2019-2020学年高中数学 空间直角坐标系导学案 新人教A版必修2 .doc
2019-2020学年新导学案同步人教A版数学必修2_第2章 点_直线_平面之2.3.1
返回导航
·
第二章 点、直线、平面之间的位置关系
3.直线和平面所成的角
(1)定义:一条直线和一个平面相交,但不和这个平面__垂__直____,这条直线
叫做这个平面的斜线,斜线和平面的___交__点___叫做斜足.过斜线上斜足以外的
一点向平面引垂线,过___垂__足___和__斜__足____的直线叫做斜线在这个平面上的射
一点,且SA=SB=SC.
数
(1)求证:SD⊥平面ABC;
学
必 修
(2)若AB=BC,求证:BD⊥平面SAC.
②
人 教
版
返回导航
·
·
第二章 点、直线、平面之间的位置关系
[解析] (1)因为SA=SC,D是AC的中点,
所以SD⊥AC.在Rt△ABC中,AD=BD,
由已知SA=SB,所以△ADS≌△BDS,
人 教
版
返回导航
·
第二章 点、直线、平面之间的位置关系
1.直线l⊥平面α,直线m⊂α,则l与m不可能
(A)
A.平行
B.相交
C.异面
D.垂直
[解析] ∵直线l⊥平面α,∴l与α相交,
又∵m⊂α,∴l与m相交或异面,由直线与平面垂直的定义,可知l⊥m.故l与
数 学
m不可能平行.
必
修
②
人 教
版
返回导航
·
②连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角
即为所求的角;③把该角归结在某个三角形中,通过解三角形,求出该角.
(2)求线面角的技巧:在上述步骤中,其中作角是关键,而确定斜线在平面
内的射影是作角的关键,几何图形的特征是找射影的依据,射影一般都是一些
2019-2020年高中数学《空间直角坐标系》教案19 新人教A版必修2
2019-2020年高中数学《空间直角坐标系》教案19 新人教A版必修2课题:空间直角坐标系目的要求:理解空间直角坐标系、掌握两点间的距离公式重点:两点间的距离公式难点:空间直角坐标系的概念教学方法:讲练结合教学时数: 2课时教学进程:一、空间直角坐标系在空间内作三条相互垂直且相交的数轴,这三条数轴的长度单位相同.它们的交点称为坐标原点.称为轴、轴和轴.一般地,取从后向前,从左向右,从下向上的方向作为轴,轴, 轴的正方向(图6.1).统称为坐标轴.由两个坐标轴所确定的平面,称为坐标平面,简称坐标面.轴,轴, 轴可以确定三个坐标面.这三个坐标面可以把空间分成八个部分,每个部分称为一个卦限.其中坐标面之上,坐标面之前,坐标面之右的卦限称为第一卦限.按逆时针方向依次标记坐标面上的其他三个卦限为第二、第三、第四卦限.在坐标面下面的四个卦限中,位于第一卦限下面的卦限称为第五卦限,按逆时针方向依次确定其他三个卦限为第六、第七、第八卦限.(图2)图1表示的空间直角坐标系也可以用右手来确定.用右手握住轴,当右手的四个手指从轴正向以的角度转向轴的正向时,大拇指的指向就是轴的正向.图1 图2二、空间一点的坐标已知为空间一点.过点作三个平面分别垂直于轴,轴和轴,它们与轴、轴、轴的交点分别为P、、(图3),这三点在轴、轴、轴上的坐标分别为.于是空间的一点就唯一确定了一个有序数组.这组数就叫做点的坐标,并依次称为点的横坐标,纵坐标和竖坐标.坐标为的点通常记为.图3反过来,有一个序数组,我们在轴上取坐标为的点,在轴上取坐标为的点,在z轴上取坐标为的点,然后通过、与分别作轴、轴与轴的垂直平面.这三个垂直平面的交点即为以有序数组为坐标的点(图3).我们通过这样的方法在空间直角坐标系内建立了空间的点和有序数组之间的一一对应关系.三、两点间的距离公式设),,(),,,(22221211z y x M z y x M 为空间内的两个点,由图4可知两点间的距离为 2221212M M M N NM =+(是直角三角形), 其中 222111(M N M P PN M PN =+∆是直角三角形), 而,,所以之间的距离为21221221221)()()(z z y y M M -+-+-=χχ.求之间的距离)3,2,1(),0,1,2(21-P -P .解 22221)03())1(2()2)1((-+--+--=P P图4小结本讲内容: 强调空间直角坐标系、两点间的距离公式作业:2019-2020年高中数学《空间直角坐标系》教案2 新人教A必修2教学要求:使学生能通过用类比的数学思想方法得出空间直角坐标系的定义、建立方法、以及空间的点的坐标确定方法。
高中数学 4.3.1空间直角坐标系导学案新人教A版必修2
§4.3.1空间直角坐标系学习目标:1.了解空间直角坐标系的建立背景;2.理解空间中点的坐标表示.学习重点:空间点的坐标.学习难点:1.空间点的坐标.2.空间点的对称问题课前预习案教材助读:阅读教材134-136页的内容,思考并完成下列问题1.如图所示,为了确定空间点的位置,我们建立空间直角坐标系:以单位正方体为载体,以O为原点,分别以射线OA、OC、OD′的方向为正方向,以线段OA、OC、OD′的长为单位长,建立三条数轴:x轴、y轴、z轴,这时我们说建立了一个,其中点O叫做 ,x轴、y轴、z轴叫做,通过每两个坐标轴的平面叫做,分别称为,通常建立的坐标系为右手直角坐标系,即指向x轴的正方向,指向y轴的正方向,指向z轴的正方向.2.空间一点M的坐标可用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫做点M的,y叫做点M的,z叫做点M的.课内探究案一、新课导学探究点一空间直角坐标系问题1:如下图怎样确切地表示室内灯泡的位置?问题2:平面直角坐标系由两条互相垂直的数轴组成,设想空间直角坐标系由几条数轴组成?其相对位置关系如何?问题3:在平面上如何画空间直角坐标系?空间中的点M用代数的方法怎样表示?问题4:建立了空间直角坐标系以后,空间中任意一点M对应的三个有序实数如何找到呢?问题5:x轴、y轴、z轴上的点的坐标有何特点?xOy平面、yOz平面、xOz平面上的点的坐标有何特点?问题6:对于空间两点P1(x1,y1,z1),P2(x2,y2,z2),则线段P1P2的中点P的坐标是什么?探究点二空间直角坐标系中点的对称问题思考:以下几条对称规律要在理解的基础上熟记:(1)A (x ,y ,z )关于x 轴的对称点为A 1( ),关于y 轴的对称点为A 2( ),关于z 轴的对称点为A 3( ).(2)A (x ,y ,z )关于原点的对称点为A 4( ).(3)A (x ,y ,z )关于xOy 平面的对称点为A 5( ),关于xOz 平面的对称点为A 6( ),关于yOz 平面的对称点为A 7( ).关于坐标轴和坐标平面对称的点的坐标的变化规律为“关于谁对称谁不变,其余的相反”. 二、典型例题:例1:如图,在长方体OABC —D ′A ′B ′C ′中,|OA |=3,|OC |=4,|OD ′|=2.写出D ′,C ,A ′,B ′四点的坐标.例2:已知点P (2,3,-1),求:(1)点P 关于各坐标平面对称点的坐标;(2)点P 关于各坐标轴对称的点的坐标;(3)点P 关于坐标原点的对称点的坐标.三、当堂检测教材136页练习1-3题.四、课后反思课后训练案1.点P (a ,b ,c )到坐标平面xOy 的距离是 ( ) A.a 2+b 2 B .|a | C .|b | D .|c |2.点P (1,4,-3)与点Q (3,-2,5)的中点坐标是 ( ) A .(4,2,2) B .(2,-1,2) C .(2,1,1) D .(4,-1,2)3.点P (-1,2,3)关于zOx 平面对称的点的坐标是 ( )A .(1,2,3)B .(-1,-2,3)C .(-1,2,-3)D .(1,-2,-3)4.在空间直角坐标系中,点P (1,2,3),过点P 作平面xOy 的垂线PQ ,垂足为Q ,则Q的坐标为( )A .(0,2,0)B .(0,2,3)C .(1,0,3)D .(1,2,0)5.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是D 1D 、BD 的中点,G 在棱CD 上,且CG =14CD ,H 为C 1G 的中点,试建立适当的坐标系,写出E 、F 、G 、H 的坐标.。
2019-2020学年新导学同步人教A版高中数学必修2__第2章 点_直2.1.1-2.1
知识导图
学法指导 1.研究几何问题,不仅要掌握自然语言、符号语言、图形语言 的相互转换,也要学会用符号语言表示点、直线、平面之间的位置 关系.用图形语言表示点、直线、平面之间的位置关系时,一定要 注意实线与虚线的区别. 2.学会用自然语言、符号语言描述四个公理的条件及结论, 明确四个公理各自的作用. 3.要理解异面直线的概念中“不同在任何一个平面内”的含 义,即两条异面直线永不具备确定平面的条件. 4.判断异面直线时,要更多地使用排除法和反证法. 5.作异面直线所成的角时,注意先选好特殊点,再作平行线.
3.公理 3 的主要作用:①判定两个平面是否相交;②证明共 线问题;③证明线共点问题.
公理 3 强调的是两个不重合的平面,只要它们有公共点,其交 集就是一条直线.以后若无特别说明,“两个平面”是指不重合的 两个平面.
[小试身手]
1.判断下列命题是否正确. (正确的打“√”,错误的打“×”) (1)空间不同三点确定一个平面.( × ) (2)空间两两相交的三条直线确定一个平面.( × ) (3)和同一直线都相交的三条平行线在同一平面内.( √ )
(1)一个希腊字母:如 α,β,γ 等;
表示 (2)两个大写英文字母:表示平面的平行四边形的相对的两个
方法 顶点;
(3)四个大写英文字母:பைடு நூலகம்示平面的平行四边形的四个顶点
1.平面和点、直线一样,是只描述而不加定义的原始概念, 不能进行度量;
2019-2020学年高中数学《空间直角坐标系》学案 新人教A版必修2.doc
2019-2020学年高中数学《空间直角坐标系》学案 新人教A 版必修21.明确空间直角坐标系是如何建立;明确空间中的任意一点如何表示;2 能够在空间直角坐标系中求出点的坐标3.知道几何问题可通过空间直角坐标转化为代数问题求解。
【重点难点】教学重点:空间的点与空间坐标的转化.教学难点:空间直角坐标的建立过程,了解空间直角坐标系的作用.【使用说明及学法指导】1.先速读一遍教材P 134—P 136,再结合“预习案”进行二次阅读并回答,时间不超过10分钟.2.本课必须记住的内容:写出空间点的坐标,根据坐标在空间找点的方法。
预习案一、知识梳理1. 空间直角坐标系:从空间某一个定点O 引三条互相垂直且有相同单位长度的数轴 ,这样的坐标系叫做空间直角坐标系 ,点O 叫做坐标原点, 叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为 平面、 平面、 平面.2. 右手直角坐标系:在空间直角坐标系中,让右手拇指指向 轴的正方向,食指指向 轴的正方向,若中指指向 轴的正方向,则称这个坐标系为右手直角坐标系.3. 空间直角坐标系中的坐标:对于空间任一点M ,作出M 点在三条坐标轴Ox 轴、Oy 轴、Oz 轴上的射影,若射影在相应数轴上的坐标依次为x 、y 、z ,则把有序实数组 叫做M 点在此空间直角坐标系中的坐标,记作 ,其中 叫做点M 的横坐标, 叫做点M 的纵坐标, 叫做点M 的竖坐标.4. 在xOy 平面上的点的 坐标都是零,在yOz 平面上的点的 坐标都是零,在zOx 平面上的点的 坐标都是零;在Ox 轴上的点的纵坐标、竖坐标都是 ,在Oy 轴上的点的横坐标、竖坐标都是 ,在Oz 轴上的点的横坐标、纵坐标都是 。
二、问题导学1.平面直角坐标系的建立方法,点的坐标的确定过程、表示方法?2. 我们知道数轴上的任意一点M 都可用对应一个实数x 表示,建立了平面直角坐标系后,平面上任意一点M 都可用对应一对有序实数),(y x 表示.那么假设我们建立一个空间直角坐标系时,空间中的任意一点是否可用对应的有序实数组()z y x ,,表示出来呢?3.怎么样建立空间直角坐标系?什么是右手表示法?三、预习自测1. 坐标原点O 的坐标是什么?2. 关于空间直角坐标系叙述正确的是( ).A .(,,)P x y z 中,,x y z 的位置是可以互换的B .空间直角坐标系中的点与一个三元有序数组是一种一一对应的关系C .空间直角坐标系中的三条坐标轴把空间分为八个部分D .某点在不同的空间直角坐标系中的坐标位置可以相同3. 在长方体OBCD D A B C ''''-中,3,4OA OC ==, 2.OD '=写出,,,D C A B '''四点坐标.4.已知(2,3,4)M -,描出它在空间的位置。
高中数学 4.3.1空间直角坐标系教学案 新人教a版必修2
4.3.1空间直角坐标系一、情景导入通过下列实例如何确定空间点的位置?1. 确定一个点在一条直线上的位置的方法.2. 确定一个点在一个平面内的位置的方法.3. 如何确定一个点在三维空间内的位置?在学生思考讨论的基础上,教师明确:确定点在直线上,通过数轴需要一个数;确定点在平面内,通过平面直角坐标系需要两个数.那么,要确定点在空间内,应该需要几个数呢?通过类比联想,容易知道需要三个数.要确定飞机的位置,知道飞机到地面的距离、经度、纬度即可.(此时学生只是意识到需要三个数,还不能从坐标的角度去思考,因此,教师在这儿要重点引导)教师:在地面上建立直角坐标系xOy,则地面上任一点的位置只须利用x,y就可确定.为了确定不在地面内的飞机的位置,须要用第三个数表示物体离地面的高度,即需第三个坐标z.这样,仿照初中平面直角坐标系,就建立了空间直角坐标系O-xyz,从而确定了空间点的位置.二、合作探究、精讲点拨1. 在前面研究的基础上,先由学生对空间直角坐标系予以抽象概括,然后由教师给出准确的定义.从空间某一个定点O引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O—xyz,点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xO平面,yO平面,zOx平面.教师进一步明确:(1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系.(2)将空间直角坐标系O—xyz画在纸上时,x轴与y轴、x轴与z轴成135°,而y轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的,这样,三条轴上的单位长度直观上大致相等.2. 空间直角坐标系O—xyz中点的坐标.思考1:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?在学生充分讨论思考之后,教师明确:(1)过点A作三个平面分别垂直于x轴,y轴,z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,这样,对空间任意点A,就定义了一个有序数组(x,y,z).(2)反之,对任意一个有序数组(x,y,z),按照刚才作图的相反顺序,在坐标轴上分别作出点P,Q,R,使它们在x轴、y轴、z轴上的坐标分别是x,y,z,再分别过这些点作垂直于各自所在的坐标轴的平面,这三个平面的交点就是所求的点A.这样,在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)之间就建立了一种一一对应关系:A(x,y,z).教师进一步指出:空间直角坐标系O—xyz中任意点A的坐标的概念对于空间任意点A,作点A在三条坐标轴上的射影,即经过点A作三个平面分别垂直于x轴、y 轴和z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,我们把有序数组(x,y,z)叫作点A的坐标,记为A(x,y,z).(如图26-4)三、典型例题例1、如下图,在长方体OABC-A′B′C′D′中,|OA|=3,|OC|=4,|OD′|=2,写出D′,C ,A′,B′四点的坐标注意:在分析中紧扣坐标定义。
2019高中数学4.3空间直角坐标系讲义含解析新人教A版必修2
4.3 空间直角坐标系[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P134~P137,回答下列问题.(1)平面直角坐标系由两条互相垂直的数轴组成,设想空间直角坐标系由几条数轴组成?其相对位置关系如何?提示:三条交于一点且两两互相垂直的数轴.(2)建立了空间直角坐标系以后,空间中任意一点M对应的三个有序实数如何找到呢?提示:如图所示,设点M是空间的一个定点,过点M分别作垂直于x轴、y轴和z轴的平面,依次交x轴,y轴和z轴于点P、Q和R.设点P、Q和R在x轴、y轴和z轴上的坐标分别是x,y和z,那么点M就对应唯一确定的有序实数组(x,y,z).(3)设点P1(x1,y1,z1),P2(x2,y2,z2)在xOy平面上的射影分别为M、N.①M、N的坐标是什么?点M、N之间的距离如何?②若直线P1P2是xOy平面的一条斜线,点P1,P2间的距离如何?提示:①M(x1,y1,0),N(x2,y2,0);|MN|=x1-x22+y1-y22.②如图,在Rt△P1HP2中,|P1H|=|MN|=x1-x22+y1-y22,根据勾股定理,得|P1P2|=|P1H|2+|HP2|2=x1-x22+y1-y22+z1-z22.2.归纳总结,核心必记(1)空间直角坐标系及相关概念①空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴:x轴、y轴、z轴,这样就建立了空间直角坐标系Oxyz.②相关概念:点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、yOz平面、zOx平面.(2)右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.(3)空间一点的坐标空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M 在此空间直角坐标系中的坐标,记作M(x,y,z).其中x叫点M的横坐标,y叫点M的纵坐标,z叫点M的竖坐标.(4)空间两点间的距离公式①点P(x,y,z)到坐标原点O(0,0,0)的距离,|OP|=x2+y2+z2.②任意两点P1(x1,y1,z1),P2(x2,y2,z2)间的距离,|P1P2|=x1-x22+y1-y22+z1-z22.[问题思考](1)给定的空间直角坐标系下,空间任意一点是否与有序实数组(x,y,z)之间存在唯一的对应关系?提示:是.给定空间直角坐标系下,空间给定一点其坐标是唯一的有序实数组(x,y,z);反之,给定一个有序实数组(x,y,z),空间也有唯一的点与之对应.(2)空间两点间的距离公式对在坐标平面内的点适用吗?提示:适用.空间两点间的距离公式适用于空间任意两点,对同在某一坐标平面内的两点也适用.[课前反思]通过以上预习,必须掌握的几个知识点.(1)怎样建立空间直角坐标系?如何确定空间一点的坐标?;(2)空间两点间的距离公式是什么?怎样用?.(1)如图数轴上A点、B点.(2)如图在平面直角坐标系中,P、Q点的位置.(3)下图是一个房间的示意图,我们如何表示板凳和气球的位置?[思考1] 上述(1)中如何确定A、B两点的位置?提示:利用A、B两点的坐标2和-2.[思考2] 上述(2)中如何确定P、Q两点的位置?提示:利用P、Q两点的坐标(a,b)和(m,n).[思考3] 对于上述(3)中,空间中如何表示板凳和气球的位置?提示:可借助于平面坐标系的思想建立空间直角坐标系,如图示.讲一讲1.建立适当的坐标系,写出底边长为2,高为3的正三棱柱的各顶点的坐标.(链接教材P135—例1)[尝试解答] 以BC的中点为原点,BC所在的直线为y轴,以射线OA所在的直线为x 轴,建立空间直角坐标系,如图.由题意知,AO=32×2=3,从而可知各顶点的坐标分别为A(3,0,0),B(0,1,0),C(0,-1,0),A1(3,0,3),B1(0,1,3),C1(0,-1,3).空间中点P坐标的确定方法(1)由P点分别作垂直于x轴、y轴、z轴的平面,依次交x轴、y轴、z轴于点P x、P y、P z,这三个点在x轴、y轴、z轴上的坐标分别为x、y、z,那么点P的坐标就是(x,y,z).(2)若题所给图形中存在垂直于坐标轴的平面,或点P在坐标轴或坐标平面上,则要充分利用这一性质解题.练一练1.如图所示,VABCD是正棱锥,O为底面中心,E,F分别为BC,CD的中点.已知|AB|=2,|VO|=3,建立如图所示空间直角坐标系,试分别写出各个顶点的坐标.解:∵底面是边长为2的正方形,∴|CE|=|CF|=1.∵O点是坐标原点,∴C(1,1,0),同样的方法可以确定B(1,-1,0),A(-1,-1,0),D(-1,1,0).∵V在z轴上,∴V(0,0,3).讲一讲2.在空间直角坐标系中,点P(-2,1,4).(1)求点P关于x轴的对称点的坐标;(2)求点P关于xOy平面的对称点的坐标;(3)求点P关于点M(2,-1,-4)的对称点的坐标.[尝试解答] (1)由于点P关于x轴对称后,它在x轴的分量不变,在y轴、z轴的分量变为原来的相反数,所以对称点为P1(-2,-1,-4).(2)由于点P关于xOy平面对称后,它在x轴、y轴的分量不变,在z轴的分量变为原来的相反数,所以对称点为P2(-2,1,-4).(3)设对称点为P3(x,y,z),则点M为线段PP3的中点,由中点坐标公式,可得x=2×2-(-2)=6,y=2×(-1)-1=-3,z=2×(-4)-4=-12,所以P3(6,-3,-12).(1)求空间对称点的规律方法空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论.(2)空间直角坐标系中,任一点P(x,y,z)的几种特殊对称点的坐标如下:①关于原点对称的点的坐标是P1(-x,-y,-z);②关于x轴(横轴)对称的点的坐标是P2(x,-y,-z);③关于y轴(纵轴)对称的点的坐标是P3(-x,y,-z);④关于z轴(竖轴)对称的点的坐标是P4(-x,-y,z);⑤关于xOy坐标平面对称的点的坐标是P5(x,y,-z);⑥关于yOz坐标平面对称的点的坐标是P6(-x,y,z);⑦关于xOz坐标平面对称的点的坐标是P7(x,-y,z).练一练2.保持本解中的点P不变,(1)求点P关于y轴的对称点的坐标;(2)求点P关于yOz平面的对称点的坐标;(3)求点P关于点N(-5,4,3)的对称点的坐标.解:(1)由于点P关于y轴对称后,它在y轴的分量不变,在x轴、z轴的分量变为原来的相反数,故对称点的坐标为P1(2,1,-4).(2)由于点P关于yOz平面对称后,它在y轴、z轴的分量不变,在x轴的分量变为原来的相反数,故对称点的坐标为P2(2,1,4).(3)设所求对称点为P3(x,y,z),则点N为线段PP3的中点,由中点坐标公式,可得-5=-2+x2,4=1+y2,3=4+z2,即x=2×(-5)-(-2)=-8,y=2×4-1=7,z=2×3-4=2,故P3(-8,7,2).(1)已知数轴上A点的坐标2,B点的坐标-2.(2)已知平面直角坐标系中P(a,b),Q(m,n).[思考1] 如何求数轴上两点间的距离?提示:|AB|=|x1-x2|=|x2-x1|.[思考2] 如何求平面直角坐标系中P、Q两点间距离?提示:d=|PQ|=a-m2+b-n2.[思考3] 若在空间中已知P1(x1,y1,z1),P2(x2,y2,z2),如何求|P1P2|?提示:与平面直角坐标系中两点的距离求法类似.讲一讲3.已知点A(-4,-1,-9),B(-10,1,-6),C(-2,-4,-3),试判断△ABC的形状.[尝试解答]|AB|=-4+2+-1-2+-9+2=49=7,|BC|=-10+2++2+-6+2=98=72,|AC|=-4+2+-1+2+-9+2=49=7,则|AB|=|AC|,且|AB|2+|AC|2=|BC|2,所以△ABC为等腰直角三角形.求空间两点间的距离时,一般使用空间两点间的距离公式,应用公式的关键在于建立适当的坐标系,确定两点的坐标.确定点的坐标的方法视具体题目而定,一般说来,要转化到平面中求解,有时也利用几何图形的特征,结合平面直角坐标系的知识确定.练一练3.已知两点P(1,0,1)与Q(4,3,-1).(1)求P、Q之间的距离;(2)求z轴上的一点M,使|MP|=|MQ|.解:(1)|PQ|=-2+-2++2=22.(2)设M(0,0,z),由|MP|=|MQ|,得12+02+(z-1)2=42+32+(z+1)2,∴z=-6.∴M(0,0,-6).——————————[课堂归纳·感悟提升]—————————————1.本节课的重点是了解右手直角坐标系及有关概念,掌握空间直角坐标系中任意一点的坐标的含义,会建立空间直角坐标系,并能求出点的坐标,理解空间两点间距离公式的推导过程和方法,掌握空间两点间的距离公式及其简单应用.难点是空间直角坐标系的建立及求相关点的坐标、空间两点间距离公式及其简单运用.2.本节课要重点掌握的规律方法(1)空间直角坐标系中点的坐标的确定方法,见讲1.(2)求空间中对称点坐标的规律,见讲2.(3)空间两点间距离公式的应用,见讲3.3.本节课的易错点是空间中点的坐标的确定,如讲1.课下能力提升(二十六) [学业水平达标练]题组1 空间直角坐标系的建立及坐标表示 1.点(2,0,3)在空间直角坐标系中的( ) A .y 轴上 B .xOy 平面上 C .xOz 平面上 D .第一象限内解析:选C 点(2,0,3)的纵坐标为0,所以该点在xOz 平面上.2.在空间直角坐标系中,点P (4,3,-1)关于xOz 平面的对称点的坐标是( ) A .(4,-3,-1) B .(4,3,-1) C .(3,-4,1) D .(-4,-3,1)解析:选A 过点P 向xOz 平面作垂线,垂足为N ,则N 就是点P 与它关于xOz 平面的对称点P ′连线的中点,又N (4,0,-1),所以对称点为P ′(4,-3,-1).3.已知A (3,2,-4),B (5,-2,2),则线段AB 中点的坐标为________. 解析:设中点坐标为(x 0,y 0,z 0),则x 0=3+52=4,y 0=2-22=0,z 0=-4+22=-1,∴中点坐标为(4,0,-1). 答案:(4,0,-1)4.点P (1,2,-1)在xOz 平面内的射影为B (x ,y ,z ),则x +y +z =________. 解析:点P (1,2,-1)在xOz 平面内的射影为B (1,0,-1),∴x =1,y =0,z =-1,∴x +y +z =1+0-1=0.答案:05.如图,在长方体ABCD A 1B 1C 1D 1中,E ,F 分别是棱BC ,CC 1上的点,|CF |=|AB |=2|CE |,|AB |∶|AD |∶|AA 1|=1∶2∶4.试建立适当的坐标系,写出E ,F 点的坐标.解:以A 为坐标原点,射线AB ,AD ,AA 1的方向分别为正方向建立空间直角坐标系,如图所示.分别设|AB |=1,|AD |=2,|AA 1|=4,则|CF |=|AB |=1,|CE |=12|AB |=12,所以|BE |=|BC |-|CE |=2-12=32.所以点E 的坐标为⎝ ⎛⎭⎪⎫1,32,0,点F 的坐标为(1,2,1).6.如图,在空间直角坐标系中,BC =2,原点O 是BC 的中点,点D 在平面yOz 内,且∠BDC =90°,∠DCB =30°,求点D 的坐标.解:过点D 作DE ⊥BC ,垂足为E .在Rt △BDC 中,∠BDC =90°,∠DCB =30°,BC =2,得|BD |=1,|CD |=3,∴|DE |=|CD |sin 30°=32,|OE |=|OB |-|BE |=|OB |-|BD |cos 60°=1-12=12, ∴点D 的坐标为⎝ ⎛⎭⎪⎫0,-12,32.题组2 空间两点间的距离7.(2016·长春高一检测)已知点A (x,1,2)和点B (2,3,4),且|AB |=26,则实数x 的值是( )A .-3或4B .6或2C .3或-4D .6或-2 解析:选D 由题意得x -2+-2+-2=26,解得x =-2或x =6.8.在空间直角坐标系中,正方体ABCD A 1B 1C 1D 1的顶点A 的坐标为(3,-1,2),其中心M 的坐标为(0,1,2),则该正方体的棱长为________.解析:由A (3,-1,2),中心M (0,1,2), 所以C 1(-3,3,2).正方体体对角线长为|AC 1|=[3--2+-1-2+-2=213,所以正方体的棱长为2133=2393.答案:2393[能力提升综合练]1.在长方体ABCD A 1B 1C 1D 1中,若D (0,0,0)、A (4,0,0)、B (4,2,0)、A 1(4,0,3),则对角线AC 1的长为( )A .9 B.29 C .5 D .2 6解析:选B 由已知求得C 1(0,2,3),∴|AC 1|=29.2.点A (1,2,-1),点C 与点A 关于面xOy 对称,点B 与点A 关于x 轴对称,则|BC |的值为( )A .2 5B .4C .2 2D .27解析:选B 点A 关于面xOy 对称的点C 的坐标是(1,2,1),点A 关于x 轴对称的点B 的坐标是(1,-2,1),故|BC |=-2++2+-2=4.3.△ABC 在空间直角坐标系中的位置及坐标如图所示,则BC 边上的中线的长是( )A. 2 B .2 C. 3 D .3解析:选C BC 的中点坐标为M (1,1,0),又A (0,0,1), ∴|AM |=12+12+-2= 3.4.在空间直角坐标系中,一定点P 到三个坐标轴的距离都是1,则该点到原点的距离是( )A.62B. 3C.32 D.63解析:选A 设P (x ,y ,z ),由题意可知⎩⎪⎨⎪⎧x 2+y 2=1,y 2+z 2=1,x 2+z 2=1,∴x 2+y 2+z 2=32,∴x 2+y 2+z 2=62.5.在空间直角坐标系中,点(-1,b,2)关于y 轴的对称点是(a ,-1,c -2),则点P (a ,b ,c )到坐标原点O 的距离|PO |=________.解析:点(-1,b,2)关于y 轴的对称点是(1,b ,-2),所以点(a ,-1,c -2)与点(1,b ,-2)重合,所以a =1,b =-1,c =0,所以|PO |=12+-2+02= 2.答案: 26.在棱长为1的正方体ABCD A 1B 1C 1D 1中,F 是BD 的中点,G 在棱CD 上,且|CG |=14|CD |,E 为C 1G 的中点,则EF 的长为________.解析:建立如图所示的空间直角坐标系,D 为坐标原点,由题意,得F ⎝ ⎛⎭⎪⎫12,12,0,C 1(0,1,1),C (0,1,0),G ⎝⎛⎭⎪⎫0,34,0,则E ⎝ ⎛⎭⎪⎫0,78,12.所以|EF |=⎝ ⎛⎭⎪⎫0-122+⎝ ⎛⎭⎪⎫78-122+⎝ ⎛⎭⎪⎫12-02=418. 答案:4187.如图所示,在长方体ABCD A 1B 1C 1D 1中,|AB |=|AD |=3,|AA 1|=2,点M 在A 1C 1上,|MC 1|=2|A 1M |,N 在D 1C 上且为D 1C 中点,求M 、N 两点间的距离.解:如图所示,分别以AB 、AD 、AA 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系.由题意可知C (3,3,0),D (0,3,0), ∵|DD 1|=|CC 1|=|AA 1|=2,∴C 1(3,3,2),D 1(0,3,2),A 1(0,0,2). ∵N 为CD 1的中点,∴N ⎝ ⎛⎭⎪⎫32,3,1. M 是A 1C 1的三分之一分点且靠近A 1点,∴M (1,1,2). 由两点间距离公式, 得|MN |=⎝ ⎛⎭⎪⎫32-12+-2+-2=212. 8.如图所示,直三棱柱ABC A 1B 1C 1中,|C 1C |=|CB |=|CA |=2,AC ⊥CB ,D ,E 分别是棱AB ,B 1C 1的中点,F 是AC 的中点,求DE ,EF 的长度.解:以点C 为坐标原点,CA 、CB 、CC 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系. ∵|C 1C |=|CB |=|CA |=2,∴C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,2),B 1(0,2,2), 由中点坐标公式可得,D (1,1,0),E (0,1,2),F (1,0,0), ∴|DE |=-2+-2+-2=5,|EF |=-2+-2+-2= 6.11。
人教版高中数学必修二导学案:第四章第三节空间直角坐标系 导学精要
第四章第三节空间直角坐标系 导学精要三维目标1.了解空间直角坐标系与空间点的坐标的意义; 2. 能用空间直角坐标系表示点的位置。
__________________________________________________________________________ 目标三导 学做思1问题1. 在数轴上,点与 一一对应,在直角坐标平面上,点与 一一对应,那么空间中的点又与什么对应?问题2. 如何建立空间右手直角坐标系?问题3. 在空间直角坐标系中,什么叫坐标原点?坐标轴?坐标平面?什么是横坐标?纵坐标?竖坐标?【试试】如图,在在长方体OABC – D ′A ′B ′C ′中,|OA | = 3,|OC | = 4,|OD ′| = 2.写出D ′、C 、A ′、B ′四点的坐标。
【变式】在上题图中连结B A '、B A ',交点为E ,连结C B '、C B ', 交点为F,分别求点E 、F 的坐标。
问题4. 在空间直角坐标系中,求空间中点的坐标的方法是什么?【结论】在空间直角坐标系下,特殊点的坐标特征:坐标轴上点的坐标特征:1、x 轴上点的坐标:2、y 轴上点的坐标:3、z 轴上点的坐标:坐标平面上的点的坐标的特征:xOy 平面上点的坐标特点是_________________xOz 平面上点的坐标特点是_________________ yOz 平面上点的坐标特点是_______________*【学做思2】1. 如图建立空间直角坐标系,已知正方体的棱长为2. .求正方体各顶点的坐标.(2) 已知点1p ( 1,3,4)和2p (-3,7,8),点P 是线段1p 2p 上一个三等分点(靠近1p ),求点P 的坐标。
达标检测1. 如右图:在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是BB 1,D 1B 1 的中点,棱长为1,求E 、F 点的坐标。
人教A版高中数学必修二空间直角坐标系学案新
高中数学 4.3.1空间直角坐标系学案 新人教A 版必修2
学习目标: 能通过用类比的数学思想方法得出空间直角坐标系的定义、建立方法、以及空间的点的坐标确定方法。
学习重点、难点:
重点: 在空间直角坐标系中,确定点的坐标
难点: 通过建立适当的直角坐标系,确定空间点的坐标
学习过程
一、展示目标
二、自主学习
1、先阅读教材134—135页,然后仔细审题,认真思考、独立规范作答。
2、、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。
三、交流互动
问题1:什么是空间直角坐标系?什么是坐标平面?坐标轴?
问题2:如何建立空间直角坐标系? 问题3:空间一点的坐标如何表示?
问题4:原点O 的坐标是什么?
探究:空间直角坐标系内点的坐标的确定过程。
典型例题:
例题:在长方体'
'''C B A D OABC -中,,3=OA ,4=OC ,2'=OD 写出''',,,B A C D 四点坐标.
四、达标检测 1.练习:P136 1, 2
2. 已知M (2, -3, 4),画出它在空间的位置。
五、归纳总结
1.空间直角坐标系内点的坐标的确定过程. 2.有序实数组;
六、作业布置
课本P136 3 138页B组3题
七、课后反思。
安徽省宿松中学2019-2020学年高一数学人教A版必修2教案:4.3.1 空间直角坐标系
图1
图1表示的空间直角坐标系也可以用右手来确定.用右手握住z轴,当右手的四个手指从x轴正向以90°的角度转向y轴的正向时,大拇指的指向就是z轴的正向.我们称这种坐标系为右手直角坐标系.如无特别说明,我们课本上建立的坐标系都是右手直角坐标系.
④观察图1,体会空间直角坐标系该如何建立.
⑤观察图2,建立了空间直角坐标系以后,空间中任意一点M如何用坐标表示呢?
讨论结果:①在初中,我们学过数轴是规定了原点、正方向和单位长度的直线.决定数轴的因素有原点、正方向和单位长度.这是数轴的三要素.数轴上的点可用与这个点对应的实数x来表示.
②在初中,我们学过平面直角坐标系,平面直角坐标系是以一点为原点O,过原点O分别作两条互相垂直的数轴Ox和Oy,xOy称平面直角坐标系,平面直角坐标系具有以下特征:两条数轴:①互相垂直;②原点重合;③通常取向右、向上为正方向;④单位长度一般取相同的.平面直角坐标系上的点用它对应的横、纵坐标表示,括号里横坐标写在纵坐标的前面,它们是一对有序实数(x,y).
推进新课
新知探究
提出问题
①在初中,我们学过数轴,那么什么是数轴?决定数轴的因素有哪些?数轴上的点怎样表示?
②在初中,我们学过平面直角坐标系,那么如何建立平面直角坐标系?决定平面直角坐标系的因素有哪些?平面直角坐标系上的点怎样表示?
③在空间,我们是否可以建立一个坐标系,使空间中的任意一点都可用对应的有序实数组表示出来呢?
点评:能准确地确定空间任意一点的直角坐标是利用空间直角坐标系的基础,一定掌握如下方法,过点M作三个平面分别垂直于x轴、y轴和z轴,确定x,y和z,同时掌握一些特殊点的坐标的表示特征.
人教版高中数学(必修二)导学案设计:4.3空间直角坐标系(无答案)
高二数学 SX-G2-B2-U4-L4.34.3 《空间直角坐标系》导学案编写人: 审核:高二数学组 编写时间:一、教学目标:1、掌握空间直角坐标系的有关概念;2、会根据坐标找相应的点,会写一些简单几何体顶点的有关坐标;3、掌握空间两点间的距离公式,会应用距离公式解决有关问题。
二、教学重、难点:重点:理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系。
难点:用空间直角坐标系刻画点的位置和根据点的位置表示出点的坐标。
三、使用说明及学法指导:预习教材 P134~P136,找出疑惑之处,并用笔画出来。
四、知识链接:1. 如何确定一个点在一条直线上的位置? 。
2. 如何确定一个点在一个平面内的位置? 。
五、教学过程:问题1:(平面内点的位置的确定)请在如下平面直角坐标系中,表示出点()1,1P 的位置?请在右面画出该直角系的直观图?并指明()1,1P 的位置?想想横纵坐标表示的是什么?问题2:(空间中点的位置的确定)根据一个房间的示意图,我们怎么表示电灯的位置呢?问题3:有序实数组()4,5,3P 的含义是什么?知识点一:空间直角坐标系的建立1、如图所示,为了确定空间点的位置,我们建立空间直角坐标系:以单位正方体为载体,以O 为原点,分别以射线OA 、OC 、OD ′的方向为正方向,以线段OA 、OC 、OD ′的长为单位长,建立三条数轴:x 轴、y轴、z 轴,这时我们说建立了一个 ,其中点O 叫做 ,x 轴、y 轴、z 轴叫做 ,通过每两个坐标轴的平面叫做 ,分别称为 。
2、右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,若中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.本书建立的坐标系都是右手直角坐标系.3、空间右手直角坐标系的画法通常,将空间直角坐标系画在纸上时,x 轴与y 轴、x 轴与z 轴均成135o,而z 轴垂直于y 轴,y 轴和z 轴的单位长度相同,x 轴上的单位长度为y 轴(或z 轴)的单位长度的一半,这样,三条轴上的单位长度在直观上大体相等.例1:请画出一个空间直角坐标系(右手直角系)知识点二:空间点的坐标表示(参考课本134第二个图)对于空间任意一点M ,过点M 分别作垂直于x 轴、y 轴和z 轴的平面依次交x 轴、y 轴和z 轴分别于点R Q P ,,.点R Q P ,,在相应数轴上的坐标依次为,,x y z ,我们把有序实数对(),,x y z 叫做点A 的坐标,记为(),,M x y z .例2:请在上面的空间直角系中找到()1,1,1P ,()1,1,0Q ,()1,0,0M 的位置?例3:如图,已知长方体D C B A ABCD ''''-的边长为5,8,12='==A A AD AB .以这个长方体的顶点A 为坐标原点,射线A A AD AB ',,分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,求长方体各个顶点的坐标.例4:在空间直角坐标系中,请回答(写出点的坐标特征):(1)x 轴上的点的坐标 ;y 轴上的点的坐标 ;z 轴上的点的坐标 ;(2)xOy 坐标平面内的点的坐标 ;xOy 坐标平面内的点的坐标 ;xOy 坐标平面内的点的坐标 。
2019-2020学年高中数学 第22课时 空间直角坐标系导学案 新人教A版必修1 .doc
2019-2020学年高中数学 第22课时 空间直角坐标系导学案 新人教A 版必修1【学习目标】通过具体情境,使学生感受建立空间直角坐标系的必要性;了解空间直角坐标系,会用空间直角坐标系刻画点的位置,感受类比思想在探索新知识过程中的作用.【学习重点】了解空间直角坐标系,会用空间直角坐标系刻画点的位置.引入新课问题1.我们知道数轴上的任意一点M 都可用对应一个实数x 表示,建立了平面直角坐标系后,平面上任意一点M 都可用对应一对有序实数(,)x y 表示。
那么怎样用坐标表示空间任意一点的位置呢?问题2.怎样表示教室中风扇的位置呢?1、空间直角坐标系及其相关概念:从空间某一个定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O xyz 。
点O 叫做______________,x 轴,y 轴和z 轴叫做_________,这三条坐标轴中每两条确定一个____________,分别成为________、__________、___________。
2、空间直角坐标系中点的坐标: 对于空间任意一点A ,作点A 在三条坐标轴上的射影,即经过点A 作三个坐标平面分别垂直于x 轴,y 轴和z 轴,它们与x 轴,y 轴和z 轴分别交于P ,Q ,R ,点P ,Q ,R 在相应数轴上的坐标依次为,,,x y z 我们把有序实数组(,,)x y z 叫做____________,记为___________。
说明:(1)本书建立的坐标系都是右手直角坐标系;(2)右手直角坐标系的画法:斜二测方法【新知应用】例1、 在空间直角坐标系中,作出点(546)P ,,.分析:可以按下列作图步骤进行:12O P P P →→→练习:作出点(3,2,1)Q --例2、如图:在长方体////D C B A ABCD -中,12=AB ,8=AD ,5/=AA ,以这个长方体的顶点A 为坐标原点,射线AB ,AD ,/AA 分别为x 轴,y 轴,z 轴的正半轴,建立空间直角坐标系,求长方体各个顶点的坐标.思考: (1)在空间直角坐标系中,x 轴上的点,xOy 平面内的点的坐标分别具有什么特点?(2)点)0012( ,,B ,)0812( ,,C ,)5012(/,,B 到yOz 平面有一个共同点是什么?(3)平行于xOy 平面的平面上的点具有什么特点?(4)平行于xOz 平面的平面上的点具有什么特点?说明:xoy 平面上的点可表示为:(,,0)x y ,yoz 平面上的点可表示为:(0,,)y z ,xoz平面上的点可表示为:(,0,)x z 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高中数学 空间直角坐标系导学案 新人教A 版必修2
【学习目标】
1. 掌握空间直角坐标系的有关概念.
2. 会根据坐标找相应的点,会写一些简单几何体顶点的有关坐标.
3. 培养学生的类比联想能力,空间想象能力. 【自主学习】
1. 空间直角坐标系
从空间某一个定点O 引三条互相垂直且有相同的单位长度的数轴,这样就建立了一个空间直角坐标系xyz O -.点O 叫做 , x 轴、y 轴、z 轴叫做 ,这三条坐标轴中每两条确定一个坐标平面,分别称为 平面、 平面和 平面. 2. 空间右手直角坐标系的画法
通常,将空间直角坐标系画在纸上时,x 轴与y 轴、x 轴与z 轴均成 ,而z 轴垂直于y 轴.y 轴和z 轴的单位长度 ,x 轴上的单位长度为y 轴(或z 轴)的单位长度的 . 3. 空间点的坐标表示
(1) 对于空间任意一点A ,作点A 在三条坐标轴上的射影,即经过点A 作三个平面分别垂直于x 轴与y 轴与z 轴,它们与x 轴与y 轴和z 轴分别交与R Q P ,,.点R Q P ,,在相应数轴上的坐标依次为x ,y ,z ,我们把有序实数对(,,)x y z 叫做点A 的 ,记为 (2)在图中标出坐标轴,并写出在棱长为1的正方体ABCD-A 1B 1C 1D 1中各点的坐标是什么?
【合作探究】
探究一:写出点P 对称点的坐标
(,,)P x y z 关于坐标平面xoy 对称的点P 1 ; (,,)P x y z 关于坐标平面yoz 对称的点P 2 ; (,,)P x y z 关于坐标平面xoz 对称的点P 3 ; (,,)P x y z 关于x 轴对称的点P 4 ; (,,)P x y z 关于y 对轴称的点P 5 ; (,,)P x y z 关于z 轴对称的点P 6 ; (,,)P x y z 关于坐标原点对称的点P 7 。
探究二: 在长方体OABC —D ’A ’B ’C ’中,3,4OA OC ==, 2.OD '=写出,,,D C A B '''四点坐标.
【目标检测】 A 级:必做题
1. 关于空间直角坐标系叙述正确的是( ). A .(,,)P x y z 中,,x y z 的位置是可以互换的
B .空间直角坐标系中的点与一个三元有序数组是一种一一对应的关系
C .空间直角坐标系中的三条坐标轴把空间分为八个部分
D .某点在不同的空间直角坐标系中的坐标位置可以相同
2. 已知点(3,1,4)A --,则点A 关于原点的对称点的坐标为( ). A .(1,3,4)-- B .(4,1,3)-- C .(3,1,4)- D .(4,1,3)-
3.如图,长方体OABC D AB C -''''中,3OA =,4OC =,3OD =',AC ''于BD ''相交于点P .分别写出C ,B ',P
的坐标.
B 级:选做题
在四棱锥P -ABCD 中,底面ABCD 为正方形,且边长为2a ,棱PD ⊥底面ABCD ,2PD b =,取各侧棱的中点E ,F ,G ,H ,试建立空间直角坐标系,写出点E ,F ,G ,H 的坐标.
※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差
z
x
y
A B
C
B '
C '
D '
A '
P
Z Y
X
H
F
G
E
D
C
B
A
P。