生物质热解气化技术研究与设备进展

合集下载

生物质热解技术研究现状及其进展

生物质热解技术研究现状及其进展

能源研究与信息第17卷第4期 Energy Research and Information Vol. 17 No. 4 2001 文章编号 1008-8857(2001)04-0210-07生物质热解技术研究现状及其进展李伍刚,李瑞阳,郁鸿凌,徐开义(上海理工大学上海 200093) 摘要生物质热解技术是把低能量密度生物质转化为高能量密度气、液、固产物的一种新型生物质能利用技术。

其中液体产物具有便于运输、储存等优点,可替代燃料油用于发电、供暖系统以及可代替矿物油提炼某些重要的化学物质。

介绍了国内外对这一技术的各种研究及其进展,并简要介绍了上海理工大学独立研制开发的生物质闪速液化实验装置。

关键词生物质热解; 生物油中图法分类号 TK6文献标识码A1 引言能源是人类生存与发展的前提和基础,从远古时代原始人钻木取火到近代以蒸汽机为代表的工业革命,人类文明的每一跨越和进步都与所用能源种类及其利用方式紧密相连。

目前人类赖以生存和进行经济建设的一次能源主要是矿物能源(煤、石油、天然气、核能等)。

矿物能源的使用隐藏着两个严重问题,其一:根据目前的全球能耗量和矿物能源已探明的储量,煤、石油、天然气、核燃料可使用年限分别为220、40、60和260年[1],从长远来看人类必将面临能源危机。

其二:矿物能源对环境有巨大破坏作用,矿物能源燃烧产生大量CO2、SO x、NO x等气体。

CO2属温室效应气体,会造成全球变暖及臭氧层破坏。

NO x、SO x等有害气体会直接对环境、设备和人体健康构成危害。

故此,作为有重要长远意义和战略意义的技术储备,寻求清洁的可再生能源及其利用技术,已成为全球有识之士的共识,受到各国政府和研究机构的广泛关注。

生物质是一种清洁的可再生能源,生物质快速热解技术是生物质利用的重要途径,所谓热解就是利用热能打断大分子量有机物、碳氢化合物的分子键,使之转变为含碳原子数目较少的低分子量物质的过程。

生物质热解是生物质在完全缺氧条件下,产生液体(生物油)、气体(可燃气)、固体(焦碳)三种产物的生物质热降解过程。

煤与生物质共热解工艺的研究进展

煤与生物质共热解工艺的研究进展

煤与生物质共热解工艺的研究进展摘要:热解是将固态原料转化为液体燃料、可燃气和焦的重要途径,是实现生物质资源清洁、高效利用的重要技术。

将生物质与煤混合共热解是生物质资源利用的重要方法,两者混合热解不仅有助于降低CO2的排放量,还能有效地解决能源短缺和环境污染带来的问题。

文章综述了煤与生物质共热解技术的研究进展,系统地介绍了共热解过程中煤与生物质的相互作用以及热解温度、混合比例、滞留时间、升温速率、矿物质成分、物料粒径和热解反应器类型等因素对热解过程的影响,并对煤与生物质共热解技术的发展前景进行了展望。

前言工业革命以来,化石资源的过度开发带来了资源短缺、环境污染、温室效应和全球气候变化等一系列问题[1]。

我们必须要加快能源结构体系的调整,加快可再生能源的开发、利用,以及实现资源的分级转化与梯级利用。

生物质是一种重要的可再生资源,具有与化石燃料相似的一些特性,能够部分替代化石能源,维持环境碳平衡,并具有较低的硫含量[2]。

生物质的利用不仅可以充分发挥农林废弃物等资源的价值、降低化石燃料的消耗,还可以降低燃料燃烧过程中污染物的排放量[3]。

与燃烧相比,热解能够实现生物质资源的高效、清洁利用,煤炭与生物质都可以通过热解的方式得到焦炭、热解气和焦油,并进一步合成化工原料,提取化工中间体[4]。

目前,对于煤和生物质单独热解气化方面的研究比较多。

Frau Caterina利用Sotacarrrbo型小规模气化炉对褐煤和木屑分别进行气化实验,当气化原料的进料速率同为24kwh时,获得的两种粗合成气的产率分别为79.67kg/h和23.32kg/h,热值分别为5.14MJ/kg和7.49MJ/kg[5]。

Li利用新型热解反应器对废木屑进行热解试验,在填料速率为300kg/h,热解温度为500℃的工况下产物中焦油、合成气和焦炭的含量(质量分数)分别为52.5%,27%和20.5%[6]。

相比于单独热解.煤与生物质的共热解不仅可以减少CO2,SOx和NOx的排放,减少因厌氧发酵而产生的NH3,H2S、氨基化合物和挥发性有机酸等化学成分的释放.而且可以改善生物质资源自身水分含量高、热值低和密度低等不利于单独热解的问题。

生物质气化技术的研究进展

生物质气化技术的研究进展
O+ H2 O- *C O + H。的发 生 ,使
H2 / co 比例增大 ,但原料含水量增加使产气热值 降低 。
2 .碱 ( 土 )金 属
生物质灰分主要成份为碱 ( 土) 金属氧化物 , S i O。 、 A1 。 O。 等- 4 】 ,一般碱 ( 土)金属共熔体灰熔点较低 I 2 】 ,对于 反应性 好 的原料 ,可在较 低温度下操作 ,因此其气化过程不易结渣 , 若 生物质 灰分中含有较多碱 ( 士)金属氧化物 ,气化过程 中


要:生物 质能是分布广泛、二氧化碳 “ 零 排放 ”的可再 生能源 ,生物质气化技术是高效利用 生物质能 的技术之

文中对生物质气化 的原理 ,影 响因素 以及该技术面临的焦油这一主要问题的解 决方案进行 阐述 。
文 献 标 识 码 :A 文 章 编 号 :1 0 0 6 — 7 9 7 3( 2 0 1 3 )0 3 — 0 0 7 4 — 0 2
原料含水量对气化 的影响主要体现 在两个方面 ,水分蒸 发需要消耗气化过程 中氧化 反应所放出的热 量 ,降低气化 区 域温度 ,会造成 烃的不完全裂解 ,使产气量减少 ;另外 ,增
在我 国面临分布分散 的问题 ,导 致运输 成本高 ,其经济性需
进行论证 ;发酵 的原料一般 为玉 米、小麦等粮食作物 ,有 引 发粮食危机 的风 险,另外大规模 种植 单一物种也会破坏 生物 多样性 ,因此 目前 关于 此项转化技术 开展了有关水藻等原料 的研究 ;生物质直接液化 是直接 在有一定温度和压力 的设备 中加入适 当的溶剂 和生物 质 ,在 催化或无催化 的条件下 ,使 生物质转化为液化 油 ,产物 可作为汽车燃料或通过进一步 的 分离处理形成化工产品 , 该技术 目前仍处于实验室研究阶段。 生物 质气 化技 术 既可将 生物 质能直 接 转化 为 电能 或热 能 ,也可将其转化 为气 体或液体燃料 ,扩展 了生物质 的应 用 范 围,气化 产品不仅 可以用于发 电,工业供热等 ,还可 以通 过 F — T合成转化 为液体燃料而 用于发动机_ 1 】 ,通 过恰当的净 化处理后还可作为燃料 电池 的原料等 。 二、生物质气 化的原理

生物质基材料的热解与气化特性研究

生物质基材料的热解与气化特性研究

生物质基材料的热解与气化特性研究能源问题一直是全球关注的焦点,随着传统化石能源的逐渐枯竭以及环境压力的不断增大,寻找可持续、清洁的替代能源成为当务之急。

生物质能作为一种可再生能源,因其来源广泛、储量丰富以及碳中性等特点,受到了广泛的关注和研究。

生物质基材料的热解与气化是将生物质转化为能源和化学品的重要途径,深入研究其特性对于提高能源转化效率、优化工艺过程以及实现生物质能的高效利用具有重要意义。

生物质是指通过光合作用而形成的各种有机体,包括植物、动物和微生物等。

常见的生物质基材料如木材、秸秆、稻壳、藻类等,都富含碳、氢、氧等元素。

这些材料在一定的条件下进行热解和气化反应,可以产生气体、液体和固体产物。

其中,气体产物主要包括氢气、一氧化碳、甲烷等可燃气体;液体产物称为生物油,可进一步提炼为燃料或化学品;固体产物则为生物炭,具有一定的吸附性能和改良土壤的作用。

热解是在无氧或缺氧的条件下,将生物质加热至一定温度,使其发生分解反应的过程。

根据热解温度和反应时间的不同,热解可以分为慢速热解、快速热解和闪速热解等几种类型。

慢速热解通常在较低的温度下进行,反应时间较长,主要产物为生物炭;快速热解则在较高的温度和较短的反应时间内完成,生物油的产率较高;闪速热解则是在极短的时间内完成热解反应,对设备和工艺要求较高。

在热解过程中,生物质的组成和结构对热解产物的分布和性质有着重要的影响。

例如,木质纤维素类生物质中纤维素、半纤维素和木质素的含量和比例不同,会导致热解产物的差异。

纤维素热解主要产生左旋葡聚糖等产物,半纤维素热解则产生较多的乙酸和糠醛等,木质素热解则产生较多的酚类化合物。

此外,生物质的颗粒大小、含水量、灰分含量等也会影响热解过程的传热传质和反应速率。

气化是在一定的温度和气化剂(如空气、氧气、水蒸气等)的作用下,将生物质转化为气体燃料的过程。

气化过程比热解更为复杂,涉及到一系列的化学反应,如氧化反应、还原反应、水煤气变换反应等。

生物质热解及催化转化技术的研究

生物质热解及催化转化技术的研究

生物质热解及催化转化技术的研究随着全球能源需求的不断增加,人们对可再生能源的探索和开发也日益迫切。

在众多可再生能源中,生物质资源是一种广泛存在且具有潜力的能源资源,其具有废弃物资源多、分布范围广、低碳排放等特点,因此备受研究者和工业界的关注。

而生物质热解及催化转化技术是将生物质转化为高附加值产品和燃料的主要途径之一。

一、生物质热解技术生物质热解是指在高温、高气压等条件下,将生物质分解成各种气体、液体和固体产物的过程。

该技术广泛应用于生物质能源转化和化工领域。

其过程可分为三个阶段:干燥和水解阶段,主裂解阶段和残留炭化阶段。

在这些不同的阶段中,产物中包含了各种各样的物质,如混合气体、生物质油、水和炭化物等。

生物质热解技术的优点是可以高效地利用生物质资源,减少排放并实现能源回收。

但同时也存在着一些问题,如产物质量不稳定、生产成本较高等。

因此,在实际应用中,需要进一步开发生物质热解技术,以提高产物的质量和减少生产成本。

二、生物质催化转化技术随着催化化学的快速发展,生物质催化转化技术逐渐受到研究者和工业界的关注。

生物质催化转化技术是指在催化剂作用下,将生物质原料转化为高附加值产品和燃料的过程。

其作用可以改善生物质热解过程中产物的稳定性、产物选择性和反应速率等。

在生物质催化转化技术中,催化剂的选择十分关键。

常用的催化剂有氧化铈、氢氧化钠、钡钠等。

这些催化剂可以改善生物质热解过程中的产物选择性,使产物更接近需求和市场需求,提高了生物质热解的产物价值和重要性。

同时,催化剂也可以提高生物质热解过程中的反应速度,改善反应速度和效率。

三、生物质热解及催化转化技术的研究进展随着对可再生能源的关注和需求的增加,越来越多的研究者和工业企业开始研究和开发生物质热解及催化转化技术。

在国内外的研究中,生物质热解技术的研究主要集中在反应机理和反应条件等方面;而生物质催化转化技术的研究则侧重于催化剂和反应条件等方面。

同时,研究者也注意到了生物质热解及催化转化技术在实际应用中面临的问题,如清洁能源的生产成本高、生产效率低、安全性等。

生物质热解气化机理研究进展

生物质热解气化机理研究进展

生物质热解气化机理研究进展摘要:生物质能在我国是仅次于煤炭、石油和天然气的第四种能源资源,在能源系统中占有重要地位。

随着我国科学技术和社会经济的不断发展进步,生物质热解气化技术在当前已得到广泛应用。

本文首先对生物质化学组成进行了简单描述,然后对生物质热解动力学研究进展进行了分析,最后从水蒸气和空气及氧气等方面出发,对生物质气化机理研究进行了阐述。

关键词:生物质;热解;气化;机理生物质热解气化技术在结合生物质特性和快速热解装置基础上,将流化床半焦气化和生物质临氢热解技术耦合,以循环流化床分级热解气化技术为核心,将原料进行临氢热解,提高甲烷含量,进而提高燃气热值,不产生废水、焦油、飞灰等污染,合理利用钾、镁、硅资源,实现生物质能的高效综合利用。

其技术原理包括:临氢热解技术、半焦气化技术、燃气净化技术,整个过程无二次污染、无废气排放、无二恶英生成。

1、生物质化学组成生物质的主要成分是纤维素、半纤维素、木质素,其中纤维素占整个生物质组分比重为50%,半纤维素占20%-35%,剩下的15%-30%为木质素。

纤维素属于一种线性高分子聚合物,是植物细胞壁的重要组成成分,纤维素分子易发生降解的原因是其分子结构中的C-O-C键比较薄弱。

半纤维素的聚合度要小于纤维素,它属于一种复合聚糖,物定形结构,且热稳定性相比纤维素也较差,一般在250摄氏度左右便会发生分解。

另外,半纤维素易溶于碱性溶液。

相比纤维素和半纤维素,木质素成分比较复杂,虽然也是一种高分子化合物,但属于复杂、非结晶性聚合物。

2、生物质热解动力学研究进展1.1 纤维素热解动力学通过上述分析我们知道,纤维素含量占整个生物质的50%,因此它的热解程度和能力在一定程度上可以代表整个生物质,这也是为什么当前对生物质热解动力学的研究会从研究纤维素热解动力学开始。

随着竞争反应动力学模型和多步模型的提出,人们开始认为已经对生物质热解动力学有了很深入地了解,随后逐渐将改进后的“Broido-Shafizadeh”模型定义为纤维素热解机理研究的经典模型。

生物质热解制气反应技术研究

生物质热解制气反应技术研究

生物质热解制气反应技术研究随着人们对可再生能源的需求越来越大,生物质能作为一种重要的再生能源形式也越来越受到关注。

生物质利用的方式有很多种,其中之一就是将生物质通过热解反应转化为气体,从而得到可用于发电等方面的燃气。

本文将从生物质热解制气反应技术的原理、方法、存在的问题以及未来发展方向等方面进行探讨。

一、生物质热解制气反应技术的原理生物质是指一切来自于生物的原始物质,包括各种植物、动物和微生物等。

在生物质热解制气反应中,生物质通过在高温和缺氧条件下的加热分解,产生一种混合气体,主要成分是CO、H2和CH4等可燃气体。

这些可燃气体可以直接用于发电或者作为替代化石燃料使用。

生物质热解制气反应的原理主要包括以下几个方面:1. 生物质的物理和化学变化:随着温度的升高,生物质中的大分子物质会被分解为小分子物质,同时会释放出水和气体。

2. 生物质热解反应的基本原理:在缺氧条件下,将生物质加热到一定的温度,生物质中的主要组成部分会发生热解反应,产生可燃气体。

3. 反应机理:生物质中的主要可热解组分是纤维素、半纤维素和木质素等,其热解反应机理主要包括裂解、异构化和缩合等过程。

二、生物质热解制气反应技术的方法1. 固定床热解技术:该技术是将生物质放置于密闭的反应室中,通过加热来进行热解反应。

热解产生的气体在反应过程中会不断冲刷或者从反应室中流出,然后被分离和收集。

2. 旋转炉热解技术:该技术是将生物质放置在旋转的反应室中,通过加热和旋转来增加生物质与反应介质之间的接触面积,从而提高产气速率。

3. 流化床热解技术:该技术是将生物质通过气流向上喷射到一定高度的反应器中,使其进入流化状态,然后通过高温和缺氧条件下的热解反应来生产可燃气体。

三、存在的问题虽然生物质热解制气反应技术具有很多优点,如可再生、环保、资源广泛等,但是在实践应用中仍然存在一些问题:1. 生物质类型和含量的影响:不同种类和质量的生物质对热解反应的影响有很大的差异,因此需要对生物质的类型和含量进行精准的控制。

生物质热解技术的发展现状与趋势

生物质热解技术的发展现状与趋势

生物质热解技术的发展现状与趋势当今社会面临着严重的环境问题,能源资源的稀缺和污染问题越来越严重。

因此,使用可再生能源成为解决环境和能源问题的重要途径。

生物质能源作为一种可再生的资源,吸引了越来越多的关注。

生物质热解技术是将生物质转化为燃料和其他有用产品的一种重要方法。

本文将介绍生物质热解技术的现状和未来趋势。

一、生物质热解技术的发展历程生物质热解技术起始于19世纪末,当时用于制备木炭和燃料,并发展成为以木质素为原料的化工工业。

20世纪70年代,随着油价的不断上涨,研究人员开始将目光投向生物质能源,并发展出了新的热解技术,如快速热解和流化床热解等技术。

近年来,随着生物质能在能源和环境领域的不断应用,热解技术也得到了广泛的研究和应用。

二、生物质热解技术的原理及分类生物质热解是将生物质在高温条件下,通过热解反应,将其分解为固体、液体和气体三种组分的一种技术。

其中,固体产物包括生物质炭和灰,液体产物包括木质素油、醇和酸等化合物,气体产物主要是一氧化碳、二氧化碳和氨等气体。

根据生物质热解的反应条件,可将其分为缓慢热解和快速热解两种类型。

缓慢热解是在低温下进行的反应,主要产生生物质炭和液态产物,其中液态产物含有丰富的木质素化合物。

快速热解是在高温下进行的反应,主要产生气态产物,其中以一氧化碳和二氧化碳比例最高。

快速热解相比较缓慢热解,具有反应速度快、能耗低和产气率高的特点。

三、生物质热解技术的应用现状生物质热解技术的应用现状主要存在于两个方面:一是生产生物质炭和木质素油,用于能源开发和生物质化学制品生产;二是用于污水、垃圾和农业残留物等的处理,达到减少污染和资源再利用的目的。

生物质炭是生物质热解的重要产物之一,其具有高效的吸附性能和热值,被广泛用于农业、太阳能、污水处理、水质净化和园林等领域。

近年来,随着环保意识的不断加强,生物质炭的需求量逐年上升。

木质素油是生物质热解的另一种重要产物,其含有许多有机化学品,如酚、醇、甲醛、醛酮等,适用于制备各种化学品和生物质燃料。

生物炭制备方法及其应用的研究进展

生物炭制备方法及其应用的研究进展

生物炭制备方法及其应用的研究进展生物炭制备方法及其应用的研究进展引言:生物炭是一种通过高温无氧热解生物质制得的碳质副产品,其具有高孔隙度、大比表面积和孔径可调等特点。

因此,生物炭在农业、环境保护和能源等领域具有广泛的应用前景。

本文将综述生物炭制备方法及其在农业、环境保护和能源利用方面的研究进展。

一、生物炭的制备方法目前,生物炭的制备方法主要包括热解和气化两种。

1. 热解法热解法是将生物质放置在封闭的容器中进行高温无氧热解,从而生成生物炭。

热解法主要分为固体热解和液体热解两种方法。

固体热解法的步骤包括颗粒处理、真空干燥、缩小颗粒尺寸、热解和冷却等。

常用的固体热解设备有木屑炭化炉、橡胶炭化炉和稻壳炭化炉等。

液体热解法主要是在有机溶剂中对生物质进行热解。

具体步骤包括溶解生物质、热解和产出生物炭。

常用的液体热解方法有溶剂溶解法、水蒸气热解法和微波热解法等。

2. 气化法气化法是将生物质在高温下与气体反应,产生可燃气体和生物炭。

气化法主要分为固体气化和液体气化两种方法。

固体气化是将固体生物质与气体(如氢气、氧气等)或蒸汽进行反应。

常用的固体气化设备有气流气化炉、床式气化炉和流化床气化炉等。

液体气化是将生物质与液体(如超临界水、液氨等)反应,产生气体和生物炭。

液体气化法主要有湿法气化和超临界流化床气化等方法。

二、生物炭在农业中的应用1. 土壤改良剂生物炭具有多孔性和高比表面积,能够增加土壤的保水性和通气性,改善土壤结构。

此外,生物炭中的微量元素和有机质有助于植物生长和养分吸收。

因此,生物炭被广泛应用于土壤修复、农作物生产和园艺种植等领域。

2. 肥料添加剂生物炭可以与肥料混合使用,提高肥料的利用率和吸附性能。

生物炭能够吸附肥料中的养分,延缓养分释放速度,并减少养分流失。

此外,生物炭还能调节土壤pH值,提高土壤酸碱性,改善肥料的利用效果。

三、生物炭在环境保护中的应用1. 污水处理剂生物炭具有吸附性能,能够有效去除废水中的有机物、重金属和氮磷等污染物。

生物质气化技术的研究现状

生物质气化技术的研究现状

生物质气化技术的研究现状1. 引言1.1 生物质气化技术的定义生物质气化技术是一种将生物质材料(如木材、秸秆、废弃农作物等)转化为燃气或液体燃料的技术。

通过高温、缺氧或氧气气化反应,生物质材料中的碳、氢、氧等元素被分解为气态产物,主要包括一氧化碳、氢气、甲烷等。

这些气体可以用作燃料,用于发电、供热或作为化工原料。

生物质气化技术的定义涵盖了将生物质资源转化为可再生能源的过程,是一种环保、资源高效利用的能源转化技术。

与传统的生物质燃烧相比,气化技术更加高效、清洁,能够有效减少废弃物的排放和对环境的影响。

随着对可再生能源需求的增加和对传统能源依赖的减少,生物质气化技术逐渐受到重视。

它不仅可以有效利用农林等资源的废弃物,还可以减少对传统石油等化石能源的依赖,有助于推动能源结构转型,减少温室气体排放,实现可持续发展。

生物质气化技术在能源产业中具有重要的意义和巨大的发展潜力。

1.2 生物质气化技术的发展历程20世纪70年代开始,随着环境保护意识的提高和可再生能源的重要性日益凸显,生物质气化技术引起了广泛关注。

研究者们陆续提出了各种改进方案,探索更高效、更环保的生物质气化技术。

进入21世纪,随着能源问题愈发紧迫,生物质气化技术得到了更多的投入和支持。

各国开展了大量的研究项目,展开了合作交流,推动了生物质气化技术的快速发展。

目前,生物质气化技术已经实现了从实验室研究到工程应用的转变,为实现可持续能源发展做出了重要贡献。

2. 正文2.1 生物质气化技术的原理生物质气化技术的原理是指将生物质材料在高温、无氧或缺氧环境下进行热解反应,通过热化学反应将生物质材料转化为气态产物,主要包括合成气、甲烷等。

生物质气化过程主要包括干馏、气相反应和气相凝结三个阶段。

在干馏阶段,生物质材料首先被加热至较高温度,释放出挥发性有机物和灰分。

在气相反应阶段,挥发分子在高温环境下发生气相裂解和重组反应,生成气态产物。

在气相凝结阶段,气态产物冷却凝结,形成液体和固体产品。

生物质快速热解液化工艺研究进展

生物质快速热解液化工艺研究进展
中 图分 类 号 : Q 9 T T 1 K6 文献标识码 : A 文章 编 号 :6 2 5 2 ( 0 2 0 —0 0 —0 17— 4521)3 0 1 5
能 源是人 类 生存 与发 展 的前 提 和 基 础 。石 油 、 煤 炭 等能 源 由于 自身 的有 限性 必 定 会 枯 竭 , 大量 燃 烧 且 化石 燃料 所排 放 的有害 物质严 重 污染环 境 。面对 能源 和 环境 的双重 压力 , 物质能 因其 自身 具有 可再生 性 、 生 低 污染性 以及 高 产 量 性 等 优 点 越 来 越 受 到人 们 的重 视 。生 物质快 速热解 液 化将难 处理 的 固体生 物质 废弃 物转 化 为液体 生物 油 , 于运输 、 存 、 烧 和改性 , 便 贮 燃 更 好地 利用 了生 物质 原料 , 轻 了直 接 燃 烧 所 引起 的环 减
质不 高 , 应用 范 围受 到 限制 。 其
生物 质原料 中纤 维 素 、 纤 维 素 和 木质 素 的 比例 半
对生 物油 的 品质 有 着 显 著 的影 响 。与 木 质 生 物 质 相
比, 农业 残 渣一般 木 质素含 量较 低 , 而半纤 维素 、 灰分 、 碱金 属含 量 较 高 , 而其 o/ 比更 高L 因 c 1 。纤 维 素 大
熟程度 、 种 方式 、 气变 化Ⅲ 均 对 作 物 组 成 耕 节 等
高 收率 可达 7 , 5 副产 品是 焦炭 以及 部分 可 用 于工 艺 供热 的气 体 , 比其 它裂 解工艺 , 气和 灰分 等排 放量 相 烟 较少 。液 相 收率 主要取 决于生 物质 类 型 、 裂解 温度 、 高 温气 体停 留时 间 、 炭分 离情况 和 生物质 灰分 含量 , 焦 后 两项 对气 相裂 解具有 催化 作用 。作 者在 此对 生物 质快

生物质热解气化技术

生物质热解气化技术

生物质热解气化技术
电子科技大学硕士学位论文
生物质热解气化技术
摘要
随着经济的发展,人类对于能源的需求量也在不断的增加,而传统的化石燃料由于质量逐渐减少和污染排放量的增多,使得我国必须寻求替代能源。

生物质是一种可以取代传统化石燃料的清洁替代能源,其中还存在着大量未开发利用的可再生能源。

然而,由于生物质是复杂的有机物质,催化转化技术难以进行,受转化效率限制。

因此,将生物质在高温热解气化反应中转化为燃料气和其他催化剂的气相活
性物质,是高效减少生物质污染物浓度的有效手段,是当前生物质转化技术研究的热点,也是未来生物质能源开发利用的重点。

本文的研究重点为热解气化技术在生物质转化中的研究进展及可能的应用,主要包括四个方面:生物质热解气化机理研究,催化剂包衣材料研究,多元组分生物质转化及反应机理研究以及生物质热解气化技术的应
用研究,并对今后的研究方向进行了总结和展望。

- 1 -。

生物质燃气燃烧器技术研究进展分析陈晓堃

生物质燃气燃烧器技术研究进展分析陈晓堃

生物质燃气燃烧器技术研究进展分析陈晓堃发布时间:2021-07-19T16:52:54.743Z 来源:《基层建设》2021年第12期作者:陈晓堃[导读] 处于我国市场经济年度增收量稳步提升的时代背景中,为解决化石能源储备量日趋减少、东莞市卓高电子科技有限公司广东东莞 523000摘要:处于我国市场经济年度增收量稳步提升的时代背景中,为解决化石能源储备量日趋减少、自然生态环境污染逐步加剧等不良性社会问题,积极摸索出契合我国再生能源领域长远发展的科学开发路径、进一步强化能源燃烧综合效率将具有较强现实意义。

对此,领域工作人员应以燃气燃烧器技术的深度分析入手,通过生物质燃气的特点与净化工艺的精准把握,获知时下生物质燃气发展现况。

并结合“BCT-1”燃烧器及生物质燃气专用灶具的深入探究,深刻认知到典型生物质燃气燃烧器的功能性能,为我国生物质燃气领域日后健康、长足进步提供科学凭据。

关键词:生物质;燃气燃烧器技术;研究进展引言:“生物质燃气”简单来讲就是将农作物、林木的秸秆等废弃物作为基础性生物质原材料,在水蒸气及低氧、缺氧等载体介质、物理作用下,以高温降解为中间步骤,在完成热化学自然转化后得到的特殊性可燃性气体。

该类燃气作为前沿性清洁能源的一种,可在通过除焦、除尘等净化处理后实现燃烧,能够为多样设备装置提供充足的热能。

生物质燃气不仅可在农村地区炊事作业中多角度彰显积极性应用价值,还能够针对性取代传统化石燃料,应用于工业领域生产制造工作中。

可为化石能源在加热燃烧后衍生出的污染问题的高效解决拓展新思路,满足大众日常生活生产对空间环境、能源供给等方面的现实性需要。

1.燃气燃烧器技术浅析1.1燃气燃烧器技术发展进展国外首次研究、发展燃气燃烧器可追溯至百年前,现阶段,其产业发展体系健全,所配套使用的配件元件、装置安装规格、作业工序等细化内容均已形成统一性国际标准。

一些高性能、代表性的燃烧器实现了高达99%的平均燃烧效率,而CO排放量却仅为1.02×10-4mg/m3,甚至还包含几乎为0的排放烟气黑度。

生物质气化炉热效率提升技术研究实验报告

生物质气化炉热效率提升技术研究实验报告

生物质气化炉热效率提升技术研究实验报告一、引言生物质能源作为一种可再生能源,具有广阔的应用前景。

生物质气化炉是将生物质转化为可燃气体的重要设备,其热效率的提升对于提高能源利用效率、降低能源成本具有重要意义。

本实验旨在研究生物质气化炉热效率提升的技术方法,并对实验结果进行分析和总结。

二、实验目的本实验的主要目的是研究不同因素对生物质气化炉热效率的影响,探索提高热效率的有效技术途径,并为实际应用提供理论依据和技术支持。

三、实验设备与材料(一)实验设备1、生物质气化炉:自行设计搭建的固定床气化炉,包括气化室、燃烧室、加料系统、排渣系统等。

2、温度测量仪:用于测量气化炉内不同部位的温度。

3、气体分析仪:用于分析产生气体的成分和含量。

4、热量计:用于测量输入和输出的热量。

(二)实验材料1、生物质原料:选用玉米秸秆、木屑等常见的生物质材料,经过粉碎、干燥处理,使其粒度和含水率符合实验要求。

2、气化剂:选用空气作为气化剂。

四、实验方法与步骤(一)实验方法采用控制变量法,分别研究气化炉的运行参数(如气化温度、气化剂流量、原料粒度等)对热效率的影响。

(二)实验步骤1、准备工作(1)将生物质原料粉碎至合适的粒度,并干燥至一定的含水率。

(2)检查实验设备的连接和密封性,确保设备正常运行。

2、实验操作(1)按照设定的参数(如气化温度、气化剂流量、原料粒度等)启动气化炉,进行气化实验。

(2)在实验过程中,实时监测气化炉内的温度、压力等参数,并记录产生气体的成分和流量。

(3)实验结束后,收集并分析实验数据,计算气化炉的热效率。

3、改变实验参数重复上述实验步骤,改变不同的实验参数,如气化温度(分别设置为 700℃、800℃、900℃)、气化剂流量(分别设置为 02 m³/h、03m³/h、04 m³/h)、原料粒度(分别设置为10mm、20mm、30mm)等,研究其对热效率的影响。

五、实验结果与分析(一)气化温度对热效率的影响实验结果表明,随着气化温度的升高,生物质气化炉的热效率逐渐提高。

生物质气化的研究进展

生物质气化的研究进展

第53卷第4期 辽 宁 化 工 Vol.53,No. 4 2024年4月 Liaoning Chemical Industry April,2024收稿日期: 2024-03-01 生物质气化的研究进展于美双,侯硕*(沈阳工业大学 化工装备学院, 辽宁 辽阳 111000)摘 要: 生物质能源具有安全性高、环保性强、分布广泛、易储存运输和产量大的优点,生物质能已成为继三大化石能源后的第四大能源,生物质气化作为生物质的一种重要应用形式,具有巨大的发展潜力和价值。

介绍了生物质气化的概念、基本原理,并分析了气化剂气化、热解气化、催化气化、等离子体气化、超临界水气化等气化技术的优缺点,同时阐述了固定床气化炉、流化床气化炉、气流床气化炉、回转窑炉和等离子气化炉的工作原理及各自优缺点,最后指出生物质气化技术目前面临的问题,提出解决措施。

关 键 词:生物质能源; 生物质气化; 气化原理; 气化技术; 关键设备中图分类号:X382 文献标识码: A 文章编号: 1004-0935(2024)04-0606-06随着社会对能源需求的不断增长,现阶段石油、煤炭等化石能源面临着资源枯竭的风险,同时存在着气候变暖和空气污染等问题,对社会与环境造成很大影响,因此能源问题得到重视[1]。

而生物质能被认为是太阳能等所有可再生能源中最有发展前景,是继煤炭、石油和天然气之后的第四大能源[2]。

所以,生物质能源的利用引起了研究人员的高度重视,本文将对生物质气化技术及气化设备进行了详细概述。

1 生物质气化的概念及基本原理生物质气化是一种将固体生物质物料(如木材、农作物残留物、动植物废弃物、植物纤维等)在高温、无氧或者缺乏足够氧气的条件下转化为可燃气(通常包括氢气、一氧化碳和甲烷等)的技术[3]。

根据反应温度和产物不同,生物质气化主要可以分为4个过程[3-4]:1)干燥过程:是生物质从进料口进入气化炉后,在热量的作用下,将水分蒸发掉,变成干燥的生物质的过程。

生物质热解技术的研究进展

生物质热解技术的研究进展

生物质热解技术的研究进展随着环境保护意识的不断提高,传统化石能源的使用受到了越来越多的关注。

而生物质能作为一种可再生资源,其利用也逐渐得到了广泛的重视。

生物质热解技术作为其中一种利用方式,具有较高的能源转化效率和低碳排放的特点,因此备受关注。

本文将从生物质热解技术的定义、特点以及研究进展三个方面进行阐述。

一、生物质热解技术的定义与特点生物质热解技术是指将生物质通过加热的方式分解出其中的有机成分,并将其转化为各种可用的燃料或化学原料的技术。

这种技术相较于其他生物质能利用方式,具有不需成形和脱水、可处理多种生物质、可获得多种产品等优点。

生物质热解技术的热解过程主要是在高温、无氧或低氧气氛下进行的。

而热解反应一般需要高温和较长的反应时间才能得到理想的产物。

生物质热解过程中,一般会分解出生物质中的固体物质、液体物质和气体物质。

分解出的气体包括甲烷、氢气等,可以作为燃料使用。

分解出的液相物质主要是生物油,而固相物质则是炭黑或硬质木炭。

二、研究进展生物质热解技术的研究自20世纪60年代起就已经开始,近年来随着环境问题的不断升级和新能源需求的不断增长,热解技术的研究也得到了进一步的加强。

生物质热解技术的研究主要涉及以下几个方面:1.反应机理研究反应机理的研究是生物质热解技术得以实现的重要前提。

在生物质热解过程中,反应机理的解析有助于提高热解产物的得率和质量。

目前,已有很多的研究表明,生物质热解的反应机理较为复杂,主要涉及物理和化学两个方面。

在物理方面,主要包括颗粒温度分布、颗粒热传递等;在化学方面则主要包括反应动力学、反应物分解特性等。

2.反应条件优化反应条件的优化也是生物质热解技术得以实现的另一重要前提。

目前研究表明,反应温度、反应时间、反应气氛等因素都会显著影响生物质热解产物的种类和得率。

优化反应条件将有助于提高生物质的能源转化效率和减少废气排放。

3.产物分离和净化技术研究生物质热解产物分离和净化技术是热解技术流程中的重要环节。

生物质热解研究现状与展望

生物质热解研究现状与展望

生物质热解研究现状与展望摘要:主要论述了生物质热解技术的原理、热解反应过程、热解工艺类型及影响因素。

在分析国内外发展现状的基础上,提出生物质热解技术主要存在的不足,对生物质热解技术的发展前景进行了展望。

关键词:生物质热解;研究进展;发展现状;展望0 引言通过生物质能转换技术可高效地利用生物质能源,生产各种清洁能源和化工产品,从而减少人类对于化石能源的依赖,减轻化石能源消费给环境造成的污染。

目前,世界各国尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,以保护本国的矿物能源资源,为实现国家经济的可持续发展提供根本保障。

生物质热解是指生物质在没有氧化剂(空气、氧气、水蒸气等)存在或只提供有限氧的条件下,加热到逾500℃,通过热化学反应将生物质大分子物质(木质素、纤维素和半纤维素)分解成较小分子的燃料物质(固态炭、可燃气、生物油)的热化学转化技术方法。

生物质热解的燃料能源转化率可达95.5%,最大限度的将生物质能量转化为能源产品,物尽其用,而热解也是燃烧和气化必不可少的初始阶段[1]。

1 热解技术原理1.1 热解原理从化学反应的角度对其进行分析,生物质在热解过程中发生了复杂的热化学反应,包括分子键断裂、异构化和小分子聚合等反应。

木材、林业废弃物和农作物废弃物等的主要成分是纤维素、半纤维素和木质素。

热重分析结果表明,纤维素在52℃时开始热解,随着温度的升高,热解反应速度加快,到350~370℃时,分解为低分子产物,其热解过程为:(C6H10O5)n→nC6H10O5C6H10O5→H2O+2CH3-CO-CHOCH3-CO-CHO+H2→CH3-CO-CH2OHCH3-CO-CH2OH+H2→CH3-CHOH-CH2+H2O半纤维素结构上带有支链,是木材中最不稳定的组分,在225~325℃分解,比纤维素更易热分解,其热解机理与纤维素相似[2]。

从物质迁移、能量传递的角度对其进行分析,在生物质热解过程中,热量首先传递到颗粒表面,再由表面传到颗粒内部。

生物质气化技术的研究现状

生物质气化技术的研究现状

生物质气化技术的研究现状生物质气化技术是一种将生物质材料转化为可燃气体的技术,它是一种重要的可再生能源利用方式,可以有效地利用农林废弃物和城市垃圾等可再生资源,具有广阔的应用前景。

随着能源问题的日益严重和环境污染的日益加剧,生物质气化技术越来越受到人们的重视和关注。

本文将对生物质气化技术的研究现状进行分析和总结,以期为相关研究提供一定的参考价值。

一、生物质气化技术的原理生物质气化技术是通过热解、气化和催化等过程将生物质材料转化为可燃气体。

在气化过程中,生物质经过高温热解生成一系列气体产物,主要包括一氧化碳、二氧化碳、氢气、甲烷、一氧化氮等。

生物质气化的主要原理是通过铁、镍等金属氧化物的还原反应,将生物质中的碳、氢等元素转化为可燃气体,同时生成一定量的焦炭和灰渣。

生物质气化技术具有高能效、低污染、资源广泛等优点,因此备受关注。

1. 研究内容近年来,国内外对生物质气化技术进行了广泛而深入的研究。

在生物质气化技术的研究内容方面,主要包括气化过程的动力学研究、气化反应机理的研究、催化剂的研究、气化设备的改进等方面。

气化反应机理的研究对于提高气化效率和减少气化参数对环境的影响具有重要意义。

研究人员还对生物质气化过程中的焦炭生成机理进行了深入探讨,以期减少焦炭生成对气化设备的影响,提高资源利用率。

2. 技术改进在生物质气化技术的研究中,技术改进是一个重要的方向。

研究人员通过改进气化反应器结构和提高气化温度,有效地提高了气化效率和气化产气的热值。

通过引入先进的气化设备,如旋转流化床气化技术、离心气化技术等,使得生物质气化技术在规模化应用中更加灵活和高效。

研究人员还进行了生物质气化过程中的气体清洁技术研究,以期减少气化产气中的一氧化碳、烟尘等有害气体的排放,保护环境。

3. 材料选择生物质气化技术的研究中,材料选择是一个重要的环节。

近年来,研究人员广泛地开展了各种生物质材料的气化性能研究,以期找到更适合气化利用的生物质材料。

生物质热解气化技术在发电中的应用实验报告

生物质热解气化技术在发电中的应用实验报告

生物质热解气化技术在发电中的应用实验报告一、引言随着全球能源需求的不断增长和对环境保护的日益重视,寻找可再生、清洁的能源成为当务之急。

生物质能作为一种丰富的可再生能源,具有巨大的潜力。

生物质热解气化技术是将生物质转化为可燃气体,进而用于发电的一种有效途径。

本实验旨在研究生物质热解气化技术在发电中的应用效果,为其进一步推广和应用提供参考依据。

二、实验目的1、研究不同种类生物质原料在热解气化过程中的产气特性和成分。

2、评估生物质热解气化气用于发电的可行性和效率。

3、分析影响生物质热解气化发电系统性能的因素。

三、实验材料与设备1、生物质原料:选取了玉米秸秆、小麦秸秆、木屑等常见的生物质材料。

2、热解气化设备:采用了固定床式热解气化炉,其主要由进料系统、反应室、气体净化系统和控制系统组成。

3、发电设备:选用了小型燃气内燃机发电机组,额定功率为_____kW。

4、分析仪器:包括气相色谱仪(用于分析气体成分)、热量计(用于测量气体热值)等。

四、实验方法1、生物质原料预处理:将收集到的生物质原料进行粉碎、干燥等预处理,使其达到合适的粒度和含水率。

2、热解气化实验:将预处理后的生物质原料均匀地送入热解气化炉中,控制反应温度、气化剂流量等参数,进行热解气化反应。

3、气体净化:热解气化产生的气体经过冷却、过滤、除焦油等净化处理,以提高气体质量。

4、发电实验:将净化后的气体通入燃气内燃机发电机组中,进行发电实验,记录发电功率、运行时间等数据。

5、气体成分和热值分析:定期采集气体样品,利用气相色谱仪和热量计分析气体成分和热值。

五、实验结果与分析1、产气特性不同生物质原料的产气率存在差异。

玉米秸秆的产气率较高,平均可达_____m³/kg;小麦秸秆和木屑的产气率相对较低,分别为_____m³/kg 和_____m³/kg。

产气成分主要包括氢气(H₂)、一氧化碳(CO)、甲烷(CH₄)、二氧化碳(CO₂)等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

技术简介
(CO2)
O2
吸收二氧化碳(CO2)
光合作用
气 化
释 放



氧 化

灰(做肥料)



高品质能源
氧 气
(电、热、气等)

二氧化碳零排放
有效避免碱金属对锅炉等设备的腐蚀

用 户
气化原理 气化过程 工艺过程 燃气用途
干燥
热解
氧化
还原
技术简介
气化原理
(CO2)
O2
吸收二氧化碳(CO2)
光合作用
已经初步形成了气 化基础理论系统。
生物质燃气与终端利用设备耦合
生物质燃气与终端利用设备耦合是生 物质气化燃气利用的关键技术,主要原因 是生物质气体的品质难以满足相关设备的 运行要求。
相关技术尚存在许多不足之处。
12
技术研究
2.2前沿研发与技术创新
前沿研发领域
技术创新
生物质气化系统中焦油的净化 如何提高生物质气化燃气的品质 如何提高生物质气化燃气的热值
生物质气化制取清洁的可燃气体 替代燃油、天然气等化石能源 用于供气、供热、发电、工业供能等。
技术简介
分类
运行方式
固定床 流化床
气化炉类型
原料种类 粒度/mm 气化温度/℃ 气化效率% 气化强度/[kg/m2.h]
应用领域
上吸式 下吸式 横流式 开心式 单流化床 双流化床 循环流化床 携带床
上吸式固定床
用炉灶燃烧技术 锅炉燃烧技术 生物质与煤的混合燃烧技术等
热热化化学学转转化化
生物生质物气质化气化 干馏干馏 快速快热速解热液解化液技化术技术
燃气√
生物转化技术
小型户用沼气池 大中型厌氧消化
液化技术
提炼植物油技术 制取乙醇、甲醇等技术
有机垃圾能源化 处理技术
5
目录
背景 生物质气化技术研究 生物质气化设备发展现状 已开展的工作 前景展望
6
技术简介
(CO2)
O2
1.生物质热解气化化
释 放



氧 化

灰(做肥料)



高品质能源
氧 气
(电、热、气等)

二氧化碳零排放
有效避免碱金属对锅炉等设备的腐蚀

用 户
气化原理 气化过程 工艺过程 燃气用途
生物质气化是在一定的热力条件下,将组成生物质的碳 氢化合物转化为含一氧化碳CO、氢气H2和甲烷CH4等可燃气 体的过程。
生物质燃气清洁利用关键技术研究
2015.12.05
1
目录
背景 生物质气化技术简介 生物质气化设备发展现状 已开展的工作 前景展望
2
背景
资源丰富
能源化利用
国家发改委:全国秸秆理论资源量为8.4亿吨,可收集资源量约为7亿吨 国家林业局《全国林业生物质能源发展规划(2011-2020)》:林木生物质资源潜力约180亿 中国环境状况公报,2012年全国工业固体废物近33亿吨
生物质废弃物既是环境污染源又是重要的低碳能源
3
背景
资源丰富
能源化利用
可再生:唯一可直接作为燃料的可再生能源; 可储存:唯一可储存,也能稳定利用的可再生能源。
长远来说,生物质能主要用途是作为石油 的重要补充,具有战略性的意义。
“十二五”规划的天然气目标,年消费量 将 达 2300 亿 立 方 米 , 需 进 口 900-1000 亿 立 方米,对外依存度将迅速增至40%;
释 (放
出 )氧

气化过程


设 灰(做肥料) 高品质备能源
二氧化碳零排放
(电、热、气等)
有效避免碱金属对锅炉等设备的腐蚀
工艺过程
燃气应用
释 碳放
二 氧 化
用户
预处理
粉碎 干燥 气化剂处理
热解气化
温度变化 化学反应 催化剂
燃气净化
终端利用
焦油脱除 焦油热裂解 焦油裂解
清洁燃气 燃气发电 气热电联供
中小规模应用方式
气化炉结构创新 1)双燃烧的固定床气化炉 2)自加热式固定床气化炉 3)主动配风式固定床气化炉 …… 生物质气化系统工艺创新 两段式固定床低焦油气化技术
13
技术研究
2.2前沿研发与技术创新
维也纳科技大学125kW双燃烧的固定床气化炉 维也纳科技大学在总功率为2MW,发电输 出功率550 kW的热电联产项目基础上,设 计了双燃烧的固定床气化炉,开发了 125kW的热电联产系统,采用木材作为原 料,燃气低位热值达到5.8 MJ/Nm3
日本双燃料发电机实现发电 日本东京技术研究所设计采用双燃料发 电机实现发电,系统综合气化效率达到 66%,热效率达到27%。
15
技术研究
2.2前沿研发与技术创新
广州能源所两段式气化技术研究
上海交通大学60KW两段式气化研究
广州能源所在两段式固定床气化装置进行了试验,验证了当量比、富氧浓度和 水蒸气对于燃气组分和焦油产率具有影响。
下吸式固定床
流化床
秸秆,废木 5~100 ~1100 70-75
200-300
秸秆,废木 20~100 ~1000 75 200-600
稻壳,木屑,秸秆 <10
650-850 65-75
1000-2000
锅炉供热、发电 集中供气,锅炉供热 锅炉供热、发电 11
技术研究
2、技术研究
2.1基础研究
生物质气化系统的研究重点
巴西双层气化剂进给固定床气化炉研究
巴西研制了双层气化剂进给固定床气化炉,旨在提 高气化燃气品质,并降低焦油含量,通过调整两层 气化剂的进给,实现对内部的气化反应进行调控, 通过40kW气化炉的中试研究,气化效率达到68%。
14
技术研究
2.2前沿研发与技术创新
丹麦科技大学两段式气化技术
丹麦科技大学研发的两段式气化技术,采用螺旋滚筒 裂解床与下吸式固定床相结合,生物质首先在螺旋反 应器内发生热解反应,热解产物进入固定床反应器内, 并通入空气作为气化剂,在固定床内实现部分燃气燃 烧产生高温,从而使焦油裂解转化,最终获取的焦油 浓度可以达到5mg/m3。
预测到2020年,中国石油消费量将达6 亿吨以上; 国内供应量2.5亿吨,缺口达4亿吨, 对外依存度将达70%以上。
天然气资源用量分析图
能源需求是生物质的有效处理途径
4
背景
生物质
农农作作物物秸秸秆秆 林林业业三三剩剩物物 工工业业生生物物质质固固废废
禽畜粪便 城镇生活垃圾
藻类等
利用转化技术
直接燃烧技术
高温燃烧
终端利用
高温粗燃气 焦油 高温显热
工业蒸汽 集中供暖 热电联产
规模化应用方式
技术简介
(CO2)
O2
吸收二氧化碳(CO2)
光合作用
气 化
释 放



氧 化

灰(做肥料)



高品质能源
氧 气
(电、热、气等)

二氧化碳零排放
有效避免碱金属对锅炉等设备的腐蚀

用 户
气化原理 气化过程 工艺过程 燃气用途
相关文档
最新文档