得∠O=90°,OA=a ,AB=b.小惠和小雷的作法分别如下:小惠:①以点O 为圆心、线段a 的长为半径画弧,交射线ON 于点A ;②以点A 为圆心、线段b 的长为半径画弧,交射线OM 于点B ,连接AB ,△ABO 即为所求. 小雷:①以点O 为圆心、线段a 的长为半径画弧,交射线ON 于点A ;②以点O 为圆心、线段b 的长为半径画弧,交射线OM 于点B ,连接AB ,△ABO 即为所求. 则下列说法中正确的是 ( ) A .小惠的作法正确,小雷的作法错误B .小雷的作法正确,小惠的作法错误C .两人的作法都正确D.两人的作法都错误8. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()二、填空题9. 如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件:______________,使得△ABD≌△CDB.(只需写出一个)10. 如图,已知AC=EC,∠ACB=∠ECD,要直接利用“AAS”判定△ABC≌△EDC,应添加的条件是__________.11. 如图,在Rt△ABC中,∠C=90°,∠B=20°,以点A为圆心,小于AC的长为半径画弧与AB,AC分别交于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧相交于点P,连接AP并延长交BC于点D,则∠ADB=°.12. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).13. 如图,在△ABC 中,分别以AC ,BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点O ,则∠AOB 的度数为 .14. 如图,AB ∥CD ,点P 到AB ,BD ,CD 的距离相等,则∠BPD 的度数为________.15. 如图,点O 在△ABC 的内部,且到三边的距离相等.若∠BOC =130°,则∠A=________°.16. (2019•襄阳)如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC △≌△DCB △的是__________(只填序号).三、解答题17. (2019•泸州)如图,AB CD ∥,AD 和BC 相交于点O ,OA OD =.求证:OB OC =.18. 如图所示,在△ADF 和△BCE 中,∠A =∠B ,点D ,E ,F ,C 在同一条直线上,有如下三个关系式:①AD =BC ;②DE =CF ;③BE ∥AF.(1)请你用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题(用序号写出命题的书写形式,如:如果⊗⊗,那么⊗); (2)选择(1)中你写的一个命题,说明它的正确性.19. 如图,四边形ABCD 是正方形,以边AB 为直径作☉O ,点E 在BC 边上,连接AE 交☉O 于点F ,连接BF 并延长交CD 于点G . (1)求证:△ABE ≌△BCG. (2)若∠AEB=55°,OA=3,求的长.(结果保留π)20. (2019•苏州)如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G . (1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.21. 如图,BE,CF都是△ABC的高,在BE上截取BD=AC,在射线CF上截取CG=AB,连接AG,AD.求证:(1)△BAD≌△CGA;(2)AD⊥AG.22. 如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=10,BO=4,求OD的长.23. 如图②,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ABE与△CDF的面积之和.24. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.2021中考 临考专题训练:全等三角形-答案一、选择题1. 【答案】A2. 【答案】A3. 【答案】C[解析] 由“ASA”的判定方法可知只带③去就可以配出一块和以前一样(全等)的三角形玻璃.4. 【答案】A[解析] 如图,过点D 作DE ⊥AB 于点E.∵点D 的坐标是(0,-3), ∴OD=3.∵AD 是△OAB 的角平分线, ∴ED=OD=3,即点D 到AB 的距离是3.5. 【答案】C【解析】如图,过点D 作DE AB ⊥于E ,∵8AC =,13DC AD =,∴18213CD =⨯=+, ∵90C ∠=︒,BD 平分ABC ∠,∴2DE CD ==,即点D 到AB 的距离为2,故选C .6. 【答案】B[解析]过点D 作DH ⊥AB 交BA 的延长线于H.∵BD 平分∠ABC ,∠BCD=90°, ∴DH=CD=4,∴四边形ABCD 的面积=S △ABD +S △BCD =AB ·DH +BC ·CD=×6×4+×9×4=30.7. 【答案】A[解析] AB=b ,AB 是斜边,小惠作的斜边长是b 符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.8. 【答案】C[解析] 选项A 中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B 中由全等三角形的判定定理“SAS”证得图中两个小三角形全等. 选项C 中,如图①,∵∠DEC=∠B+∠BDE ,∴x °+∠FEC=x °+∠BDE.∴∠FEC=∠BDE.这两个角所对的边是BE 和CF ,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D 中,如图②,∵∠DEC=∠B+∠BDE ,∴x °+∠FEC=x °+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C ,∴△BDE ≌△CEF .故能判定两个小三角形全等.二、填空题9. 【答案】答案不唯一,如AB =CD [解析] 由已知AB ∥CD 可以得到一对角相等,还有BD =DB ,根据全等三角形的判定,可添加夹这个角的另一边相等,或添加另一个角相等均可.10. 【答案】∠B =∠D11. 【答案】125[解析] 由题意可得AD 平分∠CAB.∵∠C=90°,∠B=20°,∴∠CAB=70°.∴∠CAD=∠BAD=35°.∴∠ADB=180°-20°-35°=125°.12. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF.在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).13. 【答案】120°[解析]如图,设AC ,DB 的交点为H.∵△ACD ,△BCE 都是等边三角形, ∴CD=CA ,CB=CE ,∠ACD=∠BCE=60°, ∴∠DCB=∠ACE ,在△DCB 和△ACE 中,∴△DCB ≌△ACE , ∴∠CAE=∠CDB ,又∵∠DCH +∠CHD +∠BDC=180°,∠AOH +∠AHO +∠CAE=180°,∠DHC=∠OHA ,∴∠AOH=∠DCH=60°, ∴∠AOB=180°-∠AOH=120°.14. 【答案】90°[解析] ∵点P 到AB ,BD ,CD 的距离相等,∴BP ,DP 分别平分∠ABD ,∠BDC.∵AB ∥CD ,∴∠ABD +∠BDC =180°. ∴∠PBD +∠PDB =90°.故∠BPD =90°.15. 【答案】80[解析] ∵点O 到△ABC 三边的距离相等,∴BO 平分∠ABC ,CO 平分∠ACB.∴∠A =180°-(∠ABC +∠ACB)=180°-2(∠OBC +∠OCB)=180°-2(180°-∠BOC)=80°.16. 【答案】②【解析】∵已知ABC DCB ∠=∠,且BC CB =,∴若添加①A D ∠=∠,则可由AAS 判定ABC △≌DCB △;若添加②AC DB =,则属于边边角的顺序,不能判定ABC △≌DCB △; 若添加③AB DC =,则属于边角边的顺序,可以判定ABC △≌DCB △. 故答案为:②.三、解答题17. 【答案】∵AB CD ∥,∴A D ∠=∠,B C ∠=∠,在AOB △和DOC △中,A D B C OA OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AOB DOC △≌△,∴OB OC =.18. 【答案】解:(1)如果①③,那么②;如果②③,那么①.(2)对于“如果①③,那么②”说明如下:因为BE ∥AF ,所以∠AFD =∠BEC.在△ADF 和△BCE 中,⎩⎨⎧∠AFD =∠BEC ,∠A =∠B ,AD =BC ,所以△ADF ≌△BCE.所以DF =CE.所以DF -EF =CE -EF ,即DE =CF.对于“如果②③,那么①”说明如下:因为BE ∥AF ,所以∠AFD =∠BEC.因为DE =CF ,所以DE +EF =CF +EF ,即DF =CE.在△ADF 和△BCE 中,⎩⎨⎧∠AFD =∠BEC ,∠A =∠B ,DF =CE ,所以△ADF ≌△BCE ,所以AD =BC.19. 【答案】解:(1)证明:∵四边形ABCD 是正方形,AB 为☉O 的直径,∴∠ABE=∠BCG=∠AFB=90°,AB=BC ,∴∠BAF +∠ABF=90°,∠ABF +∠EBF=90°,∴∠EBF=∠BAF ,在△ABE 与△BCG 中,∴△ABE ≌△BCG (ASA).(2)连接OF ,∵∠ABE=∠AFB=90°,∠AEB=55°,∴∠BAE=90°-55°=35°,∴∠BOF=2∠BAE=70°.∵OA=3, ∴的长==.20. 【答案】 (1)∵CAF BAE ∠=∠,∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△,∴EF BC =.(2)∵65AB AE ABC =∠=︒,,∴18065250BAE ∠=︒-︒⨯=︒,∴50FAG ∠=︒,∵BAC EAF △≌△,∴28F C ∠=∠=︒,∴502878FGC ∠=︒+︒=︒.21. 【答案】证明:(1)∵BE ,CF 都是△ABC 的高,∴∠ABE +∠BAC =90°,∠ACF +∠BAC =90°.∴∠ABE =∠ACF.在△BAD 和△CGA 中,⎩⎨⎧AB =GC ,∠ABD =∠GCA ,BD =CA ,∴△BAD ≌△CGA(SAS).(2)∵△BAD ≌△CGA ,∴∠G =∠BAD.∵∠AFG =90°,∴∠GAD =∠BAD +∠BAG =∠G +∠BAG =90°.∴AD ⊥AG .22. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON ,∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,⎩⎨⎧CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL).∴CD =CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON.(2)在Rt △ODC 与Rt △OEC 中,⎩⎨⎧CD =CE ,OC =OC , ∴Rt △ODC ≌Rt △OEC.∴OD =OE.设BE =x.∵BO =4,∴OE =OD =4+x.∵AD =BE =x ,∴AO =OD +AD =4+2x =10.∴x =3.∴OD =4+3=7.23. 【答案】∵∠1=∠2=∠BAC ,且∠1=∠BAE +∠ABE ,∠2=∠CAF +∠ACF ,∠BAC =∠BAE +∠CAF ,∴∠BAE =∠ACF ,∠ABE =∠CAF.在△ABE 和△CAF 中,⎩⎨⎧∠BAE =∠ACF ,AB =CA ,∠ABE =∠CAF , ∴△ABE ≌△CAF(ASA).∴S △ABE =S △CAF .∴S △ABE +S △CDF =S △CAF +S △CDF =S △ACD . ∵CD =2BD ,△ABC 的面积为15, ∴S △ACD =10.∴S △ABE +S △CDF =10.24. 【答案】(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC ,∴△ACO 为等边三角形,∴∠AOC =∠ACO =∠OAC =60°,∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C ,∴OC ⊥DC ,∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°,∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形, ∴OC =CP =OB =PB ,∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径, ∴∠CAP =∠ACB =90°,在Rt △ABC 与Rt △CP A 中,⎩⎨⎧AB =CP AC =AC, ∴Rt △ABC ≌Rt △CP A (HL).。
中考数学专题《全等三角形》含答案解析
专题01 全等三角形一、单选题1.(2021·全国)在ABC 中,B C ∠=∠,与ABC 全等的三角形有一个角是100︒,那么在ABC 中与这100︒角对应相等的角是( )A .A ∠B .BC .C ∠D .B 或C ∠【答案】A【分析】 根据三角形的内角和等于180°可知,相等的两个角∠B 与∠C 不能是100°,再根据全等三角形的对应角相等解答即可.【详解】解:在ABC 中,三角形的内角和等于180°,∠B C ∠=∠,∠B ∠、C ∠不能等于100°,∠在∠ABC 中与这个100°的角对应相等的角只能是A ∠.故选:A .【点睛】本题主要考查了全等三角形的对应角相等的性质,三角形的内角和等于180°,根据B C ∠=∠判断出这两个角都不能是100°是解题的关键.2.(2021·山西襄汾县·七年级期末)如图,Rt △ABC 沿直角边BC 所在直线向右平移到Rt △DEF ,则下列结论中,错误的是( )A .BE EC =B .BC EF = C .AC DF =D .ABC DEF △≌△【答案】A【分析】 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.所以Rt ∠ABC 与Rt ∠DEF 的形状和大小完全相同,即Rt ∠ABC ∠Rt ∠DEF ,据此判断即可.【详解】解:∠Rt ∠ABC 沿直角边BC 所在直线向右平移到Rt ∠DEF ,∠Rt ∠ABC ∠Rt ∠DEF ,∠BC =EF ,AC =DF ,BC -EC =EF -EC ,即BE =CF ,所以只有选项A 是错误的,故选:A .【点睛】本题考查了平移变换,全等三角形的性质等知识,解题的关键是熟练掌握基本知识,熟练应用平移的基本性质.3.(2021·山西七年级期末)下列说法:①两个形状相同的图形称为全等图形;②边、角分别对应相等的两个多边形全等;③全等图形的形状、大小都相同;④面积相等的两个三角形全等.其中正确的是( )A .①②③B .①②④C .①③D .②③【答案】D【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形进行分析即可.【详解】①两个形状相同的图形称为全等图形,说法错误;②边、角分别对应相等的两个多边形全等,说法正确;③全等图形的形状、大小都相同,说法正确;④面积相等的两个三角形是全等图形,说法错误,故答案为:D .【点睛】此题主要考查了全等形,关键是掌握全等形的形状和大小完全相同.4.(2021·哈尔滨市第四十七中学)如图,ABD BAC ∆∆≌,若AD BC =,则BAD ∠的对应角( )A .ADB ∠B .BCD ∠C .ABC ∠D .CDA ∠【答案】C【分析】 根据三角形全等的性质,找出对应角.【详解】ABD BAC ∆∆≌,AD BC =,BAD ABC ∴∠=∠故选C .【点睛】本题考查了全等三角形的性质,找出对应角是解题的关键.5.(2021·全国八年级课时练习)如图,,40,30ABD CDB ABD CBD ∠=︒∠=︒≌,则C ∠等于( )A .20︒B .100︒C .110︒D .115︒【答案】C【分析】 利用全等三角形的性质得到∠CDB =∠ABD ,再结合三角形内角和计算即可.【详解】∠ABD CDB △≌△,∠40CDB ABD ∠=∠=︒,∠1801803040110C CBD CDB ∠=︒-∠-∠=︒-︒-︒=︒故选C .【点睛】本题考查全等三角形的性质,特别基础,熟记全等三角形对应角相等是解题的关键. 6.(2021·重庆巴南区·)已知△ABC 的三边的长分别为3,5,7,△DEF 的三边的长分别为3,7,2x ﹣1,若这两个三角形全等,则x 的值是( )A .3B .5C .﹣3D .﹣5【答案】A【分析】根据三角形全等的性质,可得2x ﹣1=5,解方程即可求得x 的值.【详解】解:∠这两个三角形全等,∠2x ﹣1=5,解得,x =3,故选:A .【点睛】本题考查了三角形全等的性质,理解三角形全等的性质是解题的关键.7.(2021·大连市第三十四中学八年级月考)如图,ABC A B C '''≅,其中36A ∠=︒,24C '∠=︒,则B ∠=( )A .150︒B .120︒C .90︒D .60︒【答案】B【分析】 利用全等三角形的性质,三角形内角和定理计算即可.【详解】∠A ABC B C '''≌△△,∠A =36°,C '∠=24°, ∠∠C =C '∠=24°,∠∠B =180°-∠A -∠C =180°-36°-24°=120°,故选B .【点睛】本题考查了全等三角形的性质,三角形内角和定理,熟练掌握性质,灵活运用内角和定理是解题的关键.8.(2021·全国七年级课时练习)如图,在ABC 中,D ,E 分别是边AC ,BC 上的点,若ADB EDB EDC ≌≌,则C ∠的度数为( )A .15︒B .20︒C .25︒D .30【答案】D【分析】 根据EDB EDC ≌,推出90,DEB DEC DBE DCE ∠=∠=︒∠=∠,再由ADB EDB ≌,得到90,DAB DEB DBA DBE ∠=∠=︒∠=∠,利用直角三角形中两个锐角互余即可得出.【详解】∠EDB EDC ≌,∠DEB +∠DEC =180°,∠90,DEB DEC DBE DCE ∠=∠=︒∠=∠,又∠ADB EDB ≌,∠90,DAB DEB DBA DBE ∠=∠=︒∠=∠∠90DBA DBE DCE ∠+∠+∠=︒,即30DBA DBE DCE ∠=∠=∠=︒故选:D .【点睛】本题考查了全等三角形的性质,直角三角形两个锐角和等于90°,掌握全等的性质是解题的关键.9.(2021·甘肃榆中县·七年级期末)如图,90A B ∠=∠=︒,6AB =,E 、F 分别为线段AB 和射线BD 上的一点,若点E 从点B 出发向点A 运动,同时点F 从点B 出发向点D 运动,二者速度之比为1:2,运动到某时刻同时停止,在射线AC 上取一点G ,使AEG △与BEF 全等,则AG 的长为( )A .2B .3C .2或3D .2或6【答案】D【分析】 设BE =t ,则BF =2t ,使∠AEG 与∠BEF 全等,由∠A =∠B =90°可知,分两种情况:情况一:当BE =AG ,BF =AE 时,列方程解得t ,可得AG ;情况二:当BE =AE ,BF =AG 时,列方程解得t ,可得AG .【详解】解:设BE =t ,则BF =2t ,因为∠A =∠B =90°,使∠AEG 与∠BEF 全等,可分两种情况: 情况一:当BE =AG ,BF =AE 时,∠BF =AE ,AB =6,∠2t =6-t ,解得:t =2,∠AG =BE =2;情况二:当BE =AE ,BF =AG 时,∠BE =AE ,AB =6,∠t =6-t ,解得:t =3,∠AG=BF=2t=6,综上所述,AG=2或AG=6.故选D.【点睛】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.10.(2021·全国)如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC△△ADC′,△AEB△△AEB′,且C′D//EB′//BC,BE、CD交于点F,若△BAC=α,△BFC=β,则()A.2α+β=180°B.2β﹣α=180°C.α+β=150°D.β﹣α=60°【答案】A【分析】延长C′D交AC于M,如图,根据全等的性质得∠C′=∠ACD,∠C′AD=∠CAD=∠B′AE=α,再利用三角形外角性质得∠C′MC=∠C′+∠C′AM=∠C′+2α,接着利用C′D∠B′E得到∠AEB=∠C′MC,而根据三角形内角和定理,三角形外角性质和等角代换,进一步变形后即可得到答案.【详解】解:延长C′D交AC于M,如图,∠∠ADC∠∠ADC′,∠AEB∠∠AEB′,∠∠C′=∠ACD,∠C′AD=∠CAD=∠B′AE=α,∠∠C′MC=∠C′+∠C′AM=∠C′+2α,∠C′D∠B′E,∠∠AEB′=∠C′MC,∠∠AEB′=180°﹣∠B′﹣∠B′AE=180°﹣∠B′﹣α,∠∠C′+2α=180°﹣∠B′﹣α,∠∠C′+∠B′=180°﹣3α,∠β=∠BFC=∠BDF+∠DBF=∠DAC +∠ACD +∠B '=α+∠ACD +∠B ′=α+∠C ′+∠B ′=α+180°﹣3α=180°﹣2α,即:2α+β=180°.故选:A. 【点睛】本题考查了平行线的性质,全等三角形的性质,熟练掌握全等三角形的性质和灵活运用平行线的性质是解题的关键.11.(2021·全国八年级课时练习)如图,AOB ADC △≌△,点B 和点C 是对应顶点,90O D ∠=∠=︒,记,,OAD ABO ABC ACB αβ∠=∠=∠=∠,当//BC OA 时,α与β之间的数量关系为( )A .αβ=B .2αβ=C .90αβ+=︒D .2180αβ+=︒【答案】B【分析】 根据全等三角形对应边相等可得AB =AC ,全等三角形对应角相等可得∠BAO =∠CAD ,然后求出∠BAC =α,再根据等腰三角形两底角相等求出∠ABC ,然后根据两直线平行,同旁内角互补表示出∠OBC ,整理即可.【详解】∠AOB ADC △≌△,∠BAO CAD ∠=∠,∠OAD OAB BAD CAD BAD BAC α∠=∠+∠=∠+∠=∠=,在ABC 中,∠A ABC CB =∠∠, ∠1(180)2ABC α∠=︒-,∠//BC OA ,∠1801809090OBC O ∠=︒-∠=︒-︒=︒, ∠1180()902βα+︒-=︒,整理得2αβ=, 故选:B .【点睛】本题考查了全等三角形的性质,等腰三角形两底角相等的性质,平行线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.12.(2021·河南川汇区·八年级期末)如图,点D ,E ,F 分别在ABC 的边AB ,BC ,CA 上(不与顶点重合),设BAC α∠=,FED θ∠=.若BED CFE ≌△△,则α,θ满足的关系是( )A .90αθ+=︒B .2180αθ+=︒C .90αθ-=︒D .2180αθ+=︒【答案】B【分析】 根据全等三角形的性质可得∠B =∠C ,∠BED =∠EFC ,再利用三角形内角和定理可得出等量关系1802αθ︒-=,化简即可. 【详解】解: ∠BED CFE ≌△△,∠∠B =∠C ,∠BED =∠EFC ,∠BAC α∠=,FED θ∠=,在∠ABC 中,∠A +∠B +∠C =180°, ∠1802B C α︒-∠=∠=,180BED FEC θ∠++∠=︒, ∠180EFC FEC θ∠++∠=︒,∠在∠EFC 中,180EFC C FEC ∠+∠+∠=︒,∠C θ=∠,即1802αθ︒-=, ∠2180αθ+=︒.故选:B .【点睛】本题考查三角形内角和定理和全等三角形的性质.熟练掌握定理,能结合图形完成角度之间的转化是解题关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(2021·吉林铁西区·八年级期中)如图所示,ABC ECD ≌△△,48A ∠=︒,62D ∠=︒,则图中B 的度数是______度.【答案】70【分析】用∠ABC ∠∠ECD 求出∠ACB =∠D =62°,再根据三角形内角和可求出结论.【详解】解:∠∠ABC ∠∠ECD ,∠A =48°,∠D =62°,∠∠ACB =∠D =62°,∠∠B =180°−∠A −∠ACB =70°,故答案为:70.【点睛】本题考查了全等三角形的性质,三角形内角和定理;解决本题的关键是能够正确理解题意,由已知条件,想到所学的定理,充分挖掘题目中的结论是解题的关键.14.(2021·全国八年级课时练习)如图,ABE ACD △≌△,且D ∠与E ∠是对应角,顶点C 与顶点B 对应,若10cm BE =,则CD =__________.【答案】10cm【分析】先由“ABE ACD △≌△,且D ∠与E ∠是对应角,点C 与点B 是对应点”得出CD 的对应边为BE ,再利用全等三角形的性质,根据BE 的长即可求解.【详解】∠ABE ACD △≌△,且D ∠与E ∠是对应角,点C 与点B 是对应点,∠CD 与BE 是对应边,10cm CD BE ==.故答案为:10cm .【点睛】本题主要考查的是全等三角形的性质,解题关键是观察图形,找出全等三角形的对应点.15.(2021·全国)如图,长方形ABCD沿AM折叠,使D点落在BC上的N点处,AD=7cm,DM=5cm,△DAM=39°,则△ANM△△ADM,AN=_____cm,NM=_____cm,△NAB=_______.【答案】7 5 12°【详解】略16.(2021·山东芝罘区·七年级期末)如图,△ABC△△ADE,若△BAE=135°,△DAC=55°,那么△CFE的度数是______.【答案】40°【分析】设AD与BC交于点G,根据全等三角形的性质与对顶角的性质求解即可得到答案.【详解】解:设AD与BC交于点G,∠∠ABC∠∠ADE,∠∠BAC=∠DAE,∠B=∠D,∠∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∠∠BAE=135°,∠DAC=55°,∠∠BAD+∠CAE=135°﹣55°=80°,∠∠BAD=∠CAE=40°,∠∠B=∠D,∠BGA=∠DGF,∠∠CFE=∠DFB=∠BAD=40°,故答案为:40°.【点睛】本题主要考查了全等三角形的性质,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.17.(2021·浙江东阳市·七年级期末)如图,把一张长方形纸板裁去两个边长为3cm的小正方形和两个全等的小长方形,再把剩余部分(阴影部分)四周折起,恰好做成一个有底有盖的长方体纸盒,纸盒底面长方形的长为3k cm,宽为2k cm,则(1)裁去的每个小长方形面积为___cm2;(用k的代数式表示)(2)若长方体纸盒的表面积是底面积的正整数倍,则正整数k的值为___.【答案】(6k+9)1或5【分析】(1)求出小长方形的长,宽,可得结论.(2)由长方体纸盒的表面积是底面积的正整数倍,推出侧面4个长方形的面积和是底面积的整数倍,延长构建关系式,可得结论.【详解】解:(1)由题意,小长方形的长为(3+2k)cm,宽为3cm,∠裁去的每个小长方形面积为(6k+9)(cm2),故答案为:(6k+9).(2)由题意,12k+18k=n•6k2(n为正整数),可得nk=5,∠n=1,k=5或n=5,k=1,∠k=1或5,故答案为:1或5.【点睛】本题考查全等图形,列代数式,认识立体图形等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.18.(2021·山东莱州市·七年级期末)三个全等三角形按如图的形式摆放,则△1+△2+△3的度数等于_______.【答案】180°【分析】直接利用平角的定义结合三角形内角和定理以及全等三角形的性质得出∠4+∠9+∠6=180°,∠5+∠7+∠8=180°,进而得出答案.【详解】解:如图所示:由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=540°,∠三个三角形全等,∠∠4+∠9+∠6=180°,又∠∠5+∠7+∠8=180°,∠∠1+∠2+∠3+180°+180°=540°,∠∠1+∠2+∠3的度数是180°.故答案为:180°.【点睛】此题主要考查了全等三角形的性质以及三角形内角和定理,正确掌握全等三角形的性质是解题关键.19.(2021·辽宁本溪市·七年级期末)如图,△A =△B =90°,AB =80,点E 和点F 分别为线段AB 和射线BD 上的一点,若点E 从点B 出发向点A 运动,同时点F 从点B 出发向点D 运动,点E 和点F 运动速度之比为2:3,运动到某时刻点E 和点F 同时停止运动,在射线AC 上取一点G ,使△AEG 与△BEF 全等,则AG 的长为________.【答案】60或32【分析】分两种情况进行讨论:①AEG BEF ≅,②AEG BFE ≅,然后根据全等三角形的性质和题目中的数据,即可计算出AG 的长.【详解】解:由题意,设2(0)BE x x =>,则3BF x =,分以下两种情况:①当AEG BEF ≅时,则2,3AE BE x AG BF x ====,∠80AE BE AB +==,即2280x x +=,∠20x =,∠360AG x ==;②当AEG BFE ≅时,3,2AE BF x AG BE x ====,∠80AE BE AB +==,即3280x x +=,∠16x =,∠232AG x ==;综上,AG 的长为60或32,故答案为:60或32.【点睛】本题考查了全等三角形的性质等知识点,正确分两种情况讨论是解题关键.20.(2021·全国)如图,在△ABC 中,AB =AC =24厘米,△B =△C ,BC =16厘米,点D 为AB 的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.当点Q 的运动速度为________厘米/秒时,能够在某一时刻使△BPD 与△CQP 全等.【分析】设点Q 的速度为x ,则运动t 秒时,CQ =xt ,分两种情况讨论①当∠BPD ∠∠CQP 时,②当∠BPD ∠∠CPQ 时,根据其运动情况表示出线段的数量关系,根据三角形全等的性质计算得到答案即可.【详解】解:设点Q 的速度为x ,则运动t 秒时,CQ =xt ,∠P 点的速度为4,BC =16∠BP =4t ,PC =(16-4t )又∠AB =AC =24,点D 为AB 的中点∠BD =12AB =12∠∠B =∠C∠运动t 秒时,∠BPD 与∠CQP 全等共有两种情况①当∠BPD ∠∠CQP 时,则有BD =CP ,BP =CQ即12=16-4t ,4t =xt即t =1∠由4t =xt 可知,x =4.②当∠BPD ∠∠CPQ 时,则有BD =CQ ,BP =CP即12=xt ,4t =16-4t∠t =2,x =6.综合①②可知速度为4或6.故答案为:4或6.【点睛】本题考查了三角形全等的性质,分类讨论是解题的关键.三、解答题21.(2021·全国八年级课时练习)已知:如图,,8cm,5cm ABC DEF BC EC ==≌,求线段CF 的长.【分析】根据全等三角形的性质求解即可.【详解】解:∠ABC DEF △≌△,∠BC EF =,∠8cm BC =,∠8cm EF BC ==,∠5cm EC =,∠()853cm CF EF EC =-=-=.【点睛】本题考查了全等三角形的性质,熟知全等三角形对应边相等是解题的关键.22.(2020·铜陵市第二中学八年级月考)如图,ABF △CDE △,已知30B ∠=︒,25DCF ∠=︒,求EFC ∠的度数.【答案】55︒【分析】由全等三角形的对应角相等知∠B=∠D=30°,然后由三角形外角定理来求∠EFC 的度数.【详解】解:∠ABF ∠CDE △,B D ∠=∠.又∠30B ∠=︒,∠30D ∠=︒.∠25DCF ∠=︒,∠55EFC D DCF ∠=∠+∠=︒.【点睛】本题主要考查了全等三角形的性质.全等三角形的对应边相等及全等三角形的对应角相等是解题的关键.23.(2021·河南邓州市·七年级期末)我们已经认识了图形的轴对称、平移和旋转,这是图形的三种基本变换,图形经过这样的变换,虽然位置发生了改变,但图形的形状与大小都不发生变化,反映了图形之间的全等关系.这种运用动态变换研究图形之间的关系的方法,是一种重要而且有效的方法.同学们学完了这些知识后,王老师在黑板上给大家出示了这样的一道题目:(1)如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.试说明AD=BE;聪明的小亮很快就找到了解决该问题的方法:请你帮小亮把说理过程补充完整.解:△△ACB和△DCE均为等边三角形,△CA=CB,CD=CE,△ACB=△DCE=60°,(等边三角形的性质)△△ACD=(等式的性质)△△ACD绕点C按逆时针方向旋转度,能够与重合△△ACD△(旋转变换的性质)△AD=BE();(2)当同学们把这道题领会感悟后,王老师又在上题基础上追加了一问:试求△AEB的度数.聪明的同学们你会解决吗?请写出你的求解过程.(此题不用写推理依据即可).【答案】(1)∠BCE,60,∠BCE,∠BCE,全等三角形的对应边相等;(2)60°【分析】(1)根据等边三角形的性质可得∠ACD=∠BCE,然后根据旋转的性质可得∠ACD∠∠BCE,即可求证;(2)根据等边三角形的性质可得∠CDE=∠CED=60°,从而∠ADC=120°,再由全等三角形的性质,可得到∠BEC=∠ADC=120°,即可求解.【详解】解:(1)∠∠ACB和∠DCE均为等边三角形,∠CA=CB,CD=CE,∠ACB=∠DCE=60°,(等边三角形的性质)∠∠ACD=∠BCE,(等式的性质)∠∠ACD绕点C按逆时针方向旋转60度,能够与∠BCE重合,∠∠ACD∠∠BCE,(旋转变换的性质)∠AD=BE(全等三角形的对应边相等);(2)∠∠DCE为等边三角形,∠∠CDE=∠CED=60°,∠点A,D,E在同一直线上,∠∠ADC=120°,∠∠ACD∠∠BCE,∠∠BEC=∠ADC=120°,∠∠AEB =∠BEC ﹣∠CED =60°.【点睛】本题主要考查了利用旋转判定三角形全等,全等三角形的性质,等边三角形的性质,熟练掌握等边三角形的性质,利用旋转判定三角形全等是解题的关键.24.(2021·全国八年级课时练习)如图,,ABF CDE B ∠≌和D ∠是对应角,AF 和CE 是对应边.(1)写出ABF 和CDE △的其他对应角和对应边;(2)若30,40B DCF ∠=︒∠=︒,求EFC ∠的度数;(3)若10,2BD EF ==,求BF 的长.【答案】(1)其他对应角为BAF ∠和DCE ∠,AFB ∠和CED ∠;其他对应边为AB 和,CD BF 和DE ;(2)70EFC ∠=︒;(3)6BF =.【分析】(1)根据全等三角形的性质,对应角相等,对应边相等,解答即可;(2)根据全等三角形的性质可得30D B ∠=∠=︒,运用三角形外角的性质即可解答; (3)根据全等三角形的性质可得BF DE =,进一步证明DF BE =,然后可得426BF BE EF =+=+=.【详解】(1)其他对应角为:BAF ∠和DCE ∠,AFB ∠和CED ∠;其他对应边为:AB 和,CD BF 和DE ;(2)∠,30ABF CDE B ∠=︒≌,∠30D B ∠=∠=︒∠40DCF ∠=︒,∠304070EFC D DCF ∠=∠+∠=︒+︒=︒;(3)∠ABF CDE ≌△△, ∠BF DE =,∠BF EF DE EF -=-,∠DF BE =,∠10,2BD EF ==, ∠()110242DF BE ==⨯-=,∠426BF BE EF =+=+=.【点睛】本题考查了全等三角形的性质,熟知全等三角形对应角相等,对应边相等是解本题的关键.25.(2021·河南伊川县·七年级期末)如图,点A 、B 、C 、D 在同一直线上,△ACE △△DBF ,AD =8,BC =2.(1)求AC 的长;(2)求证:CE △BF ,AE △DF .【答案】(1)5AC =;(2)见解析【分析】(1)根据全等三角形对应边相等可得AC DB =,然后根据AC BD AD BC +=+,再等量代换,即可求解;(2)根据全等三角形对应角相等可得,ECA FBD A D ∠=∠∠=∠,再根据内错角相等,两直线平行证明即可.【详解】(1)ACE DBF ∆≅∆,AC DB ∴=,AC BD AD BC +=+,2AC AD BC ∴=+,8,2AD BC ==,28210AC ∴=+=,5AC ∴=;(2)ACE DBF ∆≅∆,,ECA FBD A D ∴∠=∠∠=∠,//,//CE BF AE DF ∴.【点睛】本题考查了全等三角形的性质、平行线的判定,熟记性质并准确识图是解题关键. 26.(2021·辽宁铁西区·)如图,点B ,C ,E ,F 在同一直线上,AB BC ⊥于点B ,DEF ABC ≌,且6BC =,3CE =.(1)求CF 的长;(2)判断DE 与EF 的位置关系,并说明理由.【答案】(1)9;(2)DE EF ⊥,理由见解析【分析】(1)直接利用全等三角形的性质得出BC EF =,进而得出答案;(2)直接利用全等三角形的性质得出90ABC DEF ∠=∠=︒,进而得出答案.【详解】解:(1)DEF ABC ∆≅∆,BC EF ∴=,6BC =,3CE =,6EF ∴=,639CF EF EC ∴=+=+=;(2)DE EF ⊥,理由:AB BC ⊥,90ABC ∴∠=︒,90ABC DEF ∴∠=∠=︒,DE EF ∴⊥.【点睛】此题主要考查了全等三角形的性质,正确得出对应边与对应角相等是解题关键. 27.(2021·浙江浙江省·八年级期末)如图,已知正方形ABCD 边长为4cm ,动点M 从点C 出发,沿着射线CD 的方向运动,动点P 从点B 出发,沿着射线BC 的方向运动,连结,BM DP ,(1)若动点M和P都以每秒2cm的速度运动,问t为何值时DPC△和BCM全等?(2)若动点P的速度是每秒3cm,动点M的速度是每秒1.5cm问t为何值时DPC△和BCM 全等?【答案】(1)t=1;(2)t=89或t=83【分析】(1)根据∠DCP与∠BCM全等,列出关于t的方程,解之即可;(2)分当点P在点C左侧和当点P在点C右侧,两种情况,根据PC=CM,列方程求解即可.【详解】解:(1)要使∠DCP与∠BCM全等,则PC=CM,由题意得:2t=4-2t,解得:t=1;(2)当点P在点C左侧时,则∠DCP∠∠BCM,∠PC=CM,∠4-3t=1.5t,解得:t=89;当点P在点C右侧时,则∠DCP∠∠BCM,∠CP=CM,∠3t-4=1.5t,解得:t=83,综上:当t=89或t=83时,∠DCP与∠BCM全等.【点睛】本题考查了全等三角形的判定和性质,解题的关键是抓住全等三角形的条件,得到相等线段,列出方程,注意分类讨论.28.(2020·浙江浙江省·)在56的方格纸中,每格的边长为1,请按下列要求画图.(1)在图1中画一个格点ADE ,使ADE 与ABC 全等,且所画格点三角形的顶点均不与点B ,C 重合.(2)在图2中画一个面积为7的格点四边形ABCD ,且BAD ∠为锐角.【答案】(1)见解析;(2)见解析【分析】(1)利用轴对称的性质解决问题即可.(2)构造梯形,利用数形结合的思想解决问题即可.【详解】解:(1)如图1中,∠ADE 即为所求.(2)如图2中,四边形ABCD 即为所求.【点睛】本题考查作图-应用与设计,全等三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.29.(2021·云南盘龙区·七年级期末)如图,在平面直角坐标系中,O 为坐标原点,ABC 的边BC 在x 轴上,A 、C 两点的坐标分别为()0,A m ,(),0C n ,()5,0B -,且()231230m n -+-=点P 从B 出发,以每秒1个单位的速度沿射线BO 匀速运动,设点P 运动时间为t .(1)点A 的坐标为 ;点C 的坐标为 ;(2)连接PA ,当POA 的面积等于ABC 的面积的一半时,求t 的值;(3)当P 在线段BO 上运动时,在y 轴上是否存在点Q ,使POQ △与AOC △全等?若存在,请直接写出Q 点坐标;若不存在,请说明理由.【答案】(1)()0,4,()3,0;(2)1t =或9t =;(3)存在,Q ()0,3或()0,4或()0,3-或()0,4-【分析】(1)根据()231230m n -+-=可以得出m 、n 的值,从而得到A 、C 的坐标;(2)分点P 在线段BO 上和在射线OC 上两种情况进行讨论求解即可;(3)分POQ △∠AOC △和POQ △∠COA 两种情况进行讨论求解即可.【详解】解:(1)∠()231230m n -+-=,∠3120m -=,30n -=,∠4m =,3n =,∠A 的坐标是(0,4),C 的坐标是(3,0)(2)∠B 的坐标是(-5,0),A 的坐标是(0,4),C 的坐标是(3,0)∠5OB =,3OC =,4OA =11481622ABC S OA BC =⨯=⨯⨯=△ ①P 在线段OB 上,如图1,∠5OP t =-,4OA = ∠()1154822POA S OP AP t =⨯=-⨯=△ ∠1t =,②当P 在射线OC 上如图2,∠5OP t =-,4OA =, ∠()1154822POA S OP AP t =⨯=-⨯=△ ∠9t =∠当1t =或9t =时,POA 的面积等于ABC 的面积的一半;(3)当P 在线段BO 上运动时,在y 轴上存在点Q ,使POQ △与AOC △全等, ①当POQ △∠AOC △时,∠PO =AO ,OC =OQ =3∠Q 点的坐标为(0,3)或(0,-3)②当POQ △∠COA 时,∠PO =CO ,OQ =OA =4∠Q 点的坐标为(0,4)或(0,-4)综上所述:Q 点的坐标为(0,3)或(0,-3)或(0,4)或(0,-4)【点睛】本题主要考查了平方和绝对值的非负性,三角形面积公式,全等三角形的性质,平面直角坐标系点的坐标,解题的关键在于能够熟练掌握相关知识进行求解.30.(2021·江苏姑苏区·苏州草桥中学七年级期末)如图,将一副三角板按如图所示的方式放置,其中ABC 中,90ACB ∠=︒,45BAC ∠=︒,ADE 中,90ADE ∠=︒,30DAE ∠=︒,AB AD =,点C 在线段AE 上.射线AB '从AB 出发,绕点A 以5︒/秒的速度顺时针旋转;同时,射线DA '从DA 出发,绕点D 顺时针旋转.设射线AB '运动的时间为t 秒(09t <≤),AB '与BC 交于点M ,DA '与AB '交于点N .(1)若射线DA '旋转的速度为5︒/秒,则AND ∠=________︒;(2)设射线DA '旋转的速度为x ︒/秒,当射线AB '与DA '旋转到某处时,ABM 与AND △全等,求相应的t 、x 的值.【答案】(1)105°;(2)56x t =⎧⎨=⎩或67.5x t =⎧⎨=⎩ 【分析】(1)根据题意可知∠BAD =75°,=5BAB t '∠,5ADA t '=∠,∠NAD =∠BAD -BAB '∠=75°-5t ,再利用三角形内角和定理即可求解;(2)分∠ABM ∠∠DAN 时和当∠ABM ∠∠ADN 时两种情况分类讨论求解即可得到答案.【详解】解:(1)∠BAC ∠=45°,DAE =∠30°,∠∠BAD =75°,∠射线AB '从AB 出发,绕点A 以5°/秒的速度顺时针旋转,∠=5BAB t '∠,∠射线DA '旋转的速度为5°/秒∠5ADA t '=∠,∠∠NAD =∠BAD -BAB '∠=75°-5t ,∠∠AND =180°-∠NAD -ADA '∠=105°;(2)由题意得:AB =AD ,∠BAM =5t ,∠ADN =xt ,∠B =45°,∠∠DAN =75°-5t ,当∠ABM ∠∠DAN 时,有=BAM ADN B DAN ∠∠⎧⎨∠=∠⎩即o o 5=45755t xt t⎧⎨=-⎩, 解得56x t =⎧⎨=⎩; 当∠ABM ∠∠ADN 时,有=BAM DAN B ADN∠∠⎧⎨∠=∠⎩ 即o o 5=75545t t xt ⎧-⎨=⎩, 解得67.5x t =⎧⎨=⎩; ∠综上所述,当三角形ABM 与三角形AND 全等时,56x t =⎧⎨=⎩或67.5x t =⎧⎨=⎩.【点睛】本题主要考查了全等三角形的性质,三角形的内角和定理,解二元一次方程组,解题的关键在于能够熟练掌握相关知识进行求解.。
《全等三角形》中考专练附答案
∴∠A=∠FCE, ∠ADE=∠F,
在△ADE和△FCE中 ,
∴△ADE≌△CFE〔AAS〕,
∴AD=CF=3,
∵AB=4,
∴DB=AB﹣AD=4﹣3=1.
应选:B.
【点评】此题考查了全等三角形的性质和判定,平行线的性质的应用,能判定△ADE≌△FCE是解此题的关键,解题时注意运用全等三角形的对应边相等,对应角相等.
【点评】此题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键.逸夫中学2021-2021学年八〔下)数学校本作业 ---完全平方公式
在△ABE和△DBE中, ,
∴△ABE≌△DBE〔SAS〕;
〔2〕解:∵∠A=100°,∠C=50°,
∴∠ABC=30°,
∵BE平分∠ABC,
∴∠ABE=∠DBE= ∠ABC=15°,
在△ABE中,∠AEB=180°﹣∠A﹣∠ABE=180°﹣100°﹣15°=65°.
【点评】此题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键.
3.〔2021•山东威海•3分〕如图,在四边形ABCD中,AB∥DC,过点C作CE⊥BC,交AD于点E,连接BE, ∠BEC=∠DEC,假设AB=6,那么CD=3.
【分析】延长BC、AD相交于点F,可证△EBC≌△EFC,可得BC=CF,那么CD为△ABF的中位线,故CD= 可求出.
【解答】解:如图,延长BC、AD相交于点F,
全等三角形
1.〔2021·贵州安顺·3分〕如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加以下一个条件后,仍无法判定△ABC≌△DEF的是〔 〕
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)知识回顾1.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
2.三角形的内角和定理:三角形的三个内角之和等于180°。
3.三角形的外角定理:三角形的一个外角等于它不相邻的两个内角之和。
大于它不相邻的任意一个内角。
4.全等三角形的性质:若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。
5.全等三角形的判定:①边边边(SSS):三条边分别对应性相等的两个三角形全等。
②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。
③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。
④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。
⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。
全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。
在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。
专项练习题(含答案解析)1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.【解答】证明:∵△ABC∴∠EBC=∠DCB,在△EBC与△DCB中,,∴△EBC≌△DCB(SAS),∴BD=CE.3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形的面积.【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS 可得△ABC≌△ADC;(2)由(1)△ABC≌△ADC,得BC=CD=3,S△ABC=S△ADC,求出S△ABC=AB•BC=6,即可得四边形ABCD的面积是12.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵CB⊥AB,CD⊥AD,∴∠B=90°=∠D,在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);(2)解:由(1)知:△ABC≌△ADC,∴BC=CD=3,S△ABC=S△ADC,∴S△ABC=AB•BC=×4×3=6,∴S△ADC=6,∴S四边形ABCD=S△ABC+S△ADC=12,答:四边形ABCD的面积是12.5.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.【解答】证明:∵DE∥AB,∴∠EDC=∠B,在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ=∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC =∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【分析】(1)根据SSS ABC≌△DEF,即可解决问题;(2)根据全等三角形的性质可得∠A=∠EDF,再根据平行线的判定即可解决问题.【解答】(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.故答案为:①,SSS;(答案不唯一).(2)证明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【分析】(1)证明△BCD≌△FCE(SAS),由全等三角形的性质得出∠DBC=∠EFC,证出BD∥EF,则可得出结论;(2)由题意画出图形,延长BC到F,使CF=BC,连接AF,EF,由(1)可知BD∥EF,BD=EF,证出∠AEF=90°,得出∠DHE=90°,由直角三角形的性质可得出结论.【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠ACE=∠ABD,利用等腰直角三角形的性质可求得∠ACE=∠ABD=∠AED =45°,再根据三角形的内角和定理可求解∠AEC的度数,进而可求可求解【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD,∵△ABC和△ADE都是等腰直角三角形,∴∠ACE=∠ABD=∠AED=45°,∵∠EAC=60°,∴∠AEC=180°﹣∠ACE﹣∠EAC=180°﹣45°﹣60°=75°,∴∠CED=∠AEC﹣∠AED=75°﹣45°=30°.10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC =5,再根据勾股定理求出DE的长,即可求出△BCD的面积.【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S△BCD=BC•DE=×5×4=10,∴△BCD的面积为10.11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt △ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.【分析】(1)由“SAS”可证△ACE;(2)由等腰三角形三角形的性质可得BC的长,由角度关系可求∠ADC=67.5°=∠CAD,可得AC=CD =1,即可求解.【解答】(1)证明:∵∠BAC=90°=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠BAC=90°,AB=AC=1,∴BC=,∠B=∠ACB=45°,∵∠BAD=22.5°,∴∠ADC=67.5°=∠CAD,∴AC=CD=1,∴BD=﹣1.12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【分析】(1)根据矩形的性质得到∠B=∠D=90°,BC=AD,根据折叠的性质得到BC=CE,∠E=∠B =90°,等量代换得到∠E=∠D=90°,AD=CE,根据AAS证明三角形全等即可;(2)设DF=a,则CF=8﹣a,根据矩形的性质和折叠的性质证明AF=CF=8﹣a,在Rt△ADF中,根据勾股定理表示出DF的长,根据正切的定义即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8﹣a,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8﹣a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8﹣a)2,∴a=,∴tan∠DAF==.13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE =BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S△ABC=123,则BC=,BF=.【分析】(1)根据图形分别得出答案;(2)利用AAS证明△ABC≌△DFE,得BC=EF,再根据图形可得结论;(3)首先利用含30°角的直角三角形的性质求出BH和AH的长,从而得出BC,再对点E的位置进行分类即可.【解答】解:(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BC+CE,∴BC+BE=EF+BC+CE=BF;图③:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BF+EF,∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;(3)当点E在BC上时,如图,作AH⊥BC于H,∵∠B=∠F=60°,∴∠BAH=30°,∴BH=3,∴AH=3,∵S△ABC=12,∴=12,∴BC=8,∵CE=2,∴BF=BE+EF=8﹣2+8=14;同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,故答案为:8,14或18.14.△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有P A+PB =PC(或P A+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【分析】(2)证明△ABD≌△ACE(SAS)和△BAF≌△CAP(SAS),得AF=AP,∠BAF=∠CAP,再证明△AFP是等边三角形,最后由线段的和可得结论;(3)如图③,在PC上截取CM=PB,连接AM,同理可得结论.【解答】解:(2)PB=P A+PC,理由如下:如图②,在BP上截取BF=PC,连接AF,∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠DAB=∠EAC,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,BF=CP,∴△BAF≌△CAP(SAS),∴AF=AP,∠BAF=∠CAP,∴∠BAC=∠P AF=60°,∴△AFP是等边三角形,∴PF=P A,∴PB=BF+PF=PC+P A;(3)PC=P A+PB,理由如下:如图③,在PC上截取CM=PB,连接AM,同理得:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,PB=CM,∴△AMC≌△APB(SAS),∴AM=AP,∠BAP=∠CAM,∴∠BAC=∠P AM=60°,∴△AMP是等边三角形,∴PM=P A,∴PC=PM+CM=P A+PB.15.【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O 顺时针旋转一个锐角到图②位置.按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC 交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.【分析】【情境再现】由△OBE≌△OAF,得BE=AF,OE=OF,∠BEO=∠AFO,可证明△BHE≌△AGF (SAS),得BH=AG;【迁移应用】由△BHE≌△AGF,得∠BHE=∠AGF,可得∠AGF+∠GPO=90°,从而∠BHE+∠HPD=90°,∠HDP=90°,故DG⊥BH;【拓展延伸】设AB交OH于T,OG交AC于K,根据△ABC,△HOG是含30°角的直角三角形,AO⊥BC,可得OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,即得△BOT∽△AOK,有===,∠BTO=∠AKO,又OH=GO,可得==,故△BTH∽△AKG,即得==,BH=AG.【解答】【情境再现】证明:由阅读材料知△OBE≌△OAF,∴BE=AF,OE=OF,∠BEO=∠AFO,∴∠BEH=∠AFG,∵OH=OG,∴OH﹣OE=OG﹣OF,即EH=GF,在△BHE和△AGF中,,∴△BHE≌△AGF(SAS),∴BH=AG;【迁移应用】解:猜想:DG⊥BH;证明如下:由【情境再现】知:△BHE≌△AGF,∴∠BHE=∠AGF,∵∠HOG=90°,∴∠AGF+∠GPO=90°,∴∠BHE+∠GPO=90°,∵∠GPO=∠HPD,∴∠BHE+∠HPD=90°,∴∠HDP=90°,∴DG⊥BH;【拓展延伸】解:猜想:BH=AG,证明如下:设AB交OH于T,OG交AC于K,如图:由已知得:△ABC,△HOG是含30°角的直角三角形,AO⊥BC,∴∠AOB=90°,∴OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,∴△BOT∽△AOK,∴===,∠BTO=∠AKO,∴OT=OK,BT=AK,∠BTH=∠AKG,∵OH=GO,∴HT=OH﹣OT=GO﹣OK=(GO﹣OK)=KG,∴==,∴△BTH∽△AKG,∴==,∴BH=AG19。
中考数学总复习《全等三角形》专项测试题-附参考答案
中考数学总复习《全等三角形》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.如图,已知CD=CA,∠D=∠A添加下列条件中的( )仍不能证明△ABC≌△DEC.A.DE=AB B.CE=CBC.∠DEC=∠B D.∠ECD=∠BCA2.下列说法正确的是( )A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形3.到△ABC的三条边距离相等的点是△ABC的( )A.三条中线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条角平分线的交点4.如图,点B,F,C,E在一条直线上AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是( )A.AB=DE B.AC=DF C.BF=EC D.∠A=∠D5.如图,在△ABC中,AD是高线,过点D作DE⊥AB于点E,DF⊥AC于点F,且DE=DF,则下列判断中不正确的是( )A.AD是∠BAC的平分线B.AB=ACC.AE=DE D.图中有3对全等三角形6.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC7.如图AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则( )A.∠1=∠EFD B.BE=ECC.BF=DF=CD D.FD∥BC8.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x−2,2x−1若这两个三角形全等,则x为( )B.4C.3D.不能确定A.73二、填空题(共5题,共15分)9.如图∠C=90∘,AC=20,BC=10,AX⊥AC,点P和点Q同时从点A出发,分别在线段AC和射线AX上运动,且AB=PQ,当AP=时,以点A,P,Q为顶点的三角形与△ABC全等.10.如图,△ABC的面积为12cm2,以顶点A为圆心,适当长为半径画弧,分别交AC,MN的长为半径画弧,两弧交于点P,AB于点M,N,再分别以点M,N为圆心,大于12作射线AP,过点C作CD⊥AP于点D,连接DB,则△DAB的面积是cm2.11.如图,△ABC是不等边三角形DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.12.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上BF=CE,AB∥DE请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).13.如图,是一个测量工件内槽宽的工具,点O既是AAʹ的中点,也是BBʹ的中点,若测得AB=5cm,则该内槽AB的宽为cm.三、解答题(共3题,共45分)14.如图△ABC≌△DEF,AB和DE是对应边,∠A和∠D是对应角,找出图中所有相等的线段和角.15.如图,点E是□ABCD的边CD的中点,连结AE并延长,交BC的延长线于点F,若AD的长为2,求CF的长。
全等三角形专项训练及答案.解析
初中数学专项训练:全等三角形题一、选择1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是A.AB=ADB.AC平分∠BCDC.AB=BDD.△BEC≌△DEC2.如图,在△ABC和△DEB中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=D,C∠A=∠DD.∠B=∠E,∠A=∠D3.如图,已知OP平分∠AOB,∠AOB=60,CP2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是A.2B.2C.3D.234.如图,在四边形ABCD中,对角线A B=AD,CB=CD,若连接A C、BD相交于【】点O,则图中全等三角形共有A.1 对B.2对C.3对D.4对5.如图,在△ABC中,AB=AC,点D、E在BC上,连接A D、AE,如果只添加()一个条件使∠DAB=∠EAC,则添加的条件不能为A.BD=CEB.AD=AEC.DA=DED.BE=CD6.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC7.如图,已知△ABC中,∠ABC=9°0,AB=BC,三角形的顶点在相互平行的三l1,l2,l3上,且l1,l2之间的距离为1 , l2,l3之间的距离为2 ,条直线则AC的长是()A.26B.25C.42D.7二、填空题8.如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段.9.如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线B D交AC于点D,AD=3,BC=10,则△BDC的面积是。
10.如图,已知B C=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个.(答案不唯一,只需填一个)条件为11.如图,在Rt△ABC中,∠ACB=9°0,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.12.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,.则DF的长为13.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF = CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是.(只需写一个,不添加辅助线)14.如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学专项训练:全等三角形一、选择题1.如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是A .AB=ADB .AC 平分∠BCDC .AB=BD D .△BEC ≌△DEC2.如图,在△ABC 和△DEB 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是A .BC=EC ,∠B=∠EB .BC=EC ,AC=DCC .BC=DC ,∠A=∠D D .∠B=∠E ,∠A=∠D 3.如图,已知OP 平分∠AOB ,∠AOB=︒60,CP 2=,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .如果点M 是OP 的中点,则DM 的长是A .2B .2C .3D .324.如图,在四边形ABCD 中,对角线AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有【 】A .1对B .2对C .3对D .4对5.如图,在△ABC 中,AB=AC ,点D 、E 在BC 上,连接AD 、AE ,如果只添加一个条件使∠DAB=∠EAC ,则添加的条件不能为【 】A .BD=CEB .AD=AEC .DA=DED .BE=CD6.如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是A .∠A=∠CB .AD=CBC .BE=DFD .AD ∥BC7.如图,已知△ABC 中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为1 , l 2,l 3之间的距离为2 ,则AC 的长是( )A .26B .52C .24D .7二、填空题8.如图,已知∠C=∠D ,∠ABC=∠BAD ,AC 与BD 相交于点O ,请写出图中一组相等的线段 .9.如图,在Rt △ABC 中,∠A=Rt ∠,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是 。
10.如图,已知BC=EC ,∠BCE=∠ACD ,要使△ABC ≌△DEC ,则应添加的一个条件为 .(答案不唯一,只需填一个)11.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.12.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为.13.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF = CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是.(只需写一个,不添加辅助线)14.如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是。
15.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).16.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE ≌△ACD,需添加的一个条件是(只写一个条件即可).17.(2013年浙江义乌4分)如图,已知∠B=∠C.添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是;18.如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件,使△ABC≌△DEF.19.如图,△ABC和△FPQ均是等边三角形,点D、E、F分别是△ABC三边的中点,点P 在AB边上,连接EF、QE.若AB=6,PB=1,则QE= .20.如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .21.如图,△ABD、△ACE都是正三角形,BE和CD交于O点,则∠BOC=__________.22.如图,四边形ABCD中,∠BAD=∠C=90º,AB=AD,AE⊥BC于E,若线段AE=5,则S四边形ABCD=。
三、解答题23.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.24.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.25.课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.(1)叙述三角形全等的判定方法中的推论AAS;(2)证明推论AAS.要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.26.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC .(1)求证:△ABE ≌DCE ;(2)当∠AEB=50°,求∠EBC 的度数。
27.已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACD=∠DCE=90°,D 为AB 边上一点.求证:BD=AE .28.如图,ABO △与CDO △关于O 点中心对称,点E 、F 在线段AC 上,且AF=CE 。
求证:FD=BE 。
29.如图,已知线段AB 。
(1)用尺规作图的方法作出线段AB 的垂直平分线l (保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线l 上任意取两点M 、N (线段AB 的上方),连接AM 、AN 。
BM 、BN 。
求证:∠MAN=∠MBN 。
30.如图,两条公路OA 和OB 相交于O 点,在∠AOB 的内部有工厂C 和D ,现要修建 一个货站P ,使货站P 到两条公路OA 、OB 的距离相等,且到两工厂C 、D 的距离相等,用尺规作出货站P 的位置.(要求:不写作法,保留作图痕迹,写出结论.)31.两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号反射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)32.如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.33.如图,在△ABC中,∠ACB=900,∠B>∠A,点D为边AB的中点,DE∥BC交AC 于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连接CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.34.如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.35.如图,∠AOB=90°,OA=0B,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AD=OD.36.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系式;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.37.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.38.如图,CD=CA,∠1=∠2,EC=BC,求证:DE=AB.39.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以证明.40.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.41.如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.42.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.43.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.44.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.45.已知等腰三角形ABC中,∠ACB=90°,点E在AC边的延长线上,且∠DEC=45°,点M、N分别是DE、AE的中点,连接MN交直线BE于点F.当点D在CB边上时,如图1所示,易证MF+FN=12 BE(1)当点D在CB边上时,如图2所示,上述结论是否成立?若成立,请给与证明;若不成立,请写出你的猜想,并说明理由.(2)当点D在BC边的延长线上时,如图3所示,请直接写出你的结论.(不需要证明)46.如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC ≌△ADE(只能添加一个).(1)你添加的条件是.(2)添加条件后,请说明△ABC≌△ADE的理由.47.如图,AD=BC ,AC=BD ,求证:△EAB 是等腰三角形.48.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等. 那么在什么情况下,它们会全等?(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略).对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1. (请你将下列证明过程补充完整)证明:分别过点B ,B 1作BD ⊥CA 于D ,B 1D 1⊥C 1A 1于D 1.则∠BDC =∠B 1D 1C 1=90°,∵BC =B 1C 1,∠C =∠C 1,∴△BCD ≌△B 1C 1D 1,∴BD =B 1D 1.______________________________。
(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.A B C D A 1B 1C 1D 149.有一块不规则的鱼池,下面是两位同学分别设计的能够粗略地测量出鱼池两端A 、B 的距离的方案,请你分析一下两种方案的理由.方案一:小明想出了这样一个方法,如图①所示,先在AB 的垂线BF 上取两点C 、D ,使CD =BC ,再定出BF 的垂线DE ,使A 、C 、E 在同一条直线上,测得DE 的长就是AB 的长. 你能说明一下这是为什么吗?方案二:小军想出了这样一个方法,如图②所示,先在平地上取一个可以直接到达鱼池两端A 、B 的点C ,连结AC 并延长到点D ,使CD =CA ,连结BC 并延长到E ,使CE =CB ,连结DE ,量出DE 的长,这个长就是A 、B 之间的距离. 你能说明一下这是为什么吗? A BCDE F A B C E D50.MN、PQ是校园里的两条互相垂直的小路,小强和小明分别站在距交叉口C等距离的B、E两处,这时他们分别从B、E两点按同一速度沿直线行走,如图所示,经过一段时间后,同时到达A、D两点,他们的行走路线AB、DE平行吗?请说明你的理由.初中数学专项训练:全等三角形参考答案1.C【解析】试题分析:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,BE=DE。