指数定义及性质学案
学案3:4.1.2 指数函数的性质与图像(一)
![学案3:4.1.2 指数函数的性质与图像(一)](https://img.taocdn.com/s3/m/0ad6b52fae1ffc4ffe4733687e21af45b207fe62.png)
4.1.2指数函数的性质与图像(一)学习目标核心素养1.理解指数函数的概念与意义,掌握指数函数的定义域、值域的求法.(重点、难点) 2.能画出具体指数函数的图像,并能根据指数函数的图像说明指数函数的性质.(重点)1.通过指数函数概念的学习,培养数学抽象素养.2.借助指数函数图像与性质的学习,提升直观想象、逻辑推理素养.【自主预习】[新知初探]1.指数函数的定义一般地,函数称为指数函数,其中a是常数,a>0且a≠1.思考:指数函数中为什么规定a>0且a≠1?2.指数函数y=a x(a>0且a≠1)的图像和性质a>10<a<1图像定义域R值域性质过定点过定点函数值的变化当x>0时,;当x<0时,当x>0时,;当x<0时,单调性在R上是在R上是3.比较幂大小的方法(1)对于同底数不同指数的两个幂的大小,利用指数函数的来判断.(2)对于底数不同指数相同的两个幂的大小,利用指数函数的的变化规律来判断.(3)对于底数不同指数也不同的两个幂的大小,则通过来判断.[初试身手]1.下列函数一定是指数函数的是( ) A .y =2x +1 B .y =x 3 C .y =3·2xD .y =3-x2.指数函数y =a x 与y =b x 的图像如图所示,则( )A .a <0,b <0B .a <0,b >0C .0<a <1,b >1D .0<a <1,0<b <13.若2x +1<1,则x 的取值范围是( ) A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1)4.已知函数y =⎝⎛⎭⎫13x在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.【合作探究】类型一指数函数的概念【例1】 (1)下列一定是指数函数的是( ) A .y =a xB .y =x a (a >0且a ≠1)C .y =⎝⎛⎭⎫12xD .y =(a -2)a x(2)函数y =(a -2)2a x 是指数函数,则( ) A .a =1或a =3 B .a =1 C .a =3D .a >0且a ≠1[思路探究] (1)观察函数解析式的形式,看是否满足指数函数的定义,然后下结论. (2)根据指数函数的定义建立关于a 的关系式求解. [规律方法]1.判断一个函数是指数函数的方法指数函数具有形式上的严格性,在指数函数定义的表达式中,要牢牢抓住四点: (1)底数是大于0且不等于1的常数.(2)指数函数的自变量必须位于指数的位置上.(3)a x的系数必须为1.(4)指数函数不会是多项式,如y=a x+1(a>0且a≠1)不是指数函数.2.已知某函数是指数函数求参数值的方法(1)令底数大于0且不等于1,系数等于1列出不等式与方程.(2)解不等式与方程求出参数的值.提醒:要特别注意底数大于0且不等于1这一隐含条件.[跟踪训练]1.(1)若函数f(x)是指数函数,且f(2)=9,则f(x)=________.(2)已知函数f(x)=(2a-1)x是指数函数,则实数a的取值范围是________.【例2】(1)求下列函数的定义域和值域:指数函数[思路探究](1)函数式有意义―→原函数的定义域――――→原函数的值域的值域(2)指数函数的图像与性质及复合函数的单调性与值域⇒用换元法将其化为指数函数.[规律方法]1.函数y=a f(x)的定义域、值域的求法(1)函数y=a f(x)的定义域即y=f(x)的定义域.(2)函数y=a f(x)的值域的求法如下:①换元,令t=f(x).②求t=f(x)的定义域x∈D.③求t =f (x )的值域t ∈M .④利用y =a t 的单调性求y =a t ,t ∈M 的值域. 2.复合函数的单调性与指数函数有关的单调性问题,求出内函数的单调区间结合外函数的单调性,结合复合函数的单调性确定其单调性.提醒:利用指数函数的单调性时要注意对底数的讨论. [跟踪训练]2.已知定义在R 上的奇函数f (x )=2x -a 2x +b .(1)求a ,b 的值;(2)判断并证明f (x )在R 上的单调性; (3)求该函数的值域.[探究问题]1.指数函数y =a x (a >0且a ≠1)的图像过哪一定点?函数f (x )=a x -1+2(a >0且a ≠1)的图像又过哪一定点呢?2.指数函数y =a x (a >0且a ≠1)的图像可能在第三或第四象限吗?为什么?3.从左向右,指数函数y =a x (a >0且a ≠1)的图像呈上升趋势还是下降趋势?其图像是上凸还是下凸?【例3】(1)下列几个函数的图像如图所示:①y=a x;②y=b x;③y=c x;④y=d x.则a,b,c,d与0和1的关系是()A.0<a<b<1<c<d B.0<b<a<1<d<cC.0<b<a<1<c<d D.1<a<b<c<d(2)已知函数f(x)=a x-1(a>0,且a≠1)满足f(1)>1,若函数g(x)=f(x+1)-4的图像不过第二象限,则a的取值范围是()A.(2,+∞) B.(2,5]C.(1,2) D.(1,5](3)若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.[规律方法]1.处理函数图像问题的策略(1)抓住特殊点:指数函数的图像过定点(0,1).(2)巧用图像变换:函数图像的平移变换(左右平移、上下平移).(3)利用函数的性质:奇偶性与单调性.2.指数型函数图像过定点问题的处理方法求指数型函数图像所过的定点时,只要令指数为0,求出对应的y的值,即可得函数图像所过的定点.[跟踪训练]3.(1)在同一坐标系中画出函数y=a x,y=x+a的图像,可能正确的是()(2)要得到函数y =23-x 的图像,只需将函数y =⎝⎛⎭⎫12x的图像( ) A .向右平移3个单位 B .向左平移3个单位 C .向右平移8个单位 D .向左平移8个单位 (3)函数y =a-|x |(0<a <1)的图像是( )【课堂小结】1.本节课的重点是掌握指数函数的概念、指数函数的图像与性质,难点是指数函数的图像与性质.2.本节课要重点掌握的规律方法 (1)掌握指数函数的三个特征.(2)与指数函数有关的函数图像及处理方法.3.本节课的易错点是对指数函数理解不够深刻,在解与指数函数有关的函数定义域和值域时致错.【当堂达标】1.思考辨析(1)函数y =-2x 是指数函数.( ) (2)函数y =2x+1是指数函数.( )(3)函数y =(-2)x 是指数函数.( ) (4)指数函数的图像一定在x 轴上方.( )2.不论a 取何正实数,函数f (x )=a x +1-2恒过点( ) A .(-1,-1)B .(-1,0)C.(0,-1) D.(-1,-3)3.已知a=23.5,b=22.5,c=33.5,请将a,b,c按从小到大的顺序排列________.4.求函数y=的定义域和值域.【参考答案】【自主预习】[新知初探] 1. y =a x思考:[提示] (1)如果a =0,当x >0时,a x 恒等于0,没有研究的必要;当x ≤0时,a x 无意义;(2)如果a <0,例如f (x )=(-4)x ,这时对于x =12,14,…,该函数无意义;(3)如果a =1,则y =1x 是一个常量,没有研究的价值. 为了避免上述各种情况,所以规定a >0且a ≠1. 2.(0,+∞) (0,1) y >10<y <10<y <1y >1增函数 减函数3.(1)单调性 (2)图像 (3)中间值 [初试身手]1.D [只有选项D 符合指数函数的定义.]2.C [函数y =a x 的图像是下降的,所以0<a <1;函数y =b x 的图像是上升的,所以b >1.] 3.D [不等式2x +1<1=20,因为y =2x 在R 上是增函数,所以x +1<0,即x <-1.]4.12 [因为y =⎝⎛⎭⎫13x在[-2,-1]上为减函数,所以m =⎝⎛⎭⎫13-1=3,n =⎝⎛⎭⎫13-2=9,所以m+n =12.]【合作探究】【例1】(1)C (2)C [(1)A 中a 的范围没有限制,故不一定是指数函数;B 中y =x a (a >0且a ≠1)中变量是底数,故也不是指数函数;C 中y =⎝⎛⎭⎫12x显然是指数函数;D 中只有a -2=1,即a =3时为指数函数.(2)由指数函数定义知⎩⎪⎨⎪⎧(a -2)2=1,a >0,且a ≠1,所以解得a =3.][跟踪训练]1.(1)3x (2)⎝⎛⎭⎫12,1∪(1,+∞) [(1)由题意设f (x )=a x (a >0且a ≠1),则f (2)=a 2=9,又因为a >0,所以a =3,所以f (x )=3x .(2)由题意可知⎩⎪⎨⎪⎧2a -1>0,2a -1≠1,解得a >12且a ≠1,所以实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞).]【例2】[解] (1)①要使函数式有意义,则1-3x ≥0,即3x ≤1=30, 因为函数y =3x 在R 上是增函数,所以x ≤0, 故函数y =1-3x 的定义域为(-∞,0]. 因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1.所以1-3x ∈[0,1),即函数y =1-3x 的值域为[0,1). ②要使函数式有意义,则-|x |≥0,解得x =0, 所以函数y =的定义域为{x |x =0}.因为x =0,所以y ==⎝⎛⎭⎫230=1,即函数y =的值域为{y |y =1}.③因为对于任意的x ∈R ,函数y =4x +2x +1+2都有意义, 所以函数y =4x +2x +1+2的定义域为R .因为2x >0,所以4x +2x +1+2=(2x )2+2×2x +2=(2x +1)2+1>1+1=2, 即函数y =4x +2x +1+2的值域为(2,+∞).(2)令t =2x -x 2,则y =⎝⎛⎭⎫12t,而t =-(x -1)2+1≤1, 所以y =⎝⎛⎭⎫12t ≥12,故所求函数的值域为⎣⎡⎭⎫12,+∞. 因为=⎝⎛⎭⎫12t,由于二次函数t =2x -x 2的对称轴为x =1,可得函数t 在(-∞,1]上是增函数,函数y 在(-∞,1]上是减函数, 故函数y 的减区间是(-∞,1].函数t 在(1,+∞)上是减函数,函数y 在(1,+∞)上是减函数, 故函数y 的增区间是(1,+∞). [跟踪训练]2.[解] (1)因为f (x )是R 上的奇函数,所以⎩⎪⎨⎪⎧ f (0)=0,f (-1)=-f (1),即⎩⎪⎨⎪⎧1-a1+b=0,12-a12+b=-2-a2+b ,解得⎩⎪⎨⎪⎧a =1,b =1.(2)f (x )在R 上是增函数,证明如下:由(1)知f (x )=2x -12x +1.设x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=(2x 1-1)(2x 2+1)-(2x 2-1)(2x 1+1)(2x 1+1)(2x 2+1)=2(2x 1-2x 2)(2x 1+1)(2x 2+1). 因为y =2x 是R 上的增函数,且x 1<x 2, 所以2x 1-2x 2<0.又因为(2x 1+1)(2x 2+1)>0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在R 上是增函数. (3)f (x )=2x -12x +1=2x +1-22x +1=1-22x +1.由2x >0,得2x +1>1,所以0<22x +1<2,所以-1<1-22x +1<1,即-1<f (x )<1,所以函数f (x )的值域为(-1,1).[探究问题]1.[提示] 法一:(平移法)∵y =a x 过定点(0,1),∴将函数y =a x 向右平移1个单位,再向上平移2个单位得到y =a x -1+2,此时函数图像过定点(1,3).法二:(解方程法)指数函数y =a x (a >0且a ≠1)的图像过定点(0,1);在f (x )=a x -1+2中,令x -1=0,即x =1,则f (x )=3,所以函数f (x )=a x -1+2(a >0且a ≠1)的图像过定点(1,3).2.[提示] 不可能.因为指数函数y =a x (a >0且a ≠1)的定义域是(-∞,+∞),值域是(0,+∞),这就决定了其图像只能在第一象限和第二象限.3.[提示] 当0<a <1时,指数函数y =a x (a >0且a ≠1)的图像从左向右呈下降趋势;当a >1时,指数函数y =a x (a >0且a ≠1)的图像从左向右呈上升趋势.指数函数的图像下凸.【例3】(1)B (2)B (3)[-1,1] [(1)由指数函数图像得到当底数大于1时为增函数,并且底数越大增加的越快,因此得到c >d >1,反之,1>a >b >0,所以0<b <a <1<d <c .(2)因为f (1)>1,所以a -1>1,即a >2,因为函数g (x )=f (x +1)-4的图像不过第二象限,所以g (0)=a 1-1-4≤0,所以a ≤5,所以a 的取值范围是(2,5].(3)曲线|y |=2x +1与直线y =b 的图像如图所示,由图像可得:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].][跟踪训练]3.(1)D (2)A (3)A [(1)∵a 为直线y =x +a 在y 轴上的截距,对应函数y =x +a 单调递增,又∵当a >1时,函数y =a x 单调递增,当0<a <1时,函数y =a x 单调递减, A 中,从图像上看,y =a x 的a 满足a >1,而直线y =x +a 的截距a <1,不符合以上两条; B 中,从图像上看,y =a x 的a 满足0<a <1,而直线y =x +a 的截距a >1,不符合以上两条;C 中,从图像上看,y =a x 的a 满足a >1,而函数y =x +a 单调递减,不符合以上两条, ∴只有选项D 的图像符合以上两条,故选D.(2)因为y =23-x =⎝⎛⎭⎫12x -3,所以y =⎝⎛⎭⎫12x 的图像向右平移3个单位得到y =⎝⎛⎭⎫12x -3,即y =23-x 的图像. (3)y =a -|x |=⎝⎛⎭⎫1a |x |,易知函数为偶函数,∵0<a <1,∴1a>1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A.]【当堂达标】1.(1)×(2)×(3)×(4)√[(1)×.因为指数幂2x的系数为-1,所以函数y=-2x不是指数函数.(2)×.因为指数不是x,所以函数y=2x+1不是指数函数.(3)×.因为底数小于0,所以函数y=(-2)x不是指数函数.(4)√.因为指数函数的值域是(0,+∞),所以指数函数的图像一定在x轴的上方.]2.A[令x+1=0,则x=-1,f(-1)=-1,所以函数f(x)=a x+1-2的图像恒过点(-1,-1).]3.b<a<c[由指数函数y=2x知,因为2.5<3.5,所以22.5<23.5,即b<a,又c=33.5>a=23.5,故b<a<c.]4.[解]要使函数y=有意义,只需2x-4>0,解得x>2;令t=12x-4,则t>0,由于函数y=3t在t∈(0,+∞)上是增函数,故3t>1.故函数y=312x-4的定义域为{x|x>2},值域为{y|y>1}.。
学案6:2.1.2指数函数及其性质
![学案6:2.1.2指数函数及其性质](https://img.taocdn.com/s3/m/da6e49281fb91a37f111f18583d049649b660e21.png)
2.1.2指数函数及其性质学习目标1.理解指数函数的概念与意义,掌握指数函数的定义域、值域的求法.(重点、难点) 2.能画出具体指数函数的图象,并能根据指数函数的图象说明指数函数的性质.(重点)知识梳理教材整理1指数函数的定义阅读教材,完成下列问题.指数函数的定义一般地,函数(a>0,且a≠1)叫做指数函数,其中是自变量,函数的定义域是R.练一练1判断(正确的打“√”,错误的打“×”)(1)函数y=-2x是指数函数.()(2)函数y=2x+1是指数函数.()(3)函数y=(-2)x是指数函数.()教材整理2指数函数的图象和性质阅读教材,完成下列问题.R练一练2判断(正确的打“√”,错误的打“×”)(1)指数函数的图象一定在x轴的上方.()(2)当a>1时,对于任意x∈R,总有a x>1.()(3)函数f(x)=2-x在R上是增函数.()类型一:指数函数的概念例1 (1)下列一定是指数函数的是( ) A .y =a x B .y =x a (a >0且a ≠1) C .y =⎝⎛⎭⎫12xD .y =(a -2)a x(2)函数y =(a -2)2a x 是指数函数,则( ) A .a =1或a =3 B .a =1 C .a =3 D .a >0且a ≠1名师指导1.在指数函数定义的表达式中,要牢牢抓住三点: (1)底数是大于0且不等于1的常数; (2)指数函数的自变量必须位于指数的位置上; (3)a x 的系数必须为1;2.求指数函数的解析式常用待定系数法.跟踪训练1 (1)若函数f (x )是指数函数,且f (2)=9,则f (x )=________. (2)已知函数f (x )=(2a -1)x 是指数函数,则实数a 的取值范围是________. 类型二:指数函数的定义域和值域 例2 求下列函数的定义域和值域: (1)y =√1−3x ; (2)y =(23)√−|x|; (3)y =4x +2x +1+2. 名师指导1.函数y =a f (x )的定义域与y =f (x )的定义域相同.2.函数y=a f(x)的值域的求解方法如下:(1)换元,令t=f(x);(2)求t=f(x)的定义域x∈D;(3)求t=f(x)的值域t∈M;(4)利用y=a t的单调性求y=a t,t∈M的值域.3.求与指数函数有关的函数的值域时,要注意与求其它函数(如一次函数、二次函数)值域的方法相结合,要注意指数函数的值域为(0,+∞),切记准确运用指数函数的单调性.跟踪训练2 求下列函数的定义域和值域:(1)y=21x−3;(2)y=221()2x x.探究共研型类型三:指数函数的图象探究1指数函数y=a x(a>0且a≠1)的图象过哪一定点?函数f(x)=a x-1+2(a>0且a≠1)的图象又过哪一定点呢?探究2若函数y=a x+b(a>0,且a≠1)的图象不经过第一象限,则a,b满足什么条件?例3(1)在同一坐标系中画出函数y=a x,y=x+a的图象,可能正确的是()(2)函数y =a-|x |(0<a <1)的图象是( )名师指导指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系. (1)在y 轴右侧,图象从上到下相应的底数由大变小. (2)在y 轴左侧,图象从下到上相应的底数由大变小.(3)无论在y 轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过x 取1时函数值的大小关系去理解,如下图所示的指数函数的底数的大小关系为0<d <c <1<b <a .跟踪训练3 定义一种运算:g ⊙h =⎩⎪⎨⎪⎧gg ≥hhg <h ,已知函数f (x )=2x ⊙1,那么函数y =f (x -1)的大致图象是( )课堂检测1.若函数f (x )是指数函数,且f (2)=2,则f (x )=( ) A .(2)x B .2x C.⎝⎛⎭⎫12xD.⎝⎛⎭⎫22x2.当x ∈[-2,2)时,y =3-x -1的值域是( ) A.⎝⎛⎦⎤-89,8 B.⎣⎡⎦⎤-89,8 C.⎝⎛⎭⎫19,9D.⎣⎡⎦⎤19,93.已知1>n >m>0,则指数函数①y =m x ,②y =n x 的图象为( )4.已知函数f (x )=a -x (a >0, 且a ≠1),且f (-2)>f (-3),则a 的取值范围是________. 5.设f (x )=3x ,g(x )=⎝⎛⎭⎫13x.(1)在同一坐标系中作出f (x ),g(x )的图象;(2)计算f (1)与g(-1),f (π)与g(-π),f (m )与g(-m )的值,从中你能得到什么结论?参考答案知识梳理教材整理1 指数函数的定义 y =a x ; x 练一练1【答案】 (1)× (2)× (3)×【解析】 (1)由指数函数的定义形式可知(1)(2)(3)均错误. 教材整理2 指数函数的图象和性质 (0,+∞) ;(0,1);增函数;减函数;y 轴 练一练2【答案】 (1)√ (2)× (3)×【解析】 (1)因为指数函数的值域是(0,+∞),所以指数函数的图象一定在x 轴的上方. (2)当x ≤0时,a x ≤1.(3)因为f (x )=2-x =⎝⎛⎭⎫12x ,所以函数f (x )=2-x在R 上是减函数. 类型一:指数函数的概念 例1 【答案】 (1)C (2)C【解析】 (1)A 中a 的范围没有限制,故不一定是指数函数;B 中y =x a (a >0且a ≠1)中变量是底数,故也不是指数函数;C 中y =⎝⎛⎭⎫12x 显然是指数函数;D 中只有a -2=1即a =3时为指数函数.(2)由指数函数定义知⎩⎪⎨⎪⎧(a -2)2=1a >0,且a ≠1,所以解得a =3.跟踪训练1 【答案】 (1)3x (2) ⎝⎛⎭⎫12,1∪(1,+∞) 【解析】 (1)由题意设f (x )=a x (a >0,且a ≠1), 则f (2)=a 2=9.又因为a >0,所以a =3. 所以f (x )=3x .(2)由题意可知{ 2a -1>0,2a -1≠1,解得a >12,且a ≠1.所以实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞). 类型二:指数函数的定义域和值域例2 解:(1)要使函数式有意义,则1-3x ≥0,即3x ≤1=30,因为函数y =3x 在R 上是增函数,所以x ≤0,故函数y = √1−3x 的定义域为(-∞,0]. 因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1.所以√1−3x ∈[0,1),即函数y = √1−3x 的值域为[0,1). (2)要使函数式有意义,则-|x |≥0,解得x =0, 所以函数y = (23)√−|x|的定义域为{x |x =0}.因为x =0,所以y = (23)√−|x| =(23)0=1,即函数y= (23)√−|x|的值域为{y |y =1}.(3)因为对于任意的x ∈R , 函数y =4x +2x +1+2都有意义, 所以函数y =4x +2x +1+2的定义域为R . 因为2x >0,所以4x +2x +1+2=(2x )2+2×2x +2 =(2x +1)2+1>1+1=2,即函数y =4x +2x +1+2的值域为(2,+∞). 跟踪训练2 解:(1)函数的定义域为{x |x ≠3}. 令t =1x−3,则t ≠0,∴y =2t >0且2t ≠1, 故函数的值域为{y |y >0,且y ≠1}. (2)函数的定义域为R ,令t =2x -x 2, 则t =-(x -1)2+1≤1,∴y =(12)t ≥ (12)1=12,故函数的值域为[12,+∞).探究共研型类型三:指数函数的图象探究1 【答案】 指数函数y =a x (a >0且a ≠1)的图象过定点(0,1);在f (x )=a x -1+2中令x -1=0,即x =1,则f (x )=3,所以函数f (x )=a x -1+2(a >0且a ≠1)的图象过定点(1,3). 探究2 【答案】 如图,由图可知0<a <1,b ≤-1.例3【答案】 (1)D (2)A【解析】(1)∵a 为直线y =x +a 在y 轴上的截距,对应函数y =x +a 单调递增, 又∵当a >1时,函数y =a x 单调递增,当0<a <1时,函数y =a x 单调递减,A 中,从图象上看,y =a x 的a 满足a >1,而直线y =x +a 的截距a <1,不符合以上两条;B 中,从图象上看,y =a x 的a 满足0<a <1,而直线y =x +a 的截距a >1,不符合以上两条;C 中,从图象上看,y =a x 的a 满足a >1,而函数y =x +a 单调递减,不符合以上两条, ∴只有选项D 的图象符合以上两条,故选D. (2)y =a-|x |=⎝⎛⎭⎫1a |x |,易知函数为偶函数,∵0<a <1,∴1a>1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A.跟踪训练3 【答案】 B【解析】 f (x )=⎩⎪⎨⎪⎧ 2x x ≥01x <0,∴f (x -1)=⎩⎪⎨⎪⎧2x -1x ≥11x <1,∴其图象为B ,故选B.课堂检测 1.【答案】 A【解析】 由题意,设f (x )=a x (a >0且a ≠1),则由f (2)=a 2=2,得a =2,所以f (x )=(2)x . 2.【答案】 A【解析】 y =3-x -1,x ∈[-2,2)是减函数, ∴3-2-1<y ≤32-1,即-89<y ≤8.3.【答案】 C【解析】 由于0<m <n <1,所以y =m x 与y =n x 都是减函数,故排除A ,B ,作直线x =1与两个曲线相交,交点在下面的是函数y =m x 的图象,故选C. 4.【答案】 (0,1)【解析】 因为f (x )=a -x =⎝⎛⎭⎫1a x ,且f (-2)>f (-3),所以函数f (x )在定义域上单调递增, 所以1a>1,解得0<a <1.5. 解:(1)函数f (x ),g(x )的图象如图所示:(2)f (1)=31=3,g (-1)=⎝⎛⎭⎫13-1=3,f (π)=3π,g(-π)=⎝⎛⎭⎫13-π=3π, f (m )=3m ,g(-m )=⎝⎛⎭⎫13-m=3m.。
指数函数的图像和性质-学案
![指数函数的图像和性质-学案](https://img.taocdn.com/s3/m/a194a3e1998fcc22bcd10dc4.png)
指数函数的图像和性质
知识与技能:理解指数函数的概念与意义,理解指数函数的图像和性质,并会运用图像和性质解决有关问题。
过程与方法:利用数形结合的方法,理解并熟记典型指数函数和一般指数函数的图像和性质。
情感态度与价值观:体验指数函数与现实世界的密切联系及其在刻画现实问题中的作用,培养学生运用现代技术学习、探索
和解决问题的能力。
教学重点:指数函数的图像和性质。
教学难点:底数a>1与0<a<1时指数函数的不同性质的理解及应用。
教学过程:
一、指数函数的概念:
二、指数函数的图像和性质:
7.09.0
三、指数函数的图像和性质的应用:例1、比较下列各题中两数值的大小
① 1.72.5,1.73.
② 0.8-0.1 ,0.8-0.2
解:①
②
例2、比较下列各题中两数值的大小
①( )0.4 ,1
②0.8-0.3 ,4.9-0.1
解:①
②
归纳:
例3、已知下列不等式,比较m、n的大小。
① 2m < 2n
②0.2m > 0.2n
③ a m > a n (a≠1且a>1)
解:①
②
③
四、课堂作业:
教材P77 2 (4)、(5)、(6)
4 (1)、(2)。
指数学案(批注版)
![指数学案(批注版)](https://img.taocdn.com/s3/m/999e4f8e58fafab068dc0265.png)
指 数(1) ——指数幂的概念及其运算性质1方根的定义若x n =a ,则称x 为a 的n 次方根,“n”是方根的记号.2 n 次方根的性质 在实数范围内,①正数的奇次方根是一个正数,负数的奇次方根是一个负数,0的奇次方根是0;②正数的偶次方根是两个绝对值相等符号相反的数,0的偶次方根是0,负数没有偶次方根.③当n 为奇数时,nn a =a .④当n 为偶数时,nn a =|a |=⎩⎨⎧<-≥).0(),0(a aa a⑤na =3 分数指数幂的意义①a nm =n m a (a >0,m 、n 都是正整数,n >1). ②an m -=nm a1=nma1(a >0,m 、n 都是正整数,n >1).(4)指数运算性质①a m﹒a n=a m+n②(a m)n=a mn=(a n )m③nn a a-=1 ④nm n ma a=⑤a m ﹒b m =(a ﹒b)m ⑥mmm b a b a )(= 【预习导引】1、 R a ∈,下列各式一定有意义的是①2-a② 41a③ 32a④ 0a2、 下列各式计算正确的是① 1)1(0=-②a a a =⋅221③8432= ④ 211333a aa -÷=3、 若0>a ,则43a 和53-a用根式形式表示分别为 和 ,56b a 和mm 3用分数指数幂形式表示分别为 和 。
4、 (1)23425-⎪⎭⎫⎝⎛= ;63125.132⨯⨯= ________(20,0)x y >>=_______________;3163278--⎪⎪⎭⎫ ⎝⎛b a . 5、 解下列方程: (1)1318x-=(2)342115x -=【典例练讲】1、 求值:(1)32132181004--⎛⎫⨯ ⎪⎝⎭(2)433333391624337+--2、 化简:(1)3332332313421248a a b a ab b ba a ⨯⎪⎪⎭⎫ ⎝⎛-÷++-3、 已知32121=+-a a ,求下列各式的值:(1)1-+a a ;(2)22-+a a ;(3)33221122a a a a--++变式:若13a a-+=,求(1)1122a a --(2)3322a a --4、 已知xxxxx g x f --+=-=22)(,22)((1)求22)]([)]([x g x f -的值;(2)设48f(x)f(y),g(x)g(y)==,求)()(y x g y x g -+的值。
学案8:2.1.2 指数函数及其性质(二)
![学案8:2.1.2 指数函数及其性质(二)](https://img.taocdn.com/s3/m/3aad306c905f804d2b160b4e767f5acfa1c783e5.png)
2.1.2 指数函数及其性质(二)自主学习学习目标1.理解指数函数的单调性与底数a 的关系,能运用指数函数的单调性解决一些问题.2.理解指数函数的底数a 对函数图象的影响.基础自测1.下列一定是指数函数的是( )A .y =-3xB .y =x x (x >0,且x ≠1)C .y =(a -2)x (a >3)D .y =(1-2)x2. 指数函数y =a x 与y =b x 的图象如图,则( )A .a <0,b <0B .a <0,b >0C .0<a <1,b >1D .0<a <1,0<b <13.函数y =πx 的值域是( )A .(0,+∞)B .[0,+∞)C .RD .(-∞,0)4.若指数函数f (x )=(a +1)x 是R 上的减函数,那么a 的取值范围为( )A .a <2B .a >2C .-1<a <0D .0<a <1题型探究类型一 比较大小问题【例1】 比较下列各题中两个值的大小:(1)3π与33.14; (2)0.99-1.01与0.99-1.11; (3)1.40.1与0.90.3.规律方法 比较两指数大小时,若底数相同,则先构造出该底数的指数函数,然后利用单调性比较;若底数不同,则考虑选择中间量,通常选择“1”作为中间量.变式迁移1 比较⎝⎛⎭⎫4313,223,⎝⎛⎭⎫-233,⎝⎛⎭⎫3412的大小.类型二 解简单的指数不等式【例2】 如果a 2x +1≤a x -5(a >0,且a ≠1),求x 的取值范围.规律方法 解a f (x )>a g (x )(a >0且a ≠1)此类不等式主要依据指数函数的单调性,它的一般步骤为变式迁移2 已知(a 2+a +2)x >(a 2+a +2)1-x ,则x 的取值范围是____________.类型三 指数函数的最值问题【例3】 (1)函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a 2,求a 的值; (2)如果函数y =a 2x +2a x -1(a >0且a ≠1)在[-1,1]上有最大值14,试求a 的值.规律方法 指数函数y =a x (a >1)为单调增函数,在闭区间[s ,t ]上存在最大、最小值,当x =s 时,函数有最小值a s ;当x =t 时,函数有最大值a t .指数函数y =a x (0<a <1)为单调减函数,在闭区间[s ,t ]上存在最大、最小值,当x =s 时,函数有最大值a s ;当x =t 时,函数有最小值a t .变式迁移3 (1)函数f (x )=a x (a >0,a ≠1)在区间[1,2]上的最大值与最小值之和为6,求a 的值;(2)0≤x ≤2,求函数y =4x -12-3·2x +5的最大值和最小值.课堂小结1.指数函数的定义及图象是本节的关键.通过图象可以求函数的值域及单调区间.2.利用指数函数的性质可以比较两个指数幂的大小(1)当两个正数指数幂的底数相同时,直接利用指数函数的单调性比较大小.(2)当两个正数指数幂的底数不同而指数相同时,可利用两个指数函数的图象比较它们的大小.(3)当两个正数指数幂的底数不同而且指数也不相同时,可考虑能否利用“媒介”数来比较它们的大小.3.通过本节的学习,进一步体会分类讨论思想在解题中的应用.当堂检测一、选择题1.下图分别是函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象,a ,b ,c ,d 分别是四数2,43,310,15中的一个,则相应的a ,b ,c ,d 应是下列哪一组( )A.43,2,15,310B.2,43,310,15C.310,15,2,43D.15,310,43,2 2.已知a =30.2,b =0.2-3,c =(-3)0.2,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a3.若(12)2a +1<(12)3-2a ,则实数a 的取值范围是( ) A .(1,+∞) B .(12,+∞) C .(-∞,1) D .(-∞,12)4.设13<(13)b <(13)a <1,则( ) A .a a <a b <b a B .a a <b a <a b C .a b <a a <b a D .a b <b a <a a5.若函数f (x )=⎩⎪⎨⎪⎧ a x , x >14-a 2x +2, x ≤1是R 上的增函数,则实数a 的取值范围为( ) A .(1,+∞) B .(1,8) C .(4,8) D .[4,8)二、填空题6.当x ∈[-1,1]时,函数f (x )=3x -2的值域是____________.7.a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系是____________.8.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是__________.三、解答题9.解不等式a x +5<a 4x -1 (a >0,且a ≠1).10.已知函数f (x )=⎝⎛⎭⎫12x -1+12·x 3. (1)求f (x )的定义域; (2)判断f (x )的奇偶性; (3)求证:f (x )>0.【参考答案】基础自测1.C 2.C 3.A 4.C题型探究【例1】 解 (1)构造函数y =3x .∵a =3>1,∴y =3x 在(-∞,+∞)上是增函数.∵π>3.14,∴3π>33.14.(2)构造函数y =0.99x .∵0<a =0.99<1,∴y =0.99x 在(-∞,+∞)上是减函数.∵-1.01>-1.11,∴0.99-1.01<0.99-1.11.(3)分别构造函数y =1.4x 与y =0.9x .∵1.4>1,0<0.9<1,∴y =1.4x 与y =0.9x在(-∞,+∞)上分别为增函数和减函数.∵0.1>0,∴1.40.1>1.40=1.∵0.3>0,∴0.90.3<0.90=1,∴1.40.1>1>0.90.3,∴1.40.1>0.90.3.变式迁移1 解 将⎝⎛⎭⎫4313,223,⎝⎛⎭⎫-233,⎝⎛⎭⎫3412分成如下三类:(1)负数⎝⎛⎭⎫-233; (2)大于0小于1的数⎝⎛⎭⎫3412;(3)大于1的数⎝⎛⎭⎫4313,223.∵⎝⎛⎭⎫4313<413,而413=223, ∴⎝⎛⎭⎫-233<⎝⎛⎭⎫3412<⎝⎛⎭⎫4313<223. 【例2】 解 (1)当0<a <1时,由于a 2x +1≤a x -5,∴2x +1≥x -5,解得x ≥-6.(2)当a >1时,由于a 2x +1≤a x -5,∴2x +1≤x -5,解得x ≤-6.综上所述,x 的取值范围是:当0<a <1时,x ≥-6;当a >1时,x ≤-6.变式迁移2 (12,+∞) 解析 a 2+a +2=(a +12)2+74>1. ∴y =(a 2+a +2)x 在R 上是增函数.∴x >1-x ,解得x >12. ∴x 的取值范围是(12,+∞). 【例3】 解 (1)①若a >1,则f (x )在[1,2]上递增,最大值为a 2,最小值为a .∴a 2-a =a 2,即a =32或a =0(舍去). ②若0<a <1,则f (x )在[1,2]上递减,最大值为a ,最小值为a 2.∴a -a 2=a 2,即a =12或a =0(舍去), 综上所述,所求a 的值为12或32. (2)设t =a x ,则原函数可化为y =(t +1)2-2,对称轴为t =-1.①若a >1,∵x ∈[-1,1],∵t =a x 在[-1,1]上递增,∴0<1a≤t ≤a ; ∴y =(t +1)2-2当t ∈[1a,a ]时递增. 故当t =a 时,y max =a 2+2a -1.由a 2+2a -1=14,解得a =3或a =-5(舍去,∵a >1).②若0<a <1,t =a x 在[-1,1]上递减,t ∈[a ,1a], y max =a -2+2a -1-1=14,解得a =13或a =-15(舍去). 综上,可得a =13或3. 变式迁移3 解 (1)∵f (x )=a x 在[1,2]上是单调函数,∴f (x )在1或2时取得最值.∴a +a 2=6,解得a =2或a =-3,∵a >0,∴a =2.(2)y =12·22x -3·2x +5=12(22x -6·2x )+5 =12(2x -3)2+12. ∵x ∈[0,2],1≤2x ≤4,∴当2x =3时,y 最小值=12, 当2x =1时,y 最大值=52. 当堂检侧1.C2.B 【解析】c <0,b =53>3,1<a <3,∴b >a >c .3.B 【解析】函数y =(12)x 在R 上为减函数, ∴2a +1>3-2a ,∴a >12. 4.C 【解析】由已知条件得0<a <b <1,∴a b <a a ,a a <b a ,∴a b <a a <b a .5.D 【解析】因为f (x )在R 上是增函数,故结合图象知 ⎩⎪⎨⎪⎧ a >14-a 2>04-a 2+2≤a,解得4≤a <8.6.⎣⎡⎦⎤-53,1 7.c >a >b 【解析】y =0.8x 为减函数,∴0.80.7>0.80.9,且0.80.7<1,而1.20.8>1,∴1.20.8>0.80.7>0.80.9.8.(-∞,-1)【解析】∵f (x )是定义在R 上的奇函数,∴f (0)=0.当x <0时,f (x )=-f (-x )=-(1-2x )=2x -1.当x >0时,由1-2-x <-12得x ∈∅; 当x =0时,f (0)=0<-12不成立;因此当x <0时,由2x -1<-12得x <-1.综上可知x ∈(-∞,-1).9.解 当a >1时,原不等式可变为x +5<4x -1.解得x >2;当0<a <1时,原不等式可变为x +5>4x -1.解得x <2.故当a >1时,原不等式的解集为(2,+∞); 当0<a <1时,原不等式的解集为(-∞,2).10.(1)解 由2x -1≠0,得x ≠0.∴函数的定义域为(-∞,0)∪(0,+∞).(2)解 由于函数f (x )的定义域关于原点对称,f (-x )=⎝⎛⎭⎫12-x -1+12·(-x )3 =-⎝⎛⎭⎫2x 1-2x +12x 3=⎝⎛⎭⎫12x -1+12·x 3 =f (x ),所以f (x )为偶函数.(3)证明 当x >0时,12x -1>0,x 3>0, ∴f (x )>0,又∵f (x )为偶函数,∴x <0时,f (x )>0,综上所述,对于定义域内的任意x 都有f (x )>0.。
2023年高三数学指数学案
![2023年高三数学指数学案](https://img.taocdn.com/s3/m/14b529aed5d8d15abe23482fb4daa58da0111cb7.png)
平陆中学高三年级理科数学学案《指数与指数函数》学习目标1. 能够准确熟练进行知识点梳理;2. 能够熟练进行指数运算,保证每一步骤的正确性;3. 会画指数函数及指数型函数的图象,并且会根据图象熟练总结指数函数的性质,进而可以运用性质解决几类问题;4. 能够分析与指数函数相关的复合函数的性质,达到解决问题的目的。
学习重点理解指数函数的图象和性质学习难点掌握指数函数的应用以及求解相关复合函数的性质的方法 学习过程一.知识梳理1.根式 (1)根式的概念①若 ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子 叫做根式,这里 叫做根指数, 叫做被开方数. ②a 的n 次方根的表示:x n=a ⇒ x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,x n 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1). ②na n =⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mn= (a >0,m ,n ∈N *,且n >1). ②负分数指数幂:a -m n = = (a >0,m ,n ∈N *,且n >1). ③0的正分数指数幂等于 ,0的负分数指数幂 .(2)有理数指数幂的运算性质 ①a r a s = (a >0,r ,s ∈Q ). ②(a r )s = (a >0,r ,s ∈Q ). ③(ab )r = (a >0,b >0,r ∈Q ). 3.指数函数的图象及性质判断正误(正确的打“√”,错误的打“×”) (1)4(π-4)4=π-4.( )(2)n a n 与(na )n 都等于a (n ∈N *).( ) (3)(-1)24=(-1)12=-1.( ) (4)函数y =3·2x 与y =2x+1都不是指数函数.( )(5)若a m >a n ,则m >n .( )(教材习题改编)有下列四个式子: ① 3(-8)3=-8;②(-10)2=-10; ③4(3-π)4=3-π;④2 018(a -b )2 018=a -b .其中正确的个数是( ) A .1 B .2 C .3D .4(2018·东北三校联考)函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( ) A .y =1-x B .y =|x -2| C .y =2x -1D .y =log 2(2x )函数f (x )=1-e x 的值域为________.(教材习题改编)若指数函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________.三.典例分析例题一. 化简下列各式:(1)0.027-13-⎝⎛⎭⎫17-2+⎝⎛⎭⎫27912-(2-1)0; (2)⎝⎛⎭⎫56a 13b -2·(-3a -12b -1)÷(4a 23b -3)12·ab .【方法总结】例题二. 若方程|3x -1|=k 有一解,则k 的取值范围为________.【方法总结】1.指数函数图象的画法及应用(1)画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a . (2)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.2. 指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.高考对指数函数的性质的考查主要有以下三个命题角度:(1)比较指数幂的大小; (2)解简单的指数方程或不等式; (3)研究指数型函数的性质. 例题三.(1) 比较指数幂的大小已知a =⎝⎛⎭⎫1223,b =2-43,c =⎝⎛⎭⎫1213,则下列关系式中正确的是( ) A .c <a <bB .b <a <cC .a <c <bD .a <b <c(2) 解简单的指数方程或不等式设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x-7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)(3)研究指数型函数的性质函数y =(12)x 2+2x -1的值域是( )A .(-∞,4)B .(0,+∞)C .(0,4]D .[4,+∞) 【方法总结】四.巩固练习1. 化简下列各式:(1)(0.027)23+⎝⎛⎭⎫27125-13-⎝⎛⎭⎫2790.5; (2)⎝⎛⎭⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12.2. (1) 函数f (x )=1-e |x |的图象大致是( )(2) 若直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________.3.已知函数y =9x +m ·3x -3在区间[-2,2]上单调递减,则m 的取值范围为________.五.课堂小结六.作业㈠.已知函数f (x )=⎝⎛⎭⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值; (3)若f (x )的值域是(0,+∞),求a 的值. ㈡基础达标1.化简4a 23·b -13÷⎝⎛⎭⎫-23a -13b 23的结果为( )A .-2a 3bB .-8a bC .-6a bD .-6ab2.(2017·高考北京卷)已知函数f (x )=3x-⎝⎛⎭⎫13x,则f (x )( ) A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数3.(2018·湖北四市联考)已知函数f (x )=2x -2,则函数y =|f (x )|的图象可能是( )4.若2x 2+1≤⎝⎛⎭⎫14x -2,则函数y =2x 的值域是( )A .[18,2)B .[18,2]C .(-∞,18]D .[2,+∞)5.若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]6.化简:⎝⎛⎭⎫2350+2-2×⎝⎛⎭⎫214-12-(0.01)0.5=________. 7.(2018·陕西西安模拟)若函数f (x )=a x -2-2a (a >0,a ≠1)的图象恒过定点⎝⎛⎭⎫x 0,13,则函数f (x )在[0,3]上的最小值等于________.8.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________. 9.已知函数f (x )=⎝⎛⎭⎫23|x |-a.(1)求f (x )的单调区间;(2)若f (x )的最大值等于94,求a 的值.10.已知函数f (x )=a |x +b |(a >0,a ≠1,b ∈R ). (1)若f (x )为偶函数,求b 的值;(2)若f (x )在区间[2,+∞)上是增函数,试求a ,b 应满足的条件.1.(2018·河南濮阳检测)若“m >a ”是函数“f (x )=⎝⎛⎭⎫13x+m -13的图象不过第三象限”的必要不充分条件,则实数a 能取的最大整数为( ) A .-2 B .-1 C .0 D .12.(2017·高考全国卷Ⅰ)设x ,y ,z 为正数,且2x =3y =5z ,则( ) 3.若不等式(m 2-m )2x -⎝⎛⎭⎫12x<1对一切x ∈(-∞,-1]恒成立,则实数m 的取值范围是________.4.已知函数f (x )=⎩⎪⎨⎪⎧x +1,0≤x <1,2x -12,x ≥1,设a >b ≥0,若f (a )=f (b ),则b ·f (a )的取值范围是________.5.已知定义域为R 的函数f (x )=-2x +b2x +1+a 是奇函数.(1)求a ,b 的值;(2)解关于t 的不等式f (t 2-2t )+f (2t 2-1)<0. 6.已知函数f (x )=14x -λ2x -1+3(-1≤x ≤2).(1)若λ=32,求函数f (x )的值域;(2)若函数f (x )的最小值是1,求实数λ的值.。
高中数学的相关指数教案
![高中数学的相关指数教案](https://img.taocdn.com/s3/m/909bd079a22d7375a417866fb84ae45c3a35c258.png)
高中数学的相关指数教案
教学目标:
1. 了解指数的概念和性质;
2. 掌握指数运算的规则;
3. 能够灵活运用指数知识解决实际问题。
教学重点和难点:
1. 指数的定义和性质;
2. 指数运算的规则;
3. 实际问题的解决方法。
教学准备:
1. 教材《高中数学》;
2. 教学课件PPT;
3. 教学案例及练习题。
教学步骤:
一、导入(5分钟)
教师通过举例引入指数的概念,并提出问题引导学生思考,引起学生兴趣。
二、讲授(25分钟)
1. 指数的定义和性质;
2. 指数运算的规则(同底数幂相乘、幂的幂、幂的乘方、零指数规定);
3. 实例讲解指数运算的步骤。
三、练习(15分钟)
教师设计一些练习题供学生实践操作,巩固所学知识。
四、拓展(10分钟)
学生从日常生活中找到一些实际问题,并运用指数知识进行解决,加深对指数概念的理解。
五、总结(5分钟)
学生总结本堂课的重点内容和难点,教师进行适当梳理和补充。
六、作业布置
布置相应的作业,巩固学生对指数的理解和运用能力。
七、板书
本堂课所学内容的概要和重难点。
教学反思:
本节课采用了导入-讲授-练习-拓展-总结-作业布置的教学方法,使学生在理解指数概念的同时,掌握了指数运算的规则和方法,并能够运用所学知识解决实际问题。
通过本节课的教学,学生对指数的认识和运用能力得到了提升。
2020-2021高中数学人教版第一册学案:4.2.1指数函数的概念含解析
![2020-2021高中数学人教版第一册学案:4.2.1指数函数的概念含解析](https://img.taocdn.com/s3/m/6e94a1e9ab00b52acfc789eb172ded630b1c98d8.png)
新教材2020-2021学年高中数学人教A版必修第一册学案:4.2.1指数函数的概念含解析4.2指数函数4.2.1指数函数的概念[目标] 1。
能说出指数函数的定义;2。
记住指数函数的图象与性质;3.会用指数函数的图象与性质解答有关问题.[重点] 指数函数的概念、图象、性质.[难点] 指数函数性质的概括总结.知识点一指数函数的概念[填一填]一般地,函数y=a x(a〉0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R.[答一答]1.下列函数是指数函数吗?①y=3x+1;②y=3x+1;③y=3×2x;④y=5x+2-2.提示:它们都不满足指数函数的定义,所以都不是指数函数.2.指数函数定义中为什么规定a〉0且a≠1?提示:①如果a=0,当x>0时,a x恒等于0;当x≤0时,a x无意义.②如果a〈0,例如y=(-4)x,这时对于x=错误!,错误!,…,在实数范围内的函数值不存在.③如果a=1,则y=1x是一个常量,无研究的必要.为了避免上述各种情况,所以规定a〉0且a≠1.知识点二指数函数的图象和性质[填一填][答一答]3.观察同一直角坐标系中函数y=2x,y=3x,y=4x,y=(错误!)x,y=(错误!)x,y=(错误!)x的图象如图所示,能得到什么规律?提示:(1)当a>1时,a的值越大,图象越靠近y轴,递增速度越快.(2)当0<a〈1时,a的值越小,图象越靠近y轴,递减的速度越快.(3)底数互为倒数时,图象关于y轴对称,即y=a x与y=错误!x 图象关于y轴对称.4.怎样快速画出指数函数y=a x(a〉0,且a≠1)的图象?提示:由指数函数y=a x(a>0,且a≠1)的性质知,指数函数y=a x(a〉0,且a≠1)的图象恒过点(0,1),(1,a),(-1,错误!),只要确定了这三个点的坐标,即可快速地画出指数函数y=a x(a〉0,且a≠1)的图象.类型一指数函数的概念[例1](1)下列以x为自变量的函数中,是指数函数的是()A.y=(-4)x B.y=πxC.y=-4x D.y=a x+2(a>0,a≠1)(2)若y=(a2-3a+3)a x是指数函数,则()A .a =1或2B .a =1C .a =2D .a >0且a ≠1(3)已知函数f (x )为指数函数,且f 错误!=错误!,则f (-2)=________。
指数函数学案
![指数函数学案](https://img.taocdn.com/s3/m/aef19be2e009581b6bd9ebba.png)
3.1.2 指数函数学习目标:1、理解指数函数的概念,明确其图象形状。
2、通过指数函数的图象,研究指数函数的性质。
3、应用指数函数的性质解决简单的问题。
B 案使用说明:认真阅读课本,完成以下题目,做好疑难标记准备讨论。
1、认真阅读课本P85左边的“百万富翁”和“细胞分裂”的故事,体会“指数爆炸”的事实。
2、一般地,函数叫做指数函数。
思考:什么样的函数才是指数函数? 训练1:判断下列函数是否为指数函数 ①y=4x ②y=x 4 ③y=—4x④y=(—4)x⑤y=πx⑥y=xx⑦y=2x+22、a 为何值时,y=(a 2—3)·a x 是指数函数?3、在同一坐标系中作出y=2x 与y=(21)x 的图象。
x … —3 —2 —1 0 1 2 3 … y=2x… … y=x21……C 案使用说明:1、将自学中遇到的问题组内交流标记好疑难点。
2、组内解决不了的问题直接提出来作为全班展示。
[合作探究一] 在B 案第3个问题中已作出y=2x和y=(21)x 的图象,请在此基础上再做出y=3x和y=(31)x 的图象。
总结:根据图象总结指数函数的图象与性质a>10<a<1图象性质(1)定义域 值域 (2)图象经过定点(3)x>0时y x<0时y x>0时y x<0时y (4)单调性1、当a>0且a ≠1时,y=a x 与y=(a1)X 的图象对称。
2、指数函数中为何规定a>0且a ≠1? 例1 求下列函数的定义域 (1)y=33-x(2)y=x5-11变式训练:解不等式 (1)(31)8—2x>3—2x(2)a 2x —7>a 4x —1(a>0且a ≠1)小结:(1)解指数不等式,需化为a f(x)<ag(x)形式。
(2)正确运用指数函数单调性(3)要有分类讨论的意识[合作探究二] 例2 比较大小:(1)1.7321.743(2)0.8-1 0.8-2(3)1.70.30.93.1 (4)1.70.31.50.3小结:(1)灵活运用“0,1”作辅助,比较大小(2)同一坐标系中y=a x,a 取不同值时图象的变化规律变式:根据下图比较大小则a 、b 、c 、d 、l 的大小关系为当堂检测:1、函数y=(a 2—3a+3)·a x 是指函数,则有A 、a=1或2B 、a=1C 、a=2D 、a>0且a ≠12、如果函数f(x)=(1—2a)x在实数集R 上是减函数,则a 的取值范围是A 、(21,+∞)B 、(0,21) C 、(—∞,21) D 、(—21,21)3、函数y=a x在[0,1]上最大值与最小值和为3,则a 等于A 、21 B 、2 C 、4 D 、414、比较大小:(1)0.9a 0.9a-1 1.1a-2 1.1a-2.1(2)已知a=0.80.7,b=0.80.9,c=1.20.8则a 、b 、c 大小关系是A 案1、求定义域 (1)y=x3—1(2)y=x)21(—12、已知f (x )定义域为(0,1),则函数f (3—x)的定义域为 。
指数函数学案
![指数函数学案](https://img.taocdn.com/s3/m/729fd25a312b3169a451a44a.png)
2.2.2 指数函数(1)南大附中 张子超学习目标:1、掌握指数函数的概念(能理解对a 的限定)。
2、会作出指数函数的图像,能归纳出指数函数的几个基本性质。
3、能运用指数函数的性质解题。
教学过程:一、情境引入情境(一):庄子曰:一尺之棰,日取其半 ,万世不竭。
若设木棒长度为y ,经历天数为x ,那么x 与y 的关系是什么?情境(二):某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……一个细胞分裂x 次后,得到细胞的个数为y ,则y 与x 的关系是什么呢?二、数学建构思考:上面情境中的关系式与2x y =有什么不同?1、指数函数的定义:2、在定义中为什么要规定 (a >0且a ≠1)?3、指数函数的图象在同一坐标系画出(1)x y 2=,(2)xy )21(=的图象,4、观察并总结函数y =a x三、例题讲解例1,比较下列数的大小。
(1)2.35.25.1,5.1 (2)5.12.15.0,5.0 (3)2.13.08.0,5.1练一练1,比较下列各题中数值的大小(1)7.08.03,3 (2)5.3201.1,01.1 (3)1.33.09.0,7.12,在横线上填上适当的符号(<,>,=)(1)2.34.05____5-;(2)7.529.0____9.0;(3)2.13.28.1____7.2-;(4)7.27.25.0____2- 例2,解不等式82<x变一:812<x , 变二:22>x例3,解不等式93222+-<x x 。
变一:932)21(2-<x x , 变二:384+-<x x例4,求下列函数的定义域(1)221-=x y (2)x y )21(1-=四、形成性检测1、比较大小并填上适当的符号(1)2.37.23.1___3.1;(2)5.62.53.0___3.0;(3)2.23.06.0___7.3 2、解不等式8)21(2<-x3、求函数x y )31(3-=。
数学学案:指数函数()
![数学学案:指数函数()](https://img.taocdn.com/s3/m/d6381d1500f69e3143323968011ca300a6c3f6f5.png)
学必求其心得,业必贵于专精数学人教B必修1第三章3。
1。
2 指数函数1.理解指数函数的概念和意义,能画出具体指数函数的图象.2.探索并理解指数函数的单调性与特殊点等性质.3.利用计算工具,比较指数函数增长的差异.1.指数函数的定义函数______________叫做指数函数,其中________是自变量.对指数函数定义的理解应注意以下两点:(1)定义域:因为指数的概念已经扩充到有理数和无理数,所以在底数a>0的前提下,x可以是任意实数.(2)规定底数a大于零且不等于1的理由是:如果a=0,错误!如果a<0,比如y=(-4)x,这时对于x=错误!,x=错误!,…y=(-4)x都无意义.如果a=1,对于任何实数x,y=1x=1是一个常量,对它就没有研究的价值和必要了.【做一做1】指数函数y=(a-1)x中,实数a满足的条件是__________.2.指数函数的图象和性质定义域:______值域:______图象过定点______在______上是增函数在______上是减函数指数函数y=a x(a>1)在R上为单调增函数,在闭区间[s,t]上存在最大、最小值,当x=s时,函数有最小值a s;当x=t时,函数有最大值a t.指数函数y=a x(0<a<1)在R上为单调减函数,在闭区间[s,t]上存在最大、最小值,当x=s时,函数有最大值a s;当x=t 时,函数有最小值a t。
【做一做2-1】函数y=2-x的图象是( )【做一做2-2】函数y=a x-1+2 011(a>0且a≠1)中,无论a取何值恒经过一个定点,则这个定点的坐标为________.【做一做2-3】(1)已知3x≥9,求实数x的取值范围;(2)已知0。
2x+1<5,求实数x的取值范围.一、指数函数y=a x(a>0,且a≠1)的函数值的变化规律剖析:先从具体函数入手:列表:从上表中很容易发现:①当x<0时,总有2x>3x;②当x>0时,总有2x<3x;③当x从1增加到3,y=2x的函数值从2增加到8,y=3x的函数值从3增加到27,说明当x>0时,函数y=3x的函数值比y=2x的函数值增长得要快.又对于指数函数y=a x(a>0,且a≠1),当将底数a由2变为3,发现它们的图象发生了显著变化,在第一象限内,底数a越小,函数的图象越接近x轴.再类似地列表分析函数y=错误!x和y=错误!x的函数值的变化.由上面的探究过程可以得出底数a对函数值的影响:指数幂a x和1的比较:当x<0,a<1或x>0,a>1时,a x>1,即指数x和0比较,底数a和1比较,当不等号的方向相同时,a x大于1,简称为“同大".当x<0,a>1或x>0,a<1时,a x<1,即指数x和0比较,底数a和1比较,当不等号的方向相反(异)时,a x小于1,简称为“异小”.因此简称为“同大异小”.二、指数函数的图象分布规律剖析:先从特例入手:在同一个坐标系中画出下列各函数的图象:①y=2x;②y=5x;③y=错误!x;④y=错误!x。
人教B版高中数学必修一教案-3.1 指数与指数函数
![人教B版高中数学必修一教案-3.1 指数与指数函数](https://img.taocdn.com/s3/m/c63607f05901020206409cc2.png)
2.1.2 指数函数及其性质(1)三维目标一、知识与技能1.掌握指数函数的概念、图象和性质..能借助计算机或计算器画指数函数的图象. 3.能由指数函数图象探索并理解指数函数的性质. 二、过程与方法1.在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程,数形结合的方法等.2.通过探讨指数函数的底数a >0,且a ≠1的理由,明确数学概念的严谨性和科学性,做一个具备严谨科学态度的人.三、情感态度与价值观1.通过实例引入指数函数,激发学生学习指数函数的兴趣,体会指数函数是一类重要的函数模型,并且有广泛的用途,逐步培养学生的应用意识.2.在教学过程中,通过现代信息技术的合理应用,让学生体会到现代信息技术是认识世界的有效手段. 教学重点指数函数的概念和性质. 教学难点用数形结合的方法从具体到一般地探索、概括指数函数的性质. 教具准备多媒体、学案. 教学过程(一)新课导学探究一:指数函数的概念问题1:细胞分裂时,第一次由1个分裂成2个(即 12),第2次由2个分裂成4个(即 ),第3次由4个分裂成8个(即 ),如此下去,如果第x 次分裂得到 个细胞,那么细胞个数y 与次数x 的关系式是问题2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。
”请你写出截取x 次后,木棰剩余量y 关于x 的关系式是【讨论】:(1)这两个关系式是否构成函数?我们发现:在两个关系式中,每给一个自变量都有唯一的一个函数值和它对应,因此关系式2x y= 和 1()2xy = 都是函数关系式。
(2)这是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?我们发现: 函数2x y= 和 1()2xy =在在形式上是是相同的,解析式的右边都是指数式,且自变量都在指数位置上。
底数是常数,指数是自变量。
结论:函数2x y= 和 1()2x y =都是函数y =a x 的具体形式.函数y =a x是一类重要的函数模型,并且有广泛的用途,它可以解决好多生活中的实际问题,这就是我们下面所要研究的一类重要函数模型——指数函数. (引入新课,书写课题)(二)概念讲解指数函数的概念:一般地,函数y =a x (a >0,a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R . 思考:1、指数函数解析式的结构特征: ①xa 前面的系数为:1 ②a 的取值范围:a >0,a ≠1③指数只含x2:为什么规定10≠>a a 且呢?否则会出现什么情况呢?①当0=a ,ⅰ若0>x ,则00=xⅱ若0≤x ,则x0无意义,如:21-=x ,则010102121===-y 无意义。
3.1.2 指数函数及其性质(学案)
![3.1.2 指数函数及其性质(学案)](https://img.taocdn.com/s3/m/8f9555254b35eefdc8d33340.png)
3.1.2 指数函数及其性质(学案)(第1课时)【知识要点】1.指数函数;2.指数函数的图象;3.指数函数的单调性与特殊点【学习要求】1.理解指数函数的概念与意义;2.能借助计算器或计算机画出具体的指数函数的图象,并理解指数函数的单调性与特殊点;【预习提纲】1.指数函数的概念一般地,函数x ay=()叫做指数函数,其中是自变量,函数的定义域是 .2.指数函数的图象与性质(1)列表、描点、作图象(2)两个图象的关系函数x y 2=与x y )21(=的图象,都经过定点 ,它们的图象关于 对称.通过图象的上升和下降可以看出, 是定义域上的增函数, 是定义域上的减函数.(3)类比以上函数的图像,总结函数性质,填写下列表格:【基础练习】1.指出下列哪些是指数函数(1) y=2 x +1 ,(2)y=3×4 X ,(3) y=3x , (4) y= (-2)x ,(5) y=10 -x ,(6) y=2x+12.下列关系中正确的是( ).(A )313232)21()51()21(<< (B )323231)51()21()21(<<(C )323132)21()21()51(<< (D )313232)21()21()51(<<【典型例题】例 1 已知指数函数)1,0()(≠>=a a a x f x 且的图象经过点),3(π,求)0(f ,)1(f ,)3(-f 的值.例2 比较下列各题中两个值的大小:(1)5.27.1,37.1;(2)1.08.0-,2.08.0-;(3)3.07.1,1.39.0.1.函数b x a a a y +∙+-=)33(2是指数函数,则有( ).(A )1=a 或R ,2∈=b a (B )0,1==b a(C )0,2==b a (D )0,10=≠>b a a 且2.若函数)(x f 与x x g )21()(=得图象关于y 轴对称,则满足1)(>x f 的x 的取值范围是( ). (A )R (B ))0,(-∞ (C )),0(+∞ (D )),1(+∞3.函数1222-+-=x x y 的定义域是( ).(A )}22{≤≤-x x (B )}21{≤≤x x (C )}1{≥x x (D )R4.若集合R},2{∈==x y y A x ,R},{2∈==x x y y B ,则( ).(A )B A ⊆ (B )B A ≠⊃ (C )B A = ( D )Φ=B A 5.函数 x a x f )1()(+=是R 上的减函数,则a 的取值范围是( ).(A )0<a (B )01<<-a (C )10<<a (D )1-<a6. 函数13-=-x y 的定义域和值域分别为 .7.函数)10(2≠>=-a a a y x 且的图象必经过点 .8.某厂从今年起每年计划增产%8,则经过5年,产量能达到现在的 倍(精确到01.0).9.(1)比较21)54(与31)109(的大小并说明理由. (2)已知2b a =且1>b ,比较a a -与b b 2-的大小.10.已知函数b a x f x +=2)(的图象过点)3,21(和)2,0(.(1)求)(x f 的解析式;(2)画函数)(x f y =的图象;1.用清水漂洗衣服,若每次能洗去污垢的43,写出存留污垢y 与漂洗次数x 的函数关系式,若要使存留污垢不超过原来的%1,则至少要漂洗几次?。
数学必修一2-2指数运算的性质学案
![数学必修一2-2指数运算的性质学案](https://img.taocdn.com/s3/m/2446b03d31126edb6f1a1058.png)
《指数运算的性质》学案
【学习目标】
1、将正整数幂的运算性质类推到实数指数幂的运算性质;
2、能熟练地应用实数指数幂的运算性质及计算公式进行运算化简.
3、通过多种学习方式学有所获, 增强学习数学的积极性和自信心. 【学习建议】
1、认真进行课前预习,完成导学案.
2、上课积极参与小组学习活动.
【课前准备】 一、温故知新
3)(42+)0= ; 4)(2
)2
-= .
2、计算:
1)(23-)2(23+)2 ; 2)(-xy 2)4
3)(3c a -)3; 4)3
5
)
23()23(--
二、思考
1、计算第二题时用到哪些初中数学知识?
2、正整数指数幂都有哪些运算性质,请用字母表示出来.
【课中学习区】 一、合作探究
1、计算(题中字母均为正数) 1)(23-)
3
(23+)3- ; 2) (y x a
1
)a (4y a -) ;
3) ]
[2)23(y x -2
1
思考:通过做上边三道题,你有什么发现?
2、归纳总结
1)实数指数幂的运算性质是?前提是?
2)你能用字母表示,语言叙述吗?
二、学以致用
【课后练习区】
1、课本P68 A组第1题的(2)、(3).
2、课本P68 A组第5题的(3)、(4).
3、课本P68 A组第4题.
4、课本P69 B组第4题的(1)、(2).
【课后反思】
小组交流:你有哪些收获,还有哪些疑问?。
高中数学指数的概念教案
![高中数学指数的概念教案](https://img.taocdn.com/s3/m/9bc0869c250c844769eae009581b6bd97f19bca4.png)
高中数学指数的概念教案
目标:学生能够理解指数的基本概念,掌握指数的运算规则,并能够应用指数进行相关问题的解决。
一、引入:
通过一个简单的问题引导学生进入指数的学习。
例如:“如果我有2个苹果,再买3个苹果,那么我一共有多少个苹果?”
二、概念讲解:
1. 什么是指数:指数是用来表示幂运算的一种形式,用一个数字来表示底数的次方。
2. 指数的基本概念:底数、指数、幂。
3. 指数的运算规则:相同底数的指数相加减,底数相同的指数相乘除。
4. 科学计数法:介绍科学计数法的概念及应用。
三、实例演练:
1. 让学生进行一些简单的指数计算,巩固基本运算规则。
2. 设计一些综合性的问题,让学生运用指数进行解答,拓展应用能力。
四、讨论与总结:
1. 学生分享自己的解题思路和答案。
2. 教师进行总结,强调指数的重要性和应用。
帮助学生理解并巩固知识点。
五、作业布置:
1. 布置相关练习题目,巩固学生对指数的掌握。
2. 提出拓展性问题,激发学生深入思考和探索。
六、教学反思:
1. 回顾本节课的教学内容,总结优缺点。
2. 根据学生的学习情况,调整教学策略,进一步提升教学效果。
注:教学内容和方法可根据具体教学情况进行适当调整和创新。
学案3:4.2.1 指数函数的概念
![学案3:4.2.1 指数函数的概念](https://img.taocdn.com/s3/m/9ba7932da55177232f60ddccda38376baf1fe080.png)
4.2.1指数函数的概念1.指数函数的概念一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是.名师点拨指数函数解析式的3个特征(1)底数a为大于0且不等于1的常数.(2)自变量x的位置在指数上,且x的系数是1.(3)a x的系数是1.2.指数函数的图象和性质R底数a与1的大小关系决定了指数函数图象的“升”与“降”.当a>1时,指数函数的图象是“上升”的;当0<a<1时,指数函数的图象是“下降”的.自我检测1.判断正误(正确的打“√”,错误的打“×”)(1)指数函数y=a x中,a可以为负数.()(2)指数函数的图象一定在x轴的上方.()(3)函数y =2-x 的定义域为{x |x ≠0}.( ) 2.函数y =(3-1)x 在R 上是( ) A .增函数 B .奇函数 C .偶函数D .减函数3. y =⎝⎛⎭⎫34x的图象可能是( )4.若函数f (x )=a x (a >0且a ≠1)的图象过点⎝⎛⎭⎫3,18,则f (x )=________. 5.函数f (x )=2x +3的值域为________. 讲练互动探究点1 指数函数的概念例1 下列函数中,哪些是指数函数? ①y =(-8)x ;②y =2x2-1;③y =a x ;④y =(2a -1)x ⎝⎛⎭⎫a >12,且a ≠1;⑤y =2×3x . 规律方法(1)判断一个函数是指数函数的方法①看形式:只需判断其解析式是否符合y =a x (a >0,且a ≠1)这一结构特征;②明特征:看是否具备指数函数解析式具有的三个特征.只要有一个特征不具备,则该函数不是指数函数.(2)已知某函数是指数函数求参数值的方法①依据指数函数形式列方程:令底数大于0且不等于1,系数等于1列出不等式与方程; ②求参数值:解不等式与方程求出参数的值.[提醒] 解决指数函数问题时,要特别注意底数大于零且不等于1这一条件.1.若y =(a 2-3a +3)a x 是指数函数,则有( ) A .a =1或2 B .a =1 C .a =2D .a >0且a ≠12.如果指数函数y =f (x )的图象经过点⎝⎛⎭⎫-2,14,那么f (4)·f (2)等于________. 探究点2 指数函数的图象例2 根据函数f (x )=⎝⎛⎭⎫12x 的图象,画出函数g (x )=⎝⎛⎭⎫12|x |的图象,并借助图象,写出这个函数的一些重要性质. 求解策略求解指数函数图象问题的策略(1)抓住特殊点:指数函数的图象过定点(0,1).(2)巧用图象变换:函数图象的平移变换(左右平移、上下平移). (3)利用函数的性质:奇偶性与单调性. 跟踪训练1.函数y =a x -2+1(a >0且a ≠1)的图象必经过点( ) A .(0,1) B .(1,1) C .(2,0) D .(2,2)2.函数f (x )=a x-b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0探究点3 指数型函数的定义域、值域问题 例3 求下列函数的定义域和值域. (1)y =⎝⎛⎭⎫23-|x |;(2)y =1-2x .函数y =a f (x )的定义域与值域的求法(1)形如y =a f (x )的函数的定义域就是f (x )的定义域.(2)形如y =a f (x )的值域,应先求出f (x )的值域,再由函数的单调性求出a f (x )的值域.若a 的取值范围不确定,则需对a 进行分类讨论.(3)形如y =f (a x )的值域,要先求出u =a x 的值域,再结合y =f (u )确定出y =f (a x )的值域. 跟踪训练1.函数y =3x 2-2-9的定义域为________.2.函数f (x )=a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,求a 的值.达标反馈1.下列函数是指数函数的是( ) A .y =⎝⎛⎭⎫π2xB .y =(-9)xC .y =2x -1D .y =2×5x2.若函数f (x )=⎝⎛⎭⎫12a -3·a x 是指数函数,则f ⎝⎛⎭⎫12的值为 ( ) A .2 B .-2 C .-22D .223.函数f (x )=2x -3(1<x ≤5)的值域是( ) A .(0,+∞) B .(0,4) C .⎝⎛⎦⎤14,4D .⎝⎛⎭⎫0,14 4.函数y =a x -a (a >0,且a ≠1)的图象可能是( )5.求下列函数的定义域和值域: (1)y =21x -4; (2)y =⎝⎛⎭⎫23-|x |.巩固提升 A 基础达标1.下列函数中,指数函数的个数为( ) ①y =⎝⎛⎭⎫12x -1;②y =a x (a >0,且a ≠1);③y =1x;④y =⎝⎛⎭⎫122x-1. A .0 B .1 C .3D .42.函数y =1-3x 的定义域是( ) A .[0,+∞) B .(-∞,0] C .[1,+∞)D .(-∞,+∞) 3.已知函数f (x )=a x (a >0,且a ≠1)在(0,2)内的值域是(1,a 2),则函数y =f (x )的大致图象是( )4.函数y =4-2x -1的值域为( ) A .[1,+∞) B .(-1,1) C .(-1,+∞)D .[-1,1)5.已知函数f (x )=a x -b 的图象如图所示,则( )A .a >1,b >1B .a >1,0<b <1C .0<a <1,b >1D .0<a <1,0<b <16.函数f (x )=2x 在[-1,3]上的最小值是________. 7.已知函数y =a x-m+2的图象过定点(2,3),则实数m =________.8.已知函数y =a x -1的定义域是(-∞,0],则实数a 的取值范围是________. 9.求下列函数的定义域和值域: (1)y =21x -1;(2)y =⎝⎛⎭⎫132x 2-2.10.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝⎛⎭⎫2,12,其中a >0且a ≠1. (1)求a 的值;(2)求函数y =f (x )+1(x ≥0)的值域.B 能力提升11.已知1>n >m >0,则指数函数①y =m x ,②y =n x 的图象为( )12.若方程|2x -1|=a 有唯一实数解,则a 的取值范围是________.13.画出下列函数的图象,并说明它们是由函数f (x )=2x 的图象经过怎样的变换得到的. (1)y =2x +1;(2)y =-2x .14.已知函数f (x )=a x +b (a >0,且a ≠1). (1)若f (x )的图象如图①所示,求a ,b 的值; (2)若f (x )的图象如图②所示,求a ,b 的取值范围;(3)在(1)中,若|f (x )|=m 有且仅有一个实数解,求出m 的取值范围.C 拓展探究15.设f (x )=3x,g (x )=⎝⎛⎭⎫13x.(1)在同一平面直角坐标系中作出f (x ),g (x )的图象;(2)计算f (1)与g (-1),f (π)与g (-π),f (m )与g (-m )的值,从中你能得到什么结论?参考答案新知初探1.自变量自我检测1.【答案】(1)× (2)√ (3)×2.【答案】D3.【答案】C4.【答案】⎝⎛⎭⎫12x5.【答案】(3,+∞) 讲练互动探究点1 指数函数的概念例1 解:①中底数-8<0, 所以不是指数函数;②中指数不是自变量x ,而是关于x 的函数, 所以不是指数函数;③中底数a ,只有规定a >0且a ≠1时,才是指数函数; ④因为a >12且a ≠1,所以2a -1>0且2a -1≠1,所以y =(2a -1)x ⎝⎛⎭⎫a >12,且a ≠1为指数函数. ⑤中3x 前的系数是2,而不是1, 所以不是指数函数. 跟踪训练 1.【答案】C【解析】由指数函数的定义得⎩⎪⎨⎪⎧a 2-3a +3=1,a >0,a ≠1,解得a =2. 2.【答案】64【解析】设y =f (x )=a x (a >0,且a ≠1), 所以a -2=14,所以a =2,所以f (4)·f (2)=24×22=64. 探究点2 指数函数的图象例2 解:g (x )=⎝⎛⎭⎫12|x |=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x (x ≥0),2x (x <0),其图象如图.由图象可知,函数g (x )的定义域为R ,值域是(0,1], 图象关于y 轴对称,单调递增区间是(-∞,0], 单调递减区间是(0,+∞). 跟踪训练 1.【答案】D【解析】因为当x =2时,y =a x -2+1=2恒成立,所以函数y =a x -2+1(a >0且a ≠1)的图象必经过点(2,2). 2.【答案】D【解析】从曲线的变化趋势,可以得到函数f (x )为减函数,从而有0<a <1;从曲线的位置看,是由函数y =a x (0<a <1)的图象向左平移|-b |个单位长度得到,所以-b >0,即b <0. 探究点3 指数型函数的定义域、值域问题 例3 解:(1)定义域为R .因为|x |≥0, 所以y =⎝⎛⎭⎫23-|x |=⎝⎛⎭⎫32|x |≥⎝⎛⎭⎫320=1. 故y =⎝⎛⎭⎫23-|x |的值域为[1,+∞).(2)因为1-2x ≥0,所以2x ≤1. 所以2x ≤20.所以x ≤0.又因为0<2x ≤1,所以-1≤-2x <0, 所以0≤1-2x <1.所以函数的定义域为(-∞,0],值域为[0,1). 跟踪训练1.【答案】(-∞,-2]∪[2,+∞)【解析】由题意有3x 2-2-9≥0,即3x 2-2≥32, 所以x 2-2≥2,即x 2≥4, 所以x ≥2或x ≤-2.故所求函数的定义域为(-∞,-2]∪[2,+∞).2.解:①当0<a <1时,函数f (x )=a x (a >0,且a ≠1)在[1,2]上的最大值f (x )max =f (1)=a 1=a ,最小值f (x )min =f (2)=a 2,所以a -a 2=a 2,解得a =12或a =0(舍去);②当a >1时,函数f (x )=a x (a >0,且a ≠1)在[1,2]上的最大值f (x )max =f (2)=a 2, 最小值f (x )min =f (1)=a 1=a ,所以a 2-a =a2,解得a =32或a =0(舍去).综上所述,a =12或a =32.达标反馈1.【答案】A【解析】指数函数形如y =a x (a >0,a ≠1),所以选A.2.【答案】D【解析】因为函数f (x )是指数函数,所以12a -3=1,所以a =8,所以f (x )=8x,f ⎝⎛⎭⎫12=812=2 2.3.【答案】C【解析】因为1<x ≤5,所以-2<x -3≤2.而函数f (x )=2x -3在其定义域上是单调递增的,所以14<f (x )≤4,即所求函数的值域为⎝⎛⎦⎤14,4. 4.【答案】C【解析】函数y =a x -a (a >0,且a ≠1)的图象恒过点(1,0),故可排除选项A ,B ,D. 5.解:(1)要使函数有意义,则x -4≠0,解得x ≠4. 所以函数y =21x -4的定义域为{x |x ≠4}.因为1x -4≠0,所以21x -4≠1,即函数y =21x -4的值域为{y |y >0,且y ≠1}.(2)要使函数有意义,则-|x |≥0,解得x =0. 所以函数y =⎝⎛⎭⎫23-|x |的定义域为{x |x =0}.因为x =0,所以⎝⎛⎭⎫23-|x |=⎝⎛⎭⎫230=1,即函数y =⎝⎛⎭⎫23-|x |的值域为{y |y =1}.巩固提升 A 基础达标1.【答案】B【解析】由指数函数的定义可判定,只有②正确. 2.【答案】B【解析】因为1-3x ≥0,即3x ≤1,所以x ≤0,即x ∈(-∞,0]. 3.【答案】B【解析】对于函数f (x )=a x ,当x =0时,f (0)=a 0=1,当x =2时,f (2)=a 2. 由于指数函数是单调函数,则有a 2>1,即a >1.则函数f (x )的图象是上升的,且在x 轴上方,结合选项可知B 正确. 4.【答案】D【解析】因为4-2x ≥0,所以2x ≤4,即x ≤2,即函数的定义域是(-∞,2].因为0<2x ≤4,所以-4≤-2x <0,所以0≤4-2x <4.令t =4-2x ,则t ∈[0,4),所以t ∈[0,2), 所以y ∈[-1,1),即函数的值域是[-1,1),故选D.5.【答案】D【解析】根据图象,函数f (x )=a x -b 是单调递减的,所以指数函数的底数a ∈(0,1),根据图象的纵截距,令x =0,y =1-b ∈(0,1),解得b ∈(0,1),即a ∈(0,1),b ∈(0,1),故选D.6.【答案】12【解析】因为f (x )=2x 在[-1,3]上单调递增,所以最小值为f (-1)=2-1=12. 7.【答案】2【解析】由⎩⎪⎨⎪⎧2-m =0,a 2-m +2=3得m =2. 8.【答案】(0,1)【解析】由a x -1≥0,得a x ≥1=a 0,因为x ∈(-∞,0],由指数函数的性质知0<a <1.9.解:(1)要使y =21x -1有意义,需x ≠0,则21x >0且21x ≠1,故21x -1>-1且21x -1≠0,故函数y =21x -1的定义域为{x |x ≠0},值域为(-1,0)∪(0,+∞).(2)函数y =⎝⎛⎭⎫132x 2-2的定义域为实数集R ,由于2x 2≥0,则2x 2-2≥-2,故0<⎝⎛⎭⎫132x 2-2≤9,所以函数y =⎝⎛⎭⎫132x 2-2的值域为(0,9]. 10.解:(1)因为函数f (x )=a x -1(x ≥0)的图象经过点⎝⎛⎭⎫2,12,所以a 2-1=a =12. (2)由(1)得f (x )=⎝⎛⎭⎫12x -1(x ≥0),函数为减函数,当x =0时,函数取最大值2,故f (x )的值域是(0,2],所以函数y =f (x )+1=⎝⎛⎭⎫12x -1+1(x ≥0)的值域是(1,3].B 能力提升11.【答案】C【解析】由于0<m <n <1,所以y =m x 与y =n x 都是减函数,故排除A 、B ,作直线x =1与两个曲线相交,交点在下面的是函数y =m x 的图象,故选C.12.【答案】{a |a ≥1或a =0}【解析】作出y =|2x -1|的图象,如图,要使直线y =a 与图象的交点只有一个,所以a ≥1或a =0.13.解:如图.(1)y =2x +1的图象是由y =2x 的图象向上平移1个单位长度得到的.(2)y =-2x 的图象与y =2x 的图象关于x 轴对称.14.解:(1)因为f (x )的图象过点(2,0),(0,-2),所以⎩⎪⎨⎪⎧a 2+b =0,a 0+b =-2,解得a =3,b =-3. (2)由f (x )为减函数可知a 的取值范围为(0,1),因为f (0)=1+b <0,即b <-1,所以b 的取值范围为(-∞,-1).(3)由题图①可知y =|f (x )|的图象如图所示.由图可知使|f (x )|=m 有且仅有一个实数解的m 的取值范围为m =0或m ≥3.C 拓展探究15.解:(1)函数f (x ),g (x )的图象如图所示:(2)f (1)=31=3,g (-1)=⎝⎛⎭⎫13-1=3; f (π)=3π,g (-π)=⎝⎛⎭⎫13-π=3π; f (m )=3m ,g (-m )=⎝⎛⎭⎫13-m =3m . 从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y 轴对称.。
顶尖教案高中数学指数
![顶尖教案高中数学指数](https://img.taocdn.com/s3/m/e26e46b105a1b0717fd5360cba1aa81144318f80.png)
顶尖教案高中数学指数
教学目标:学生能够理解指数的定义、性质和运算规则,掌握指数的乘法和除法运算方法,能够熟练解决相关的实际问题。
教学重点:指数的定义、性质和运算规则。
教学难点:指数的乘法和除法运算方法。
教具准备:黑板、彩色粉笔、教材、习题纸。
教学过程:
第一步:导入(5分钟)
教师向学生介绍指数的概念和作用,引导学生思考指数在实际生活中的应用。
第二步:讲解(15分钟)
1.讲解指数的定义及性质,引导学生理解指数的含义。
2.讲解指数的运算规则,包括同底数乘法、除法规则。
第三步:练习(20分钟)
1.学生在课堂上完成若干指数计算习题,巩固所学内容。
2.教师让学生分组讨论并解决一些实际问题,引导学生将指数知识应用到实际生活中。
第四步:总结(5分钟)
教师总结本节课的重点内容,强调指数的重要性,并鼓励学生在日常学习中多加练习。
第五步:作业布置(5分钟)
布置相关的课外作业,巩固学生对指数的理解和运用。
教学反思:在教学过程中,要注意引导学生理解指数的概念,培养学生的逻辑思维能力,
引导学生将所学知识与实际生活中的问题结合起来,激发学生学习数学的兴趣。
指数函数及其性质学案
![指数函数及其性质学案](https://img.taocdn.com/s3/m/2252bc110b4e767f5acfce22.png)
指数函数及其性质学案一、学习目标:1.理解指数函数的概念,并能正确作出其图象,掌握指数函数的性质.2.培养学生实际应用函数的能力 二、学法指导:1. 在正确理解理解指数函数的定义,会画出基本的 指数函数的图象,并且能够归纳出性质及其简单应用.2. 指数函数的图象和性质的学习,能够学会观察,分析,归纳的能力,进一步体会数形结合的思想方法.3. 掌握函数研究的基本方法,激发自主学习的学习兴趣 三、知识要点1.指数函数的定义:函数 叫做指数函数,其中x 是自变量,函数定义域是2.指数函数的图象和性质: )10(≠>=a a a y x且的图象和性质(一)复习:引例1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……. 1个这样的细胞分裂 x 次后,得到的细胞个数 y 与 x 的函数关系是什么? 分裂次数:1,2,3,4,…,x 细胞个数:2,4,8,16,…,y 由上面的对应关系可知,函数关系是xy 2=. 引例2:某种商品的价格从今年起每年降低15%,设原来的价格为1,x 年后的价格为y ,则y 与x 的函数关系式为 x y 85.0=在xy 2=,x y 85.0=中指数x 是自变量,底数是一个大于0且不等于1的常量.我们把这种自变量在指数位置上而底数是一个大于0且不等于1的常量的函数叫做指数函数.(二)新课讲解:1.指数函数的定义:函数)10(≠>=a a a y x且叫做指数函数,其中x 是自变量,函数定义域是R 探究1:为什么要规定a>0,且a ≠1呢?①若a=0,则当x>0时,x a =0;当x ≤0时,xa 无意义.②若a<0,则对于x 的某些数值,可使xa 无意义. 如x)2(-,这时对于x=41,x=21,…等等,在实数范围内函数值不存在.③若a=1,则对于任何x ∈R ,xa =1,是一个常量,没有研究的必要性.为了避免上述各种情况,所以规定a>0且a ≠1在规定以后,对于任何x ∈R ,xa 都有意义,且xa >0. 因此指数函数的定义域是R ,值域是(0,+∞).探究2:函数x y 32⋅=是指数函数吗?指数函数的解析式y=x a 中,xa 的系数是1.有些函数貌似指数函数,实际上却不是,如y=xa +k (a>0且a ≠1,k ∈Z);有些函数看起来不像指数函数,实际上却是,如y=xa - (a>0,且a ≠1),因为它可以化为y=xa ⎪⎭⎫ ⎝⎛1,其中a 1>0,且a1≠12.指数函数的图象和性质:在同一坐标系中分别作出函数y=x2,y=x ⎪⎭⎫ ⎝⎛21,y=x10,y=x⎪⎭⎫ ⎝⎛101的图象.列表如下:x … -3 -2 -1-0.5 0 0.5 1 2 3 … y=x 2… 0.13 0.25 0.5 0.71 1 1.4 2 4 8 …y=x ⎪⎭⎫ ⎝⎛21 (8)4 2 1.410.71 0.5 0.25 0.13 …x … -1.5 -1 -0.5 -0.25 0 0.25 0.5 1 1.5 … y=x10… 0.03 0.1 0.32 0.56 1 1.78 3.16 10 31.62 …y=x⎪⎭⎫ ⎝⎛101 … 31.62 10 3.16 1.78 1 0.56 0.32 0.1 0.03 … 我们观察y=x2,y=⎪⎭⎫ ⎝⎛21,y=x 10,y=⎪⎭⎫⎝⎛101的图象特征,就可以得到)10(≠>=a a a y x 且的图象和性质a>10<a<1图 象性 质(1)定义域:R (2)值域:(0,+∞) (3)过点(0,1),即x=0时,y=1 (4)在 R 上是增函数 (4)在R 上是减函数(三).例题分析:例1某种放射性物质不断变化为其他物质,每经过1年剩留的这种物质是原来的84%,画出这种物质的剩留量随时间变化的图象,并从图象上求出经过多少年,剩量留是原来的一半(结果保留1个有效数字)分析:通过恰当假设,将剩留量y 表示成经过年数x 的函数,并可列表、描点、作图,进而求得所求解:设这种物质量初的质量是1,经过x 年,剩留量是y答:约经过4年,剩留量是原来的一半评述:指数函数图象的应用;数形结合思想的体现 例2 (课本第81页)比较下列各题中两个值的大小: ①5.27.1,37.1; ②1.08.0-,2.08.0-; ③3.07.1,1.39.0解:③在下面个数之间的横线上填上适当的不等号或等号:3.01.33.0 1.39.0必须要明确所给的两个值是哪个指数函数的两个函数值;对不同底数是幂的大小的比较可以与中间值进行比较.求下列函数的定义域、值域:⑴114.0-=x y ⑵153-=x y ⑶12+=xy分析:此题要利用指数函数的定义域、值域,并结合指数函数的图象注意向学生指出函数的定义域就是使函数表达式有意义的自变量x 的取值范围通过此例题的训练,学会利用指数函数的定义域、值域去求解指数形式的复合函数的定义域、值域,还应注意书写步骤与格式的规范性 五、课堂小练1比较大小:32)5.2(- ,54)5.2(- 2比较下列各数的大小:,10,4.05.2- 2.02- , 6.15.2。
《2.6指数与指数函数》 学案
![《2.6指数与指数函数》 学案](https://img.taocdn.com/s3/m/f0a3626848d7c1c708a145d3.png)
1
6 / 19
【答案】 (1)110
4 (2)a a
1 1
(3)a
1 1
【解析】 (1)原式=
a 3b 2 · a 2b3 a b
1 6 5 6
== a
1 1 1 3 2 6
· b2
1 1 5 3 6
1 = . a
5 1 - 2 - 1 2 (2)原式=- a 6 b 3÷ b 3 4 a 3 · 2
16 / 19
【拔高】 6.已知定义域为 R 的函数 f(x)= (1)求 a,b 的值; (2)若对任意的 t∈ R,不等式 f(t2-2t) +f(2t2-k)<0 恒成立,求 k 的取值范围. -2x+b 是奇函数. + 2x 1+a
17 / 19
7.若函数 y= lg(3-4x+x2) 的定义域为 M.当 x∈ M 时,求 f(x)=2x 2- 3× 4x 的最值及相应的 x 的值.
+
18 / 19
课程小结
19 / 19
3 5 1 - 1 =- a 6 · b 3÷ a 3 b 2 4
5 1 3 =- a 2 · b 2. 4 5 1 5 ab =- · 3 =- . 4 ab 4ab2
7 / 19
【例题 2】 【题干】
函数 y=ax-a(a>0,且 a≠1)的图象可能是(
)
8 / 19
【答案】 【解析】
第六节
适用学科 适用区域 数学 新课标
指数与指数函数
适用年级 课时时长(分钟) 高三 60
知 识 点
学习目标
1. 根式与指数幂 2. 指数幂的运算法则 3. 指数函数的概念 4. 指数函数的图象与性质 5. 与指数函数有关的复合函数问题的处理方法 1.了解指数函数模型的实际背景. 2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算. 3.理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点. 4.知道指数函数是一类重要的函数模型 . 指数函数概念、指数函数的图像与性质 指数函数概念、指数函数的图像与性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学过程一、 复习预习复习函数的基本性质(奇偶性、单调性以及周期性。
)二、知识讲解(一)创设情景、提出问题(约3分钟)师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……按这样的规律,51号同学该准备多少米?学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重。
师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,……按这样的规律,51号同学该准备多少米?【学情预设:学生可能说很多或能算出具体数目】师:大家能否估计一下,51号同学该准备的米有多重?教师公布事先估算的数据:51号同学所需准备的大米约重1.2亿吨。
师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008年度我国大米产量预计为1.27亿吨。
这就是说51号同学所需准备的大米相当于2007~2008年度我国全年的大米产量!【设计意图:用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望。
】在以上两个问题中,每位同学所需准备的米粒数用y 表示,每位同学的座号数用x 表示,y 与x 之间的关系分别是什么?学生很容易得出y=2x (∈x *N )和x y 2=(∈x *N )【学情预设:学生可能会漏掉x 的取值范围,教师要引导学生思考具体问题中x 的范围。
】 (二)师生互动、探究新知1.指数函数的定义师:其实,在本章开头的问题2中,也有一个与x y 2=类似的关系式x y 073.1=(20,≤∈*x N x )⑴让学生思考讨论以下问题(问题逐个给出):(约3分钟)①x y 2=(∈x *N )和x y 073.1=(20,≤∈*x N x )这两个解析式有什么共同特征? ②它们能否构成函数?③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字? 【设计意图:引导学生从具体问题、实际问题中抽象出数学模型。
学生对比已经学过一次函数、反比例函数、二次函数,发现xy 2=,xy 073.1=是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣。
】引导学生观察,两个函数中,底数是常数,指数是自变量。
师:如果可以用字母a 代替其中的底数,那么上述两式就可以表示成x a y =的形式。
自变量在指数位置,所以我们把它称作指数函数。
⑵让学生讨论并给出指数函数的定义。
(约6分钟) 对于底数的分类,可将问题分解为:①若0 a 会有什么问题?(如2-=a ,21=x 则在实数范围内相应的函数值不存在)②若 会有什么问题?(对于0≤x ,xa 都无意义)③若又会怎么样?(无论 取何值,它总是1,对它没有研究的必要.)师:为了避免上述各种情况的发生,所以规定且.在这里要注意生生之间、师生之间的对话。
【学情预设: ①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求10≠a a ,且 ;1=a 为什么不行?②若学生只给出x a y =,教师可以引导学生通过类比一次函数(0,≠+=k b kx y )、反比例函数(0,≠=k xky )、二次函数(0,2≠++=a c bx ax y )中的限制条件, 思考指数函数中底数的限制条件。
】【设计意图 :①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;②讨论出10≠a a ,且 ,也为下面研究性质时对底数的分类做准备。
】 接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如x y 32⨯=,xy 23=,x y 2-=。
【学情预设:学生可能只是关注指数是否是变量,而不考虑其它的。
】 【设计意图 :加深学生对指数函数定义和呈现形式的理解。
】 2.指数函数性质⑴提出两个问题(约3分钟)①目前研究函数一般可以包括哪些方面;【设计意图:让学生在研究指数函数时有明确的目标:函数三个要素(对应法则、定义域、值域、)和函数的基本性质(单调性、奇偶性)。
】②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究? 可以从图象和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考。
【设计意图:①让学生知道图象法不是研究函数的唯一方法,由此引导学生可以从图象和解析式(包括列表)不同的角度对函数进行研究;②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透。
】⑵分组活动,合作学习(约8分钟)师:好,下面我们就从图象和解析式这两个不同的角度对指数函数进行研究。
①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;②每一大组再分为若干合作小组(建议4人一小组); ③每组都将研究所得到的结论或成果写出来以便交流。
【学情预设:考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导。
】【设计意图:通过自主探索、合作学习不仅让学生充当学习的主人更可加深对所得到结论的理解。
】⑶交流、总结(约10~12分钟) 师:下面我们开一个成果展示会!教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果。
教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析。
这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其它性质?师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值的副产品呢?(如过定点(0,1),x a y =与xay )1(=的图象关于y 轴对称)【学情预设: ①首先选一从解析式的角度研究的小组上台汇报;②对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报;③问其它小组有没不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图象的变化。
】【设计意图: ①函数的表示法有三种:列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以也应该从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的。
②让学生上台汇报研究成果,让学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养;③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题使该难点的突破显得自然。
】师:从图象入手我们很容易看出函数的单调性、奇偶性、以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到。
教师通过几何画板中改变参数a 的值,追踪xa y =的图象,在变化过程中,让全体学生进一步观察指数函数的变化规律。
师生共同总结指数函数的图象和性质,教师可以边总结边板书。
R(三)巩固训练、提升总结(约8分钟)1.例:已知指数函数)1,0()(≠=a a a x f x且 的图象经过点),3(π,求)3(),1(),0(-f f f 的值。
解:因为xa x f =)(的图象经过点),3(π,所以π=)3(f即π=3a ,解得31π=a ,于是3)3(x f π=。
所以ππ1)3(,)1(,1)0(3=-==f f f 。
【设计意图:通过本题加深学生对指数函数的理解。
】师:根据本题,你能说出确定一个指数函数需要什么条件吗?师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了。
【设计意图:让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想。
】2.练习:⑴在同一平面直角坐标系中画出xy 3=和xy )31(=的大致图象,并说出这两个函数的性质;⑵求下列函数的定义域:①22-=x y ,②x y 1)21(=。
3.师:通过本节课的学习,你对指数函数有什么认识?你有什么收获?【学情预设:学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数。
】【设计意图:①让学生再一次复习对函数的研究方法(可以从也应该从多个角度进行),让学生体会本课的研究方法,以便能将其迁移到其他函数的研究中去。
②总结本节课中所用到的数学思想方法。
③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通。
】0<a<1a>1三、 例题精析例、求函数y解:由题意可得2160x --≥,即261x -≤,∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-,∞.令26x t -=,则y =又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.∴函数的值域是[)01,.例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________.分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥,∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x >.∴x 的取值范围是14⎛⎫+ ⎪⎝⎭,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论.四、课堂运用【基础】比较下列各组数的大小:(1)若,比较与;(2)若,比较与;(3)若,比较与;(4)若,且,比较a与b;(5)若,且,比较a与b.解:(1)由,故,此时函数为减函数.由,故.(2)由,故.又,故.从而.(3)由,因,故.又,故.从而.(4)应有.因若,则.又,故,这样.又因,故.从而,这与已知矛盾.(5)应有.因若,则.又,故,这样有.又因,且,故.从而,这与已知矛盾.小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.【巩固】例题:解方程223380x x +--=.解:原方程可化为29(3)80390x x ⨯-⨯-=,令3(0)xt t =>,上述方程可化为298090t t --=,解得9t =或19t =-(舍去),∴39x =,∴2x =,经检验原方程的解是2x =.评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根.【拔高】例、函数221(01)x x y a a a a =+->≠且在区间[11]-,上有最大值14,则a 的值是_______.分析:令x t a =可将问题转化成二次函数的最值问题,需注意换元后t 的取值范围. 解:令x t a =,则0t >,函数221x x y a a =+-可化为2(1)2y t =+-,其对称轴为1t =-.∴当1a >时,∵[]11x ∈-,,∴1x a a a ≤≤,即1t a a≤≤.∴当t a =时,2max (1)214y a =+-=. 解得3a =或5a =-(舍去);当01a <<时,∵[]11x ∈-,,∴1x a a a ≤≤,即1a t a≤≤,∴ 1t a =时,2max 11214y a ⎛⎫=+-= ⎪⎝⎭,解得13a =或15a =-(舍去),∴a 的值是3或13.评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等.课程小结1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。