2016年高考理科数学全国1卷word版

合集下载

2016高考真题——全国Ⅰ卷(Word版含答案).doc

2016高考真题——全国Ⅰ卷(Word版含答案).doc

绝密★启封前2016年普通高等学校招生全国统一考试(新课标I)英语注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷第一部分:听力(共两节,满分 30 分)做题时,现将答案标在试卷上,录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共 5 小题;每小题 1.5 分,满分 7.5 分)听下面 5 段对话,每段对话后有一个小题。

从题中所给的A,B,C 三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10 秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A.£ 19.15B.£ 9.18C.£ 9.15答案是 C。

1. What are the speakers talking about?A. Having a birthday party.B. Doing some exercise.C. Getting Lydia a gift2. What is the woman going to do?A. Help the man.B. Take a bus.C. Get a camera3. What does the woman suggest the man do?A. Tell Kate to stop.B. Call Kate, s friends.C. Stay away from Kate.4. Where does the conversation probably take place?A. In a wine shop.B. In a supermarket.C. In a restaurant.5. What does the woman mean?A. Keep the window closed.B. Go out for fresh air.C. Turn on the fan.听第6段材料,回答第6、7题。

2016年高考理科数学全国1卷Word版(含详细答案)

2016年高考理科数学全国1卷Word版(含详细答案)

绝密★ 启用前试题种类: A 2016 年一般高等学校招生全国一致考试理科数学本试题卷共 5 页, 24 题(含选考题 )。

全卷满分 150 分。

考试用时 120 分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考据号填写在试题卷和答题卡上,并将准考据号条形码粘贴在答题卡上的指定地点。

用2B 铅笔将答题卡上试卷种类 A 后的方框涂黑。

2、选择题的作答:每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、底稿纸和答题卡上的非答题地区内均无效。

3、填空题和解答题的作答:用署名笔挺接答在答题卡上对应的答题地区内。

写在试题卷、底稿纸和答题卡上的非答题地区均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的地点用2B 铅笔涂黑。

答案写在答题卡上对应的答题地区内,写在试题卷、底稿纸和答题卡上的非答题地区均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:此题共12 小题,每题5 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的。

(1)设会合A{ x x24x 30},B{ x 2x 3 0},则A B(A)( 3,3)(B)(3,3)(C)(1,3)(D)(3,3) 2222(2)设(1 i ) x1yi ,此中x, y是实数,则x yi(A)1(B)2(C)3(D)2(3)已知等差数列{ a n } 前9项的和为27 ,a108,则 a100( A)100(B)99(C)98(D)97(4)某公司的班车在7 : 30 , 8 : 00,8 : 30 发车,小明在 7 : 50 至 8 : 30之间抵达发车站乘坐班车,且抵达发车站的时候是随机的,则他等车时间不超出10 分钟的概率是(A)1(B)1(C)2(D)3 3234(5)已知方程x 2 y21 表示双曲线, 且该双曲线两焦点间的距离为 4 ,则 n 的2n 3m 2nm 取值范围是(A ) ( 1,3)(B ) ( 1, 3) ( C ) (0,3) ( D ) (0, 3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28,则它的3表面积是(A ) 17(B ) 18 (C ) 20(D ) 28(7)函数 y2x 2 e x 在 [ 2,2] 的图像大概为y y ( A )1( B )12 O2x2 O2xy y ( C )1( D )12O2x2 O2x(8)若 a b1, 0 c 1,则( A ) a cb c( B ) ab cba c ( C ) a log b c b log a c ( D ) log a c log b c(9)履行右边的程序框图,假如输入的x 0, y 1, n 1,则输出 x, y 的值知足( A ) y 2 x( B ) y 3x( C ) y 4x ( D ) y 5x( 10)以抛物线C 的极点为圆心的圆交 C 于 A, B 两点,交 C 的准线于 D, E 两点,已知AB 42,DE2 5 ,则 C 的焦点到准线的距离为(A )2(B )4(C )6 (D )8(11)平面过正方体 ABCDA 1B 1C 1D 1 的极点 A , // 平面 CB 1D 1 ,平面 ABCDm ,平面 ABB 1 A 1 n ,则 m,n 所成角的正弦值为32 ( C )31( A )(B )(D )2 23 3(12)已知函数f ( x)sin( x)(0,2) , x为 f ( x) 的零点,x为44y f ( x) 图像的对称轴,且 f ( x) 在( ,5) 单一,则的最大值为3618(A)11(B)9(C)7(D)5第II 卷本卷包含必考题和选考题两部分。

2016年安徽高考理科数学试题及答案(Word版)

2016年安徽高考理科数学试题及答案(Word版)

2016年安徽高考理科数学试题及答案(满分150分,时间120分)第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =(A )3(3,)2-- (B )3(3,)2- (C )3(1,)2 (D )3(,3)2(2)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y + (A )1 (B 2 (C 3(D )2(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )98 (B )99 (C )100 (D )97(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A )31 (B )21 (C )32 (D )43 (5)已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(0,3) (B )(–1,3) (C )(–1,3) (D )(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(A )20π (B )18π(C )17π (D )28π(7)函数y =2x 2–e |x |在[–2,2]的图像大致为(A ) (B )(C )(D )(8)若101a b c >><<,,则 (A )log log b a a c b c < (B )c c ab ba <(C )c ca b <(D )log log a b c c <(9)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足(A )4y x =(B )3y x =(C )2y x =(D )5y x =(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB |=2|DE|=5C 的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a 过正方体ABCD -A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,a ⋂平面ABCD =m ,a ⋂平面ABA 1B 1=n ,则m 、n 所成角的正弦值为(A) 33 (B )22 (C) 32 (D)13 12.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分(13) 设向量a=(m ,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=______. (14) 5(2)x x +的展开式中,x 3的系数是__________.(用数字填写答案)(15)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为___________。

2016年高考四川理科数学试题及答案(word解析版)

2016年高考四川理科数学试题及答案(word解析版)

(D) 37 2 33 4
【答案】B
uuur uuur uuur
【解析】由题意, uuur uuur DA DB
DA
uuur DB
DB uuur DC
DC ,所以 D
uuur DC

uuur DA

2

到uuurA,uBuu,rC 三uuu点r 的uuu距r 离uu相ur 等u,uurD DA DB DB DC DB DA
纵坐标不变,得 y sin(ωx φ) 的图象,另一种是把 y sin x 的图象横坐标变为原来的 1 倍,纵坐标不 ω
变,得 y sin ωx 的图象,向左平移 φ 个单位得 y sin(ωx φ) 的图象. ω
(4)【2016 年四川,理 4,5 分】用数字 1,2,3,4,5 构成没有重复数字的五位数,其中奇数的个数为(
uuur uuur uuur uuur uuur uuur
uuur
uuuur uuuur
uuuur 2
DA DB DB DC DC DA 2 ,动点 P , M 满足 AP =1 , PM MC ,则 BM 的最大值是( )
(A) 43 4
(B) 49 4
(C) 37 6 3 4
(C) 2 2
(D)1
【答案】C
【解析】如图,由题可知
F

p 2
,
0

,设
P
点坐标为
y02 2p
, y0
,显然,当
y0
0 时, kOM
0;
y0 0
时, kOM 0 ,要求 kOM 最大值,不妨设 y0 0 .

2016年高考理科数学(全国新课标卷1)(含解析)

2016年高考理科数学(全国新课标卷1)(含解析)

绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合2430={|}A x x x -+<,3{}0|2x B x ->=,则A B =( ) A .3(3,)2--B .3(3,)2-C .3(1,)2D .3(,3)22.设(1i)1i x y +=+,其中x ,y 是实数,则|i |x y +=( )A .1 BCD .23.已知等差数列{}n a 前9项的和为27,108a =,则100a =( )A .100B .99C .98D .974.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A .13 B .12 C .23D .345.已知方程222213xym nm n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(1,3)-B.(1-C .(0,3)D.6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 ( )A .17πB .18πC .20πD .28π7.函数2|x|2y x e =-在[2,2]-的图象大致为( )ABC D 8. 若0a b >>,01c <<,则( )A .cca b <B .ccab ba > C .alog log b a c b c <D .log log a b c c<9.执行右面的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足( )A .2y x =B .3y x =C .4y x =D .5y x =10.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点,已知||AB =||DE =C 的焦点到准线的距离为( )A .2B .4C .6D .811.平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A B CD .1312.已知函数()sin()(0,||)2f x x πωϕωϕ=+>≤,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5(,)1836ππ单调,则ω的最大值为( )A .11B .9C .7D .5姓名________________ 准考证号_____________--------在--------------------此-------------------卷-------------------上--------------------答-------------------题--------------------无------------------效----------第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.设向量a (,1)m =,b (1,2)=,且|a +b ||2=a ||2+b 2|,则m = . 14.5(2x 的展开式中,3x 的系数是 (用数字填写答案).15.设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a …的最大值为 . 16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=. (Ⅰ)求C ;(Ⅱ)若c =ABC △,求ABC △的周长.18.(本小题满分12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60. (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E BC A --的余弦值.19.(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的 频率代替1台机器更换的易损零件数 发生的概率,记X 表示2台机器三年 内共需更换的易损零件数,n 表示购 买2台机器的同时购买的易损零件数. (Ⅰ)求X 的分布列;(Ⅱ)若要求()0.5P X n ≤≥,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?20.(本小题满分12分)设圆22215=0x y x ++-的圆心为A ,直线l 过点(10)B ,且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明||||EA EB +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.21.(本小题满分12分)已知函数2()(2)(1)xf x x e a x =-+-有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设1x ,2x 是()f x 的两个零点,证明:122x x +<.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲已知函数()|1||23|f x x x =+--. (Ⅰ)在图中画出()y f x =的图象; (Ⅱ)求不等式|()|1f x >的解集.ABCDEF2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】{}{}2A x x 4x 30x 1x 3=-+<=<<,{}3B x 2x 30x x 2⎧⎫=->=>⎨⎬⎩⎭,故3B x 2⎧=⎨⎩【提示】解不等式求出集合【考点】交集及其运算【解析】(1i)x 1yi +=+,x xi 1yi ∴+=+,即x 1x y =⎧⎨=,解得x 1y 1=⎧⎨=,即x y i 1i 2+=+=【解析】等差数列,又10a 8=,【提示】根据已知可得【考点】等差数列的性质】双,方【解析】f (x)y =时,y 8=-x4x e 0-=【解析】a b 1>>线的距离为4.【提示】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【考点】圆与圆锥曲线的综合,抛物线的简单性质11.【答案】A【解析】如图,α∥平面CB α平面ABCD α平面ABA,11CB D △60,则m 32.【提示】画出图形,判断出m 【考点】异面直线及其所成的角【解析】πx 4=-为1πT 2=,即12ππ(n N 2=∈ω为正奇数,f (x)在5π36⎛⎫⎪⎝⎭上单调,πππ361812-=时,11π4-+π2ϕ≤,9π4-+ϕ,π2ϕ≤,ω【答案】2-222a b a b +=+,可得a b 0=,向量a (m,1)=,b (1,2)=,n123n (q++++-…6264==.【提示】设A ,B 两种产品分别是标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可.【考点】简单线性规划的应用三、解答题17.【答案】(Ⅰ)在ABC △已知等式利用正弦定理化简得12ab2,(a ∴的周长为5+(Ⅰ)A BEF 为正方形,AFD 90∠=,A F DF ∴⊥,DF EF F =,AF ∴⊥平面EFDCAF ⊂平面∴平面A BEF (Ⅱ)由A BE EF ⊥BE ∴⊥平面可得DFE 60∠.A B EF ∥EFDC AB ∴∥平面平面EFDC 平面ABCD ,EB (0,2a,0)∴=,a BC ,⎛= ,AB (2a,0,0)=-设平面BEC 的法向量为m (x ,=,则m EB 0m BC 0⎧=⎪⎨=⎪⎩,则m (3,0,=设平面ABC 的法向量为n (x ,y ,z =n BC=0n AB 0⎧⎪⎨=⎪⎩,则,取n (0,3,4)=的大小为θ,m n |m ||n |31316==++【提示】(Ⅰ)证明AF ⊥平面EFDC 平面EFDC ;(Ⅱ)证明四边形EFDC 为等腰梯形,4040=1EX EX <解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购222222143m 41m1m||MN |12242423m 41m3m 4+++===+++时,S 取得最小值12,又10>,可得3S 24833<=【提示】(Ⅰ)求得圆A EB ED =,再由圆的定义和椭圆的定义,b ,c ,即可得到所求轨迹方程;(Ⅱ)设直线l :x my =+0)1x ,2x 1x 121(x 2)e (x 1)-=-2[(x 2)g (x)-+'=∴当x 1<时,e 1,OA OB =120,OK ∴30,1OK OAsin30OA 2=直线AB 与O 相切;D 四点所在圆的圆心,设四点所在圆的圆心,OA OB =的中垂线,∴AB 中点,连结30,1OK OAsin30OA 2=曲线如图:(Ⅱ)由f (x)1>,可得,当3当x ≥时,4x 1->,解得x 5>或x 3<,即有x 3≤<或x 5>.(1,3)(5,)⎫+∞⎪⎭(Ⅰ)运用分段函数的形式写出f (x)的解析式,由分段函数的画法,即可得到所。

2016年高考理科数学全国1卷,附答案

2016年高考理科数学全国1卷,附答案

2016 年高考数学全国 1 卷(理科)一、选择题:本大题共12 小题,每小题 5 分,每小题只有一项是符合题目要求的.9.执行如图的程序框图,如果输入的x=0, y=1,n=1,则输出x ,y 的值满足()2﹣4x+3<0} ,B={x|2x ﹣3>0} ,则 A ∩B=()1.设集合 A={x| x A .(﹣3,﹣)B .(﹣3, ) C.(1, )D .( ,3)2.设( 1+i )x=1+yi ,其中 x ,y 是实数,则 |x+yi|= ( ) A .1B.C.D. 23.已知等差数列 {a n } 前 9 项的和为 27,a 10=8,则 a100=( )A .100B.99C.98D. 97 4.某公司的班车在 7:00,8:00,8:30 发车,小明在 7:50 至 8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过 10 分钟的概率是( )A .y=2xB .y=3xC . y=4xD.y=5x A .B.C .D .10.以抛物线 C 的顶点为圆心的圆交 C 于 A 、B 两点,交 C 的准线于 D 、 E 两点.已知 |AB|=4,|DE|=2 ,则 C 的焦 点到准线的距离为( ) 5.已知方程﹣=1 表示双曲线,且该双曲线两焦点间的距离为 4,则 n 的取值范围是( )A .2B.4C.6D.8A .(﹣1, 3) B .(﹣1, )C .( 0,3)D.( 0,)11.平面 α过正方体 ABCD ﹣A 1B 1C 1D 1 的顶点 A ,α ∥平面 CB 1D 1,α ∩平面 ABCD=,m α ∩平面 ABB 1A 1=n ,则 m 、n所成角的 6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是 ,正弦值为( ) 则它的表面积是()A .B.C.D .12.已知函数 f (x )=sin ( ωx+φ)(ω>0,| φ| ≤ ), x=﹣为 f ( x )的零点, x= 为 y=f (x )图象的对称轴, 且 f ( x )在(, )上单调,则 ω 的最大值为() A .17πB . 18πC .20πD .28πA .11B.9C.7D. 57.函数y=2x2﹣e |x|在[﹣2,2] 的图象大致为()二、填空题:本大题共4 小题,每小题5 分,共 20 分 .13.设向量=(m , 1), =(1,2),且 |+ | 2=| | 2+| | 2,则m= .14.(2x+)5 的展开式中, x 3 的系数是.(用数字填写答案)15.设等比数列 {a n } 满足a 1+a 3=10,a 2+a 4=5,则 a 1a 2⋯ a n 的最大值为.A .B .C .D .16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料 1.5kg ,乙材料 1kg ,用 5 8.若 a >b >1,0<c <1,则()个工时;生产一件产品B 需要甲材料 0.5kg ,乙材料 0.3kg ,用 3 个工时,生产一件产品A 的利润为 2100 元,生产一件 A .ac <b c B .ab c <ba c C .alogc <b c B .ab c <ba c C .alogb c <blog a c D .log a c <log b c产品B 的利润为 900 元.该企业现有甲材料 150kg ,乙材料 90kg ,则在不超过 600 个工时的条件下,生产产品A 、产品B 的利润之和的最大值为元.第 1页共 9 页深圳星火教育龙华数学组余凤老师整理三、解答题:本大题共 5 小题,满分60 分,解答须写出文字说明、证明过程或步骤.19.(12 分)某公司计划购买 2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器演算外时,可以额17.(12 分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时了100 台这种机器在三年使用期内更换的易损零件数,整理集并(Ⅰ)求C;应同时购买几个易损零件,为此搜状图:得如图柱以这100 台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示 2 台机器三年内共需更为,求△ABC的周长.(Ⅱ)若c= ,△ABC的面积换的易损零件数,n 表示购买 2 台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5 ,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19 与n=20 之中选其一,应选用哪个?18.(12 分)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角 DE与二面角C﹣B E﹣F都是60°.A F﹣﹣(Ⅰ)证明平面ABEF⊥平面EFDC;A的余弦值.B C﹣(Ⅱ)求二面角E﹣第2页共9 页理整深圳星火教育龙华数学组余凤老师20.(12 分)设圆x2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆 A 于C,D两点,过 B 作2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆A 于C,D两点,过 B 作21.(12 分)已知函数 f (x)=(x﹣2)ex+a(x﹣1)x+a(x﹣1)2 有两个零点.AC的平行线交AD于点E.(Ⅰ)求 a 的取值范围;(Ⅰ)证明|EA|+|EB| 为定值,并写出点 E 的轨迹方程;(Ⅱ)设x1,x2 是f (x)的两个零点,证明:x1+x2<2.(Ⅱ)设点E的轨迹为曲线C1,直线l 交C1 于M,N两点,过 B 且与l 垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.第 3 页共9 页深圳星火教育龙华数学组余凤老师整理请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分. [ 选修4-5 :不等式选讲]24.已知函数 f (x)=|x+1| ﹣|2x ﹣3| .[ 选修4-1 :几何证明选讲] (Ⅰ)在图中画出y=f (x)的图象;(Ⅱ)求不等式|f (x)| >1 的解集.22.(10 分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[ 选修4-4 :坐标系与参数方程]23.在直角坐标系xOy中,曲线C1 的参数方程为(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ.(Ⅰ)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(Ⅱ)直线C3 的极坐标方程为θ=α0,其中α0 满足tan α0=2,若曲线C1 与C2 的公共点都在C3 上,求a.第 4 页共9 页深圳星火教育龙华数学组余凤老师整理2016 年高考数学全国 1 卷(理科)参考答案与试题解析7.【解答】 解:∵ f (x )=y=2x 2﹣e |x| ,∴ f (﹣x )=2(﹣x )2﹣e |x| ,∴ f (﹣x )=2(﹣x )2﹣e |﹣x | =2x 2﹣e |x| ,故函数为偶函数, 一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.2 2 x当 x=±2 时, y=8﹣e ∈( 0,1),故排除 A ,B ; 当 x ∈[0 , 2] 时, f (x ) =y=2x ﹣e ,1.【解答】 解:∵集合A={x|x2﹣4x+3<0}= (1,3),B={x|2x ﹣3>0}= ( ,+∞),∴ f ′( x )=4x ﹣e x =0 有解,故函数 y=2x 2﹣e |x| 在[0 ,2] 不是单调的,故排除 C ,x =0 有解,故函数 y=2x 2﹣e |x| 在[0 ,2] 不是单调的,故排除 C ,故选: D∴A ∩B=( ,3),故选: D8.【解答】 解:∵ a >b >1,0< c <1,2.【解答】 解:∵( 1+i ) x=1+yi ,∴ x+xi=1+yi ,即,解得,即 |x+yi|=|1+i|=,∴函数 f (x) =x c 在( 0,+∞)上为增函数,故 a c >b c ,故 A 错误;c 在( 0,+∞)上为增函数,故 a c >b c ,故 A 错误; 故选: B .函数 f (x )=x c ﹣1 在( 0,+∞)上为减函数,故 a c ﹣1<b c ﹣1,故 ba c <ab c,即 ab c >ba c ;故 B 错误; c ﹣1 在( 0,+∞)上为减函数,故 a c ﹣1<b c ﹣1,故 ba c <ab c ,即 ab c >ba c ;故 B 错误;log a c <0,且 log b c <0,log a b < 1,即= <1,即 log a c >log b c .故 D 错误;3.【解答】 解:∵等差数列 {a n }前 9 项的和为 27,S 9===9a 5 .0<﹣l og a c <﹣l og b c ,故﹣b log a c <﹣a log b c ,即 blog a c >alog b c ,即 alog b c <blog a c ,故 C 正确;∴9a 5=27,a 5 =3,又∵ a 10=8,∴ d=1,∴ a 100=a 5+95d=98,故选: C故选: C4. 【解答】 解:设小明到达时间为y ,当 y 在 7: 50 至 8:00,或 8:20 至 8:30 时,9.【解答】 解:输入x =0,y=1,n=1,则x =0,y=1,不满足x2+y 2≥ 36,故 n=2,2+y 2≥ 36,故 n=2,小明等车时间不超过10 分钟,故 P= = ,故选: B则x= ,y=2,不满足x 2+y 2≥ 36,故 n=3,则x = ,y=6,满足x 2+y 2≥ 36,故 y=4x ,2+y 2≥ 36,故 n=3,则x = ,y=6,满足x 2+y 2≥ 36,故 y=4x , 故选: C5.【解答】 解:∵双曲线两焦点间的距离为4,∴ c=2,当焦点在 x 轴上时,可得: 4=(m2+n )+(3m 2﹣n ),解得: m2=1, 22∵方程﹣=1 表示双曲线,∴( m +n )(3m ﹣n )> 0,可得:(n+1)(3﹣n )> 0,210.【解答】 解:设抛物线为 y =2px ,如图: |AB|=4,|AM|=2 ,|DE|=2 ,|DN|= ,|ON|= ,解得:﹣1<n <3,即 n 的取值范围是: (﹣1,3).当焦点在 y 轴上时,可得:﹣4=(m 2+n )+(3m 2﹣n ),解得: m 2=﹣1, 2+n )+(3m 2﹣n ),解得: m 2=﹣1, x A = = , |OD|=|OA| ,=+5,解得: p=4.C 的焦点到准线的距离为:4.无解.故选: A .故选: B .6.【解答】 解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图: 可得:=,R=2.它的表面积是:×4π?2 2+=17π.故选:A.共9 页第5页理整深圳星火教育龙华数学组余凤老师11.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=,mα∩平面ABA1B1=n,15.【解答】解:等比数列{a n} 满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q= .a1+q1=10,解得a1=8.2a2a可知:n∥CD1,m∥B1D1,∵△CB1D1 是正三角形.m、n 所成角就是∠CD1B1=60°.则m、n 所成角的正弦值为:.故选:A.则a1a2⋯a n=a1n?q1+2+3+⋯+(n﹣1)=8n? = = ,当n=3 或4时,表达式取得最大值:=26=64.n?q1+2+3+⋯+(n﹣1)=8n? = = ,当n=3 或4 时,表达式取得最大值:=26=64.故答案为:64.16.【解答】解:(1)设A、B两种产品分别是x 件和y 件,获利为z 元.由题意,得,z=2100x+900y .不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y .经过 A 时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.12.【解答】解:∵x=﹣为f (x)的零点,x= 为y=f (x)图象的对称轴,故答案为:216000.∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f (x)在(,)上单调,则﹣= ≤,即T= ≥,解得:ω≤12,当ω=11 时,﹣+φ=kπ,k∈Z,∵| φ| ≤,∴φ=﹣,此时 f (x)在(,)不单调,不满足题意;当ω=9 时,﹣+φ=kπ,k∈Z,∵| φ| ≤,∴φ= ,此时 f (x)在(,)单调,满足题意;故ω的最大值为9,故选: B二、填空题:本大题共 4 小题,每小题 5 分,共25 分.13.【解答】解:| + | 2=||2+||2,可得? =0.向量=(m,1),=(1,2),三、解答题:本大题共 5 小题,满分60 分,解答须写出文字说明、证明过程或演算步骤.可得m+2=0,解得m=﹣2.故答案为:﹣2.17.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC ≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA )=sinC ,整理得:2cosCsin (A+B)=sinC ,14.【解答】解:(2x+ )r+1= =25 的展开式中,通项公式为:T5﹣r ,5 的展开式中,通项公式为:T5﹣r ,即2cosCsin (π﹣(A+B))=sinC2cosCsinC=sinC ∴cosC= ,∴C= ;令5﹣=3,解得r=4 ∴x 3 的系数 2 =10.故答案为:10.3 的系数 2 =10.故答案为:10.(Ⅱ)由余弦定理得7=a2+b2﹣2ab? ,∴(a+b)2+b2﹣2ab? ,∴(a+b)2﹣3ab=7,∵S= absinC= ab= ,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+ .第6页共9 页深圳星火教育龙华数学组余凤老师整理18.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,19.【解答】解:(Ⅰ)由已知得X 的可能取值为16,17,18,19,20,21,22,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF? 平面ABEF,∴平面ABEF⊥平面EFDC;P(X=16)=()2= ,(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣A F﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,P(X=17)= ,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣B E﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB?平面EFDC,EF? 平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=C,D AB? 平面ABCD,P(X=18)=()2+2()2= ,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,P(X=19)= = ,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),P(X=20)= = = ,∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)P(X=21)= = ,P(X=22)= ,设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).∴X的分布列为:X 16 17 18 19 20 21 22设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).P(Ⅱ)由(Ⅰ)知:设二面角E﹣B C﹣A的大小为θ,则cosθ= = =﹣,P(X≤18)=P(X=16)+P(X=17)+P(X=18)= = .则二面角E﹣B C﹣A的余弦值为﹣.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)= + = .∴P(X≤n)≥0.5 中,n 的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)= + = .买19 个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20 个所需费用期望:EX2= +(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19 个更合适.第7页共9 页理整深圳星火教育龙华数学组余凤老师解法二:购买零件所用费用含两部分,一部分为购买零件的费用,21.【解答】解:(Ⅰ)∵函数 f (x)=(x﹣2)ex+a(x﹣1)2,∴f ′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),x+a(x﹣1)2,∴f ′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),另一部分为备件不足时额外购买的费用,x①若a=0,那么 f (x)=0? (x﹣2)e =0? x=2,函数 f (x)只有唯一的零点2,不合题意;当n=19 时,费用的期望为:19×200+500×0.2+1000 ×0.08+1500 ×0.04=4040 ,②若a>0,那么e x+2a>0 恒成立,当x<1 时,f ′(x)<0,此时函数为减函数;x+2a>0 恒成立,当x<1 时,f ′(x)<0,此时函数为减函数;当n=20 时,费用的期望为:20×200+500×0.08+1000 ×0.4=4080 ,∴买19 个更合适.当x>1 时,f ′(x)>0,此时函数为增函数;此时当x=1 时,函数 f (x)取极小值﹣e,x由f (2)=a>0,可得:函数 f (x)在x>1 存在一个零点;当x<1 时,e <e,x﹣2<﹣1<0,20.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0 即为(x+1)2+y2+2x﹣15=0 即为(x+1)2+y2 =16,可得圆心A(﹣1,0),半径r=4,∴f (x)=(x﹣2)e >(x﹣2)e+a(x﹣1)x+a(x﹣1) 2x+a(x﹣1) 22=a(x﹣1)2 +e(x﹣1)﹣e,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,令a(x﹣1)2+e(x﹣1)﹣e=0 的两根为t2+e(x﹣1)﹣e=0 的两根为t 1,t 2,且t 1 <t 2,则|EA|+|EB|=|EA|+|ED|=|AD|=4 ,故 E 的轨迹为以A,B为焦点的椭圆,则当x<t 1,或x>t 2 时,f (x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数 f (x)在x<1 存在一个零点;即函数 f (x)在R是存在两个零点,满足题意;且有2a=4,即a=2,c=1,b= = ,则点 E 的轨迹方程为+ =1(y≠0);③若﹣<a<0,则ln (﹣2a)<lne=1 ,当x<ln (﹣2a)时,x﹣1<ln (﹣2a)﹣1<lne ﹣1=0,(Ⅱ)椭圆C1:+ =1,设直线l :x=my+1,由PQ⊥l ,设PQ:y=﹣m(x﹣1),e x+2a<e ln (﹣2a)+2a=0,即 f ′(x)=(x﹣1)(e x+2a)>0 恒成立,故 f (x)单调递增,x+2a<e ln (﹣2a)+2a=0,即 f ′(x)=(x﹣1)(e x+2a)>0 恒成立,故 f (x)单调递增,当ln (﹣2a)<x<1 时,x﹣1<0,ex +2a>e ln (﹣2a)+2a=0,由可得(3m 1,y1),N(x2,y2 ),可得y1+y2=﹣,y1y2=﹣,2+4)y2+6my﹣9=0,设M(x2+4)y2+6my﹣9=0,设M(x 即f ′(x)=(x﹣1)(e x+2a)<0 恒成立,故 f (x)单调递减,当x>1 时,x﹣1>0,e x+2a>e ln (﹣2a)+2a=0,x+2a)<0 恒成立,故 f (x)单调递减,当x>1 时,x﹣1>0,e x+2a>e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,故当x=ln (﹣2a)时,函数取极大值,则|MN|= ?|y 1﹣y2|= ? = ? =12? ,由f (ln (﹣2a))=[ln (﹣2a)﹣2] (﹣2a)+a[ln (﹣2a)﹣1] 2=a{[ln (﹣2a)﹣2] 2+1} <0 得:函数 f (x)在R上至多存在一个零点,不合题意;A到PQ的距离为d= = ,|PQ|=2 =2 = ,④若a=﹣,则ln (﹣2a)=1,当x<1=ln (﹣2a)时,x﹣1<0,ex+2a<e ln (﹣2a)+2a=0,x+2a<e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,当x>1 时,x﹣1>0,e x+2a>e ln (﹣2a)+2a=0,则四边形MPNQ面积为S= |PQ| ?|MN|= ? ?12 ?即f ′(x)=(x﹣1)(e x+2a)>0 恒成立,故 f (x)单调递增,故函数 f (x)在R上单调递增,x+2a)>0 恒成立,故 f (x)单调递增,故函数 f (x)在R上单调递增,函数 f (x)在R上至多存在一个零点,不合题意;=24? =24 ,当m=0时,S取得最小值12,又>0,可得S<24? =8 ,⑤若a<﹣,则ln (﹣2a)>lne=1 ,当x<1 时,x﹣1<0,ex+2a<e ln (﹣2a)+2a=0,x+2a<e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,即有四边形MPNQ面积的取值范围是[12 ,8 ).当1<x<ln (﹣2a)时,x﹣1>0,ex+2a<e ln (﹣2a)+2a=0,x+2a<e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)<0 恒成立,故 f (x)单调递减,当x>ln (﹣2a)时,x﹣1>0,ex+2a>e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,故当x=1 时,函数取极大值,由f (1)=﹣e<0 得:函数 f (x)在R上至多存在一个零点,不合题意;综上所述, a 的取值范围为(0,+∞)第8 页共9 页深圳星火教育龙华数学组余凤老师整理证明:(Ⅱ)∵x1,x2 是f (x)的两个零点,∴y=2x 为圆C1 与C2 的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a3 ,2=0,即为 C2=0,即为 C∴f (x1)=f (x2)=0,且x1≠1,且x2≠1, 2∴1﹣a =0,∴a=1(a>0).∴﹣a= = ,令g(x)= ,则g(x1)=g(x2)=﹣a,[ 选修4-5 :不等式选讲]24.∵g′(x)= ,∴当x<1 时,g′(x)<0,g(x)单调递减;【解答】解:(Ⅰ)f (x)= ,当x>1 时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)= ﹣= ,由分段函数的图象画法,可得 f (x)的图象,如右:设h(m)= ,m>0,(Ⅱ)由|f (x)| >1,可得当x≤﹣1 时,|x ﹣4| >1,解得x>5 或x<3,即有x≤﹣1;则h′(m)= >0 恒成立,即h(m)在(0,+∞)上为增函数,当﹣1<x<时,|3x ﹣2| >1,解得x>1 或x<,即有﹣1<x<或1<x<;h(m)>h(0)=0 恒成立,即g(1+m)>g(1﹣m)恒成立,当x≥时,|4 ﹣x| >1,解得x>5 或x<3,即有x>5 或≤x<3.令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)? g(2﹣x1)>g(x1)=g(x2)? 2﹣x1>x2,综上可得,x<或1<x<3 或x>5.则|f (x)| >1 的解集为(﹣∞,)∪(1,3)∪(5,+∞).即x1+x2<2.请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分.[ 选修4-1 :几何证明选讲]【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=O,B∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°= OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=O,B TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.[ 选修4-4 :坐标系与参数方程]【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2+(y﹣1)2=a2.∴C1 为以(0,1)为圆心,以 a 为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2+y2=ρ2,y=ρsin θ,得ρ2﹣2ρsin θ+1﹣a2=0;(Ⅱ)C2:ρ=4cos θ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0 满足t an α0=2,得y=2x,∵曲线C1 与C2 的公共点都在C3 上,第9页共9 页深圳星火教育龙华数学组余凤老师整理。

2016年高考理科数学试题全国卷1及解析word完美版

2016年高考理科数学试题全国卷1及解析word完美版

2016年普通高等学校招生全国统一考试理科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合A={x|x2–4x+3<0},B={x|2x–3>0},则A∩B= ()A.(–3,–错误!)B.(–3,错误!)C.(1,错误!)D.(错误!,3)2、设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.错误!C.错误!D.23、已知等差数列{a n}前9项的和为27,a10=8,则a100= ( )A.100 B.99 C.98 D.974、某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.错误!B.错误!C.错误!D.错误!5、已知方程错误!–错误!=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )A.(–1,3) B.(–1,错误!) C.(0,3)D.(0,错误!)6、如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是错误!,则它的表面积是( )A.17π B.18π C.20π D.28π7、函数y=2x2–e|x|在[–2,2]的图像大致为( )A.B.C.D.8、若a〉b>1,0〈c〈1,则( )A.a c〈b c B.ab c〈ba c C.alog b c〈blog a c D.log a c〈log b c9、执行下左1图的程序图,如果输入的x=0,y=1,n=1,则输出x,y的值满足( )A.y=2x B.y=3x C.y=4x D.y=5x10、以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4错误!,|DE|=2错误!,则C的焦点到准线的距离为()A.2 B.4 C.6 D.811、平面a过正方体ABCD–A1B1C1D1的顶点A,a//平面CB1D1,a∩平面ABCD=m,a∩平面ABB1A1=n,则m、n所成角的正弦值为( )A.错误!B.错误!C.错误!D.错误!12、已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤错误!),x=–错误!为f(x)的零点,x=错误!为y=f(x)图像的对称轴,且f(x)在(错误!,错误!)单调,则ω的最大值为()A.11 B.9 C.7 D.5二、填空题:本大题共4小题,每小题5分13、设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=________________.14、(2x+错误!)5的展开式中,x3的系数是_________ (用数字填写答案).15、设等比数列满足{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为___________.16、某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1。

2016年高考理科数学全国1卷Word版(含详细答案)

2016年高考理科数学全国1卷Word版(含详细答案)
(1)设集合 , ,则
(A) (B) (C) (D)
(2)设 ,其中 是实数,则
(A) (B) (C) (D)
(3)已知等差数列 前 项的和为 , ,则
(A) (B) (C) (D)
(4)某公司的班车在 , , 发车,小明在 至 之间到达发车站乘
坐班车,且到达发车站的时候是随机的,则他等车时间不超过10分钟的概率是
(21)(本小题满分12分)
已知函数 有两个零点.
(Ⅰ)求 的取值范围;
(Ⅱ)设 是 的两个零点,证明: .
请考生在第(22)、(23)、(24)题中任选一题作答,如果多做,则按所做的第一题计分.
(22)(本小题满分10分)选修4-1:几何证明选讲
如图, 是等腰三角形, .以 为圆心,
为半径作圆.
(Ⅰ)证明:直线 与⊙ 相切;
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。晖军頷损铖榄煬种撵摈賠宽櫬皱鳏趨飩黌埡蕭弳龉鶘鈉縝飆徠賻繭蓟閏贐錳寿袄帐鲍農亏厩壙届线鱿舊赞龅诨銨续呓恽习餓圇权匭姍鋇顓员贺頻轨稅個燜够镍鏽鐘闔鹌兹約侣蜆况脹鍔飯裝饱匮繼谗贱馍党漸啭锴泺媯黄繞橫钫。
(11)平面 过正方体 的顶点 , 平面 , 平面
, 平面 ,则 所成角的正弦值为
(A) (B) (C) (D)
(12)已知函数 , 为 的零点, 为
图像的对称轴,且 在 单调,则 的最大值为
(A)11(B)9(C)7(D)5
第II卷
本卷包括必考题和选考题两部分。第(13)题~第(21)题为必考题,每个试题考生都必须作答。第(22)题~第(24)题为选考题,考生根据要求作答。懾圇贄疗锈鎳沒蚀棧屨惭綻釗滄脓玑鲚窑濘盡湊鏇鷥錠閾胆竞繪锖缨肾糁勱萤哝鹩灤詎資纪緱赢诽麩讥鹰鋪鏑竖囂饨斷壇钶钟睾嬷韫薈殮禄阏铈鉻質铪稱悫惨茔俦牵鈣頃赢痙悫鹤担隱遞訟兴踬讽栈涣瀏锣辫闡綢務盜儉謁骄隊。

2016年高考全国Ⅰ理科数学试题及答案(word解析版)

2016年高考全国Ⅰ理科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅰ,理1,5分】设集合{}2|430A x x x =-+<,{}|230B x x =->,则AB =( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D【解析】{|13}A x x =<<,3{|}2B x x =>,3{|3}2A B x x ∴=<<,故选D .【点评】考察集合运算和简单不等式解法,属于必考题型,难易程度:易. (2)【2016年全国Ⅰ,理2】设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( )(A )1 (B )2 (C )3 (D )2 【答案】B【解析】由题意知:1x y ==,i =1i 2x y ∴++=,故选B .【点评】察复数相等条件和复数的模,属于必考题型,难易程度:易. (3)【2016年全国Ⅰ,理3,5分】已知等差数列{}n a 前9项的和为27,108a =,则100a =( )(A )100 (B )99 (C )98 (D )97 【答案】C【解析】解法一:199599272a a S a +===,53a ∴= 1051105a a d -∴==-()100101001089098a a d ∴=+-=+=,选C . 解法二:91989272S a d ⨯=+=,即143a d +=,又10198a a d =+=,解得11,1a d =-=,()1001100119998a a d ∴=+-=-+=,故选C . 【点评】考察等差数列的基本性质、前n 项和公式和通项公式,属于必考题型,难易程度:易. (4)【2016年全国Ⅰ,理4,5分】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13(B )12 (C )23 (D )34【答案】B【解析】小明可以到达车站时长为40分钟,可以等到车的时长为20分钟,则他等车时间不超过10分钟的概率是201402P ==,故选B .【点评】考察几何概型的概率计算,第一次考察,难易程度:易.(5)【2016年全国Ⅰ,理5,5分】已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A【解析】由题意知:2234m n m n ++-=,解得21m =,1030n n +>⎧∴⎨->⎩,解得13n -<<,故选A .【点评】考察双曲线的简单几何性质,属于了解层次,必考题,难易程度:易. (6)【2016年全国Ⅰ,理6,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π 【答案】A【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=解得2r =,2271431784S r r πππ∴=⋅+⋅=,故选A .【点评】考察三视图还原,球的体积表面积计算,经常考察,难易程度:中等. (7)【2016年全国Ⅰ,理7,5分】函数22xy x e =-在[2,2]-的图像大致为( )(A )(B )(C ) (D )【答案】D【解析】解法1(排除法):2()2xf x x e =-为偶函数,且2(2)887.40.6f e =-≈-=,故选D .解法2:2()2xf x x e =-为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如图),故存在实数0(0,1)x ∈,使得'0()0f x =且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时, '0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】本题结合导数利用函数奇偶性,综合考察函数解析式与函数图像之间的关系,常规题型,属于必考题,难易程度:中等.这类题型的最佳解法应为结合函数的性质,选取特殊点进行排除.(8)【2016年全国Ⅰ,理8,5分】若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【答案】C【解析】解法1(特殊值法):令14,22a b c ===,,易知C 正确.解法2:当0α>时,幂函数()f x x α=在(0,)+∞上递增,故A 选项错误;当1a >时,a 越大对数函数()log a f x x =的图像越靠近x 轴,当01c <<时,log log a b c c >,故D 选项错误;c c ab ba <可化为()c a ab b<,由指数函数知,当1a >时,()x f x a =在(0,)+∞上递增,故B 选项错误;log log b a a c b c <可化为11log log abb ac c <,1111abbb b a <<<,故选C .【点评】本题综合考察幂函数、指数函数、对数函数的性质和不等式的性质,属于常考题型,难易程度:中等. 结合函数性质证明不等式是比较麻烦的,最好采用特殊值法验证排除.(9)【2016年全国Ⅰ,理9,5分】执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x = 【答案】C【解析】011x y n ===,,时,框图运行如下: 1、012x y n ===,,;2、1232x y n ===,,;3、3632x y n ===,,,故选C .【点评】考察算法中的循环结构,必考题型,难易程度:易. (10)【2016年全国Ⅰ,理10,5分】以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C的标准线于D 、E 两点.已知42AB =,25DE =,则C 的焦点到准线的距离为( ) (A )2 (B )4 (C )6 (D )8【答案】B【解析】解法1排除法:当4p =时,不妨令抛物线方程为28y x =,当y =1x =,即A 点坐标为(,所以圆的半径为3r =,此时D 点坐标为(-,符合题意,故B 选项正确.解法2:不妨令抛物线方程为22y px =,D 点坐标为2P ⎛- ⎝,则圆的半径为r =,22834p r -=-,即A 点坐标为⎭,所以22=,解得4p =,故选B . 【点评】考察抛物线和圆的简单性质,必考题型,难易程度:中等. (11)【2016年全国Ⅰ,理11,5分】平面a 过正方体1111ABCD A B C D -的顶点A ,//a 平面11CB D ,a 平面ABCD m =,a 平面11ABA B n =,则m 、n 所成角的正弦值为( )(A (B )2 (C (D )13【答案】A【解析】令平面a 与平面11CB D 重合,则11m B D =,1n CD =,故直线m 、n 所成角为60o ,,故选A . 【点评】考察正方体中线面位置关系和两条直线夹角的计算,必考题型,难易程度:中等.(12)【2016年全国Ⅰ,理12,5分】已知函数()()sin 02f x x +πωϕωϕ⎛⎫=>≤ ⎪⎝⎭,,4x π=-为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )5 【答案】B【解析】解法1(特殊值验证法)令9ω=,则周期29T π=,区间[]44ππ-,刚为94T ,且在53636ππ⎡⎤⎢⎥⎣⎦,上递减,恰好符合题意,故选B .解法2:由题意知152()24369T πππ≥-=,所以29Tπω=≤,故选B .【点评】综合考察三角函数图像的单调性、对称性、零点、周期等性质,属于必考题型,难易程度:偏难.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,理13,5分】设向量(),1m =a ,()1,2=b ,且222+=+a b a b ,则m = . 【答案】2-【解析】解法一(几何法)由向量加法的几何意义知a b ⊥,故20a b m ⋅=+=,所以2m =-;解法二(代数法)22(1)9114m m ++=+++,解得2m =-.【点评】考察向量运算,必考题型,难易程度:易.(14)【2016年全国Ⅰ,理14,5分】(52x +的展开式中,3x 的系数是 .(用数字填写答案) 【答案】10【解析】()555215522r rrrr rr T Cx C x---+==,令532r-=,解得4r =,454525210C -∴=⨯=. 【点评】考察二项式定理展开式中指定项问题,必考题型,难易程度:中等.(15)【2016年全国Ⅰ,理15,5分】设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 . 【答案】64【解析】由1310a a +=,245a a +=解得118,2a q ==,14118()()22n n n a --∴==,27321(4)21211()()22n nn n a a a ----+⋅⋅⋅+-∴⋅⋅⋅==,所以当3n =或4时,12n a a a ⋅⋅⋅有最大值64.【点评】考察等比数列的通项公式、等差数列求和及二次函数最值问题,必考题型,难易程度:中等. (16)【2016年全国Ⅰ,理16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。

2016年高考天津理科数学试题及答案(word解析版)

2016年高考天津理科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试〔天津卷〕数学〔理科〕参考公式:• 如果事件A ,B 互斥,那么()()()P AB P A P B =+;• 如果事件A ,B 相互独立,那么()()()P AB P A P B =;• 柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高;• 锥体体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高.第Ⅰ卷〔共40分〕一、选择题:本大题共8小题,每题5分,在每题给出的四个选项中,只有一项是符合题目要求的. 〔1〕【2016年天津,理1,5分】已知集合}{1,2,3,4A =,}{32,B y y x x A ==-∈,则AB =〔 〕〔A 〕}{1 〔B 〕}{4 〔C 〕{}1,3 〔D 〕{}1,4 【答案】D 【解析】把1,2,3,4x =分别代入32y x =-得:1,4,7,10y =,即{}1,4,7,10B =,∵{}1,2,3,4A =,∴{}1,4AB =,故选D .【点评】此题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基此题,难点系数较小.一要注意培养良好的答题习惯,防止出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.〔2〕【2016年天津,理2,5分】设变量x ,y 满足约束条件2023603290x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则目标函数25z x y =+的最小值为〔 〕〔A 〕4- 〔B 〕6 〔C 〕10 〔D 〕17 【答案】B【解析】作出不等式组2023603290x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩表示的可行域,如右图中三角形的区域,作出直线0:250l x y +=,图中的虚线,平移直线0l ,可得经过点()3,0时,25z x y =+取得最小值6,故选B .【点评】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围. 〔3〕【2016年天津,理3,5分】在ABC ∆中,假设13AB =,3BC =,120C ∠=,则AC =〔 〕〔A 〕1 〔B 〕2 〔C 〕3 〔D 〕4 【答案】A【解析】在ABC ∆中,假设13AB =,3BC =,120C ∠=,2222cos AB BC AC AC BC C =+-⋅,得:21393AC AC =++,解得1AC =或4AC =-〔舍去〕,故选A .【点评】〔1〕正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.〔2〕利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而到达知三求三的目的.(4)〔4〕【2016年天津,理4,5分】阅读右边的程序框图,运行相应的程序,则输出S 的值为〔 〕 〔A 〕2 〔B 〕4 〔C 〕6 〔D 〕8 【答案】B【解析】第一次判断后:不满足条件,248S =⨯=,2n =,4i >;第二次判断不满足条件3n >;第三次判断满足条件:6S >,此时计算862S =-=,3n =,第四次判断3n >不满足条件,第五次判断6S >不满足条件,4S =.4n =,第六次判断满足条件3n >,故输出4S =,故选B .【点评】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.〔5〕【2016年天津,理5,5分】设{}n a 是首项为正数的等比数列,公比为q 则“0q <”是“对任意的正整数n ,2120n n a a -+<”的〔 〕〔A 〕充要条件 〔B 〕充分而不必要条件 〔C 〕必要而不充分条件 〔D 〕既不充分也不必要条件 【答案】C【解析】{}n a 是首项为正数的等比数列,公比为q ,假设“0q <”是“对任意的正整数n ,2120n n a a -+<”不一定成立,例如:当首项为2,12q =-时,各项为2,1-,12,14-,…,此时()2110+-=>,1110244⎛⎫+-=> ⎪⎝⎭; 而“对任意的正整数n ,2120n n a a -+<”,前提是“0q <”,则“0q <”是“对任意的正整数n ,2120n n a a -+<” 的必要而不充分条件,故选C .【点评】充分、必要条件的三种判断方法.〔1〕定义法:直接判断“假设p 则q ”、“假设q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.〔2〕等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否认式的命题,一般运用等价法.〔3〕集合法:假设A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;假设A =B ,则A 是B 的充要条件.〔6〕【2016年天津,理6,5分】已知双曲线()222104x y b b-=>,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为〔 〕 〔A 〕223144x y -= 〔B 〕224143x y -= 〔C 〕222144x y -= 〔D 〕221412x y -= 【答案】D【解析】以原点为圆心,双曲线的实半轴长为半径长的圆的方程为224x y +=,双曲线两条渐近线方程为2by x =±,设,2b A x x ⎛⎫ ⎪⎝⎭,则∵四边形ABCD 的面积为2b ,∴22x bx b ⋅=,∴1x =±,将1,2b A ⎛⎫⎪⎝⎭代入224x y +=,可得2144b +=,∴212b =,∴双曲线的方程为221412x y -=,故选D .【点评】求双曲线的标准方程关注点:〔1〕确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.〔2〕利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以防止讨论.①假设双曲线的焦点不能确定时,可设其方程为()2210Ax By AB =<+.②假设已知渐近线方程为0mx ny +=,则双曲线方程可设为()22220m x n y λλ-=≠.〔7〕【2016年天津,理7,5分】已知ABC ∆是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则AF BC ⋅的值为〔 〕〔A 〕58- 〔B 〕18 〔C 〕14 〔D 〕118【答案】B【解析】由DD 、E 分别是边AB 、BC 的中点,2DE EF =,()()AF BC AD DF AC AB ⋅=+⋅-()()2213133112224442AB DE AC AB AB AC AC AB AC AB AC AB ⎛⎫⎛⎫=+⋅-=+⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭,311111144228=-⋅⋅⋅-=,故选B .【点评】研究向量数量积,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来.〔8〕【2016年天津,理8,5分】已知函数2(43)3,0()log (1)1,0a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩〔0a >,且1a ≠〕在R 上单调递减,且关于x 的方程()2f x x =-恰好有两个不相等的实数解,则a 的取值范围是〔 〕〔A 〕20,3⎛⎤ ⎥⎝⎦ 〔B 〕23,34⎡⎤⎢⎥⎣⎦〔C 〕123,334⎡⎤⎧⎫⎨⎬⎢⎥⎣⎦⎩⎭ 〔D 〕123,334⎡⎫⎧⎫⎨⎬⎪⎢⎣⎭⎩⎭【答案】C【解析】()log 11a y x =++在[)0,+∞递减,则01a <<,函数()f x 在R 上单调递减,则()()234020104303log 011a a a a a -⎧≥⎪⎪<<⎨⎪+-⋅+≥++⎪⎩;解得,1334a ≤≤;由图象可知,在[)0,+∞上,()2f x x =-有且仅有一个解,故在(),0-∞上,()2f x x =-同样有且仅有一个解,当32a >即23a >时,联立()24332x a a x +-+=-,则()()2424320a a ∆=---=,解得34a =或1〔舍去〕,当132a ≤≤时,由图象可知,符合条件,综上:a 的取值范围为123,334⎡⎤⎧⎫⎨⎬⎢⎥⎣⎦⎩⎭,故选C .【点评】已知函数有零点求参数取值范围常用的方法和思路:〔1〕直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围〔2〕别离参数法:先将参数别离,转化成求函数值域问题加以解决;〔3〕数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.第II 卷〔共110分〕二、填空题:本大题共6小题,每题5分,共30分.〔9〕【2016年天津,理9,5分】已知a ,R b ∈,i 是虚数单位,假设()()1i 1i b a +-=,则ab的值为 . 【答案】2【解析】∵()()()1i 1i 11i b b b a +-=++-=,,R a b ∈,∴110b a b +=⎧⎨-=⎩,解得:21a b =⎧⎨=⎩,∴2a b =.【点评】此题重点考查复数的基本运算和复数的概念,属于基此题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(i)(i)()()i,(,,.)++=-++∈a b c d ac bd ad bc a b c d R ,22i ()()ii +++-=++a b ac bd bc ad c d c d(,,.)∈a b c d R ,其次要熟悉复数相关基本概念,如复数i(,)+∈a b a b R 的实部为a 、虚部为b 、模为22+a b 、共轭为i -a b .〔10〕【2016年天津,理10,5分】821x x ⎛⎫- ⎪⎝⎭的展开式中7x 的系数为 .〔用数字作答〕【答案】56-【解析】()()8216318811r rr r r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令1637r -=,解得3r =.∴821x x ⎛⎫- ⎪⎝⎭的展开式中7x 的系数为()338156C -=-.【点评】〔1〕求特定项系数问题可以分两步完成:第一步是根据所给出的条件〔特定项〕和通项公式,建立方程来确定指数〔求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n r ≥〕;第二步是根据所求的指数,再求所求解的项.〔2〕有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.〔11〕【2016年天津,理11,5分】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如下图〔单位:m 〕,则该四棱锥的体积为 3m .【答案】2【解析】由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,棱锥的底面是底为2,高为1的平行四边形,故底面面积2212m S =⨯=,棱锥的高3m h =,312m 3V Sh ==.【点评】〔1〕解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.〔2〕三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图 的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.〔12〕【2016年天津,理12,5分】如图,AB 是圆的直径,弦CD 与AB 相交于点E ,22BE AE ==,BD ED =,则线段CE 的长为 .【答案】233【解析】过D 作DH AB ⊥于H ,∵22BE AE ==,BD ED =,∴1BH HE ==,2AH =,1BH =, ∴2•2DH AH BH ==,则2DH =,在Rt DHE ∆中,则 22213DE DH HE =+=+=,由相交弦定理得:CE DE AE EB ⋅=⋅,∴122333AE EB CE DE ⋅⨯===. 【点评】1、解决与圆有关的成比例线段问题的两种思路:〔1〕直接应用相交弦、切割线定理及其推论;〔2〕当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相 似三角形→比例式→等积式”.在证明中有时还要借助中间比来代换,解题时应灵活把握.2、应用相交 弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关 的相似三角形等.〔13〕【2016年天津,理13,5分】已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增.假设实数a 满足()()122a f f ->-,则a 的取值范围是 .【答案】13,22⎛⎫ ⎪⎝⎭【解析】∵()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增,∴()f x 在区间()0,+∞上单调递减,则()()122a f f ->-,等价为()()122a f f ->,即1222a --<<,则112a -<,即1322a <<.【点评】不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:〔1〕借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效.〔2〕借助 函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代 数式的几何意义实现“数”向“形”的转化.〔14〕【2016年天津,理14,5分】设抛物线222x pt y pt ⎧=⎨=⎩〔t 为参数,0p >〕的焦点F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设7,02C p ⎛⎫⎪⎝⎭,AF 与BC 相交于点E .假设2CF AF =,且ACE ∆的面积为32,则p 的值为 . 【答案】6【解析】抛物线222x pt y pt⎧=⎨=⎩〔t 为参数,0p >〕的普通方程为:22y px =焦点为,02p F ⎛⎫⎪⎝⎭,如图:过抛物线上一点A 作l 的垂线,垂足为B ,设7,02C p ⎛⎫⎪⎝⎭,AF 与BC 相交于点E .2CF AF =,3CF p =,32AB AF p ==,(),2A p p ,ACE ∆的面积为32,12AE AB EF CF ==,可得13AFC ACE S S ∆∆=.即:11323232p p ⨯⨯⨯=,解得6p =.【点评】〔1〕凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.〔2〕假设()00,P x y 为抛物线()220y px p =>上一点,由定义易得02pPF x =+;假设过焦点的弦AB 的端点坐标为()11,A x y ,()22,B x y ,则弦长为12AB x x p =++,12x x +可由根与系数的关系整体求出;假设遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.〔15〕【2016年天津,理15,13分】已知函数()4tan sin cos 23f x x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭〔1〕求()f x 的定义域与最小正周期;〔2〕讨论()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调性.解:〔1〕()f x 的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭.()4tan cos cos 4sin cos 33f x x x x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭214sin cos 2sin cos 2x x x x x x ⎛⎫=+- ⎪ ⎪⎝⎭)()sin 21-cos2sin 2=2sin 23x x x x x π==-.所以, ()f x 的最小正周期22T ππ==. 〔2〕令23z x π=-,函数2sin y z =的单调递增区间是2,2,.22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦由222232k x k πππππ-+≤-≤+,得5,.1212k x k k Z ππππ-+≤≤+∈设5,,,441212A B x k x k k Z ππππππ⎧⎫⎡⎤=-=-+≤≤+∈⎨⎬⎢⎥⎣⎦⎩⎭,易知,124A B ππ⎡⎤=-⎢⎥⎣⎦. 所以,当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增,在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 【点评】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证. 对于三角函数来说,常常是先化为()sin y A x k ωϕ=++的形式,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的表达;降次是一种三角变换的常用技巧,要灵活运用降次公式.〔16〕【2016年天津,理16,13分】某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会. 〔1〕设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;〔2〕设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.解:〔1〕由已知,有()1123442101,3C C C P A C +==所以,事件A 发生的概率为13. 〔2〕随机变量X 的所有可能取值为0,1,2.()2223342104015C C C P X C ++===,()111133342107115C C C C P X C +===, ()113424215C C P X C ===.所以,随机变量X 分布列为: 随机变量X 的数学期望()0121151515E X =⨯+⨯+⨯=.【点评】求均值、方差的方法〔1〕已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;〔2〕已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b 的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;〔3〕如能分析所给随机变量是服从常用的分布(如两点分布、二项分布等),可直接利用它们的均值、方差公式求解.〔17〕【2016年天津,理17,13分】如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,2AB BE ==. 〔1〕求证://EG 平面ADF ;〔2〕求二面角O EF C --的正弦值;〔3〕设H 为线段AF 上的点,且23AH HF =,求直线BH 和平面CEF 所成角的正弦值.解:依题意,OF ABCD ⊥平面,如图,以O 为点,分别以,,AD BA OF 的方向为x 轴,y 轴、z 轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O ,()1,1,0,(1,1,0),(1,1,0),A B C ----(11,0),D ,(1,1,2),E --(0,0,2),F (1,0,0)G -.〔1〕()(2,0,0),1,1,2AD AF ==-.设()1,,n x y z =为平面ADF 的法向量,则1100n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩,即2020x x y z =⎧⎨-+=⎩ .不妨设1z =,可得()10,2,1n =,又()0,1,2EG =-,可得10EG n ⋅=,又因为直线EG ADF ⊄平面,所以//EG ADF 平面. 〔2〕易证,()1,1,0OA =-为平面OEF 的一个法向量.依题意,()()1,1,0,1,1,2EF CF ==-.设()2,,n x y z =为平面CEF 的法向量,则2200n EF n CF ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x y z +=⎧⎨-++=⎩.不妨设1x =,可得()21,1,1n =-.因此有2226cos ,3OA n OA n OA n ⋅<>==-⋅,于是23sin ,3OA n <>=,所以,二面角O EF C --的正弦值为33. 〔3〕由23AH HF =,得25AH AF =.因为()1,1,2AF =-,所以2224,,5555AH AF ⎛⎫==- ⎪⎝⎭,进而有334,,555H ⎛⎫- ⎪⎝⎭, 从而284,,555BH ⎛⎫= ⎪⎝⎭,因此2227cos ,21BH n BH n BH n ⋅<>==-⋅.直线BH 和平面CEF 所成角的正弦值为721.【点评】1、利用数量积解决问题的两条途径 :一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.2、利用数量积可解决有关垂直、夹角、长度问题.〔1〕0a ≠,0b ≠,·0a b a b ⊥⇔=;〔2〕2a a =;〔3〕cos ,a ba b a b ⋅=.〔18〕【2016年天津,理18,13分】已知{}n a 是各项均为正数的等差数列,公差为d .对任意的N n *∈,n b 是na和1n a +的等比中项.〔1〕设221n n n c b b +=-,N n *∈,求证:数列}{n c 是等差数列;〔2〕设1a d =,221(1)nk n k k T b ==-∑,N n *∈,求证21112nk kT d =<∑. 解:〔1〕由题意得21n n n b a a +=,有22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此()212122n n n n c c d a a d +++-=-=,所以{}n c 是等差数列.〔2〕()()()2222221234212n n n T b b b b b b -=-++-++-+()()()22224222212n n n a a d a a a d d n n +=+++=⋅=+所以()222211111111111112121212nnnk k k kT d k k d k k dn d===⎛⎫⎛⎫==-=⋅-< ⎪ ⎪+++⎝⎭⎝⎭∑∑∑. 【点评】分组转化法求和的常见类型〔1〕假设n n n a b c ±=,且{}n b ,{}n c 为等差或等比数列,可采用分组求和法求{}n a 的前n 项和.〔2〕通项公式为n a =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{}n b ,{}n c 是等比数列或等差数列,可采用分组求和法求和.〔19〕【2016年天津,理19,14分】设椭圆22213x y a +=(a >的右焦点为F ,右顶点为A .已知113e OF OA FA+=,其中O 为原点,e 为椭圆的离心率.〔1〕求椭圆的方程;〔2〕设过点A 的直线l 与椭圆交于点B 〔B 不在x 轴上〕,垂直于l 的直线与l 交于点M ,与y 轴交于点H .假设BF HF ⊥,且MOA ∠≤MAO ∠,求直线l 的斜率的取值范围.解:〔1〕设(),0F c ,由113cOF OA FA+=,即113()c c a a a c +=-,可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=.〔2〕设直线l 的斜率为k ()0k ≠,则直线l 的方程为()2y k x =-.设(),B B B x y ,由方程组()221432x y y k x ⎧+=⎪⎨⎪=-⎩, 消去y ,整理得()2222431616120k x k x k +-+-=.解得2x =,或228643k x k -=+,由题意得228643B k x k -=+,从而21243B ky k -=+.由〔1〕知,()1,0F ,设()0,H H y ,有()1,H FH y =-,2229412,4343k k BF k k ⎛⎫-= ⎪++⎝⎭.由BF HF ⊥,得0BF HF ⋅=,所以222129404343H ky k k k -+=++,解得29412H k y k-=.因此直线MH 的方程为219412k y x k k -=-+.设(),M M M x y ,由方程组219412(2)k y x k k y k x ⎧-=-+⎪⎨⎪=-⎩消去y ,解得2220912(1)M k x k +=+.在MAO ∆中,||||MOA MAO MA MO ∠≤∠⇔≤,即()22222M MMMx y x y -+≤+,化简得1M x ≥,即22209112(1)k k +≥+,解得k ≤或k ≥l的斜率的取值范围为6,,4⎛⎡⎫-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭. 【点评】在利用代数法解决最值与范围问题时常从以下五个方面考虑:〔1〕利用判别式来构造不等关系,从而确定参数的取值范围;〔2〕利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间 建立等量关系;〔3〕利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;〔4〕利用基本 不等式求出参数的取值范围;〔5〕利用函数的值域的求法,确定参数的取值范围.〔20〕【2016年天津,理20,14分】设函数()3()1f x x ax b =---,x ∈R ,其中a ,b ∈R .〔1〕求()f x 的单调区间;〔2〕假设()f x 存在极值点0x ,且()()10f x f x =,其中10x x ≠,求证:1023x x +=;〔3〕设0a >,函数()()g x f x =,求证:()g x 在区间[]0,2上的最大值不小于...14. 解:〔1〕由()()31f x x ax b =---,可得()()2'31f x x a =--.下面分两种情况讨论:①当0a ≤时,有()()2'310f x x a =--≥恒成立,所以()f x 的单调递增区间为(),-∞+∞. ②当0a >时,令()'0fx =,解得1x =+1x = 当x 变化时,()'f x ,()f x 的变化情况如下表:所以⎝⎭⎝⎭⎫+∞⎪⎪⎝⎭. 〔2〕因为()f x 存在极值点,所以由〔1〕知0a >,且01x ≠,由题意,得()()200'310f x x a =--=,即()2013a x -=,进而()()300002133a a f x x axb x b =---=---. ()()()()()3000000082322222123333a a a f x x a xb x ax a b x b f x -=----=-+--=---=,且0032x x -≠,由题意及〔1〕知,存在唯一实数满足()()10f x f x =,且10x x ≠,因此1032x x =-,所以1023x x +=.〔3〕设()g x 在区间[]0,2上的最大值为M ,{}max ,x y 表示,x y 两数的最大值.下面分三种情况同理:①当3a ≥时,1021≤<≤,由〔1〕知,()f x 在区间[]0,2上单调递减,所以()f x 在区间 []0,2上的取值范围为()()2,0f f ⎡⎤⎣⎦,因此()(){}{}max 2,0max 12,1M f f a b b ==----{}max 1(),1()a a b a a b =-++--+1(),01(),0a a b a b a a b a b -+++≥⎧=⎨--++<⎩,所以12M a a b =-++≥.②当334a ≤<时,101121≤<<+<≤+1〕和〔2〕知,()011f f f ⎛⎛≥-=+ ⎝⎭⎝⎭,()211f f f ⎛⎛≤+= ⎝⎭⎝⎭,所以()f x 在区间[]0,2上的取值范围为1,1ff ⎡⎤⎛⎛+⎢⎥ ⎢⎥⎝⎭⎝⎭⎣⎦,max 1,1M f f ⎧⎫⎛⎫⎛⎪⎪=+- ⎪ ⎨⎬ ⎪ ⎝⎭⎝⎭⎪⎪⎩⎭max a b a b ⎧⎫=---⎨⎬⎩⎭()()max a b a b ⎧⎫=++⎨⎬⎩⎭231944a b =+≥⨯=.③当304a <<时,0112<<<,由〔1〕和〔2〕知,()011f f f ⎛⎛<=+ ⎝⎭⎝⎭,()211f f f ⎛⎛>=- ⎝⎭⎝⎭,所以()f x 在区间[]0,2上的取值范围为()()0,2f f ⎡⎤⎣⎦,因此 ()(){}{}max 0,2max 1,12M f f b a b ==----()(){}max 1,1a a b a a b =-++--+11||4a ab =-++>. 综上所述,当0a >时,()g x 在区间[]0,2上的最大值不小于14. 【评析】1、求可导函数单调区间的一般步骤:〔1〕确定函数()f x 的定义域〔定义域优先〕;〔2〕求导函数()f x ';〔3〕在函数()f x 的定义域内求不等式()0f x '>或()0f x '<的解集.〔4〕由()()()00f x f x >'<'的解集确定函数()f x 的单调增〔减〕区间.假设遇不等式中带有参数时,可分类讨论求得单调区间.2、由函数()f x 在(),a b 上的单调性,求参数范围问题,可转化为()0f x '≥ 〔或()0f x '≤〕恒成立问题,要注意“=”是否可以取到.。

2016年高考北京理科数学试题及答案(word解析版)

2016年高考北京理科数学试题及答案(word解析版)

2016年高考北京理科数学试题及答案(word解析版)2016年普通高等学校招生全国统一考试(北京卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.(1)【2016年北京,理1,5分】已知集合{}|2A x x =<<,{}1,0,1,2,3=-,则A B =I ( )(A ){}0,1 (B ){}0,1,2 (C ){}1,0,1- (D ){}1,0,1,2-【答案】C【解析】集合{}22A x x =-<<,集合{}1,0,1,2,3B x =-,所以{}1,0,1A B =-I ,故选C .【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.(2)【2016年北京,理2,5分】若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,,,则2x y +的最大值为( )(A )0 (B )3 (C )4 (D )5【答案】C【解析】可行域如图阴影部分,目标函数平移到虚线处取得最大值,对应的点为()1,2,最大值为2124⨯+=,故选C .【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.(3)【2016年北京,理3,5分】执行如图所示的程1,2()2x +y =02x-y=0x =0x +y =3序框图,若输入的a 值为1,则输出的k 值为( )(A )1 (B )2 (C )3 (D )4【答案】B【解析】开始1a =,0k =;第一次循环12a =-,1k =;第二次循环2a =-,2k =,第三次循环1a =,条件判断为“是”跳出,此时2k =,故选B .【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.(4)【2016年北京,理4,5分】设a r ,b r 是向量,则“a b =r r ”是“a b a b +=-r r r r ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件【答案】D 【解析】若=a b r r 成立,则以a r ,b r 为边组成平行四边形,那么该平行四边形为菱形,+a b r r ,a b -r r 表示的是该菱形的对角线,而菱形的对角线不一定相等,所以+=a b a b-r r r r 不一定成立,从而不是充分条件;反之,+=a b a b -r r r r 成立,则以a r ,b r 为边组成平行四边形,则该平行四边形为矩形,矩形的邻边不一定相等,所以=a b r r 不一定成立,从而不是必要条件,故选D .【点评】本题考查的知识点是充要条件,向量的模,分析出“a b =r r ”与“a b a b +=-r r r r ”表示的几何意义,是解答的关键.(5)【2016年北京,理5,5分】已知x y ∈R ,,且0x y >>,则( )(A )110x y -> (B )sin sin 0x y ->_ (C )11022x y⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭ (D )ln ln 0x y +>【答案】C【解析】A .考查的是反比例函数1y x=在()0,+∞单调递减,所以11x y <即110x y-<所以A 错; B .考查的 是三角函数sin y x =在()0,+∞单调性,不是单调的,所以不一定有sin sin x y >,B 错;C .考查的是指数函数12x y ⎛⎫= ⎪⎝⎭在()0,+∞单调递减,所以有1122x y⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭即11022x y ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭所以C 对;D 考查的是对数函数ln y x =的性质,ln ln ln x y xy +=,当0x y >>时,0xy >不一定有ln 0xy >,所以D 错,故选C .【点评】本题考查了不等式的性质、函数的单调性,考查了推理能力与计算能力,属于中档题.(6)【2016年北京,理6,5分】某三棱锥的三视图如图所示,则该三棱锥的体积为( )(A )16 (B )13(C )12 (D )1【答案】A【解析】通过三视图可还原几何体为如图所示三棱锥,则通过侧视图得高1h =,底面积111122S =⨯⨯=,所以体积1136V Sh ==,故选A .【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.(7)【2016年北京,理7,5分】将函数sin 23y x π⎛⎫=- ⎪⎝⎭图象上的点,4P t π⎛⎫ ⎪⎝⎭向左平移()0s s >个单位长度得到点P ',若P '位于函数sin 2y x =的图象上,则( )(A )12t =,s 的最小值为6π (B )3t =,s 的最小值为6π (C )12t =,s 的最小值为3π (D )3t ,s 的最小值为3π 【答案】A 【解析】点π,4P t ⎛⎫ ⎪⎝⎭在函数πsin 23y x ⎛⎫=- ⎪⎝⎭上,所以πππ1sin 2sin 4362t ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,然后πsin 23y x ⎛⎫=- ⎪⎝⎭向左平移s 个单位,即πsin 2()sin 23y x s x ⎛⎫=+-= ⎪⎝⎭,所以π+π,6s k k =∈Z ,所以s 的最小值为π6,故选A .【点评】本题考查的知识点是函数()()sin 0,0y x A ωϕω=+>>的图象和性质,难度中档.(8)【2016年北京,理8,5分】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )(A )乙盒中黑球不多于丙盒中黑球 (B )乙盒中红球与丙盒中黑球一样多(C )乙盒中红球不多于丙盒中红球 (D )乙盒中黑球与丙盒中红球一样多【答案】B【解析】取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.因为红球和黑球个数一样,所以①和②的情况一样多,③和④的情况完全随机.③和④对B 选项中的乙盒中的红球与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B选项中的乙盒中的红球与丙盒中的黑球数的影响次数一样.故选B .【点评】该题考查了推理与证明,重点是找到切入点逐步进行分析,对学生的逻辑思维能力有一定要求,中档题.二、填空题:共6小题,每小题5分,共30分。

2016年高考全国I卷理科数学真题及解释word版

2016年高考全国I卷理科数学真题及解释word版

2016年普通高等学校招生全国统一考试理科数学(I 卷)本试题卷共5页,24题(含选考题)。

全卷满分150分。

考试用时120分钟。

一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合}034{2<+-=x x x A ,}032{>-=x x B ,则A B =I(A ))23,3(--(B ))23,3(-(C ))23,1((D ))3,23(【解析】:{}{}243013A x x x x x =-+<=<<,{}32302B x x x x ⎧⎫=->=>⎨⎬⎩⎭.故332A B x x ⎧⎫=<<⎨⎬⎩⎭I .故选D .(2)设yi x i +=+1)1(,其中y x ,是实数,则=+yi x(A )1(B )2(C )3(D )2【解析】:由()11i x yi +=+可知:1x xi yi +=+,故1x x y =⎧⎨=⎩,解得:11x y =⎧⎨=⎩.所以,x yi +故选B .(3)已知等差数列}{n a 前9项的和为27,810=a ,则=100a(A )100(B )99(C )98 (D )97【解析】:由等差数列性质可知:()1959599292722a a a S a +⨯====,故53a =,而108a =,因此公差 1051105a a d -==-∴100109098a a d =+=.故选C .(4)某公司的班车在30:7,00:8,30:8发车,小明在50:7至30:8之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过10分钟的概率是 (A )31 (B )21 (C )32 (D )43 【解析】:如图所示,画出时间轴:8:208:107:507:408:308:007:30小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型,所求概率10101402P +==.故选B .(5)已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是 (A ))3,1(-(B ))3,1(-(C ))3,0((D ))3,0(【解析】:222213x y m n m n-=+-表示双曲线,则()()2230m n m n +->,∴223m n m -<<由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距,∴焦距2224c m =⋅=,解得1m = ∴13n -<<,故选A .(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的 表面积是 (A )π17(B )π18(C )π20 (D )π28【解析】:原立体图如图所示:是一个球被切掉左上角的18后的三视图表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S ⨯⨯⨯⨯πππ,故选A .(7)函数xe x y -=22在]2,2[-的图像大致为(A(B(C(D【解析】:()22288 2.80f e =->->,排除A ;()22288 2.71f e =-<-<,排除B ;0x >时,()22xf x x e =-,()4x f x x e '=-,当10,4x ⎛⎫∈ ⎪⎝⎭时,()01404f x e '<⨯-= 因此()f x 在10,4⎛⎫⎪⎝⎭单调递减,排除C ;故选D .(8)若1>>b a ,10<<c ,则(A )ccb a <(B )cc ba ab < (C )c b c a a b log log <(D )c c b a log log <【解析】: 由于01c <<,∴函数c y x =在R 上单调递增,因此1c c a b a b >>⇔>,A 错误;由于110c -<-<,∴函数1c y x -=在()1,+∞上单调递减,∴111c c c c a b a b ba ab -->>⇔<⇔<,B 错误; 要比较log b a c 和log a b c ,只需比较ln ln a c b和ln ln b c a ,只需比较ln ln c b b 和ln ln ca a ,只需lnb b 和ln a a , 构造函数()()ln 1f x x x x =>,则()'ln 110f x x =+>>,()f x 在()1,+∞上单调递增,因此()()110ln ln 0ln ln f a f b a a b b a a b b >>⇔>>⇔<,又由01c <<得ln 0c <, ∴ln ln log log ln ln a b c cb c a c a a b b<⇔<,C 正确; 要比较log a c 和log b c ,只需比较ln ln c a 和ln ln cb ,而函数ln y x =在()1,+∞上单调递增, 故111ln ln 0ln ln a b a b a b >>⇔>>⇔<,又由01c <<得ln 0c <,∴l n l n l o g l o gl n l n abc c c c a b>⇔>,D 错误; 故选C .(9)执行右面的程序框图,如果输入的0=x ,1=y ,1=n ,则输出y x ,的值满足(A )x y 2=(B )x y 3=(C )x y 4=(D )x y 5=【解析】:第一次循环:220,1,136x y x y ==+=<;第二次循环:22117,2,3624x y x y ==+=<; 第三次循环:223,6,362x y x y ==+>; 输出32x =,6y =,满足4y x =;故选C .(10)以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为(A )2(B )4(C )6(D )8【解析】:以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,如图:设(0,A x,2p D ⎛- ⎝,点(0,A x 在抛物线22y px =上,∴082px =……①;点2p D ⎛- ⎝在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②;点(0,A x 在圆222x y r +=上,∴2208x r +=……③;联立①②③解得:4p =,焦点到准线的距离为4p =.故选B .(11)平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =, α平面n A ABB =11,则n m ,所成角的正弦值为(A )23 (B )22(C )33 (D )31【解析】:如图所示:111∵11CB D α∥平面,∴若设平面11CB D 平面1ABCD m =,则1m m ∥ 又∵平面ABCD ∥平面1111A B C D ,结合平面11B D C 平面111111A B C D B D = ∴111B D m ∥,故11B D m ∥,同理可得:1CD n ∥故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B ∠的大小. 而1111BC BD CD ==(均为面对交线),因此113CD B π∠=,即11sin CD B ∠=. 故选A .(12)已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为(A )11(B )9(C )7(D )5【解析】:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤ 接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫ ⎪⎝⎭单调;若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减。

2016年高考数学理科真题试卷及答案(word版)

2016年高考数学理科真题试卷及答案(word版)

2016年普通高等学校招生考试真题试卷数 学(理科)参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A+B )=PA .+PB . S=4лR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=PA .+PB . 球的体积公式1+2+…+n 2)1(+n n V=334R π 12+22+…+n 2=6)12)(1(++n n n 其中R 表示球的半径 13+23++n 3=4)1(22+n n 第Ⅰ卷(选择题 共55分)一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列函数中,反函数是其自身的函数为A .[)+∞∈=,0,)(3x x x f B .[)+∞∞-∈=,,)(3x x x f C .),(,)(+∞-∞∈=x e x f x D .),0(,1)(+∞∈=x xx f 2.设l ,m ,n 均为直线,其中m ,n 在平面α内,“l ⊥α”是l ⊥m 且“l ⊥n ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若对任意∈x R,不等式x ≥ax 恒成立,则实数a 的取值范围是A .a <-1B .a ≤1C . a <1D .a ≥14.若a 为实数,iai212++=-2i ,则a 等于 A .2 B .—2 C .22 D .—225.若}{8222<≤Z ∈=-x x A ,{}1log R 2>∈=x x B ,则)(C R B A ⋂的元素个数为A .0B .1C .2D .3 6.函数)3π2sin(3)(-=x x f 的图象为C , ①图象C 关于直线π1211=x 对称; ②函灶)(x f 在区间)12π5,12π(-内是增函数; ③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C .以上三个论断中,正确论断的个数是A .0B .1C .2D .37.如果点P 在平面区域⎪⎩⎪⎨⎧≤-+≤+-≥+-02012022y x y x y x 上,点Q 在曲线1)2(22=++y x 上,那么Q P 的最小值为A .15-B .154- C .122- D .12-8.半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为A .)33arccos(-B .)36arccos(-C .)31arccos(- D .)41arccos(- 9.如图,1F 和2F 分别是双曲线)0,0(12222>>=-b a br a x 的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为A .3B .5C .25D .31+10.以)(x φ表示标准正态总体在区间(x ,∞-)内取值的概率,若随机变量ξ服从正态分布),(2σμN ,则概率)(σμξ<-P 等于 A .)(σμφ+-)(σμφ-B .)1()1(--φφC .)1(σμφ-D .)(2σμφ+ 11.定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为A .0B .1C .3D .5二、填空题:本大题共4小题,每小题4分,共16分。

(完整word版)2016年全国高考数学(理科)试题及答案-全国1卷(解析版)

(完整word版)2016年全国高考数学(理科)试题及答案-全国1卷(解析版)

范围是
(A) 1,3 (B) 1, 3 (C) 0,3 (D) 0, 3
【答案】A
考点:双曲线的性质 【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意 双曲线的焦距是 2c 不是 c,这一点易出错. (6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何
一. 选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目 要求的.
(1)设集合 A x x2 4x 3 0 , x 2x 3 0 ,则 A B
(A)
3,
3 2
【答案】D
(B)
3,
3 2
(C)
1,
3 2
(D)
3 2
,
3
考点:集合的交集运算 【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般 要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数 集之间的运算,常借助数轴进行运算.
(8)若 a b 1,0 c 1,则 (A) ac bc (B) abc bac (C) a logb c b loga c (D) loga c logb c
【答案】C 【解析】
试题分析:用特殊值法,令 a 3, b
2,c
1
1
得 32
1
22 ,选项
A
1
错误, 3 22
1
2 32 ,选项
2016 高考数学(理科)试卷(全国 1 卷)
绝密 ★ 启用前
2016 年普通高等学校招生全国统一考试(全国 1 卷)
数学(理科)
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至 5 页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷

2016年高考理科数学全国1卷(word+精编详解)

2016年高考理科数学全国1卷(word+精编详解)

请考生完整、准确填写以下信息姓名 准考证号考场号 座位号本 试 卷 上 交 至 各 地、州、市、师 招 办 封 存装订线 装订线2016年 普通高考绝密★启用前2016年普通高等学校招生全国统一考试(全国1卷)理科数学试题一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,3 2.设(1+i )x =1+yi ,其中x ,y 是实数,则|x +yi |=( )A.1B. 2C. 3D.2 3.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A.100 B.99 C.98 D.974.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘 坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A.13 B.12 C.23 D.345.已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A.(-1,3)B.(-1,3)C.(0,3)D.(0,3)6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几 何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π 7.函数y =2x 2-e |x |在[-2,2]的图象大致为( )8.若a >b >1,0<c <1,则( )A.a c <b cB.ab c <ba cC.a log b c <b log a cD.log a c <log b c9.执行如图所示的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A.y =2xB.y =3xC.y =4xD.y =5x10. 以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A.2B.4C.6D.811.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( ) A.32 B.22C.33D.1312.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5第II 卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分.13.设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________.14.(2x +x )5的展开式中,x 3的系数是______________(用数字填写答案).15.设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为__________.16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B 需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.三、解答题(本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤) 17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.装订线 装订线18.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥EFDC ;(2)求二面角E -BC -A 的余弦值.19.某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(1)求X 的分布列;(2)若要求P (X ≤n )≥0.5,确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?20.设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于 P ,Q 两点,求四边形MPNQ 面积的取值范围.21.已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.22.如图,△OAB 是等腰三角形;∠AOB =120°.以O 为圆心,12OA 为半径作圆.(1)证明:直线AB 与⊙O 相切;(2)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB ∥CD . 23.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (1)说明C 1是哪一种曲线,并将C1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .24.已知函数f (x )=|x +1|-|2x -3|. (1)在图中画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.请考生完整、准确填写以下信息姓名准考证号考场号座位号本试卷上交至各地、州、市、师招办封存装订线装订线216年普通高考绝密★启用前2016年普通高等学校招生全国统一考试(全国1卷)理科数学参考答案一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案D 解析由A={x|x2-4x+3<0}={x|1<x<3},B={x|2x-3>0}=⎩⎨⎧⎭⎬⎫x⎪⎪x>32,得A∩B=⎩⎨⎧⎭⎬⎫x⎪⎪32<x<3=⎝⎛⎭⎫32,3,故选D.2.答案B 解析由(1+i)x=1+y i,得x+x i=1+y i⇒⎩⎪⎨⎪⎧x=1,x=y⇒⎩⎪⎨⎪⎧x=1,y=1.所以|x+y i|=x2+y2=2,故选B.3.答案C 解析由等差数列性质,知S9=9(a1+a9)2=9×2a52=9a5=27,得a5=3,而a10=8,因此公差d=a10-a510-5=1,∴a100=a10+90d=98,故选C.]4.答案B 解析如图所示,画出时间轴:小明到达的时间会随机的落在图中线段AB中,而当他的到达时间落在线段AC或DB时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率P=10+1040=12,故选B.5.答案A 解析∵方程x2m2+n-y23m2-n=1表示双曲线,∴(m2+n)·(3m2-n)>0,解得-m2<n<3m2,由双曲线性质,知c2=(m2+n)+(3m2-n)=4m2(其中c是半焦距),∴焦距2c=2×2|m|=4,解得|m|=1,∴-1<n<3,故选A.]6.答案A 解析由题知,该几何体的直观图如图所示,它是一个球(被过球心O且互相垂直的三个平面)切掉左上角的18后得到的组合体,其表面积是球面面积的78和三个14圆面积之和,易得球的半径为2,则得S=78×4π×22+3×14π×22=17π,故选A.7.答案D 解析f(2)=8-e2>8-2.82>0,排除A;f(2)=8-e2<8-2.72<1,排除B;在x>0时,f(x)=2x2-e x,f′(x)=4x-e x,当x∈⎝⎛⎭⎫0,14时,f′(x)<14×4-e0=0,因此f(x)在⎝⎛⎭⎫0,14上单调递减,排除C,故选D.8.答案C 解析对A:由于0<c<1,∴函数y=x c在R上单调递增,则a>b>1⇒a c>b c,故A错;对B:由于-1<c-1<0,∴函数y=x c-1在(1,+∞)上单调递减,∴a>b>1⇔a c-1<b c-1⇔ba c<ab c,故B错;对C:要比较a log b c和b log a c,只需比较a ln cln b和b ln cln a,只需比较ln cb ln b和ln ca ln a,只需比较b ln b和a ln a.构造函数f(x)=x ln x(x>1),则f′(x)=ln x+1>1>0,f(x)在(1,+∞)上单调递增,因此f(a)>f(b)>0⇒a ln a>b ln b>0⇒1a ln a<1b ln b,又由0<c<1得ln c<0,∴ln ca ln a>ln cb ln b⇒b log a c>a log b c,C正确;对D:要比较log a c和log b c,只需比较ln cln a和ln cln b,而函数y=ln x在(1,+∞)上单调递增,故a>b>1⇔ln a>ln b>0⇔1ln a<1ln b,又由0<c<1得ln c<0,∴ln cln a>ln cln b⇔log a c>log b c,D错误,故选C.9.答案C 解析执行题中的程序框图,知第一次进入循环体:x=0+1-12=0,y=1×1=1,x2+y2<36;第二次执行循环体:n=1+1=2,x=0+2-12=12,y=2×1=2,x2+y2<36;第三次执行循环体:n=2+1=3,x=12+3-12=32,y=3×2=6,x2+y2>36,满足x2+y2≥36,故退出循环,输出x=32,y=6,满足y=4x,故选C.10.答案B 解析不妨设抛物线C:y2=2px(p>0),则圆的方程可设为x2+y2=r2(r>0),如图,又可设A(x0,22),D⎝⎛⎭⎫-p2,5,点A(x0,22)在抛物线y2=2px上,∴8=2px0,①点A(x0,22)在圆x2+y2=r2上,∴x20+8=r2,②点D⎝⎛⎭⎫-p2,5在圆x2+y2=r2上,∴5+⎝⎛⎭⎫p22=r2,③联立①②③,解得p=4,即C的焦点到准线的距离为p=4,故选B.11.答案A 解析如图所示,设平面CB1D1∩平面ABCD=m1,∵α∥平面CB1D1,则m1∥m,又∵平面ABCD∥平面A1B1C1D1,平面CB1D1∩平面A1B1C1D1=B1D1,∴B1D1∥m1,∴B1D1∥m,同理可得CD1∥n.装订线 装订线故m 、n 所成角的大小与B 1D 1、CD 1所成角的大小相等,即∠CD 1B 1的大小. 而B 1C =B 1D 1=CD 1(均为面对角线),因此∠CD 1B 1=π3,得sin ∠CD 1B 1=32,故选A.12.答案B 解析 因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝⎛⎭⎫-π4=T 4+kT ,即π2=4k +14T =4k +14·2πω,所以ω=4k +1(k ∈N *), 又因为f (x )在⎝⎛⎭⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,由此得ω的最大值为9,故选B.]第II 卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分.13.答案 -2 解析 由|a +b |2=|a |2+|b |2,得a ⊥b ,所以m ×1+1×2=0,得m =-2.14.答案 10 解析 (2x +x )5展开式的通项公式T k +1=C k 5(2x )5-k (x )k =C k 525-k x 5-k2,k ∈{0,1,2,3,4,5},令5-k 2=3解得k =4,得T 5=C 4525-4x 5-42=10x 3,∴x 3的系数是10.]15.答案 64 解析 设等比数列{a n }的公比为q ,∴⎩⎪⎨⎪⎧a 1+a 3=10,a 2+a 4=5⇒⎩⎪⎨⎪⎧a 1+a 1q 2=10,a 1q +a 1q 3=5,解得⎩⎪⎨⎪⎧a 1=8,q =12,∴a 1a 2…a n =⎝⎛⎭⎫12(-3)+(-2)+…+(n -4)=⎝⎛⎭⎫1212n (n -7)=⎝⎛⎭⎫1212⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫n -722-494, 当n =3或4时,12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫n -722-494取到最小值-6,此时⎝⎛⎭⎫1212⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫n -722-494取到最大值26,所以a 1a 2…a n的最大值为64. 16.答案 216 000 解析 设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,y ≥0,x ∈N *,y ∈N*目标函数z =2 100x +900y .作出可行域为图中的四边形,包括边界,顶点为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,z max =2 100×60+900×100=216 000(元).三、解答题(本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤) 17.解析 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B cos A )=sin C ,2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13,从而(a +b )2=25. 所以△ABC 的周长为5+7.18.解析 (1)证明 由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC ,又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(2)解 过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标 系G -xyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3, 可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知,AB ∥EF ,所以AB ∥平面EFDC ,又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF ,由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°, 从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4),则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.19.解析 (1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而 P (X =16)=0.2×0.2=0.04;P (X =17)=2×0.2×0.4=0.16;P (X =18)=2×0.2×0.2+0.4×0.4=0.24;P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08;请考生完整、准确填写以下信息姓名 准考证号考场号 座位号本 试 卷 上 交 至 各 地、州、市、师 招 办 封 存装订线 装订线2016年 普通高考P (X =22)=0.2×0.2=0.04; 所以X 的分布列为X 16 17 18 19 20 21 22 P0.040.160.240.240.20.080.04(2)由(3)记Y 表示2台机器在购买易损零件上所需的费用(单位:元).当n =19时,EY =19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08 +(19×200+3×500)×0.04=4 040.当n =20时,EY =20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n =19时所需费用的期望值小于n =20时所需费用的期望值,故应选n =19.20.解析 (1)证明 因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为:x 24+y 23=1(y ≠0).(2)解 当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1得(4k 2+3)x 2-8k 2x +4k 2-12=0.则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),A 到m 的距离为2k 2+1,所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83).21.解析 (1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ).①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.②设a >0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1) 上单调递减,在(1,+∞)上单调递增.又f (1)=-e,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a2(b -2)+a (b -1)2=a ⎝⎛⎭⎫b 2-32b >0, 故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)上单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0,因此f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)不妨设x 1<x 2.由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)上单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0. 由于f (2-x 2)=-x 2e 2-x 2+a (x 2-1)2,而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0,所以f (2-x 2)=-x 2e 2-x2-(x 2-2)e x2.设g (x )=-x e 2-x -(x -2)e x ,则g ′(x )=(x -1)(e 2-x -e x ),所以当x >1时,g ′(x )<0,而g (1)=0, 故当x >1时,g (x )<0,从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.22.证明 (1)设E 是AB 的中点,连接OE .因为OA =OB ,∠AOB =120°,所以OE ⊥AB ,∠AOE =60°,在Rt △AOE 中,OE =12AO ,即O 到直线AB 的距离等于⊙O 的半径,所以直线AB 与⊙O 相切.(2)因为OA =2OD ,所以O 不是A ,B ,C ,D 四点所在圆的圆心. 设O ′是A ,B ,C ,D 四点所在圆的圆心,作直线OO ′.由已知得O 在线段AB 的垂直平分线上,又O ′在线段AB 的垂直平分线上,所以OO ′⊥AB . 同理可证,OO ′⊥CD ,所以AB ∥CD .23.解析 (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2,C 1是以(0,1)为圆心,a 为半径的圆. 将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上. 所以a =1.装订线 装订线24.解析 (1)f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤ 32,-x +4,x >32,y =f (x )的图象如图所示.(2)由f (x )的表达式及图象,当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5,故f (x )>1的解集为{x |1<x <3};f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x |x <13或x >5.所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x |x <13或1<x <3或x >5.。

2016年上海高考数学真题(理科)试卷(word解析版)

 2016年上海高考数学真题(理科)试卷(word解析版)

绝密★启用前 2016年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.设x R ∈,则不等式13<-x 的解集为_____________.2.设32iz i +=,其中i 为虚数单位,则Im z =_____________.3.已知平行直线012:,012:21=++=-+y x l y x l ,则l 1与l 2的距离是_____________. 4.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是_________(米).5.已知点(3,9)在函数x a x f +=1)(的图像上,则________)()(1=-x f x f 的反函数. 6.如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成的角的大小为32arctan,则该正四棱柱的高等于____________.7.方程3sin 1cos 2x x =+在区间[]0,2π上的解为___________ .8.在nx x ⎪⎭⎫ ⎝⎛-23的二项展开式中,所有项的二项式系数之和为256,则常数项等于_________.9.已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.10.设.0,0>>b a 若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩,无解,则b a +的取值范围是____________. 11.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意N n *∈,{}3,2∈n S ,则k 的最大值为________.12.在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线21x y -=上一个动点,则BA BP ⋅的取值范围是_____________.13.设[),,0,2πa b R c ∈∈.若对任意实数x 都有()c bx a x +=⎪⎭⎫ ⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为 .14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点ji A A ,,点P 满足=++j i OA OA OP ,则点P 落在第一象限的概率是_____________.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得五分,否则一律得零分.15.设R a ∈,则“1>a ”是“12>a ”的( ).(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 16.下列极坐标方程中,对应的曲线为如图的是( ).(A )θρcos 56+= (B )65sin ρθ=+ (C )θρcos 56-= (D )65sin ρθ=- 17.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()2N n S S n *<∈恒成立的是( ).7.06.0,01<<>q a (B )6.07.0,01-<<-<q a(C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a18.设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均是增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( ).(A )①和②均为真命题 (B )①和②均为假命题(C )①为真命题,②为假命题 (D )①为假命题,②为真命题三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本题共有2个小题,第一小题满分6分,第二小题满分6分.将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O的同侧.(1)求三棱锥111C O A B 的体积;(2)求异面直线1B C 与1AA 所成的角的大小.20.(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分. 有一块正方形菜地EFGH ,EH 所在直线是一条小河.收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等,现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图.(1)求菜地内的分界线C 的方程;(2)菜农从蔬菜运量估计出1S 面积是2S 面积的两倍,由此得到1S 面积的“经验值”为38.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于1S 面积的经验值.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b -=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点.(1)若l 的倾斜角为π2,1F AB ∆是等边三角形,求双曲线的渐近线方程;(2)设b =,若l 的斜率存在,且11()0F A F B AB +⋅=,求l 的斜率.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知a R ∈,函数21()log ()f x a x =+.(1)当5a =时,解不等式()0f x >; (2)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰好有一个元素,求a的取值范围;(3)设0a >,若对任意1[,1]2t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,N )p q a a p q =∈,必有11p q a a ++=,则称{}n a 具有性质P . (1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+,判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin (N )n n n a b a n +=+∈.求证:“对任意1,{}n a a 都具有性质P”的充要条件为“{}nb是常数列”.考生注意:1. 本试卷共4页,23道试题,满分150分.考试时间120分钟.2. 本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3. 答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.设x R ∈,则不等式13<-x 的解集为_____________.【答案】(2,4) 【解析】试题分析:由题意得:1x 31-<-<,解得2x 4<<. 考点:绝对值不等式的基本解法.2.设32iz i +=,其中i 为虚数单位,则Im z =_____________.【答案】-3 【解析】 试题分析:32i23,Im z= 3.i z i +==--考点:1.复数的运算;2.复数的概念.3.已知平行直线012:,012:21=++=-+y x l y x l ,则l 1与l 2的距离是_____________.【解析】试题分析:利用两平行线间的距离公式得d ===.考点:两平行线间距离公式.4.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是_________(米). 【答案】1.76考点:中位数的概念.5.已知点(3,9)在函数x a x f +=1)(的图像上,则________)()(1=-x f x f 的反函数. 【答案】2log (1)x -【解析】试题分析: 将点(3,9)代入函数()xf x 1a =+中得a 2=,所以()xf x 12=+,用y 表示x 得2x log (y 1)=-,所以()12log (f x x 1)-=-.考点:反函数的概念以及指、对数式的转化.6.如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成的角的大小为32arctan,则该正四棱柱的高等于____________.【答案】【解析】试题分析:连结BD,则由题意得11122tan 33DD DBD DD BD ∠==⇒=⇒=.考点:线面角7.方程3sin 1cos 2x x =+在区间[]0,2π上的解为___________ .【答案】566ππ, 【解析】试题分析:化简3sinx 1cos 2x =+得:23sinx 22sin x =-,所以22sin x 3sinx 20+-=,解得1sinx 2=或sinx 2=-(舍去),又[]0,2πx ∈,所以566x ππ=或. 考点:二倍角公式及三角函数求值.8.在nx x ⎪⎭⎫ ⎝⎛-23的二项展开式中,所有项的二项式系数之和为256,则常数项等于_________. 【答案】112 【解析】试题分析:由二项式定理得:所有项的二项式系数之和为n2,即n2256=,所以n 8=,又二项展开式的通项为84r r 8rr r r 33r 1882T C ()(2)C x x --+=-=-,令84r 033-=,所以r 2=,所以3T 112=,即常数项为112.考点:二项式定理.9.已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.【解析】试题分析:利用余弦定理可求得最大边7所对应角的余弦值为22235712352+-=-⨯⨯,所以此角的正弦值2R=,所以R=.考点:正弦、余弦定理.10.设.0,0>>ba若关于,x y的方程组11ax yx by+=⎧⎨+=⎩,无解,则ba+的取值范围是____________.【答案】2+∞(,)【解析】试题分析:将方程组中上面的式子化简得y1ax=-,代入下面的式子整理得(1ab)x1b-=-,方程组无解应该满足1ab0-=且1b0-≠,所以ab1=且b1≠,所以由基本不等式得a b2+>=,即ba+的取值范围是2+∞(,).考点:方程组的思想以及基本不等式的应用.11.无穷数列{}na由k个不同的数组成,nS为{}na的前n项和.若对任意Nn*∈,{}3,2∈nS,则k的最大值为________.【答案】4考点:数列的项与和.12.在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线21xy-=上一个动点,则BABP⋅的取值范围是_____________.【答案】【解析】试题分析:由题意设(cos ,sin )P αα, ,则(cos ,1sin )BP αα=+,又,所以π=cos sin )+1[0,14BP BA ααα⋅+++∈+.考点:1.数量积的运算;2.数形结合的思想.13.设[),,0,2πa b R c ∈∈.若对任意实数x 都有()c bx a x +=⎪⎭⎫ ⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为 . 【答案】4【解析】试题分析:当2a =时,5sin(3)sin(32)sin(3)333πππx x πx -=-+=+,5(,)(3,)3πb c =,又4sin(3)sin[(3)]sin(3)333πππx πx x -=--=-+,4(,)(3,)3πb c =-,注意到[0,2)c π∈,所以只有2组:5(23,)3π,, 4(23,)3π-,满足题意;当2a =-时,同理可得出满足题意的()c b a ,,也有2组,故共有4组.考点:三角函数14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点ji A A ,,点P 满足=++j i OA OA OP ,则点P 落在第一象限的概率是_____________.【答案】528【解析】试题分析:[0,π]α∈(1,1)BA =共有2828C =种基本事件,其中使点P 落在第一象限的情况有2325C +=种,故所求概率为528.考点:古典概型三、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得五分,否则一律得零分.15.设R a ∈,则“1>a ”是“12>a ”的( ).(B )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 【答案】A【解析】试题分析:2211,111a a a a a >⇒>>⇒><-或,所以“1>a ”是“12>a ”的充分非必要条件,选A.考点:充要条件17.下列极坐标方程中,对应的曲线为如图的是( ).(B )θρcos 56+= (B )65sin ρθ=+ (C )θρcos 56-= (D )65sin ρθ=- 【答案】D【解析】试题分析:依次取30,,,22ππθπ=,结合图形可知只有65sin ρθ=-满足,选D.考点:极坐标方程18.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()2N n S S n *<∈恒成立的是( ).7.06.0,01<<>q a (B )6.07.0,01-<<-<q a(C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a 【答案】B考点:1.数列的极限;2.等比数列求和.18.设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均是增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( ).(A )①和②均为真命题 (B )①和②均为假命题(C )①为真命题,②为假命题 (D )①为假命题,②为真命题【答案】D 【解析】 试题分析:因为[()g(x)][()(x)][g()(x)]()2f x f x h x h f x +++-+=,所以[(+)g(+)][(+)(+)][g(+)(+)](+)2f x T x T f x T h x T x T h x T f x T +++-+=,又()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,所以[()g()][()()][g()()](+)=()2f x x f x h x x h x f x T f x +++-+=,所以()f x 是周期为T 的函数,同理可得()g x 、()h x 均是以T 为周期的函数,②正确;()f x 、()g x 、()h x 中至少有一个增函数包含一个增函数、两个减函数;两个增函数、一个减函数;三个增函数,其中当三个函数中一个为增函数、另两个为减函数时,由于减函数加减函数一定为减函数,所以①不正确.选D.考点:1.抽象函数;2.函数的单调性;3.函数的周期性.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本题共有2个小题,第一小题满分6分,第二小题满分6分. 将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B长为3π,其中1B 与C 在平面11AAOO 的同侧. (1)求三棱锥111C O A B -的体积;(2)求异面直线1B C 与1AA 所成的角的大小.【答案】(1;(2)π4.【解析】试题分析:(1)由题意可知,圆柱的高1h =,底面半径1r =,1113π∠A O B =,再由三角形面积公式计算111S ∆O A B 后即得.(2)设过点1B 的母线与下底面交于点B ,根据11//BB AA ,知1C ∠B B或其补角为直线1CB 与1AA 所成的角,再结合题设条件确定πC 3∠OB =,C 1B =.得出1πC 4∠B B =即可.试题解析:(1)由题意可知,圆柱的高1h =,底面半径1r =.由11A B 的长为π3,可知111π3∠A O B =.11111111111sin 2S ∆O A B =O A ⋅O B ⋅∠A O B =111111C 1V 3S h -O A B ∆O A B =⋅=.从而直线1C B 与1AA 所成的角的大小为π4.考点:1.几何体的体积;2.空间角.20.(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分. 有一块正方形菜地EFGH ,EH 所在直线是一条小河.收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等,现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图.(3)求菜地内的分界线C 的方程;(4)菜农从蔬菜运量估计出1S 面积是2S 面积的两倍,由此得到1S 面积的“经验值”为38.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于1S 面积的经验值.【答案】(1)24y x =(02y <<);(2)矩形面积为52,五边形面积为114,五边形面积更接近于1S 面积的“经验值”.【解析】试题分析:(1)由C 上的点到直线EH 与到点F 的距离相等,知C 是以F 为焦点、以EH 为准线的抛物线在正方形FG E H 内的部分.(2)通过计算矩形面积,五边形面积,以及计算矩形面积与“经验值”之差的绝对值,五边形面积与“经验值”之差的绝对值,比较二者大小即可.试题解析:(1)因为C 上的点到直线EH 与到点F 的距离相等,所以C 是以F 为焦点、以EH 为准线的抛物线在正方形FG E H 内的部分,其方程为24y x =(02y <<).(2)依题意,点M 的坐标为1,14⎛⎫⎪⎝⎭.所求的矩形面积为52,而所求的五边形面积为114.矩形面积与“经验值”之差的绝对值为581236-=,而五边形面积与“经验值”之差 的绝对值为11814312-=,所以五边形面积更接近于1S 面积的“经验值”. 考点:1.抛物线的定义及其标准方程;2.面积计算.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b -=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点.(1)若l 的倾斜角为π2,1F AB ∆是等边三角形,求双曲线的渐近线方程;(2)设b =,若l 的斜率存在,且11()0F A F B AB +⋅=,求l 的斜率.【答案】(1)y =;(2).【解析】 试题分析:(1)设(),x y A A A ,根据题设条件得到()24413b b +=,从而解得2b 的值.(2)设()11,x y A ,()22,x y B ,直线:l ()2y k x =-与双曲线方程联立,得到一元二次方程,根据l 与双曲线交于两点,可得230k -≠,且()23610k ∆=+>.再设AB 的中点为(),x y M M M ,由()11F F 0A +B ⋅AB =即1F 0M ⋅AB =,从而得到1F 1kk M⋅=-,进而构建关于k 的方程求解即可. 试题解析:(1)设(),x y A A A .由()22132y x y k x ⎧-=⎪⎨⎪=-⎩,得()222234430kx k x k --++=.因为l 与双曲线交于两点,所以230k -≠,且()23610k ∆=+>.设AB 的中点为(),x y M M M .由()11F F 0A +B ⋅AB =即1F 0M ⋅AB =,知1F M ⊥AB ,故1F 1k k M⋅=-.而2122223x x k x k M +==-,()2623k y k x k M M =-=-,1F 2323k k k M =-,所以23123k k k ⋅=--,得235k =,故l 的斜率为155±. 考点:1.双曲线的几何性质;2.直线与双曲线的位置关系;3.平面向量的数量积.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知a R ∈,函数21()log ()f x a x =+.(1)当5a =时,解不等式()0f x >; (2)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰好有一个元素,求a的取值范围;(3)设0a >,若对任意1[,1]2t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.【答案】(1)()1,0,4x ⎛⎫∈-∞-+∞ ⎪⎝⎭;(2)(]{}1,23,4;(3)2,3⎡⎫+∞⎪⎢⎣⎭.【解析】试题分析:(1)由21log 50x ⎛⎫+> ⎪⎝⎭,得151x +>,从而得解.(2)将其转化为()()24510a x a x -+--=,讨论当4a =、3a =时,以及3a ≠且4a ≠时的情况即可.(3)讨论()f x 在()0,+∞上的单调性,再确定函数()f x 在区间[],1t t +上的最大值与最小值之差,从而得到()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立. 试题解析:(1)由21log 50x ⎛⎫+> ⎪⎝⎭,得151x +>, 解得()1,0,4x ⎛⎫∈-∞-+∞ ⎪⎝⎭.(2)()1425a a x a x +=-+-,()()24510a x a x -+--=,当4a =时,1x =-,经检验,满足题意. 当3a =时,121x x ==-,经检验,满足题意.当3a ≠且4a ≠时,114x a =-,21x =-,12x x ≠.1x 是原方程的解当且仅当11a x +>,即2a >; 2x 是原方程的解当且仅当21a x +>,即1a >.于是满足题意的(]1,2a ∈.综上,a 的取值范围为(]{}1,23,4.因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,12t =时,y 有最小值3142a -,由31042a -≥,得23a ≥. 故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭.考点:1.对数函数的性质;2.函数与方程;3.二次函数的性质.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,N )p q a a p q =∈,必有11p q a a ++=,则称{}n a 具有性质P . (1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+,判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin (N )n n n a b a n +=+∈.求证:“对任意1,{}n a a都具有性质P ”的充要条件为“{}n b 是常数列”.【答案】(1)16;(2){}n a 不具有性质P ,理由见解析;(3)见解析.【解析】 试题分析:(1)根据已知条件,得到678332a a a a ++=++,结合67821a a a ++=求解即可.(2)根据{}n b 的公差为20,{}n c 的公比为13,写出通项公式,从而可得520193nn n n a b c n -=+=-+.通过计算1582a a ==,248a =,63043a =,26a a ≠,即知{}n a 不具有性质P .(3)从充分性、必要性两方面加以证明,其中必要性用反证法证明. 试题解析:(1)因为52a a =,所以63a a =,743a a ==,852a a ==. 于是678332a a a a ++=++,又因为67821a a a ++=,解得316a =.(2){}n b 的公差为20,{}n c 的公比为13,所以()12012019n b n n =+-=-,1518133n n n c --⎛⎫=⋅= ⎪⎝⎭.520193nn n n a b c n -=+=-+. 1582a a ==,但248a =,63043a =,26a a ≠, 所以{}n a 不具有性质P .[证](3)充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=.充分性得证.必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N , 使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠.设()sin f x x x b =--,取m *∈N ,使得πm b >,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在c 使得()0f c =.考点:1.等差数列、等比数列的通项公式;2.充要条件的证明;3.反证法.祝福语祝你考试成功!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年普通高等学校招生全国统一考试
理科数学(全国1卷)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.
3.全部答案在答题卡上完成,答在本试题上无效.
4.考试结束后,将本试题和答题卡一并交回.
第Ⅰ卷
一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合

,则
(A)
(B)
(C)
(D)
2.设
,其中
是实数,则
(A)1(B)
(C)
(D)2
3.已知等差数列
前9项的和为27,
,则
(A)100(B)99(C)98(D)97
4.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是
(A)
(B)
(C)
(D)
5.已知方程
表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是
(A)
(B)
(C)
(D)
6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是
,则它的表面积是
(A)17π(B)18π(C)20π(D)28π
7.函数

的图像大致为
8.若
,则
(A)
(B)
(C)
(D)
9.执行右面的程序图,如果输入的
,则输出
的值满足
(A)
(B)
(C)
(D)
10.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的标准线于D、E两点.已知|AB|=
,|DE|=
,则C的焦点到准线的距离为
(A)2 (B)4 (C)6 (D)8
11.平面
过正方体
的顶点

平面

平面

平面
,则
所成角的正弦值为
(A)
(B)
(C)
(D)
12.已知函数

的零点,

图像的对称轴,且

单调,则
的最大值为
(A)11 (B)9 (C)7 (D)5


本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.
二、填空题:本大题共3小题,每小题5分
13.设向量
,
且,则m=______
14.
的展开式中,
的系数是_______.(用数字填写答案)
15.设等比数列满足
,则
的最大值为______。

16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料。

生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元。

该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为__________元。

三.解答题:解答应写出文字说明,证明过程或演算步骤.
17.(本题满分为12分)
的内角A,B,C的对边分别别为a,b,c,已知

)求


)若
面积为
,求
的周长.
18.(本题满分为12分)
如图,在以
为顶点的五面体中,面
为正方形,

,且二面角
D与二面角
都是


)证明平面


)求二面角
的余弦值.
19.(本小题满分12分)
某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记
表示2台机器三年内共需更换的易损零件数,
表示购买2台机器的同时购买的易损零件数.
(I)求
的分布列;

)若要求
,确定
的最小值;

)以购买易损零件所需费用的期望值为决策依据,在

之中选其一,应选用哪个?
20. (本小题满分12分)
设圆
的圆心为
,直线
过点
且与
轴不重合,
交圆


两点,过

的平行线交
于点
.
(I)证明
为定值,并写出点
的轨迹方程;

)设点
的轨迹为曲线
,直线


两点,过
且与
垂直的直线与圆
交于
两点,求四边形
面积的取值范围.
21.(本小题满分12分)
已知函数
有两个零点.
(I)求
的取值范围;
(II)设
是的两个零点,证明:
.
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
22.(本小题满分10分)选修4-1:几何证明选讲
如图,
是等腰三角形,
.以⊙
为圆心,
为半径作圆.
(I)证明:直线
与⊙
相切;
(II)点
C,D在⊙
上,且
四点共圆,证明:
.
23.(本小题满分10分)选修4—4:坐标系与参数方程
在直线坐标系
中,曲线
的参数方程为

为参数,

在以坐标原点为极点,
轴正半轴为极轴的极坐标系中,曲线
.
(I)说明
是哪种曲线,并将
的方程化为极坐标方程;
(II)直线
的极坐标方程为
,其中满足
,若曲线

的公共点都在
上,求
24.(本小题满分10分),选修4—5:不等式选讲
已知函数
.
(I)在答题卡第(24)题图中画出
的图像
(II)求不等式
的解集。

相关文档
最新文档