初二上册数学一次函数知识点讲解
八年级数学一次函数知识点总结
千里之行,始于足下。
八年级数学一次函数知识点总结
一次函数是指形如y = ax + b的函数,其中a和b为常数。
一次函数的特点是:
1. 直线的图像:一次函数的图像是一条直线,因为它的函数关系是线性的。
2. 斜率和截距:a表示直线的斜率,b表示直线在y轴上的截距。
3. 变量:x表示自变量,y表示因变量,即函数的值。
一次函数的关系:
1. y = ax + b表示函数关系,其中a表示斜率。
斜率是指函数图像上任
意两点之间的垂直距离与水平距离的比值。
2. 直线的方程:直线的方程可以由两点确定,也可以由斜率和一个已知点来确定。
常用的直线方程有点斜式(y - y1 = m(x - x1))、斜截式(y = mx + b)和一般式(Ax + By + C = 0)。
3. 平行和垂直:两条直线平行的条件是它们的斜率相等,垂直的条件是它们的斜率的乘积为-1。
一次函数的应用:
1. 实际问题:一次函数可以用于描述线性关系的实际问题,如速度和时间之间的关系、成本和产量之间的关系等。
2. 线性方程组:一次函数可以用于解决线性方程组的问题,通过求解方程组的交点可以得到函数的解。
总结:
一次函数是数学中最简单的函数之一,它以直线的形式描述了变量之间的
线性关系。
理解一次函数的概念和特点,掌握直线方程的表示和应用,能够解
决实际问题和线性方程组等数学应用。
第1页/共1页。
八年级上册数学一次函数
八年级上册数学一次函数一次函数是初中数学中的一个重要概念,也是数学的一个基础知识点。
在八年级上册中,一次函数作为数学的一个重点内容被引入。
本文将探讨八年级上册数学中一次函数的基本概念、性质以及应用。
一、一次函数的基本概念在数学中,一次函数是指函数的定义域中的每一个元素与其值之间存在一个线性关系的函数。
一次函数的表达式一般可以写成 y = kx + b 的形式,其中 k 和 b 是常数,k 称为斜率,b 称为截距。
在一次函数中,x 称为自变量,y 称为因变量。
自变量的变化会引起因变量的相应变化。
斜率 k 表示了函数在直线上的斜率,它反映了函数的变化速度和方向。
截距 b 则表示了函数与 y 轴的交点,反映了函数的起始位置。
二、一次函数的性质1. 斜率的意义和性质:斜率 k 的正负表示了一次函数的增减性质。
当 k > 0 时,函数增加;当 k < 0 时,函数减少;当 k = 0 时,函数不变。
斜率的绝对值大小表示了函数增长或减少的速度。
绝对值越大,函数的变化越快。
斜率为零表示函数是一个常函数,即自变量的变化不影响因变量的值。
2. 截距的意义和性质:截距 b 表示了函数与 y 轴的交点。
当 x = 0 时,y = b,即函数在 y 轴上的值。
截距的正负表示了函数的起始位置,当 b > 0 时,函数在 y 轴的上方;当 b < 0 时,函数在 y 轴的下方。
3. 零点的意义和性质:零点是指函数在 x 轴上的点,即 y = 0 的解。
求零点就是求函数的解。
一次函数有且仅有一个零点。
三、一次函数的应用一次函数在实际生活中具有广泛的应用,以下是一些常见的应用场景。
1. 速度与时间的关系:一次函数可以用来描述速度与时间之间的关系。
以汽车驾驶为例,假设驾驶的速度为 v km/h,驾驶的时间为 t 小时,那么驾驶的路程就可以表示为一次函数 y = vt。
斜率就代表了驾驶的速度,截距则表示了驾驶的起始位置。
初二上册数学知识点总结一次函数
初二上册数学知识点总结:一次函数篇一一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法用图象表示函数关系的方法叫做图象法。
四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
初二上册数学知识点总结:一次函数篇二五、正比例函数和一次函数1、正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成 (k,b为常数,k 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数中的b=0时(即 )(k为常数,k 0),称y是x的正比例函数。
2、一次函数的图像: 所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。
4、正比例函数的性质一般地,正比例函数有下列性质:(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质一般地,一次函数有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式 (k 0)中的常数k。
完整版初二上册数学一次函数知识点总结
初中数学一次函数知识点总结基本见解:1、变量:在一个变化过程中能够取不一样样数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,若是有两个变量x 和 y,并且关于x 的每一个确定的值, y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把 y 称为因变量,y 是 x 的函数。
3、定义域:一般的,一个函数的自变量同意取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实诘责题中,函数定义域还要和本质情况相吻合,使之存心义。
函数性质:1.y 的变化值与对应的x 的变化值成正比率,比值为k.即:y=kx+b(k,b为常数, k≠0)。
2.当 x=0 时, b 为函数在 y 轴上的点 ,坐标为 (0 ,b) 。
3 当 b=0 时 (即 y=kx) ,一次函数图像变为正比率函数,正比率函数是特其他一次函数。
4.在两个一次函数表达式中:当两一次函数表达式中的当两一次函数表达式中的当两一次函数表达式中的当两一次函数表达式中的k 相同, b 也相同时,两一次函数图像重合;k 相同, b 不一样样时,两一次函数图像平行;k 不一样样, b 不一样样时,两一次函数图像订交;k 不一样样,b 相同时,两一次函数图像交于y轴上的同一点(0,b)。
图像性质1.作法与图形:(1)列表 .(2 )描点;一般取两个点两点法”。
一般,依照“两点确定一条直线”的道理,也可叫“的 y=kx+b(k ≠0)的图象过( 0, b )和( -b/k , 0)两点画直线即可。
正比率函数 y=kx(k ≠0)的图象是过坐标原点的一条直线,一般取( 0,0)和(1,k )两点。
2.性质:(1 )在一次函数上的随意一点P (x, y),都知足等式:y=kx+b(k ≠0)。
初二数学一次函数知识点解析
初二数学一次函数知识点解析一、函数的概念和性质函数是一种特殊的关系,它描述了自变量和因变量之间的对应关系。
一次函数是函数中的一种特殊形式,表示为y = ax + b,其中a和b是实数,a称为斜率,b称为截距。
一次函数也被称为线性函数,因为它的图像是一条直线。
二、直线的斜率和截距1. 斜率的定义及计算一次函数的斜率表示了直线的倾斜程度。
斜率的计算可以通过选取直线上两个点,计算它们之间的纵坐标差值与横坐标差值的比值来得到。
具体公式可以表示为:斜率a = (y₂ - y₁) / (x₂ - x₁)。
2. 斜率的特征斜率为正时,表示直线是向右上方倾斜;斜率为负时,表示直线是向右下方倾斜;斜率为0时,表示直线是水平的;斜率无定义时,表示直线是垂直的。
三、直线图像的性质1. 平行线和垂直线如果两条直线具有相同的斜率,那么它们是平行的;如果两条直线的斜率相乘为-1,那么它们是垂直的。
2. 直线与坐标轴的交点当直线与x轴相交时,y的值为0,求解方程y = ax + b中的x,即可得到直线与x轴的交点;当直线与y轴相交时,x的值为0,求解方程y = ax + b中的y,即可得到直线与y轴的交点。
四、直线的图像和变化规律1. 图像的特征一次函数的图像是一条直线,可以根据斜率的正负和零来判断图像的走势。
- 当斜率为正时,图像是从左下到右上的斜线;- 当斜率为负时,图像是从左上到右下的斜线;- 当斜率为0时,图像是一条水平的直线;- 当斜率无定义时,图像是一条垂直的直线。
2. 增减性和单调性一次函数在整个定义域上具有相同的增减性,即当斜率为正时,函数递增;当斜率为负时,函数递减。
3. 定义域和值域一次函数的定义域是实数集,即所有实数;值域也是实数集,即所有实数。
五、一次函数的应用一次函数在实际生活中有很多应用。
下面以两个例子说明一次函数的实际应用。
1. 速度和时间的关系假设一个人以恒定的速度v骑自行车,骑行的时间为t小时。
初二数学《一次函数》课件
进阶习题
01
A. (4,4) 或 (-4,-4)
02
B. (4,-4) 或 (-4,4)
03
C. (-4,8) 或 (4,-8)
04
D. (-4,-8) 或 (4,8)
高阶习题
1
高阶习题1:已知一次函数 y = kx + b(k≠0) 经过点 (0,2),且与坐标轴围成的三角形的面积为 4,求这个一次函数的解析式.
2
A. y = x + 2 或 y = -x + 2
3
B. y = x - 2 或 y = -x + 2
高阶习题
01
C. y = x + 2 或 y = -x - 2
02
D. 以上都不对
03
高阶习题2:已知一次函数 y = kx + b(k≠0)的图象经过点 P(3,4),它与 x、 y 轴的正半轴分别相交于 A、B 两点,且 OA+OB=15,求此一次函数的解析式 .
详细描述
斜截式为 $y = mx + b$,其中 $m$ 是斜率,$b$ 是截距。这种形式简洁 地表示了直线方程的斜率和截距,便 于理解和计算。
一次函数的点斜式
总结词
点斜式是一次函数的另一种表达方式,用于描述通过某一点的直线方程。
详细描述
点斜式为 $y - y_1 = m(x - x_1)$,其中 $(x_1, y_1)$ 是直线上的一个点,$m$ 是斜率。该形式通过一个已知点和斜率来表示直线方程,具有更强的实际应用价 值。
注重理解而非死记硬背
函数的性质和特点应通过理解来掌握,而不是简单地记忆公式。
多做练习
通过大量的练习,可以更好地掌握一次函数的运用,提高解题能力 。
八年级数学上册一次函数知识点梳理与易错题解析
八年级数学上册一次函数知识点梳理与易错题解析知识点一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k ≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b ……①和 y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
新人教八年级数学(上册)一次函数知识点总结
一、常量与变量在一个变化过程中,数值保持不变的量叫常量,数值发生改变的量叫变量。
实际上,常量就是具体的数,变量就是表示数的字母。
(注意“π”是常量)二、自变量与函数在一个变化过程中,有两个变量x和y,如果x每取一个值,y都有唯一确定....的值与它对应,那么,把x叫自变量,y叫x的函数。
判断两个变量是否有函数关系就是“看对于自变量的每一个确定的值,函数值是否有惟一确定的值和它对应。
”三、函数值如果x=a时,y=b,那么把“y=b叫做x=a 时的函数值”。
四、表示函数的方法方法(一)解析式法。
方法(二)列表法方法(三)图像法五、自变量的取值范围在一个变化过程中,自变量允许取值的区域,叫自变量的取值范围。
六、自变量取值范围的求法(一)对于解析式1、解析式是整式。
自变量取一切实数。
2、自变量在分母。
取使分母不等于0的实数。
3、自变量在根号内(1)在内。
自变量取一切实数。
(2)在内。
取使根号内的值为非负数的实数。
(二)对于实际问题自变量的取值要符合实际意义。
在一个函数解析式中,同时有几种代数式时,函数的自变量的取值范围应是各种代数式中自变量的取值范围的公共部分例:求函数中自变量x的取值范围。
解:要使有意义,必须且即,。
所以中自变量x 的取值范围是。
说明:求使函数有意义的自变量的值,就是求函数自变量的取值范围。
七、函数图象的画法步骤把每个点描在平面直角坐标系中。
(三)连线。
把描出的点按照自变量由小到大的顺序,用平滑的线....连结起来。
八、正比例函数1、定义:形如(k是常数,)的函数叫做正比例函数。
2、图象:是经过(0,0)与(1,k)的直线。
3、性质:(1)(2)九、一次函数(一)定义:形如b的函数叫做一次函数。
因为当b=0时,y=kx,所以“正比例函数是特殊的一次函数”。
(二)图象:是经过(,0)与(0,b)两点的直线。
因此一次函数y=kx+b的图象也称为直线y=kx+b.其中,(,0)是直线与x轴的交点坐标,(0,b)是直线与y轴的交点坐标。
初二数学上册知识点:一次函数
初二数学上册知识点:一次函数数学是一门重要且有趣的学科,它涵盖了广泛的知识点。
初中数学上册中,一次函数是一个重要的知识点。
本文将重点介绍一次函数的概念、特点以及相关的解题方法。
一、一次函数的概念一次函数又称为线性函数,是形如 y = kx + b 的函数,其中 k 和 b 都是常数。
在这个函数中,x 是自变量,y 是因变量。
一次函数的图像是一条直线,因此它也被称为线性函数。
一次函数的定义域是所有实数,值域也是所有实数。
我们可以通过给定的函数值和定义域中的横坐标求解一次函数的值。
二、一次函数的特点1.一次函数的图像是一条直线。
直线可以延伸到无穷远处,因此一次函数的定义域和值域都是所有实数。
2.一次函数的斜率 k 代表了直线的倾斜程度。
斜率为正表示直线上升,斜率为负表示直线下降。
斜率为零表示直线水平。
3.一次函数的截距 b 代表了直线与 y 轴的交点。
当横坐标 x=0 时,直线与 y 轴的交点就是 b。
4.一次函数的图像在坐标系中是直线对称的。
具体地说,当 (x, y) 是直线上的一点时,(-x, -y) 也是直线上的一点。
5.一次函数的图像可以通过两个点来确定。
只需要选择两个不重合的点,并将它们连接起来形成一条直线即可。
三、一次函数的解题方法在初中数学上册中,我们经常需要解决关于一次函数的问题。
以下是两个解题方法的具体步骤:方法一:利用斜率和截距1.确定一次函数的斜率 k 和截距 b。
2.如果已知一次函数的斜率和截距,求函数值时,将自变量的值代入一次函数的方程中即可。
3.如果已知一次函数的函数值和自变量的值,求斜率和截距时,可根据函数值和自变量的值列方程进行解题。
方法二:利用两点坐标1.选择两个不重合的点(x₁, y₁) 和(x₂, y₂)。
2.根据这两个点可以求出一次函数的斜率 k。
计算公式为k = (y₂ - y₁) / (x₂ -x₁)。
3.求出斜率之后,可以选择其中一个点,将该点的坐标代入 y = kx + b 求解截距 b。
初二学生数学一次函数知识点总结8篇
初二学生数学一次函数知识点总结8篇第1篇示例:初二学生在学习数学的过程中,一次函数是一个非常重要的知识点。
一次函数也称为一元一次方程,是数学中最简单的一种函数形式,通常表示为y=ax+b。
在初中阶段,学生需要了解一次函数的基本概念、性质和应用。
一、一次函数的基本概念1. 一次函数的定义一次函数是由形如y=ax+b的函数所构成,其中a和b是常数,a 不等于0。
其中a称为斜率,b称为截距。
2. 一次函数的图像一次函数的图像是一条直线,其斜率决定了直线的斜度,截距决定了直线与y轴的交点。
3. 一次函数的定义域和值域一次函数的定义域是整个实数集,值域也是整个实数集。
4. 一次函数的自变量和因变量在一次函数中,自变量是x,表示输入的数值;因变量是y,表示输出的数值。
二、一次函数的性质1. 斜率的意义一次函数中,斜率a表示当自变量x增加1单位时,因变量y的增量。
斜率可以告诉我们函数的增减趋势。
2. 相关性质一次函数中,两条直线平行或重合的条件是它们的斜率相等,截距相等。
3. 函数值的计算根据一次函数的表达式,可以通过代入自变量的值计算出相应的因变量的值。
4. 求解一元一次方程一次函数也可以看作是一元一次方程,通过方程的变形求解可以得到未知数的值。
三、一次函数的应用1. 数据拟合在实际问题中,可以利用一次函数对数据进行拟合,从而预测未来的发展趋势。
2. 函数关系一次函数描述了两个变量之间的线性关系,可以用来研究变量之间的影响和规律。
3. 图像分析通过一次函数的图像,可以分析函数的特性,如斜率的大小、截距的位置等。
四、注意事项1. 理解斜率和截距的含义,掌握它们在一次函数中的作用。
2. 熟练掌握一次函数的基本运算,如加减乘除等。
3. 多做练习,加深对一次函数的理解和掌握。
4. 注意一次函数在实际问题中的应用,培养运用数学解决问题的能力。
一次函数是初中数学中的基础知识之一,掌握好一次函数的概念、性质和应用可以为学生打下坚实的数学基础,提升数学运用能力。
(完整版)八年级数学一次函数知识点总结
一次函数知识点总结一、函数1.变量的定义:在某一变化过程中,我们称数值发生变化的量为变量。
注:变量还分为自变量和因变量。
2.常量的定义:在某一变化过程中,有些量的数值始终不变,我们称它们为常量。
3.函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数,y的值称为函数值.4.函数的三种表示法:(1)表达式法(解析式法);(2)列表法;(3)图象法.a、用数学式子表示函数的方法叫做表达式法(解析式法)。
b、由一个函数的表达式,列出函数对应值表格来表示函数的方法叫做列表法。
c、把这些对应值(有序的)看成点坐标,在坐标平面内描点,进而画出函数的图象来表示函数的方法叫做图像法。
5.求函数的自变量取值范围的方法.(1)要使函数的表达式有意义:a、整式(多项式和单项式)时为全体实数;b、分式时,让分母≠0;c、含二次根号时,让被开方数≠0 。
(2)对实际问题中的函数关系,要使实际问题有意义。
注意可能含有隐含非负或大于0的条件。
6.求函数值方法:把所给自变量的值代入函数表达式中,就可以求出相应的函数值.7.描点法画函数图象的一般步骤如下:Step1:列表(表中给出一些自变量的值及其对应的函数值);Step2:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);Step3:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来).8.判断y是不是x的函数的题型A、给出解析式让你判断:可给x值来求y的值,若y的值唯一确定,则y是x的函数;否则不是。
B、给出图像让你判断:过x轴做垂线,垂线与图像交点多余一个(≥2)时,y不是x的函数;否则y是x的函数。
二、正比例函数1.正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,•其中k叫做比例系数。
初二数学一次函数知识点总结
初二数学一次函数知识点总结
一、一次函数的定义
一次函数是指形如y=kx+b的函数,其中x是自变量,y是函数值,k是斜率,b是y轴截距。
二、一次函数的图像
1.当k>0时,图像呈现右上方向,斜率越大,直线越陡峭。
2.当k<0时,图像呈现左下方向,斜率越小,直线越平缓。
3.当k=0时,图像呈现水平直线。
4.当x=0时,函数的值为y=b,即y轴截距。
三、一次函数的性质
1.一次函数经过两个不同点时,确定一条直线。
2.一次函数的斜率与函数的图像的倾斜度和正负有关。
3.当k>0时,函数单调递增;当k<0时,函数单调递减。
4.一条直线的斜率与与其垂直的直线的斜率的积为−1。
四、一次函数的应用
1.求解直线上的点坐标。
–已知直线上某一点的坐标以及斜率,可以求解该直线上的其他点的坐标。
2.用直线解决实际问题。
–通过实际问题,建立一元一次方程,求解方程,解得的变量即为实际问题的解决方案。
3.计算商业利润。
–利润y与销售额x之间的关系可以表示为一次函数,以此计算商业利润。
五、一次函数的常见误区
1.认为k和b的单位相同。
–k的单位是“单位y轴上升一单位x轴上升的单位数”,而b的单位是距离单位。
2.认为函数的x和y的值的单位相同。
–x和y的单位通常不相同,并且要根据所给问题具体确定。
3.直接根据图形判断斜率。
–斜率应根据公式进行计算,而不是根据图形直接判断。
以上是初二数学一次函数知识点的总结,希望能对大家的学习有所帮助。
八年级数学一次函数知识点
八年级数学一次函数知识点八年级数学一次函数知识点汇总知识点是知识、理论、道理、思想等的相对独立的最小单元。
以下是店铺为大家整理的八年级数学一次函数知识点,希望对你有所帮助!一、知识要点1、函数概念:在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数。
2、一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数。
说明:(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定。
(2)一次函数y=kx+b(k,b为常数,b0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数。
(3)当b=0,k0时,y=b仍是一次函数。
(4)当b=0,k=0时,它不是一次函数。
3、一次函数的图象(三步画图象)由于一次函数y=kx+b(k,b为常数,k0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(—,0)。
但也不必一定选取这两个特殊点。
画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可。
4、一次函数y=kx+b(k,b为常数,k0)的性质(正比例函数的性质略)(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;5、确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.6、待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.7、用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.8、本章思想方法(1)函数方法。
八年级上册数学书一次函数知识点
八年级上册数学书一次函数知识点
一次函数是指形如f(x) = ax + b的函数,其中a和b是常数,且a不等于0。
一次函数的几个重要概念和知识点包括:
1. 函数图像:一次函数的图像是一条直线。
直线的斜率为a,表示函数的增长速率。
斜率为正表示函数单调递增,斜率为负表示函数单调递减。
2. 截距:直线在y轴上与y轴的交点称为y轴截距,表示函数在x=0时的值。
直线与
x轴的交点称为x轴截距,表示函数在y=0时的值。
3. 斜率公式:斜率可以通过两点间的坐标计算得到。
设两点坐标为(x1, y1)和(x2, y2),则斜率k = (y2 - y1) / (x2 - x1)。
4. 函数的性质:一次函数的性质包括单调性、奇偶性、周期性、奇偶线对称性等。
一
次函数只有增减性,没有周期性和奇偶性。
5. 函数的方程:已知函数的图像,可以根据截距和斜率确定函数的方程。
如果知道一
点坐标和斜率,可以使用点斜式方程y - y1 = k(x - x1);如果知道两点坐标,可以使
用两点式方程(y - y1) / (x - x1) = (y2 - y1) / (x2 - x1)。
6. 函数的解析式:一次函数的解析式为f(x) = ax + b,其中a表示斜率,b表示截距。
以上是八年级上册数学书中关于一次函数的一些重要知识点。
在学习中应该掌握函数
的图像、斜率、截距、函数方程的求解方法,以及实际问题中的应用技巧。
八上数学一次函数知识点总结
八上数学一次函数知识点总结八年级上册数学一次函数知识点总结一次函数是函数中的基础,它在代数、几何及其他数学领域中都有广泛应用。
以下是关于一次函数的主要知识点:一、定义一次函数的一般形式为 y = ax + b,其中 a 和 b 是常数,且a ≠ 0。
当 a > 0 时,函数为增函数;当 a < 0 时,函数为减函数。
二、性质1. 函数的斜率 a 决定了函数的增减性。
如果 a > 0,则函数随着 x 的增加而增加;如果 a < 0,则函数随着 x 的增加而减少。
2. 截距 b 决定了函数与 y 轴的交点。
当 x = 0 时,y 的值为 b。
三、线性方程一次函数与 x 轴的交点可以通过令 y = 0 来求得,得到方程 ax + b = 0,解得 x = -b/a(当a ≠ 0)。
四、图像一次函数的图像是一条直线。
在二维坐标系中,其图像通过点 (-b/a, 0) 和(0, b)。
通过改变 a 和 b 的值,我们可以得到不同斜率和截距的直线。
五、应用一次函数在日常生活和实际问题中有广泛的应用,例如速度、加速度、时间的关系,物体的位移,成本与数量的关系等。
通过建立一次函数模型,我们可以解决许多实际问题。
六、反比例函数反比例函数的一般形式为 y = k/x,其中 k 是常数且k ≠ 0。
当 k > 0 时,函数在第一和第三象限;当 k < 0 时,函数在第二和第四象限。
反比例函数的图像是双曲线。
以上是八年级上册数学中关于一次函数的主要知识点。
理解和掌握这些知识点有助于学生更好地理解函数的本质和应用,提高其解决数学问题的能力。
八年级上册数学书一次函数知识点
八年级上册数学书一次函数知识点
一次函数,又称线性函数,是指函数的自变量的最高次数是1,即一次函数的表达式为f(x) = kx + b,其中 k 和 b 分别为常数,k 称为函数的斜率,b 称为函数的截距。
一次函数的图像为一条直线,其特点是经过平面上两个不同点,且不垂直于 x 轴。
一次函数的知识点:
1. 斜率:斜率表示函数图像的倾斜程度。
对于一次函数 f(x) = kx + b,其斜率 k 表示线的倾斜程度,通过简单计算可得到。
2. 截距:截距表示函数图像与 y 轴的交点坐标。
对于一次函数 f(x) = kx + b,其截距
b 即为 y 轴的交点坐标,通过函数表达式可得到。
3. 函数图像:一次函数的图像是一条直线,通过两个不同的点即可确定一条线。
根据斜率和截距的不同取值,函数图像可能是上升的直线、下降的直线或者水平直线。
4. 解一次方程:由于一次函数的定义域和值域都是全体实数,所以解一次方程常用于求特定函数值或特定自变量的值。
5. 函数关系的确定:通过给定函数的部分信息,如斜率、截距、图像等,可以确定出函数关系的特点和形式。
这些是一次函数的主要知识点,对于八年级上册数学书中关于一次函数的学习内容,可能涉及到函数的性质、图像的分析及应用、方程的解法等。
请根据具体的教材内容进行学习和理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二上册数学一次函数知识点讲解
除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初二上册数学一次函数知识点讲解,希望对大家的学习有一定帮助。
一次函数的表达式是y=kx+b (kb k、b是常数),其中是x自变量,y是因变量,读作y是x的一次函数,当x取一个值时,y有且只有一个值与x对应,如果有两个或两个以上的值与x对应,那么这个函数就不是一次函数。
一次函数表达式求解:
一次函数也叫做线性函数,一般在X,Y坐标轴中用一条直线来表示,当一次函数中的一个变量的值确定的情况下,可以用一元一次方程来解答出另一个变量的值。
一次函数的表达方式一般都为y=kx+b的函数,叫做Y是X 的一次函数,当常数项为零时的一次函数,可表示为
y=kx(k0),这时的常数k也叫比例系数。
常用来表示一次函数的方法有解析法,图像法和列表法。
一次函数的解析式一般分为点斜式,两点式,截距式。
解答一次函数的作法最简单的就是列表法,取一个满足一次函数表达式的两个点的坐标,来确定另一个未知数的值。
还有一个描点法。
一般取两个点,根据两点确定一条直线的道理,也可叫两点法。
通常情况下y=kx+b(k0)的图象过(0,b)和(-b/k,0)两点即可画出。
一次函数与一次方程之间的关系:
一次函数、方程和不等式是初中数学的主要内容之一,也是中考的必考知识点,新课程标准把三部分的关系提到了十分明朗化的程度。
因此,应该重视这部分内容的教学在教学中,可以从以下几个知识点进行辨析。
任何一个一元一次方程都可以转化成ax+b=0(a,b为常数,a0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值(从数的角度);从图像上来看,就相当于已知直线y=ax+b,确定它与x轴的交点横坐标的值(从形的角度)。
利用函数图像解方程:-2x+2=0,可以转化为求一次函数
y=-2x+2与x轴交点的横坐标。
而y=-2x+2与x轴交点的横坐标为1,所以方程-2x+2=0的解为x=1。
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话
空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。
注意:解一元一次方程ax+b=0(a0)与求函数
y=ax+b(a0)的图像与x轴交点的横坐标是同一个问题。
不同的是前者从数的角度来解决问题,后者从形的角度来解决问
题。
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。
我和家长共同配合,一道训练,幼儿的阅读能力提高很快。
每个二元一次方程组都对应两个一次函数,从数的角度来看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数是何值;从形的角度来看,解方程组相当于确定两条直线交点的坐标,从而使方程组得出答案。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
小编为大家整理的初二上册数学一次函数知识点讲解相关
内容大家一定要牢记,以便不断提高自己的数学成绩,祝大家学习愉快!。