三角函数的求值、化简与证明(教案)

合集下载

第9讲 三角函数的化简与求值

第9讲 三角函数的化简与求值

第九讲: 三角函数的化简与求值一、知识要点1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4.4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定. 二、方法点拨三角变换是运算化简过程中运用较多的变换, 也是历年高考命题的热点.提高三角变换能力, 要学会设置条件, 灵活运用三角公式, 掌握运算、化简的方法和技能.常用的数学思想方法技巧如下: 1. 角的变换: 在三角化简、求值、证明中, 表达式往往出现较多的相异角, 可根据角与角之间的和差、倍半、互补、互余的关系, 运用角的变换, 沟通条件与结论中的差异, 使问题获解.对角的变形如下:角的变换:β=α+β2-α-β2;α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β)2()2()(,2304560304515α-β-β+α=β-β+α=α=-=-=,)4()4()()(2α-π-α+π=β-α+β+α=α,)4(24α-π-π=α+π特别地, α+π4与α-π4为互余角, 它们之间可以互相转化, 在三角变形中使用频率高.2. 函数名称变换: 三角变形中, 常常需要变函数名称为同名函数. 如在三角函数中正余弦是基础, 通常化切、割为弦, 变异名为同名.3. 常数代换: 在三角函数运算、求值、证明中, 有时需要将常数转化为三角函数值, 例如常数“1”的代换变形有: α-α=α-α=α+α=222222cot csc tan sec cos sin 1.4. 幂的变换: 降幂是三角变换时常用方法, 对次数较高的三角函数式, 一般采用降幂处理的方法. 常用降幂公式有:1cos sin ,22cos 1cos ,22cos 1sin 2222=α+αα+=αα-=α 等, 三角变换时, 有时需要升幂, 如对无理式α+cos 1常用升幂化为有理式, 升幂公式与降幂公式是相对而言的.5. 公式变形式: 根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.三角公式是变换的依据, 应熟练掌握三角公式的直接应用,逆用以及变形式的应用.如:)tan tan 1)(tan(tan tan ,sin 22sin cos β⋅αβ±α=β±ααα=α 等. 三、典型例题讲解:考点一、三角函数式的化简【例1】►化简2cos 4x -2cos 2x +122tan ⎝⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .三角函数式的化简要遵循“三看”原则:(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式;(3)三看“结构特征”,分析结构特征,找到变形的方向. 【训练1】 化简:(sin α+cos α-1)(sin α-cos α+1)sin 2α.考点二、三角函数式的求值【例1】已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,求cos(α+β)的值.训练1】 已知α,β∈⎝ ⎛⎭⎪⎫0,π2,sin α=45,tan(α-β)=-13,求cos β的值. 训练2】已知cos(α-6π)+sin α=354,则sin(α+67π)的值是( )训练3】已知tan ⎝ ⎛⎭⎪⎫x +π4=2,则tan x tan 2x 的值为________训练4】已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________考点三、三角函数的求角问题【例1】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.【训练1】 已知α,β∈⎝ ⎛⎭⎪⎫-π2,π2,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.【训练2】已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.考点四、 三角函数的综合应用【例1】►设0<θ<2π,曲线x 2sin θ+y 2cos θ=1和x 2cos θ-y 2sin θ=1有4个不同的交点。

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。

高中数学第5章三角函数5.5三角恒等变换5.5.2简单的三角恒等变换教学案新人教A版必修第一册

高中数学第5章三角函数5.5三角恒等变换5.5.2简单的三角恒等变换教学案新人教A版必修第一册

5.5.2 简单的三角恒等变换(教师独具内容)课程标准:1.能用二倍角公式导出半角公式.2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式进行化简、求值以及证明三角恒等式.教学重点:利用三角恒等变换对三角函数式化简、求值和证明. 教学难点:利用三角恒等变换来解决问题.【知识导学】知识点一 半角公式知识点二 积化和差与和差化积公式 (1)积化和差公式sin αcos β=12[sin(α+β)+sin(α-β)].cos αsin β=12[sin(α+β)-sin(α-β)].cos αcos β=12[cos(α+β)+cos(α-β)].sin αsin β=-12[cos(α+β)-cos(α-β)].(2)和差化积公式 sin α+sin β=2sinα+β2cosα-β2.sin α-sin β=2cos α+β2sin α-β2. cos α+cos β=2cosα+β2cosα-β2. cos α-cos β=-2sinα+β2sinα-β2.【新知拓展】辅助角公式辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫tan φ=b a.推导过程:a sin x +b cos x =a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2sin x +b a 2+b 2cos x . 令cos φ=a a 2+b2,sin φ=b a 2+b2,则a sin x +b cos x =a 2+b 2(sin x cos φ+cos x sin φ)=a 2+b 2sin(x +φ), 其中角φ所在象限由a ,b 的符号确定,角φ的值由tan φ=ba确定或由sin φ=b a 2+b 2和cos φ=a a 2+b2共同确定.1.判一判(正确的打“√”,错误的打“×”)(1)已知cos α=13,α∈(0,π),则sin α2=-33.( )(2)cos2π8-14=2+14.( ) (3)函数f (x )=3sin x +cos x (x ∈R )的最小正周期为π.( ) 答案 (1)× (2)√ (3)× 2.做一做(1)若cos α=13,α∈(0,π),则cos α2的值为( )A.63 B .-63 C .±63 D .±33(2)已知cos α=45,α∈⎝ ⎛⎭⎪⎫3π2,2π,则sin α2等于( )A .-1010 B.1010 C.3310 D .-35(3)函数f (x )=sin 2x +3sin x cos x 在区间⎣⎢⎡⎦⎥⎤π4,π2上的最大值是( )A .1 B.1+32 C.32 D .1+ 3(4)若tan α=2,则tan α2=________.答案 (1)A (2)B (3)C (4)-1±52题型一 利用半角公式求值例1 已知sin α=-45,π<α<3π2,求sin α2,cos α2,tan α2的值.[解] ∵π<α<3π2,sin α=-45,∴cos α=-35,且π2<α2<3π4,∴sin α2=1-cos α2=255, cos α2=-1+cos α2=-55, tan α2=sin α2cosα2=-2.金版点睛由三角函数值求其他三角函数式的值的步骤(1)若没有给出角的范围,则根号前的正负号需要根据条件讨论.一般讨论角所在象限. (2)由三角函数值求其他三角函数式的值的步骤: ①先化简所求的式子.②观察已知条件与所求式子之间的联系(从角和三角函数名称入手). ③将已知条件代入所求式子,化简求值.[跟踪训练1] 已知sin α2-cos α2=-15,450°<α<540°,求tan α2的值.解 由题意,得⎝⎛⎭⎪⎫sin α2-cos α22=15,即1-sin α=15,得sin α=45.∵450°<α<540°,∴cos α=-35,∴tan α2=1-cos αsin α=1-⎝ ⎛⎭⎪⎫-3545=2.题型二 三角函数式的化简例2 化简:(1+sin α+cos α)⎝⎛⎭⎪⎫sin α2-cos α22+2cos α(π<α<2π).[解] 原式=⎝⎛⎭⎪⎫2cos 2α2+2sin α2cos α2⎝ ⎛⎭⎪⎫sin α2-cos α22·2cos2α2=2cos α2⎝ ⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫sin α2-cos α22⎪⎪⎪⎪⎪⎪cos α2=cos α2(-cos α)⎪⎪⎪⎪⎪⎪cos α2.又∵π<α<2π,∴π2<α2<π,∴cos α2<0,∴原式=cos α2·(-cos α)-cosα2=cos α.[变式探究] 将本例改为化简:(1+sin α-cos α)⎝⎛⎭⎪⎫sin α2-cos α22-2cos α(180°<α<360°).解 原式=⎝⎛⎭⎪⎫2sin 2α2+2sin α2cos α2⎝ ⎛⎭⎪⎫sin α2-cos α22·2sin2α2=2sin α2⎝ ⎛⎭⎪⎫sin α2+cos α2⎝ ⎛⎭⎪⎫sin α2-cos α22⎪⎪⎪⎪⎪⎪sin α2=2sin α2(-cos α)2⎪⎪⎪⎪⎪⎪sin α2=sin α2(-cos α)⎪⎪⎪⎪⎪⎪sin α2.∵180°<α<360°,∴90°<α2<180°,∴sin α2>0,∴原式=-cos α. 金版点睛化简问题中的“三变”(1)变角:三角变换时通常先寻找式子中各角之间的联系,通过拆、凑等手段消除角之间的差异,合理选择联系它们的公式.(2)变名:观察三角函数种类的差异,尽量统一函数的名称,如统一为弦或统一为切. (3)变式:观察式子的结构形式的差异,选择适当的变形途径.如升幂、降幂、配方、开方等.[跟踪训练2] 化简: (1)1+sin θ-1-sin θ⎝ ⎛⎭⎪⎫3π2<θ<2π;(2)cos 2α1tanα2-tanα2.解 (1)原式=⎪⎪⎪⎪⎪⎪sin θ2+cos θ2-⎪⎪⎪⎪⎪⎪sin θ2-cos θ2,∵3π2<θ<2π,∴3π4<θ2<π, ∴0<sin θ2<22,-1<cos θ2<-22,从而sin θ2+cos θ2<0,sin θ2-cos θ2>0.∴原式=-⎝⎛⎭⎪⎫sin θ2+cos θ2-⎝ ⎛⎭⎪⎫sin θ2-cos θ2=-2sin θ2. (2)原式=cos 2αtan α21-tan 2α2=12cos 2α·2tanα21-tan 2α2=12cos 2α·tan α=12cos αsin α=14sin2α. 题型三 三角恒等式的证明例3 求证:tan 3x 2-tan x 2=2sin x cos x +cos2x .[证明] 证法一:tan 3x 2-tan x2=sin 3x 2cos 3x 2-sinx2cosx2=sin 3x 2cos x 2-cos 3x 2sin x 2cos 3x 2cos x 2=sin ⎝ ⎛⎭⎪⎫3x 2-x 2cos 3x 2cosx 2=sin x cos 3x 2cos x 2=2sin x cos ⎝ ⎛⎭⎪⎫3x 2+x 2+cos ⎝ ⎛⎭⎪⎫3x 2-x 2 =2sin xcos x +cos2x.∴原式成立.证法二:2sin x cos x +cos2x =2sin ⎝ ⎛⎭⎪⎫3x 2-x 2cos ⎝ ⎛⎭⎪⎫3x 2-x 2+cos ⎝ ⎛⎭⎪⎫3x 2+x 2=2⎝⎛⎭⎪⎫sin 3x 2cos x 2-cos 3x 2sin x 22cos 3x 2cos x 2=sin3x 2cos 3x 2-sin x 2cosx 2=tan 3x 2-tan x2.∴原式成立. 金版点睛在三角恒等式的证明中,化繁为简是化简三角函数式的一般原则,按照目标确定化简思路,由复杂的一边化到简单的一边.如果两边都比较复杂,也可以采用左右归一的方法.[跟踪训练3] 求证:sin (α+β)sin (α-β)sin 2αcos 2β=1-tan 2βtan 2α. 证明 证法一:左边=(sin αcos β+cos αsin β)(sin αcos β-cos αsin β)sin 2αcos 2β =sin 2αcos 2β-cos 2αsin 2βsin 2αcos 2β =1-cos 2αsin 2βsin 2αcos 2β=1-tan 2βtan 2α=右边. ∴原等式成立.证法二:右边=1-cos 2αsin 2βsin 2αcos 2β =sin 2αcos 2β-cos 2αsin 2βsin 2αcos 2β =(sin αcos β+cos αsin β)(sin αcos β-cos αsin β)sin 2αcos 2β =sin (α+β)sin (α-β)sin 2αcos 2β=左边. ∴原式成立.题型四 利用辅助角公式研究函数性质例4 已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6+2sin 2⎝ ⎛⎭⎪⎫x -π12(x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. [解] (1)∵f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6+2sin 2⎝ ⎛⎭⎪⎫x -π12 =3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+1-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12=2⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫32sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-12cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+1 =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6+1 =2sin ⎝⎛⎭⎪⎫2x -π3+1,∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝ ⎛⎭⎪⎫2x -π3=1, 有2x -π3=2k π+π2,即x =k π+5π12(k ∈Z ),∴所求x 的集合为{x ⎪⎪⎪⎭⎬⎫x =k π+5π12,k ∈Z .金版点睛(1)为了研究函数的性质,往往要充分利用三角变换公式转化为正弦型(余弦型)函数,这是解决问题的前提.(2)解此类题时要充分运用两角和(差)公式、二倍角公式、辅助角公式消除差异,减少角的种类和函数式的项数,为讨论函数性质提供保障.[跟踪训练4] 已知函数f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π4上的最大值和最小值.解 (1)f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6-1=4cos x ⎝⎛⎭⎪⎫32sin x +12cos x -1=3sin2x +2cos 2x -1 =3sin2x +cos2x =2sin ⎝⎛⎭⎪⎫2x +π6, 所以f (x )的最小正周期为π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.于是当2x +π6=π2,即x =π6时,f (x )max =2;当2x +π6=-π6,即x =-π6时,f (x )min =-1.题型五 三角变换的实际应用例5 如图,A ,B 是半径为1的圆O 上任意两点,以AB 为一边作等边三角形ABC .当点A ,B 处于怎样的位置时,四边形OACB 的面积最大?最大面积是多少?[解] 如图,设∠AOB =θ(0<θ<π),四边形OACB 的面积为S .取AB 的中点D ,连接OD ,CD ,则OD ⊥AB ,CD ⊥AB .在Rt △ODA 中,OA =1,∠AOD =θ2,所以AD =OA sin ∠AOD =sinθ2,OD =OA cos ∠AOD =cos θ2,所以AB =2AD =2sin θ2.因为△ABC 为等边三角形,所以CD =AC sin ∠CAB =2sin θ2sin60°=3sin θ2.所以S =S △ABC +S △AOB =12CD ·AB +12OD ·AB =12×3sin θ2×2sin θ2+12×cos θ2×2sin θ2 =3sin2θ2+12sin θ=3×1-cos θ2+12sin θ=12sin θ-32cos θ+32 =sin ⎝⎛⎭⎪⎫θ-π3+32.因为0<θ<π,所以-π3<θ-π3<2π3.所以当θ-π3=π2,即θ=5π6时,S 取得最大值1+32.所以当OA 与OB 的夹角为5π6时,四边形OACB 的面积最大,最大面积是1+32.金版点睛解答此类问题,关键是合理引入辅助角,先将实际问题转化为三角函数问题,再利用三角函数的有关知识求解.在求解过程中,要注意角的取值范围.[跟踪训练5] 有一块以O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 建为绿地,使其一边AD 落在半圆的直径上,另外两点B ,C 落在半圆的圆周上.已知半圆的半径长为a ,如何选择关于点O 对称的点A ,D 的位置,才能使矩形ABCD 的面积最大?解 画出图形如图所示.设∠AOB =θ,θ∈⎝⎛⎭⎪⎫0,π2,则AB =a sin θ,OA =a cos θ. 设矩形ABCD 的面积为S , 则S =2OA ·AB=2a cos θ·a sin θ=a 2·2sin θcos θ=a 2sin2θ.因为θ∈⎝⎛⎭⎪⎫0,π2,所以2θ∈(0,π).当2θ=π2,即θ=π4时,S max =a 2,此时点A ,D 距离点O 均为22a .1.已知sin α=35⎝ ⎛⎭⎪⎫0<α<π2,则cos α2等于( )A.45 B .-45 C .-31010 D.31010 答案 D解析 ∵sin α=35且0<α<π2,∴cos α=45.又cos α=2cos 2α2-1,∴cos 2α2=1+cos α2=910, ∵0<α2<π4,∴cos α2=31010.2.2sin 2αsin2α·2cos 2αcos2α等于( ) A .tan α B .tan2α C .1 D.12答案 B解析 原式=(2sin αcos α)2sin2αcos2α=sin 22αsin2αcos2α=sin2αcos2α=tan2α.3.函数y =3sin x +3cos x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2的值域为________. 答案 [-3,23]解析 函数y =3sin x +3cos x =23sin ⎝⎛⎭⎪⎫x +π6, 又x ∈⎣⎢⎡⎦⎥⎤-π2,π2, ∴x +π6∈⎣⎢⎡⎦⎥⎤-π3,2π3, ∴sin ⎝ ⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤-32,1, ∴23sin ⎝⎛⎭⎪⎫x +π6∈[-3,23]. 4.求值:sin 235°-12cos10°cos80°=________. 答案 -1解析 sin 235°-12cos10°cos80°=1-cos70°2-12cos10°sin10°=-12cos70°12sin20°=-1. 5.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+sin ⎝⎛⎭⎪⎫2x -π3+2cos 2x -1,x ∈R . (1)求函数f (x )的最小正周期;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值和最小值. 解 (1)f (x )=sin2x cos π3+cos2x sin π3+sin2x cos π3-cos2x sin π3+cos2x =sin2x +cos2x =2sin ⎝⎛⎭⎪⎫2x +π4,所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π8上单调递增,在区间⎣⎢⎡⎦⎥⎤π8,π4上单调递减,又f ⎝ ⎛⎭⎪⎫-π4=-1,f ⎝ ⎛⎭⎪⎫π8=2,f ⎝ ⎛⎭⎪⎫π4=1,故函数f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值为2,最小值为-1.。

(完整版)三角函数化简求值证明技巧

(完整版)三角函数化简求值证明技巧

第三讲一、三角函数的化简、计算、证明的恒等变形的应用技巧1、网络2、三角函数变换的方法总结(1)变换函数名对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。

【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。

练习:已知sin(α+β)=,cos(α-β)=,求的值。

2)变换角的形式对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。

【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。

练习已知,求的值【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α+β)=提示:sin[(α+β)-β]=Asin (α+β)(3)以式代值利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。

这其中以“1”的变换为最常见且最灵活。

“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。

【例4】化简:(4)和积互化积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。

这往往用到倍、半角公式。

三角函数化简和证明()

三角函数化简和证明()

三角函数的化简、求值与证明(3)主化锐:当已知角是90 到360内的角时,可利用180,270,360ααα--- 的诱导公式把这个角的三角函数值化为0 到90 内的角.二. 两角和与差的三角函数公式1. 两角和与差的正弦公式:()sin αβ±=______________.变形式:()()sin sin αβαβ++-=_______()();sin sin αβαβ+--=_______;2.两角和与差的余弦公式:()cos αβ±=__________________变形式:()()cos cos αβαβ++-=_____________;()()cos cos αβαβ+--=__________;3.两角和与差的正切公式:()tan αβ±=___________())2k k Z παβαβπ+≠+∈(、、.变形式:tan tan αβ±=_________________.【例1】计算:2(sincos )tan()643πππ++-=【例2】已知tan α=sin()cos()()sin()sin()n n n n n αααα+π-π∈+π+-πZ 的值.【例3】函数()cos()sin(),22xx f x x =-+π-∈R . (1)求()f x 的最小正周期有最大值; (2)求)(x f 在[0,)π上的减区间.【例4】若[0,2α∈π]sin co s αα=+,则α的取值范围是( ) A.(0,)2π B.(,)2ππ C.(,)23ππ D.(,2)23ππ【例5】已知关于x 的方程221)0x x m -++=的两根为s i nc o s θθ、,其中(0,2)θπ∈.(1)求m 的值;(2)求sin cos 1cot 1tan θθθθ+--的值.【例6】已知02x π-<<,1sin cos 5x x +=. (1)求sin cos x x -的值;(2)求sin 22cos21tan x x x++的值.针对性训练1、已知θ是第三象限角,且4459sin cos θθ+=,那么2sin θ等于 ( ) A、3 B、3- C 、23 D 、23- 2、函数22y sin x x =- ( ) A 、2π B 、π C 、3π D 、4π3、tan70cos10201)- 等于 ( ) A 、1 B 、2 C 、-1 D 、-24、已知46sin (4)4m m mαα-=≠-,则实数m 的取值范围是______。

高中数学三角函数教案

高中数学三角函数教案

高中数学三角函数教案三角函数内容在高中数学课程中占有重要的地位,它是描述现实世界周期现象的重要模型,又是高中教材中基本初等函数的其中之一。

下面店铺为你整理了高中数学三角函数教案,希望对你有帮助。

高中数学三角函数教案:任意角的三角函数一、教学目标1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义.2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验.3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观.4.培养学生求真务实、实事求是的科学态度.二、重点、难点、关键重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法.难点:把三角函数理解为以实数为自变量的函数.关键:如何想到建立直角坐标系;六个比值的确定性( α确定,比值也随之确定)与依赖性(比值随着α的变化而变化).三、教学理念和方法教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学.四、教学过程[执教线索:回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)——问题情境:能推广到任意角吗?——它山之石:建立直角坐标系(为何?)——优化认知:用直角坐标系研究锐角三角函数——探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)——例题与练习——回顾小结——布置作业](一)复习引入、回想再认开门见山,面对全体学生提问:在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?探索任意角的三角函数(板书课题),请同学们回想,再明确一下:(情景1)什么叫函数?或者说函数是怎样定义的?让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调:传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域.现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作:y= f(x),x∈A ,其中x叫自变量,自变量x的取值范围A叫做函数的定义域高中数学三角函数教案:三角函数的诱导公式1教学目标1.知识与技能(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。

三角函数教案优秀3篇

三角函数教案优秀3篇

三角函数教案优秀3篇角函数教学设计篇一教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。

锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。

研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。

本章内容与已学#39;相似三角形#39;#39;勾股定理#39;等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。

学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。

难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。

至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。

第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力。

情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。

重难点:1.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实。

2.难点与关键:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。

三角函数式的化简和证明

三角函数式的化简和证明

简单的三角恒等变换——化简与证明学习目标:能正确地运用三角函数的有关公式进行三角函数式的求值,化简与恒等式的证明. 学习重点:三角函数的有关公式的灵活应用和一些简单的变性技巧.学习过程一、知识清单1.证明了cos()a b -= ®cos()a b += ®cos()2p a -= ,cos()2p a += ®sin()a b += sin()a b -= ®tan()a b += ,tan()a b -= 2. cos (+)a b = ®cos 2a = = = sin()a b += ®sin 2a = tan()a b += ®tan 2a =3.倍角的相对性sin a = ,cos a = ,tan a =4.要掌握这些公式的推导和联系,用时注意公式的“正用”,“逆用”和“变用”.如:降幂扩角公式 2sin a = ;2cos a = ; 1cos a += ;1cos a -= ;1sin a += ;1sin a -= .5. 划一公式:sin cos a x b x += (其中tan f = ,f 所在象限由 确定).二、范例解析题型一 三角函数式的化简和证明1.三角函数式的化简要求:通过对三角函数式的恒等变形使最后所得到的结果中:①所含函数和角的名称或种类最少;②各项的次数尽可能地低;③出现的项数最少; ④一般应使分母和根号不含三角函数式;⑤对能求出具体数值的,要求出值.2.三角变换的三项基本原则:(1)角的变换:划同角(角的拆分,配角和凑角,1的变换);(2)函数名称的变换:划同名(正切划弦);(3)幂指数的变换:划同次(升幂、降幂公式,同角公式).例1化简下列各式 ; ②1sin 2cos 21sin 2cos 2a a a a+-=++ ; ③2sin 2cos 1cos 2a a a-=+ ; ④222cos 12tan()sin ()44a p p a a -=-+ ; 例2 证明下列各式(从左到右或从右到左或左右开攻中间会师,一般化繁为简)①22tan 2sin 1tan 2a a a =+ ②221tan 2cos 1tan 2a a a -=+③sin 1cos tan21cos sin a a a a a -==+ ④[]1sin cos sin()sin()2a b a b a b =++-⑤sin sin 2sincos 22q f q f q f +-+=.三、课下练习: 课本142P 2 ; 143P A 组 1, 2, 3, 4;B 组 1; 146P 8;147P 5.。

三角恒等变换教案(教师用)

三角恒等变换教案(教师用)
例8、【给值求角】(1)已知 , ,且 ,求 的值
(2)若 且 , ,求 的值。
(答: ).
例9、【给值求取值范围】
1.若 求 的取值范围。
2. ห้องสมุดไป่ตู้求 的取值范围
针对性练习二
1、已知 则 的值等于()
(A) (B) (C) (D)
2、已知 则 值等于()
(A) (B) (C) (D)
3、化简:
答案:1·B 2·C
知识框架
一、两角和与差的正弦、余弦、正切公式
二、倍角的正弦、余弦、正切公式
1、二倍角公式:
2、二倍角公式的变形
(1)升幂:(2)降幂:
三、三角恒等变换的常见形式
1、三角恒等变换中常见的三种形式:化简、求值、证明
(1)三角函数式的化简常见的方法为化切为弦、利用诱导公式、同角三角函数的基本关系及和(差)角公式、倍角公式等进行转化求解。
巩固作业
1、若 ,求 的值。
2、已知在 中, ,求cosA的值。
3、已知 的最值。
4、已知 , ,则 的最大值为______,最小值为______.
5、若 的取值范围是
[0 , ]
难题、易错题部分
1、 中, ,则 =_______
2、已知函数y=sin( x+ )与直线y= 的交点中距离最近的两点距离为 ,那么此函数的周期是()
三角恒等变换
课题
三角恒等变换
教学目标
1、掌握和差角公式、二倍角公式的推导方法与记忆技巧,并能熟练运用此类公式。
2、能够熟练进行三角恒等变换(如:化简、求值)
重点、难点
重点:三角恒等变换;难点:三角恒等变换的应用
考点及考试要求
1、两角和与差的正弦、余弦、正切公式。

沪教版(上海)数学高一下册-6.3 三角函数(1) 教案

沪教版(上海)数学高一下册-6.3  三角函数(1) 教案

三角函数(1)●知识梳理1.三角函数的性质和图象变换.2.三角函数的恒等变形.三角函数的化简、求值、证明多为综合题,突出对数学思想方法的考查.3.三角函数与其他数学知识的联系.特别要注意三角与几何、三角与平面向量的联系.【例1】 已知sin (α+β)=32,sin (α-β)=51,求βαtan tan 的值. 解:由已知得⎪⎪⎩⎪⎪⎨⎧=-=+②①,.51sin cos cos sin 32sin cos cos sin βαβαβαβα 所以sin αcos β=3013,cos αsin β=307.【例2】若实数、y 、m 满足x m y m -->,则称x 比y 远离m .(1)若21x -比1远离0,求x 的取值范围;(2)对任意两个不相等的正数a 、b ,证明:33a b +比22a b ab +远离2ab ab ;(3)已知函数()f x 的定义域k D=x|x +k Z x R 24ππ{≠,∈,∈}.任取x D ∈,()f x 等于sin x 和cos x 中远离0的那个值.写出函数()f x 的解析式,并指出它的基本性质(结论不要求证明).解析:(1) (,2)( 2.)x ∈-∞+∞;(2) 对任意两个不相等的正数a 、b ,有332a b ab ab +>222a b ab ab ab +> 因为33222|2|2()()0a b ab ab a b ab ab ab a b a b +--+-=+->,所以3322|2|2a b ab ab a b ab ab +->+-,即a 3+b 3比a 2b +ab 2远离2ab ;(3) 3sin ,(,)44()cos ,(,)44x x k k f x x x k k ππππππππ⎧∈++⎪⎪=⎨⎪∈-+⎪⎩, 性质:1︒f (x )是偶函数,图像关于y 轴对称,2︒f (x )是周期函数,最小正周期2T π=,3︒函数f (x )在区间(,]242k k πππ-单调递增,在区间[,)224k k πππ+单调递减,k ∈Z , 4︒函数f (x )的值域为2(,1].【例3】在△ABC 中,若sin C (cos A +cos B )=sin A +sin B .(1)求∠C 的度数;(2)在△ABC 中,若角C 所对的边c =1,试求内切圆半径r 的取值范围.解:(1)∵sin C (cos A +cos B )=sin A +sin B ,∴2sin C cos 2B A +·cos 2B A -=2sin 2B A +·cos 2B A -. 在△ABC 中,-2π<2B A -<2π. ∴cos 2B A -≠0.∴2sin 22C cos 2C =cos 2C , (1-2sin 22C )cos 2C =0. ∴(1-2sin 22C )=0或cos 2C =0(舍). ∵0<C <π,∴∠C =2π. (2)设Rt △ABC 中,角A 和角B 的对边分别是a 、b ,则有a =sin A ,b =cos A . ∴△ABC的内切圆半径 r =21(a +b -c )=21(sin A +cos A -1) =22sin (A +4π)-21≤212-. ∴△ABC 内切圆半径r 的取值范围是0<r ≤212-.【例4】函数f (x )=1-2a -2a cos x -2sin 2x 的最小值为g (a ),a ∈R ,(1)求g (a );(2)若g (a )=21,求a 及此时f (x )的最大值. 解:(1)f (x )=1-2a -2a cos x -2(1-cos 2x )=2cos 2x -2a cos x -1-2a =2(cos x -2a )2-22a -2a -1. 若2a <-1,即a <-2,则当cos x =-1时,f (x )有最小值g (a )=2(-1-2a )2-22a -2a -1=1; 若-1≤2a ≤1,即-2≤a ≤2,则当cos x =2a 时,f (x )有最小值g (a )=-22a -2a -1; 若2a >1,即a >2,则当cos x =1时,f (x )有最小值g (a )=2(1-2a )2-22a -2a -1=1-4a .∴g (a )=⎪⎪⎩⎪⎪⎨⎧>-≤≤-----<.24122122212)(),(),(a a a a a a (2)若g (a )=21,由所求g (a )的解析式知只能是-22a -2a -1=21或1-4a =21. 由⇒⎪⎩⎪⎨⎧=---≤≤-21122222a a a a =-1或a =-3(舍). 由⇒⎪⎩⎪⎨⎧=->21412a a a =81(舍). 此时f (x )=2(cos x +21)2+21,得f (x )max =5. ∴若g (a )=21,应a =-1,此时f (x )的最大值是5.。

高二数学简单的三角恒等变换教案(通用11篇)

高二数学简单的三角恒等变换教案(通用11篇)

高二数学简单的三角恒等变换教案(通用11篇)高二数学简单的三角恒等变换教案 1教学目标1、理解并掌握基本的三角恒等式,如和差化积、积化和差公式。

2、能够运用三角恒等式进行简单的三角恒等变换。

3、培养学生的逻辑推理能力和数学运算能力。

教学重点1、三角恒等式的理解和记忆。

2、三角恒等变换的方法和步骤。

教学难点三角恒等式的灵活运用和复杂三角表达式的化简。

教学准备1、多媒体课件,包含三角恒等式、例题和练习题。

2、黑板和粉笔。

教学过程一、导入新课复习上节课内容,回顾三角函数的定义和性质。

提出问题:如何利用已知的三角函数公式推导出新的三角恒等式?二、新课讲解1、讲解三角恒等式的基本概念,介绍和差化积、积化和差等公式。

2、通过实例演示如何使用三角恒等式进行三角恒等变换。

3、引导学生总结三角恒等变换的.一般方法和步骤。

三、课堂练习布置一些简单的三角恒等变换练习题,让学生尝试运用所学知识解决问题。

教师巡视指导,及时纠正学生的错误,并给予适当的提示和帮助。

四、巩固提升分析一些较复杂的三角恒等变换问题,引导学生思考如何灵活运用三角恒等式进行化简。

鼓励学生相互讨论,分享解题思路和方法。

五、课堂小结总结本节课的重点内容,强调三角恒等变换的重要性和应用价值。

布置课后作业,要求学生完成一些三角恒等变换的练习题,以巩固所学知识。

教学反思本节课通过实例演示和课堂练习,使学生初步掌握了三角恒等变换的基本方法和步骤。

但在处理较复杂问题时,部分学生仍显得不够熟练,需要进一步加强练习和指导。

在今后的教学中,可以设计更多具有针对性的练习题,帮助学生巩固和提高三角恒等变换的能力。

同时,也要注重培养学生的逻辑思维能力和数学运算能力,为后续的数学学习打下坚实的基础。

高二数学简单的三角恒等变换教案 2理解并掌握三角恒等变换的基本公式,包括正弦、余弦、正切的和差公式,二倍角公式,半角公式等。

能够运用三角恒等变换解决一些简单的三角函数化简、求值及证明问题,培养学生的逻辑推理能力和数学运算能力。

三角函数教案

三角函数教案

三角函数教案三角函数教案(精选4篇)三角函数教案篇11、锐角三角形中,任意两个内角的和都属于区间,且满意不等式:即:一角的正弦大于另一个角的余弦。

2、若,则,3、的图象的对称中心为( ),对称轴方程为。

4、的图象的对称中心为( ),对称轴方程为。

5、及的图象的对称中心为( )。

6、常用三角公式:有理公式: ;降次公式: , ;万能公式: , , (其中)。

7、帮助角公式: ,其中。

帮助角的位置由坐标打算,即角的终边过点。

8、时, 。

9、。

其中为内切圆半径, 为外接圆半径。

特殊地:直角中,设c为斜边,则内切圆半径,外接圆半径。

10、的图象的图象( 时,向左平移个单位, 时,向右平移个单位)。

11、解题时,条件中若有消失,则可设,则。

12、等腰三角形中,若且,则。

13、若等边三角形的边长为,则其中线长为,面积为。

14、;三角函数教案篇2二、复习要求1、三角函数的概念及象限角、弧度制等概念;2、三角公式,包括诱导公式,同角三角函数关系式和差倍半公式等;3、三角函数的图象及性质。

三、学习指导1、角的概念的推广。

从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。

这样一来,在直角坐标系中,当角的终边确定时,其大小不肯定(通常把角的始边放在x轴正半轴上,角的顶点与原点重合,下同)。

为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成k·3600 α的形式,特例,终边在x 轴上的角集合{α|α=k·1800,k∈z},终边在y轴上的角集合{α|α=k·1800 900,k∈z},终边在坐标轴上的角的集合{α|α=k·900,k∈z}。

在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小。

弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特别角的弧度制。

在弧度制下,扇形弧长公式l=|α|r,扇形面积公式,其中α为弧所对圆心角的弧度数。

三角函数的化简与求值

三角函数的化简与求值

1.三角恒等变换的两原则(1)化繁为简:变复角为单角,变不同角为同角,化非同名函数为同名函数,化高次为低次,化多项式为单项式,化无理式为有理式。

(2)消除异差:消除已知与未知、条件与结论、左端与右端以及各项的次数、角、函数名称、结构式等方面的差异。

2.三角函数式的化简 (1)化简要求①三角函数名称尽量少;②次数尽量低;③能求值的尽量求值; ④尽量使分母不含三角函数;⑤使被开方数不含三角函数. (2)化简思路对于和式,基本思路是降次、消项和逆用公式;对于三角分式,基本思路是分子与分母约分或逆用公式;对于二次根式,注意二倍角公式的逆用,另外,还可以用切割化弦、变量代换、角度归一等方法 (3)化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂,和差化积,积化和差等。

3.三角恒等式的证明 (1)证明三角恒等式的方法观察等式两边的差异(角、函数、运算的差异),从解决某一差异入手(同时消除其他差异),确定从该等式的哪些证明(也可两边同时化简),当从解决差异方面不易入手时,可采用转换命题法或用分析法等。

(2)证明三角条件等式的方法首先观察条件与结论的差异,从解决这一差异入手,确定从结论开始.通过变换,将已知表达式代入得出结论,或通过变换已知条件得出结论,如果这两种方法都证不出来,可采用分析法;如果已知条件含参数,可采用消去参数法;如果已知条件是连比的式子,可采用换元法等。

1. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。

即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。

基本的技巧有:(1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等),如 (1)已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____ (答:322);(2)已知02πβαπ<<<<,且129cos()βα-=-,223sin()αβ-=,求cos()αβ+的值(答:490729); (3)已知,αβ为锐角,sin ,cos x y αβ==,3cos()5αβ+=-,则y 与x 的函数关系为______(答:43(1)55y x x =<<)(2)三角函数名互化(切化弦),如 (1)求值sin 50(13tan10)+(答:1);(2)已知sin cos 21,tan()1cos 23αααβα=-=--,求tan(2)βα-的值(答:18)(3)公式变形使用(tan tan αβ±()()tan 1tan tan αβαβ=±。

专题复习:三角函数教案

专题复习:三角函数教案

专题复习:专题:三角函数一、深入理解三角函数的定义:明确定义:设角α 是任意角,在角α的终边(除原点外)任取一点P (x ,y ),点P到原点O的距离||r OP ==,则sin y r α= ,cos x r α= ,tan yxα= (0x ≠ )例1 已知角θ 的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x = 上,则cos2θ 的值为( )(A ) 45- (B )35- (C )35 (D )45二、三角函数的求值:三角函数的化简与求值是以三角函数的基本公式为基础,通过恒等变形及数值运算等方法使得三角函数式得以化简或求出具体的数值。

思路:观察分析已知角和未知角,沟通它们之间的联系,从而灵活选择公式。

理解:诱导公式、同角三角函数基本关系式、倍角公式。

1、诱导公式(公式记忆口诀:奇变偶不变,符号看象限):sin cos()2παα=-+、cos sin()2παα=+ sin cos()2παα=-、cos sin()2παα=-2、同角三角函数基本关系式:22sin cos 1αα+= ,sin tan cos ααα=注意公式的变形形式,用于实现同一个角的正弦、余弦、正切的转化。

3、倍角公式:sin 22sin cos ααα=2222cos 2cos sin 12sin 2cos 1ααααα=-=-=-变形:2221cos 2cos 212sin 2sin 1cos 2sin 2αααααα-=-⇒=-⇒=2221cos 2cos 22cos 12cos 1cos 2cos 2αααααα+=-⇒=+⇒=4、技巧:2()()ααβαβ=++-、()44ππαα=+-、22αα=⋅等。

例1、已知7cos 2,252πθθπ=<<,求:(1)tan θ的值;(2)22cos sin 2)4θθπθ-+的值。

分析:利用倍角公式是解本题的关键。

需要注意的是余弦的二倍角公式有不同的变形形式,在实际解题中要合理地进行选择。

三角函数的教案设计

三角函数的教案设计

三角函数的教案设计三角函数一. 教学内容:三角函数(结构)二、要求(一)理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。

(二)掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式)(三)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。

(四)会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及Y=Asin(ωx φ)的简图、理解A、ω、 < 1271864542"> 的意义。

三、热点分析1. 近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强.2. 对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的’问题3. 基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解.4. 立足课本、抓好基础.从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在中首先要打好基础.在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度.四、复习建议本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点:(1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理。

5三角函数式的化简与证明

5三角函数式的化简与证明

例1:化简或求值
(1) tan12 tan33 tan12 tan33

1 tan75 ( 2) 1 tan75

例1:化简或求值
(3) sin 50 (1 3 tan10 ) 1 0 ( 4) 4 cos 10 0 tan 10
0 0
1,已知sin sin sin 0, cos cos cos 0. 则 cos( )的值是 ______ .
ห้องสมุดไป่ตู้

求(1) cos( )
凑角法
如:
( ) , 2 ( ) ( )
2 ( ) ( ), 2 ( ) 与 互余, + 与 互余 3 6 4 4
2, 在ABC中,如果4 sin A 2 cos B 1, 2 sin B 4 cos A 3 3, 则 sin C的大小是_____.
例2、

sin 3 sin2 , , , k k z
求证:
tan 2 tan
2、证明及其基本方法 (1)化繁为简法 (2)左右归一法 (3)变更命题法 (4)条件等式的证明关键在于分析已知条件与求证结论 之间的区别与联系 (5)分析法 3、无论是化简还是证明都要注意: (1)角度的变化 (2)函数名的变化(化切为弦是常用手段) (3)次数的变化(升降幂公式的灵活应用) (4)角的范围的变化(开方时注意正负问题)
三角函数的化简与证明
高三备课组
一、知识点 1、化简 (1)化简目标:项数尽量少,次数尽量低,尽量不含分 母和根号
(2)化简三种基本类型: 1) 根式形式的三角函数式化简 2) 多项式形式的三角函数式化简 3)分式形式的三角函数式化简

三角函数的求值与化简

三角函数的求值与化简

三角函数的求值与化简一 三角函数式的化简与证明 1.两角和与差的三角函数公式 sin(α+β)=sin αcos β+cos αsin β(S α+β) sin(α-β)=sin αcos β-cos αsin β.(S α-β) cos(α+β)=cos αcos β-sin αsin β;(C α+β) cos(α-β)=cos αcos β+sin αsin β.(C α-β) tan (α+β)=tan α+tan β1-tan αtan β;(T α+β)tan (α-β)=tan α-tan β1+tan α·tan β(T α-β)2.二倍角公式sin 2α=2sin αcos α;(S 2α)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(C 2α) tan 2α=2tan α1-tan 2α.(T 2α)3.公式的变形与应用(1)两角和与差的正切公式的变形 tan α+tan β=tan (α+β)/(1-tan αtan β); tan α-tan β=tan (α-β)/(1+tan αtan β). (2)升幂公式1+cos α=2cos 2α2;1-cos α=2sin 2α2.(3)降幂公式 sin 2α=1-cos 2α2;cos 2α=1+cos 2α2. (4)其他常用变形sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α; cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α;1±sin α=⎝⎛⎭⎫sin α2±cos α22; tan α2=sin α1+cos α=1-cos αsin α.5.角的拆分与组合 (1)已知角表示未知角例如,2α=(α+β)+(α-β),2β=(α+β)-(α-β), α=(α+β)-β=(α-β)+β, α=⎝⎛⎭⎫π4+α-π4=⎝⎛⎭⎫α-π3+π3. 例1化简:sin 2αsin 2β+cos 2αcos 2β-12cos 2αcos 2β=________.即时训练1化简:sin(θ+75°)+cos(θ+45°)-3cos(θ+15°)=________.例24cos 50°-tan 40°=( ) A.2B.2+32C.3D.22-1 (2)已知cos ⎝⎛⎭⎫α-β2=-513,sin ⎝⎛⎭⎫α2-β=45且0<β<π2<α<π,则sin(α+β)的值为________.即时训练2.(1)已知α为锐角,且sin α(1+3tan 10°)=1,则α的值为________. (2)已知α,β∈(0,π),且tan (α-β)=12,tan β=-17,求2α-β的值.。

三角函数基本关系教案(3篇)

三角函数基本关系教案(3篇)

第1篇课时:2课时年级:高中教材:《高中数学》必修4教学目标:1. 知识与技能:理解并掌握同角三角函数的基本关系式,能运用这些关系式进行三角函数式的化简、求值和恒等式证明。

2. 过程与方法:通过观察、分析、推导等活动,培养学生的数学抽象、逻辑推理和数学运算能力。

3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生严谨、求实的科学态度。

教学重难点:重点:理解并掌握同角三角函数的基本关系式及其应用。

难点:灵活运用同角三角函数的基本关系式进行化简、求值和恒等式证明。

教学准备:多媒体课件、教具(三角板、圆规等)教学过程:第一课时一、导入新课1. 复习任意角的三角函数定义,回顾正弦、余弦、正切的概念。

2. 提问:如何求一个角的正弦、余弦、正切值?二、新课讲授1. 引入同角三角函数的概念,强调同角三角函数的基本关系式。

2. 推导同角三角函数的基本关系式:(1)正弦函数与余弦函数的关系:$\sin^2\theta + \cos^2\theta = 1$(2)正弦函数与正切函数的关系:$\tan\theta =\frac{\sin\theta}{\cos\theta}$(3)余弦函数与正切函数的关系:$\tan\theta = \frac{1}{\cos\theta}$3. 举例说明同角三角函数基本关系式的应用。

三、课堂练习1. 利用同角三角函数基本关系式进行三角函数式的化简。

2. 求一些特定角的三角函数值。

四、课堂小结1. 总结同角三角函数的基本关系式及其应用。

2. 强调掌握这些关系式对解决三角函数问题的重要性。

第二课时一、复习导入1. 回顾上一节课所学内容,提问:如何利用同角三角函数基本关系式进行三角函数恒等式证明?2. 引入三角函数恒等式证明的概念。

二、新课讲授1. 推导三角函数恒等式:(1)平方关系:$\sin^2\theta + \cos^2\theta = 1$(2)和差关系:$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm\cos\alpha\sin\beta$(3)倍角关系:$\sin 2\theta = 2\sin\theta\cos\theta$,$\cos 2\theta = \cos^2\theta - \sin^2\theta$2. 举例说明三角函数恒等式的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的求值、化简与证明
教学目标
1、 掌握两角和与差的正弦、余弦、正切公式。

掌握二倍角的正弦、余弦、正切公式,能正
确运用三角公式进行三角函数的化简证明求值;
2、 培养学生分析问题解决问题的能力,培养热爱数学。

教学重点
掌握两角和与差的正弦、余弦、正切公式。

掌握二倍角的正弦、余弦、正切公式。

教学难点
能正确运用三角公式进行三角函数的化简证明求值
教学过程
一、知识归纳
1、两角和与差公式:
()sin sin cos cos sin αβαβαβ±=± ()cos cos cos sin sin αβαβαβ±= , ()t a n t a n t a n 1t a n t a n
αβαβαβ±±= 2、二倍角公式:sin 22sin cos ααα=, 22t a n t a n 21t a n αα
α=- 22cos 2cos sin ααα=-22cos 1α=-212sin α=-
公式变形:1sin cos sin 22
ααα=
21cos 2sin 2αα-=,21cos 2cos 2αα+= 3、三角函数式化简的一般要求:
①函数名称尽可能少, ②项数尽可能少,③次数尽可能低,尽可能求出值
④尽量使分母不含三角函数,⑤尽量使被开方数不含三角函数
4、求值问题的基本类型及方法:
(1)“给角求值”一般所给的角都是非特殊角,解题时应注意观察非特殊角与特殊角之间的
关系。

(2)“给值求值”即给出某些角的的三角函数式的值,求另一些角的三角函数值,解题关键
在于变角,使其角相同。

(3)“给值求角”关键是变角,把所求的角用含已知角的式子表示。

5、证明三角恒等式的思路和方法:
①思路:利用三角公式进行化名,化角,使等式两端化“异”为“同”。

②证明三角不等式的方法:
比较法、配方法、反证法、分析法,利用函数单调性,利用正余弦函数的有界性,利用
单位圆三角函数线及判别法等。

二、典例分析:
题型一:三角函数式的化简
例1:化简 : 22221sin sin cos cos cos 2cos 22
αβαβαβ∙+∙-∙ 分析:化简时使角尽量少,幂次尽量低,不含切割函数,时时要注意角之间的内在联系。

解略。

演练反馈:
144x x ππ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭
解:原式=12x π⎛⎫- ⎪⎝⎭
2.(全国卷2)22sin 2cos 1cos 2cos 2αααα
∙=+ ( B ) A.tan α B.tan 2α C.1 D. 12
题型二:三角函数式的求值
例250(13tan10)cos 20)
cos801cos 20+--(金版教程例2 p144)
解:原式 例3:已知3sin 5
α=
,α是第二象限角,且tan()1αβ+=,则tan β的值是( ) A.-7 B.7 C.34- D. 34 演练反馈:
1.tan15cot15+=( C )
A.2
B.2
C.4
D.
2.
cot 20cos103sin10tan702cos40∙+∙-=2
3.y=44cos sin x x -的最小正周期(π )
3.已知sin 2cos 2+=a,则cos 4=(4a )
4.已知223sin cos 222
A B A B +-+=,(c o s c o s 0A B ∙≠)求tan tan A B ∙ 的值。

解:12
5.设1cos()29βα-
=-,2sin()23αβ-=,且2παπ<<,02πβ<<,求 c o s ()αβ+ 解:239729- 6.已知A 、B 为锐角,且满足tan tan tan tan 1,A B A B =++则
cos()A B +=(2
-)。

7.若sin A B ==,且A,B 均为钝角,求A+B 的值。

解:A+B= 74
π 8.已知cos()0,tan 0,2
θθπ-<>则下列不等式关系式中必定成立的是:( c ) A 、tan cos 22θθ< B 、tan cos 22θθ> C 、sin cos 22θθ< D 、sin cos 22
θθ< 9、A 、B 、C 是ΔABC 的三个内角,且tan ,tan A B 是方程23510x x -+=的两个实数根,
则ΔABC 是( 钝角三角形 )
题型三:三角函数式的证明
例4:证明
1cos sin sin 1cos x x x x
-=+ 证明略
演练反馈: 求证: 1cos cos
sin 21cos sin sin 2
x x x x x x ++=-+ 三、小结
1.三角函数的化简、求值、证明的基本思路是:一角二名三结构,即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心;其次看函数名称之间的关系,通常“切化弦”;再次观察代数式的结构特点.
2.(1)三角函数的化简、求值、证明的基本解题规律:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化.
(2)三角函数求值问题一般是运用基本公式,将未知角变换为已知角求解.在解题中,特殊角的三角函数值一般情况下可先求出,同时要注意观察各角之间的和、差是否构成特殊角,以便化繁为简,从而使求值(或证明)问题化难为易.
3.常见三角函数式的求值问题的四种类型:
(1)不含特殊角的三角函数式的求值;
(2)含特殊角的三角函数式的求值;
(3)给出某些角的三角函数的值,求与该角有关的三角函数式的值;
(4)给出三角函数式的值求角.
解法:(1)发现、挖掘角的某种特殊关系;(2)灵活运用三角公式中切与弦、和与差、倍与半、升幂与降次的转换方法;(3)关键在于“变角”(角的配凑);(4)先解所求角的三角函数,再确定角的取值.。

相关文档
最新文档