带电粒子在有界磁场中的运动
带电粒子在有界匀强磁场中的运动
廖红英
带电粒子在有界匀 强磁场中的运动
知识回顾
一、带电粒子在匀强磁场中运动形式
(1)V//B-------匀速直线运动 (2)V⊥B-------匀速圆周运动 (3)粒子运动方向与磁场有一夹角 (大于0度小于90度)-------轨迹为螺旋线
带电粒子在匀强磁场中 做匀速圆周运动,洛伦 兹力就是它做圆周运动 的向心力
(3)欲使粒子要打在极板上,
则粒子入射速度v应满足么条 件?
+q L
m
v
B
L
3、如图所示,在y<0的区域内存在匀强磁场,磁 场方向垂直纸面向外,磁感应强度为B。一个正电 子以速度v从O点射入磁场,入射方向在xy平面内, 与x轴正向的夹角为θ。若正电子射出磁场的位置 与O点的距离为L,求:
(1)正电子在匀强磁场中作圆周 运动的圆心角为多少?
(2)正电子作圆周运动的 半径为多少?
(3)正电子的电量和质量之比为多少?
(4)正电子在匀强磁场中运动的时间是多少?
思考:如果是负电子,那么,两种情况下的时间 之比为多少?
4、如图所示在磁感应强度为B,半径为r的圆
形匀强磁场区 ,一质量为m,电荷量为q的
带电粒子从A点沿半径方向以速度ν
射入磁场中,从C点射出,求:
(1)此粒子在磁场中做圆周运
动的半径是多少?
B v
(2)此粒子的电荷q与质量 m 之比。
MP l
ON
2、长为L的水平极板间,有垂直纸面向内的匀强磁场,如 图所示,磁场强度为B,板间距离也为L,板不带电,现有 质量为m,电量为q的带正电粒子(不计重力),从左边极 板间中点处垂直磁场以速度v平行极板射入磁场,求: (1)粒子刚好打在极板的左端点时的速度为多少? (2)粒子刚好打在极板上的右端点时的速度是多少?
带电粒子在有界磁场磁场中的运动
d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
t
s v
速度 v 不变,欲使穿过磁场时间最短,须使 s 有最 小值,则要求弦最短。
题1 一个垂直纸面向里的有界匀强磁场形 状如图所示,磁场宽度为 d。在垂直B的平面
内的A点,有一个电量为 -q、质量为 m、速
y B
如粒子带正电,则: 如粒子带负电,则:
60º v
60º
O 120º
x
A. 2mv qB
B. 2mvcosθ qB
C. 2mv(1-sinθ) qB
2mv(1-cosθ)
D. qB
M
D
C
θ θ θθ
P
N
θθ
练、 一个质量为m电荷量为q的带电粒子(不计重力)
从x轴上的P(a,0)点以速度v,沿与x正方向成60º的
束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射,
其中入射角 α =30º,且不经碰撞而直接从出射孔射出的
离子的速度v大小是 (
C)
αa
A.4×105 m/s B. 2×105 m/s
r
C. 4×106 m/s D. 2×106 m/s O′
O
解: 作入射速度的垂线与ab的垂直平分线交于 r
P
B v0
O
AQ
例、如图,A、B为水平放置的足够长的平行板,板间距离为
d =1.0×10-2m,A板上有一电子源P,Q点在P点正上方B
板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范
围内的电子。若垂直纸面内加一匀强磁场,磁感应强度
B=9.1×10-3T,已知电子质量 m=9.1×10-31kg ,电子电
带电粒子在有界磁场中的运动
带电粒子在有界磁场中的运动1.带电粒子在有界磁场中运动的三种常见情形(1)直线边界(进出磁场具有对称性,如图2所示)图2(2)平行边界(存在临界条件,如图3所示)图3(3)圆形边界(沿径向射入必沿径向射出,如图4所示)图42.分析带电粒子在匀强磁场中运动的关键(1)画出运动轨迹;(2)确定圆心和半径;(3)利用洛伦兹力提供向心力列方程.[深度思考] 1.当带电粒子射入磁场时速度v大小一定,但射入方向变化时,如何确定粒子的临界条件?2.当带电粒子射入磁场的方向确定,但射入时的速度大小或磁场的磁感应强度变化时,又如何确定粒子的临界条件?答案 1.当带电粒子射入磁场时的速度v大小一定,但射入方向变化时,粒子做圆周运动的轨道半径R是确定的.在确定粒子运动的临界情景时,可以以入射点为定点,将轨迹圆旋转,作出一系列轨迹,从而探索出临界条件.2.当带电粒子射入磁场的方向确定,但射入时的速度v大小或磁场的磁感应强度B变化时,粒子做圆周运动的轨道半径R随之变化.可以以入射点为定点,将轨道半径放缩,作出一系列的轨迹,从而探索出临界条件.例题1.判断下列说法是否正确.(1)带电粒子在磁场中运动时一定会受到磁场力的作用.(×)(2)洛伦兹力的方向在特殊情况下可能与带电粒子的速度方向不垂直.(×)(3)洛伦兹力和安培力是性质完全不同的两种力.(×)(4)粒子在只受到洛伦兹力作用时运动的动能不变.(√)(5)带电粒子只要速度大小相同,所受洛伦兹力就相同.(×)2.(人教版选修3-1P98第1题改编)下列各图中,运动电荷的速度方向、磁感应强度方向和电荷的受力方向之间的关系正确的是()答案B3.(人教版选修3-1P102第3题改编)如图5所示,一束质量、速度和电荷不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A、B两束,下列说法中正确的是()图5A .组成A 束和B 束的离子都带负电B .组成A 束和B 束的离子质量一定不同C .A 束离子的比荷大于B 束离子的比荷D .速度选择器中的磁场方向垂直于纸面向外答案 C4.质量和电量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场,运行的半圆轨迹如图6中虚线所示,下列表述正确的是( )图6A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运行时间大于N 的运行时间答案 A解析 由左手定则可知,N 粒子带正电,M 粒子带负电,A 正确.又r N <r M ,由r =m v qB可得v N <v M ,B 错误.洛伦兹力与速度时刻垂直,不做功,C 错误.粒子在磁场中的运行时间t =θ2πT =T 2,又T =2πm qB,所以t M =t N ,D 错误.。
带电粒子在有界匀强磁场中的运动归类解析
带电粒子在有界匀强磁场中的运动归类解析一、单直线边界磁场1.进入型:带电粒子以一定速度υ垂直于磁感应强度B 进入磁场. 规律要点:(1)对称性:若带电粒子以与边界成θ角的速度进入磁场,则一定以与边界成θ角的速度离开磁场.如图1所示.(2)完整性:比荷相等的正、负带电粒子以相同速度进入同一匀强磁场,则它们运动的圆弧轨道恰构成一个完整的圆;正、负带电粒子以相同速度进入同一匀强磁场时,两粒子轨道圆弧对应的圆心角之和等于2πrad ,即2+-+=ϕϕπ,且2-=ϕθ(或2+=ϕθ).2.射出型:粒子源在磁场中,且可以向纸面内各个方向以相同速率发射同种带电粒子.规律要点:(以图2中带负电粒子的运动轨迹为例)(1)最值相切:当带电粒子的运动轨迹小于12圆周时且与边界相切(如图2中a 点),则切点为带电粒子不能射出磁场的最值点(或恰能射出磁场的临界点);(2)最值相交:当带电粒子的运动轨迹大于或等于12圆周时,直径与边界相交的点(图2中的b 点)为带电粒子射出边界的最远点.图2中,在ab 之间有带电粒子射出,设ab 距离为x ,粒子源到磁场边界的距离为d ,带电粒子的质量为m ,速度为υ,则m υr=Bqa O r-d二、双直线边界磁场规律要点:最值相切:当粒子源在一条边界上向纸面内各个方向以相同速率发射同一种粒子时,粒子能从另一边界射出的上、下最远点对应的轨道分别与两直线相切.图3所示.对称性:过粒子源S 的垂线为ab 的中垂线.在图3中,ab 之间有带电粒子射出,可求得ab=最值相切规律可推广到矩形区域磁场中.例1.一足够长的矩形区域abcd 内充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,矩形区域的左边界ad 宽为L ,现从ad 中点O 垂直于磁场射入一带电粒子,速度大小为0υ方向与ad 边夹角为30°,如图4所示。
已知粒子的电荷量为q ,质量为m (重力不计)。
(1)若粒子带负电,且恰能从d 点射出磁场,求0υ的大小;(2)若粒子带正电,使粒子能从ab 边射出磁场,求0υ的取值范围以及此范围内粒子在磁场中运动时间t 的范围。
带电粒子在有界磁场区域中的运动
1
图611
2
【解析】如图所示,电子在磁场中沿圆弧ab运动,圆心为C,半径为R,以v表示电子进入磁场时的速度,m、e分别表示电子的质量和电荷量,则 eU =mv2 ① evB=m ② 又tan = ③ 由以上各式得B=
tan
2
五、正方形磁场
2、速度垂直边界
例2、垂直纸面向外的匀强磁场仅限于宽度为d的条形区域内,磁感应强度为B.一个质量为m、电量为q的粒子以一定的速度垂直于磁场边界方向从a点垂直飞入磁场区,如图所示,当它飞离磁场区时,运动方向偏转θ角.试求粒子的运动速度v以及在磁场中运动的时间t.(双边界)
3、速度倾斜于边界
例1如图所示,宽d的有界匀强磁场的上下边界为MN、PQ,左右足够长,磁感应强度为B.一个质量为m,电荷为q的带电粒子(重力忽略不计),沿着与PQ成45°的速度v0射入该磁场.要使该粒子不能从上边界MN射出磁场,关于粒子入射速度的最大值有以下说法:①若粒子带正电,最大速度为(2-)Bqd/m;②若粒子带负电,最大速度为(2+ )Bqd/m;③无论粒子带正电还是负电,最大速度为Bqd/m;④无论粒子带正电还是负电,最大速度为 Bqd/2m。以上说法中正确的是 A.只有① B.只有③ C.只有④ D.只有①②
V
O
b、一个速度方向的垂直线和一条弦的中垂线的交点 O ②半径的确定 应用几何知识来确定! ③运动时间: ⑸粒子在磁场中运动的角度关系----对称思想
带电粒子垂直射入磁场后,将做匀速圆周运动.分析粒子运动,会发现它们具有对称的特点,即:粒子的运动轨迹关于入射点P与出射点Q的中垂线对称,轨迹圆心O位于对称线上,入射速度、出射速度与PQ线间的夹角(也称为弦切角)相等,并有φ=α=2θ=ω·t,如右图所示.应用这一粒子运动中的“对称性”不仅可以轻松地画出粒子在磁场中的运动轨迹,对于某些临界问题的求解也非常便捷.
带电粒子在有界磁场中运动
特点:优弧劣弧加起来,仍是一个整圆,圆越多,圆心角之 和越大,所用的时间越长
如图所示,空间存在着两个匀强磁场,其分界线是半径为R的两 个圆,两侧的磁场方向相反且都垂直于纸面,磁感应强度大小都 是B,外面的磁场范围足够大。现有一质量为m,电荷量为q的带 正电的离子(不计重力),从A点沿OA方向射出,离子后来在两 个磁场间不断地飞进飞出,最后又能返回到A点,求其返回到A 点所需的最短时间及对应的发射速度v
常见的几类问题: 1、磁场边界是直线或圆,边界把轨迹圆分成几段,优弧劣弧所 对应的圆心角的联系。 2、粒子进入有界磁场时,粒子的速度大小不确定,方向确定。 3、粒子进入有界磁场时,粒子的速度大小确定,方向不确定。
qB
磁场是直线边界的情形 1、(01全国),在y<0的区域内存在匀强磁场,磁场方向垂直于xy平 面并指向纸面外,磁感强度为B.一带正电的粒子以速度v0从O点射入 磁场,入射方向在xy平面内,与x轴正向的夹角为θ.若粒子射出磁场 y 的位置与O点的距离为L, q 2v0 sin 求该粒子的电量和质量之比q/m θ x m LB
O
v
第三类问题:粒子进入有界磁场时,粒子的速度大小确定,方向 不确定。 如图5所示,圆形区域的半径为r,和坐标原点相切,内有垂直纸 面的匀强磁场,磁感应强度为B,坐标原点有一个粒子源,以一 定大小的速度v0在纸面内向x>0的各个方向发射质量m,电荷量 q的带负电粒子,不计粒子的重力。已知带电粒子作圆周运动的 y 轨道半径R>r,求带电粒子在磁场中运动的最长时间。
y
带 电 微 粒 A 发 射 装 置
R
v
C
O' x
O
4、(09海南物理)如图,ABCD是边长为a的正方形。质量为 m、电荷量为e的电子以大小为v0的初速度沿纸面垂直于BC边射 入正方形区域。在正方形内适当区域中有匀强磁场。电子从BC 边上的任意点入射,都只能从A点射出磁场。不计重力,求: (1)此匀强磁场区域中磁感应强度的方向和大小; (2)此匀强磁场区域的最小面积。
1.3.2 专题 带电粒子在有界磁场中的运动 课件-2023年高二物理人教版(2019)
③半径关系:r=R/tanθ=Rtanα
④运动时间:t= 2θT/2 π= θT/ π
(2)不沿径向射入时,速度
o’
方向与对应点半径的夹角
相等(等角进出)
o
•
(3)非径向入射的距离和时间推论:
①若r 轨迹<R边界,当轨迹直径恰好是边界圆的一
条弦,此时出射点离入射点最远,且Xmax=2r,
角(弦切角)相等。若出射点到入射点之间距离为d,则
d=2R
1
t T
2
d=2Rsinθ
t
T
d=2Rsinθ
t T
【例1】水平直线MN上方有垂直纸面向里范围足够大的有界匀强磁场,磁感应强度为B,正、负电子同时从MN边界O点以与MN成45°角的相
同速率v射入该磁场区域(电子的质量为m,电荷量为e),正、负电子间的
射入筒内,射入时的运动方向与MN成30°角。当筒转过90°时,该粒
子恰好从小孔N飞出圆筒。不计重力。若粒子在筒内未与筒壁发生碰撞,
则带电粒子的比荷为(
)
【变式训练】在真空中半径 r =3×10-2m的圆形区域内有一匀强磁场,磁场
的磁感应强度B=0.2 T,方向如图所示,一个带正电的粒子以v0=1×106 m/s
(3)到入射点最远距离:
①和边界相交时,离出射点最远距离是以出射点为端点的直径或半径。
②和边界相切时,离出射点最远的距离是以出射点和切点为端点的弦长。
【例1】(多选)如图所示,圆形区域内有垂直纸面向里的匀强磁场,三个
质量和电荷量相同的带电粒子a、b、c,以不同的速率对准圆心O沿着
带电粒子在有界磁场中的运动
简单回顾
一、带电粒子在匀强 磁场中的运动规律
1.带电粒子在匀强磁场中 运动( v B),只受洛伦兹
F v
o
力作用,做 匀速圆周运动 .
2.洛伦兹力提供向心力:
v2 m q v B R
半径:
2R T v
周期:
T
mv R qB 2m
qB
二、 r(1 cos ) cot
mv0 x1 b L a (1 cos ) cot eB eBL (其中 arcsin ) ⑤ mv0
④
P
v0
θ θ
0
图1
x
Q
②当 r<L 时,磁场区域及电子运动轨迹如图 2 所示,
( 1 )粒子沿环状的半径方向射入磁场,不能穿越磁场的最大 速度。
(2)所有粒子不能穿越磁场的最大速度。
解析:( 1)要粒子沿环状的半径方向射入磁场,不能穿越磁 场,则粒子的临界轨迹必须要与外圆相切,轨迹如图所示。
2 2 2 r R ( R r ) 由图中知, 1 1 2 1
解得
r1 0.375m
v v
v v v
v
一.带电粒子在平行直线边界磁场中的运动
Q P B P Q
P
Q
v
S
垂直磁场边界射入
①速度较小时,作半圆 运动后从原边界飞出; ②速度增加为某临界值 时,粒子作部分圆周运 动其轨迹与另一边界相 切;③速度较大时粒子 作部分圆周运动后从另 一边界飞出
v
S
①速度较小时,作圆 周运动通过射入点; ②速度增加为某临界 值时,粒子作圆周运 动其轨迹与另一边界 相切;③速度较大时 粒子作部分圆周运动 后从另一边界飞出
带电粒子在有界磁场中运动
如图所示,长为L的水平极板间,有垂直纸面向 里的匀强磁场,磁感应强度为B,板间距离也为L, 板不带电,现有质量为m、电量为q的带正电粒子 (不计重力)从左边极板间中点处垂直磁感线以速 度v水平射入磁场,为使粒子能够打在极板上,则 粒子的速度应满足什么关系?
L
O
解:经过分析可知,OS 的距离 即为粒子做圆周运动的直径。 即
S os 2 R 2m v qB
S
V
B
练、如图所示,在x轴上方有匀强磁场B,一个 质量为m,带电量为-q的的粒子,以速度v从O点 射入磁场,角已知,粒子重力不计,求 (1)粒子离开磁场的位置 (2)粒子在磁场中的运动时间.
× × × × × × ×
带电粒子在有界磁场中运动
带电粒子垂直进入匀强磁场,仅受洛伦兹力时: 1、运动性质:匀速圆周运动 2、运动规律: 半径 周期
3、类型:❶单边有界
B
3、类型:❶单边有界
B
结论: 从一边界射入的粒子,从同一边界射出时, 速度与边界的夹角(弦切角)相等。
负电荷 × × × × × × × 正电荷 × × × × × × × × α × × × × × × × × × × × × ×
处理带电粒子在磁场中运动的一般思路
A
v1
B O
A
v1
画轨迹
定圆心
O
v2
B
ห้องสมุดไป่ตู้
求半径
由
或几何关系
求时间
3、类型:③圆形磁场
R
01
3、类型:③圆形磁场
R
01
02
结论:1.径向入射,径向出射 2.连接磁场圆与轨迹圆的圆心,有意想不到的效果
临界问题
d
带电粒子在有界磁场中运动的临界问题极值问题和多解问题
R1sin30°+2l =R1
解得 R1=l,由公式 qvB=mv2/R,得该轨道上粒子 速度为 v01=qmBl.
④对于从 ab 射出的、速度最小的粒子,其轨道应与 ab 相切,设切点为 N,圆心为 O2,半径为 R2,则 R2+ R2cos60°=12l,解得 R2=13l,由 qvB=mv2/R 可得 v02=q3Bml.
由几何关系知
OA= AS2-OS2 AS=2r′ OS=r′ OC=r′ 解得 OA= 3L,OC=L 故被电子打中的区域长度为
AC=OA+OC=(1+ 3)L.
【答案】
BeL (1) 2m
(2)(1+ 3)L
题后反思 (1)审题应首先抓住“速率相等”⇒即轨迹圆半径相 等,其次“各个方向发射”⇒轨迹不同.然后作出一系 列轨迹圆. (2)注意粒子在磁场中总沿顺时针方向做圆周运动, 所以粒子打在左边和右边最远点的情形不同.
(1)轨迹圆的缩放:当粒子的入射方向不变而速度大 小可变时,粒子做圆周运动的轨迹圆心一定在入射点所 受洛伦兹力所表示的射线上,但位置(半径 R)不确定,用 圆规作出一系列大小不同的轨迹圆,从圆的动态变化中 即可发现“临界点”.
(2)轨迹圆的旋转:当粒子的入射速度大小确定而方 向不确定时,所有不同方向入射的粒子的轨迹圆是一样 大的,只是位置绕入射点发生了旋转,从定圆的动态旋 转(作图)中,也容易发现“临界点”.
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
例 1 如图所示,S 为一个电子源,它可以在纸面内 360°范围内发射速率相同的质量为 m、电量为 e 的电子, MN 是一块足够大的挡板,与 S 的距离 OS=L,挡板在 靠近电子源一侧有垂直纸面向里的匀强磁场,磁感应强 度为 B,问:
带电粒子在有界匀强磁场中的运动-高考物理复习
√A.3
B.2
C.32
D.23
电子1、2在磁场中都做匀速圆周运动,根据题意 画出两电子的运动轨迹,如图所示,电子1垂直边 界射入磁场,从b点离开,则运动了半个圆周,ab 即为直径,c点为圆心; 电子2以相同速率垂直磁场方向射入磁场,经t2时间从a、b连线的中 点c离开磁场, 根据半径 r=mBqv可知,电子 1 和 2 的半径相等, 根据几何关系可知,△aOc为等边三角形,
粒子运动轨迹与 y 轴交点的纵坐标为 y=-2rcos 30° =-233d,故 D 错误.
考向4 带电粒子在多边形边界或角形区域磁场中运动
例4 (多选)(2023·河北石家庄市模拟)如图所示,△AOC为直角三角形,∠O
=90°,∠A=60°,AO=L,D为AC的中点.△AOC中存在垂直于纸面向里的匀
√C.若带电粒子与挡板碰撞,则受到挡板作用力的冲量 大小为5q2BL
√D.带电粒子在磁场中运动时间可能为3πqmB
若粒子带正电,粒子与挡板MN碰撞后恰好从 Q点射出,粒子运动轨迹如图甲所示, 设轨迹半径为 r2,由几何知识得 L2+(r2-0.5L)2 =r22,解得 r2=54L,根据牛顿第二定律得 qv2B=mvr222,解得 v2=54qmBL, 根据动量定理得 I=2mv2=5q2BL,故 A 错误,C 正确; 若粒子带负电,则粒子的运动轨迹如图乙所示, 粒子做圆周运动的半径为 r1=12L,由牛顿第二定律得 qv1B=mvr112,解得 v1=q2BmL,此时半径最小,速度也最小,故 B 错误;
2.平行边界(往往存在临界条件,如图所示)
3.圆形边界(进出磁场具有对称性) (1)沿径向射入必沿径向射出,如图甲所示. (2)不沿径向射入时,如图乙所示. 射入时粒子速度方向与半径的夹角为θ,射出磁场时速度方向与半径的 夹角也为θ.
带电粒子在有界磁场中的运动(上课)
三.在圆形磁场区中的运动
例6 、 如图所示,纸面内存在着一半径为R的圆形匀强磁 场,磁感应强度为B,一质量为m、带电量为q的负粒 子从A点正对着圆心O以速度v垂直磁场射入,已知当 粒子射出磁场时,速度方向偏转了θ。求粒子在磁场 中运动的轨道半径r。(不计重力)
R
A
O
解:如图所示做辅助线, 连接两圆圆心 因为速度方向偏转了θ 所以圆O1中的圆心角为θ
θ
例3、 如图所示,在y<0的区域内存在匀强磁场, 磁场方向垂直于xy平面并指向纸面外,磁感应强度 为B,一带正电的粒子以速度V0从O点射入磁场,入 射方向在xy平面内,与x轴正方向的夹角为θ,若粒 子射出磁场的位置与O点的距离为L,求粒子运动的 半径和运动时间。
y o
x
解:如图所示作辅助线, 由几何知识可得: L sin
× ×
×
×
×
+ ×
四.在中空磁场区的运动
例7 、
如图所示,在无限宽的匀强磁场B中有一边长 为L的正方形无磁场区域。在正方形的四条边上分 布着八个小孔。每个小孔到各自最近顶点的距离 都为L/3。一质量为m、带电量为q的正粒子垂直 匀强磁场从孔A射入磁场,试问粒子再次回到A点 的时间。 A
解:经分析粒子运动过程可知,粒子经过四次圆周运动 四次匀速直线运动后回到出发点。 每次圆周运动的时间为四分之三个周期, 即
故 d
R
d sin
例5 、
如图所示,长为L的水平极板间,有垂直纸面向 里的匀强磁场,磁感应强度为B,板间距离也为L, 板不带电,现有质量为m、电量为q的带正电粒子 (不计重力)从左边极板间中点处垂直磁感线以速 度v水平射入磁场,为使粒子能够打在极板上,则 粒子的速度应满足什么关系?
专题:带电粒子在有界磁场中的运动(103张PPT)
R1 R2 B O s2
2m T= Bq
r R tan
t = θ 2 T mv R= Bq
2
θ2
练、某离子速度选择器的原理图如图,在半径为R=10cm
的圆形筒内有B= 1×10-4 T 的匀强磁场,方向平行于轴 线。在圆柱形筒上某一直径两端开有小孔a、b。现有一 束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射, 其中入射角 α =30º ,且不经碰撞而直接从出射孔射出的 αa 离子的速度v大小是 ( ) C
两类典型问题
1.带电粒子在有界匀强磁场中(只受洛 伦兹力)做圆弧运动; 2.带电粒子在磁场中运动时的临界问题 (或多解问题)的讨论
概述 • 1、本类问题对知识考查全面,涉及到力学、 电学、磁学等高中物理的主干知识,对学生 的空间想象能力、分析综合能力、应用数学 知识解决物理问题能力有较高的要求,是考 查学生多项能力的极好的载体,因此成为历 年高考的热点。 • 2、从试题的难度上看,多属于中等难度或 较难的计算题。原因有二:一是题目较长, 常以科学技术的具体问题为背景,从实际问 题中获取、处理信息,把实际问题转化成物 理问题。二是涉及数学知识较多(特别是几 何知识)。
从x轴上的P(a,0)点以速度v,沿与x正方向成60º
的方向射入第一象限内的匀强磁场中,并恰好垂 直于y轴射出第一象限。求匀强磁场的磁感应强 度B和射出点的坐标。
解析 :
r
v
y
B
2a
mv 3 Bq
O′ O a
3 mv 得 B 2aq 射出点坐标为(0, 3 a )
v 60º
x
单边界磁场
练、如图,虚线上方存在磁感应强度为B的磁场, 一带正电的粒子质量m、电量q,若它以速度v沿与 虚线成300、900、1500、1800角分别射入, 1.请作出上述几种情况下粒子的轨迹 2.观察入射速度、出射速度与虚线夹角间的关系 3.求其在磁场中运动的时间。
带电粒子在有界磁场中的运动
带电粒子在有界磁场中的运动带电粒子在磁场中的运动一直是物理界研究的热门话题之一。
当带电粒子在磁场中运动时,它会受到洛伦兹力的影响,这个力的方向垂直于磁场的方向和粒子的速度方向,并且它的大小与粒子电荷的大小、粒子运动速度和磁场强度有关。
在有界磁场中,带电粒子的运动会受到限制,并且会形成某些特定的运动轨迹,这些轨迹的特征与磁场的形状和强度有关。
以下是对有界磁场中带电粒子运动的探讨。
一、磁场的基本概念磁场是指由带电粒子或磁化物质产生的物理现象。
磁场的大小与磁场中带电粒子的数量、粒子的电荷和速度、以及磁场的强度和形状有关。
磁场有两个重要的特征:方向和大小。
磁场的方向是指磁场力线的方向,如果一个带电粒子在磁场中运动,则它会沿着磁场力线运动。
磁场的大小用磁感应强度或磁场强度来描述,这些量的单位是特斯拉(T)或高斯(G)。
二、带电粒子在磁场中的运动当带电粒子进入磁场中时,它会受到洛伦兹力的作用,这个力的大小与带电粒子的电荷和速度有关,方向垂直于磁场的方向和粒子的速度方向。
由于这个力的方向与带电粒子的速度方向垂直,所以带电粒子会在垂直磁场方向上产生一定的偏移,这个偏移的大小与带电粒子的速度和磁场强度有关。
如果带电粒子的速度和磁场方向垂直,则它会产生一个圆周运动。
在圆周运动中,带电粒子的速度保持不变,而其运动方向会随着磁场方向的改变而改变。
圆周运动的半径与带电粒子的速度和磁场强度有关,可以用以下公式来计算:r =mv/qB,其中,m是带电粒子的质量,v是带电粒子的速度,q 是带电粒子的电荷,B是磁场强度。
当速度和磁场方向不垂直时,则带电粒子会既在垂直于磁场的方向上运动,也在磁场方向上运动。
在这种情况下,带电粒子的轨迹可以用螺旋线来描述。
三、有界磁场中带电粒子的运动在有界磁场中,带电粒子的运动会受到磁场的限制。
在一个有限大小的磁场中,带电粒子不可能一直进行圆周运动或螺旋线运动。
带电粒子的轨迹将会在磁场边界处进行反射,在某些情况下,带电粒子的哪些轨迹是允许的,哪些轨迹是禁止的,这与磁场的形状和强度有关。
带电粒子在有界磁场中运动的分析方法
一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。
2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。
②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。
3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。
4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。
a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。
②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
a、带电粒子在穿过磁场时的偏向角可由求出;(θ、r和R见图标)b、带电粒子在磁场中经历的时间由得出。
例1.如图所示,一束电子以大小不同的速率沿图示方向飞入横截面是一正方形的匀强磁场,下列判断正确的是( B )A.电子在磁场中运动的时间越长,其轨迹越长B.电子在磁场中运动的时间越长,其轨迹线所对应的圆心角越大C.在磁场中运动时间相同的电子,其轨迹线一定重合D.电子的速率不同,它们在磁场中运动的时间一定不相同例2.如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某一初速度垂直左边界射入,穿过此区域的时间为t.若加上磁感应强度为B水平向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的( )A.带电粒子的比荷B.带电粒子在磁场中运动的周期C.带电粒子的初速度D.带电粒子在磁场中运动的半径解析:由带电粒子在磁场中运动的偏向角,可知带电粒子运动轨迹所对的圆心角为60°,因此由几何关系得磁场宽度l =R sin 60°=mv 0qB sin 60°,又未加磁场时有l =v 0t ,所以可求得比荷q m =sin 60°Bt,A 项对;周期T =2πm qB可求出,B 项对;但初速度未知,所以C 、D 项错. 答案:AB例3.如右图所示为圆柱形区域的横截面,在该区域加沿圆柱轴线方向的匀强磁场.带电粒子(不计重力)第一次以速度v 1沿截面直径入射,粒子飞入磁场区域时,速度方向偏转60°角;该带电粒子第二次以速度v 2从同一点沿同一方向入射,粒子飞出磁场区域时,速度方向偏转90°角.则带电粒子第一次和第二次在磁场中运动的( )A .半径之比为3∶1 B.速度之比为1∶ 3C .时间之比为2∶3 D.时间之比为3∶2答案:AC1.如图所示,在垂直纸面向里的匀强磁场的边界上,有两个质量和电量均相同的正、负离子,从O 点以相同的速度射入磁场中,射入方向均与边界成 角。
带电粒子在有界磁场中运动 的临界问题解析
带电粒子在有界磁场中运动的临界问题解析“带电粒子在磁场中的运动”是历年高考中的一个重要考点,而“带电粒子在有界磁场中的运动” 则是此考点中的一个难点.其难点在于带电粒子进入设定的有界磁场后只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,它要求考生根据带电粒子运动的几何图形去寻找几何关系,然后应用数学工具和相应物理规律分析解决问题.下面举例谈谈带电粒子在不同形状有界磁场中运动的一些临界问题.一、 带电粒子在“圆形磁场区域”中的运动例1、如图1,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个方向射出速度为s m v /102.36⨯=的粒子.已知α粒子质量kg m 271064.6-⨯=,电量C q 19102.3-⨯=,试画出α粒子通过磁场空间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角.解:由qvB =Rv m 2可求R =0.2m由圆心角=偏向角,当粒子从O 点射出后穿过磁场路径最大时,对应圆心角最大。
由几何关系圆心角为60º 故最大偏角为60 º二、带电粒子在“长方形磁场区域”中的运动例2、如图2,长为L 间距为d 的水平两极板间,有垂直于纸面向里的匀强磁场,磁感强度为B ,两板不带电,现有质量为m ,电量为q 的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v 应满足什么条件.解:两种情形1.当粒子以较小速度射入从磁场左边界射出,对应最大速度为v 1,半径为r 1图2⨯⨯⨯⨯⨯⨯⨯⨯→∙d LvmqBdv dr r v m B qv 4 4111211===可求2.以较大速度射入从磁场右边界射出对应最小速度v 2,半径r 2mdL d qB v L dr r r mv B qv 4)4()2( 222222222222+=+-==可求三、带电粒子在“三角形磁场区域”中的运动例3、在边长为a 2的ABC ∆内存在垂直纸面向里的磁感强度为B 的匀强磁场,(边界无磁场)有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图3所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件.解:若粒子恰好与AC 相切.轨道半径为r 1,速度为v 1mqBa v mqBam qBa v a r r a r v r BC mqBa v a r r mv B qv a r r 3)336(3 330cos ])32([)336()336( 330cos 22222211121111<<-===-+-=-===+故可求速度为相切半径为若粒子恰好与可求图3DB四、带电粒子在“宽度一定的无限长磁场区域”中的运动例4、如图4所示,A 、B 为水平放置的足够长的平行板,板间距离为m d 2100.1-⨯=, A 板中央有一电子源P ,在纸面内能向各个方向发射速度在s m /102.3~07⨯范围内的电子,Q为P 点正上方B 板上的一点,若垂直纸面加一匀强磁场,磁感应强度T B 3101.9-⨯=,已知电子的质量kg m 31101.9-⨯=,电子电量C e 19106.1-⨯=,不计电子的重力和电子间相互作用力,且电子打到板上均被吸收,并转移到大地.求:(1)沿P Q方向射出的电子击中A 、B 两板上的范围.(2)若从P点发出的粒子能恰好击中Q点,则电子的发射方向(用图中θ角表示)与电子速度的大小v 之间应满足的关系.解:①粒子运动的最大半径处至点右侧从板范围为打在范围点至距板上范围为打在m m Q B m d P P A mqB mv r mm 222210110)32(100.12102----⨯⨯-⨯=⨯==6108sin sin 2⨯====mqBdv qBmv r dr θθ则②五、带电粒子在“单边磁场区域”中的运动例5、如图5所示,在真空中坐标xoy 平面的0>x 区域内,有磁感强度T B 2100.1-⨯=的匀强磁场,方向与xoy 平面垂直,在x 轴上的)0,10(p 点,有一放射源,在xoy 平面内向各个方向发射速率s m v /100.14⨯=的带正电的粒子,粒子的质量为kg m 25106.1-⨯=,电量为C q 18106.1-⨯=,求带电粒子能打到y 轴上的范围.解:y 轴范围mqBmvr rr 1.03==-至从练习1.在半径为R 的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B 。
专题:带电粒子在有界磁场中的运动
mm
qU 1 mv2 2
U 2qB2R2 m
600
r
O2
磁场,入射方向与CD夹角θ,为了使电子能从磁场
的另一侧边界EF射出,v应满足的条件是:
A.v>eBd/m(1+sinθ) B.v>eBd/m(1+cosθ) C.v> eBd/msinθ D.v< eBd/mcosθ
d r(1 cos )
C
EB
. v θO
B
D
F
qvB m v2 r
思考:求电子在磁场中运动的 最长时间是多长?
专题:带电粒子在有界 磁场的运动
双边界磁场(一定宽度的无限长磁场)
例、一正离子,电量为q ,质量为m, 垂直射入磁感应强度为B、宽度为d
的匀强磁场中,穿出磁场时速度方向 与其原来入射方向的夹角是30°,
d
v
30°
v
(1)离子的运动半径是多少?
θ
(2)离子射入磁场时速度是多少? O
(3)穿越磁场的时间又是多少?
2
O’
PB
qB
Bq
⑵ 2 vt vt Bq t
r mv m
S
qB
或 t 2 2m 2m 2 qB qB
qB t
2m
3.如图直线MN上方有磁感应强度为B的匀强磁场。正、 负电子同时从同一点O以与MN成30°角的同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射 出时相距多远?射出的时间差是多少?
①速度较小时粒子作部分圆周运动
后从原边界飞出;②速度在某一范
围内从侧面边界飞;③速度较大时
粒子作部分圆周运动从另一侧面边
界飞出。
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v v
v v
v
v
v
v
v
v
v v v
v
例题1、如图所示,一束电子(电量为e)以速度v垂直 射入磁感强度为B,宽度为d的匀强磁场中,穿透磁 场时速度方向与电子原来入射方向的夹角是30º,则 电子的质量是______,穿过磁场的时间是______。若
电子能穿过磁场,则最小速度应是多大?穿过时间是
磁感应强度大小为B,该磁场左、右边界与y轴平行,
上、下足够宽(图中未画出)。已知,
mv0 a 2mv0
eB
eB
的可能距离。
L<b。试求磁场的左边界距坐标原点
y
P
v0
(结电子在磁场中作圆周运动的轨道半径为r, 则
解得
eBv0 m r mv0
v02 r
eB
① ②
质量为m,带电量为+q的带电粒子(重力不计)从O
点为以初速度vo沿+x方向进入磁场,已知粒子经过y 轴上P点时速度方向与+y方向夹角为θ=30º,OP=L 求:
⑴磁感应强度的大小和方向 ⑵该圆形磁场区域的最小
面积。
分析: OP的垂直平分线与v0的反向延长线交于Q, 作 OQ的垂直平分线与OP相交于O′, O′即带电粒子运 动轨迹圆的圆心。 带电粒子在磁场中所做的是1/3 圆周的匀速圆周运动。
⑴当r>L时,磁场区域及电子运动轨迹如图1所示,
由几何关系有 sin L eBL ③
r mv0
则磁场左边界距坐标原点的距离为
x1 b L a r(1 cos )cot
x1
b
L
a
mv0 eB
(1
cos
)
cot
(其中 arcsin eB)L ⑤
mv0
④y
P
v0
θ
0
图1
θ
x
Q
②当r<L时,磁场区域及电子运动轨迹如图2所示,
y
① ②得
B 3mv0
θ PL
qL
θ
(2)由图得 OQ 3R 3 L 3
Q O′
S [O Q ]2 L2
2 12
x
O
v0
9、如图所示,现有一质量为m、电量为e的电子从y
轴上的P(0,a)点以初速度v0平行于x轴射出,为 了使电子能够经过x轴上的Q(b,0)点,可在y轴
右侧加一垂直于xOy平面向里、宽度为L的匀强磁场,
y
r 2a mv , 得 B 3mv v
3 Bq
2aq
射出点的坐标(0, 3a)
O′
O
B
v
a
x
例5、一质量为m,带电量为q的粒子以速度v0从O点沿y 轴的正方向射入磁感强度为B的一圆形匀强磁场区域, 磁场方向垂直于纸面,粒子飞出磁场区域后,从(b, 0)处穿过x轴,速度方向与x轴正向夹角为30º,如图
下列图中阴影部分表示带电粒子可能经过的区域,其中
R=mv/qB。哪个图是正确的?
()
M
A
B
O
N
A.
2R
B. 2R
O
M
2R R
N
O
MR
2R
N
C.
2R
D.
R
M
O
2R
2R
N
M
O
2R
2R
N
解:带电量为+q的粒子,以相同的速率v沿位于纸面内
的各个方向,由小孔O射入磁场区域,由R=mv/qB,各
个粒子在磁场中运动的半径均相同,
由几何关系得磁场左边界距坐标原点的距离为
解得
x2 b r2 (a r)2
x2 b
2mv0a -a2 ⑦
eB
y
P
v0
x
0 图2 Q
例10、设在地面上方的真空室内,存在匀强电 场和匀强磁场,已知电场强度和磁感应强度的 方向是相同的,电场强度的大小E=4.0V/m,磁 感应强度的大小B=0.15T。今有一个带负电的质 点以v=20m/s的速度在的区域内沿垂直场强方向
解 : qBv m v2 , R mv
R
qB
r 1 MN 2 R 2 mv
2
2
2 qB
例7、如图,在一水平放置的平板MN上方有匀强磁场,磁感应
强度的大小为B,磁场方向垂直于纸面向里,许多质量为m,带
电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,
由小孔O射入磁场区域,不计重力,不计粒子间的相互影响。
多少?
由几何关系找圆运动半径
根据物理规律确定半径与
其他量的关系。
v
例题2、长为l的水平极板间,有垂直纸面向内 的匀强磁场,如图所示,磁感强度为B,板间距 离也为l,板不带电,现有质量为m,电量为q的
带正电粒子(不计重力),从左边极板间中点处
垂直磁感线以速度v平射入磁场,欲使粒子不打
在极板上,可采用的办法是什么?
做匀速直线运动,求此带电质点的电量与质量 之比q/m以及磁场的所有可能方向(角度可用反
三角函数表示)。
分析:带负电的质点在同时 具有匀强电场、匀强磁场和重 力场中做匀速直线运动,表明 带电质点受重力mg、电场力qE 和洛仑兹力qvB的作用处于平 衡状态。因重力方向竖直向下, 3个力合力为零,要求这3个力 同在一竖直平面内,且电场力 和洛仑兹力的合力方向应竖直 向上。
y v0 θ
P
Q
L
O′
v0
x
O
v0
解:(1)由左手定则得磁场方向垂直xoy平面向里,粒子 在磁场中所做的是1/3圆周的匀速圆周运动,如图所示, 粒子在Q点飞出磁场,设其圆心为O′,半径为R,
(L-R)sin30°=R……… ① ∴ R=L/3
由
qv0 B
Mv02 R
得
R mv0 …… ②
qB
v0
在磁场中运动的轨迹圆圆心是在以O为圆心、以 R=mv/qB为半径的1/2圆弧上,如图虚线示:
各粒子的运动轨迹如图实线示: 带电粒子可能经过的区域阴影部分如图斜线示
2R
M
2R
OR
N
例8、在如图所示的平面直角坐标系xoy中,有一个
圆形区域的匀强磁场(图中未画出),磁场方向垂直
于xoy平面,O点为该圆形区域边界上的一点。现有一
所示,粒子的重力不计,试求:
(1)圆形磁场区域的最小面积。
(2)粒子从O点进入磁场区域到达b点所经历的时间。
例6、一带电质点,质量为m,电量为q,以平行于x轴的速度v从y轴上的a点
射入图中第一象限所示的区域,为了使该质点能从x轴上的b点以垂直于x轴的速 度v射出,可在适当的地方加一个垂直于xy平面、磁感强度为B的匀强磁场。若 此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径。重力忽略 不计
例3、如图直线MN上方有磁感应强度为B的匀 强磁场。正、负电子同时从同一点O以与MN成 30º角的同样速度v射入磁场(电子质量为m, 电荷为e),它们从磁场中射出时相距多远?
射出的时间差是多少?
s 2mv Be
t 4 m
3Bq
B
v
M
N
O
例4、 一个质量为m、电荷量为q的带电粒子从x轴上的 P(a,0)点以速度v,沿与x正方向成60º的方向射入第一 象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。 求匀强磁场的磁感强度B和射出点的坐标。