人教版数学九年级上册《二次函数》PPT
合集下载
人教版九年级数学上册《二次函数y=ax2的图象与性质》二次函数PPT精品课件
课堂检测
巩固练习
对应训练
第二十二章 二次函数
《超越训练》 P34:例2+达标训练
课堂检测
基础巩固题
第二十二章 二次函数
1.函数y=2x2的图象的开口向上 , 对称轴y轴
是 (0,0) ; 在对称轴的左侧,y随x的增大而 减小 ,
,顶点 y
在对称轴的右侧, y随x的增大而 增大 .
O
x
2.函数y=-3x2的图象的开口 向下 ,对称 y轴
2
口大小与a的大小有什么关系?
的图象开
当a<0时,a越小(即a的绝对 值越大),开口越小.
-4 -2 -2
24
-4
-6
y 1 x2 2
-8
y x2
y 2x2
对于抛物线 y = ax 2 ,|a|越大,抛物线的开口越小.
知识探究 归纳
y=ax2 图象
位置开 口方向
对称性 顶点最值
增减性
第二十二章 二次函数
1.y=x2的图象是一条抛物线; 2.图象开口向上; 3.图象关于y轴对称; 4.顶点( 0 ,0 ); 5.图象有最低点.
y y=x2
o
x
知识探究
第二十二章 二次函数
说说二次函数y=-x2的图象有哪些性质,并与同伴交
流.
1.y=-x2的图象是一条 抛物线;
y
o
x
2.图象开口向下;
3.图象关于y轴对称;
画出函数y=-x2的图象.
x … -3 -2 -1 0 1 2 3 …
y=-x2 … -9 -4 -1 0 -1 -4 -9 …
y -4 -2 0 2 4 x
-3
-6 -9
人教版九年级上册数学二次函数课件
当a=0时,这个函数不是 二次函数,有可能是一次函数.
自主探究
问题: (3)b或c能为0吗?
当b≠0时,是一次函数, 当b=0时, 是常数函数关于x的函数 y m 1 xm2m
是二次函数,求m的值.
分析:若 y m 1 xm2m 是二次函数,须满
足的条件是 m2 m 2, m 1 0.
自主探究
1.问题探究 (1)正方体的六个面是全等的正方形,如果 正方体的棱长为x,表面积为y,那么y与x的关 系可以怎样表示?
y 6x2
(2) n边形的对角线条数d与边数n之间有怎
样的关系?
d 1 n2 3 n
2
2
自主探究
(3)某工厂一种产品现在的年产量是20件, 计划今后两年增加产量,如果每年都比上一 年的产量增加x倍,那么两年后这种产品的产 量y将随计划所定的x的值而定,y与x之间的关 系应怎样表示?
第二十二章 二次函数 22.1 二次函数的图象和性质
22.1.1 二次函数
情境引入
欣赏下面两幅图片:
姚明一次精彩的投球
情境引入
广场前喷水池喷出的水珠
情境引入
篮球和水珠在空中走过一条曲线, 在曲线的各个位置上,篮球(水珠)的 竖直高度h与它距离投出位置(喷头)的 水平距离x之间有什么关系?上面问题中 变量之间的关系可以用二次函数来表示.
y 20x2 40x 20.
自主探究
2.视察思考
请视察下面三个式子,它们的变量对应规律可
用怎样的函数表示?这些函数有什么共同特点?请
你结合学习一次函数概念的经验,给它下个定义.
(1) y 6 x2 ;
(2)d
1 2
n2
3 2
n;
具有
自主探究
问题: (3)b或c能为0吗?
当b≠0时,是一次函数, 当b=0时, 是常数函数关于x的函数 y m 1 xm2m
是二次函数,求m的值.
分析:若 y m 1 xm2m 是二次函数,须满
足的条件是 m2 m 2, m 1 0.
自主探究
1.问题探究 (1)正方体的六个面是全等的正方形,如果 正方体的棱长为x,表面积为y,那么y与x的关 系可以怎样表示?
y 6x2
(2) n边形的对角线条数d与边数n之间有怎
样的关系?
d 1 n2 3 n
2
2
自主探究
(3)某工厂一种产品现在的年产量是20件, 计划今后两年增加产量,如果每年都比上一 年的产量增加x倍,那么两年后这种产品的产 量y将随计划所定的x的值而定,y与x之间的关 系应怎样表示?
第二十二章 二次函数 22.1 二次函数的图象和性质
22.1.1 二次函数
情境引入
欣赏下面两幅图片:
姚明一次精彩的投球
情境引入
广场前喷水池喷出的水珠
情境引入
篮球和水珠在空中走过一条曲线, 在曲线的各个位置上,篮球(水珠)的 竖直高度h与它距离投出位置(喷头)的 水平距离x之间有什么关系?上面问题中 变量之间的关系可以用二次函数来表示.
y 20x2 40x 20.
自主探究
2.视察思考
请视察下面三个式子,它们的变量对应规律可
用怎样的函数表示?这些函数有什么共同特点?请
你结合学习一次函数概念的经验,给它下个定义.
(1) y 6 x2 ;
(2)d
1 2
n2
3 2
n;
具有
人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件
新知探究
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的
根有什么关系?
抛物线y=ax2+bx+c(a≠0)
一元二次方程ax2+bx+c=0
与x轴的公共点的个数
(a≠0)的根的情况
b2-4ac>0
有两个
有两个不相等的实数根
b2-4ac=0
有一个
有两个相等的实数根
P(2,-2)
重复上述过程,不断缩小根的范围,根所在两端的值就越来越
接近根的值.因而可以作为根的近似值。
尝试求出方程y = 2 − 2 − 2两个根的近似值?
课堂练习
1. 抛物线 = 2 + 2 − 3与轴的交点个数有(
. 0个
. 1个
C.2个
C ).
D.3个
【分析】解二次函数 = 2 + 2 − 3得1 =
第二十二章 二次函数
2 2 . 2 二次函数与一元二次方程
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.二次函数与一元二次方程之间的联系。
2.二次函数的图象与x轴交点的三种位置关系。
3.利用二次函数图象求它的实数根。
重点难点
重点:让学生理解二次函数与一元二次方程之间的联系。
难点:让学生理解函数图象交点问题与对应方程间的相互转化,及用图象求方程
x1=x2 =-
x
2
与x轴没有
交点
一元二次方程
ax2+bx+c=0
(a≠0)的根
x
没有实数根
新知探究
《二次函数y=ax2+bx+c的图像和性质》二次函数PPT精品课件
和一次项同时提取公因数a,再进行配方会更简便.
3. 将二次函数y=-
1
4
x2+x+4写成y=a(x-h)2+k的形
式,并写出其开口方向、顶点坐标和对称轴.
解:y=-
x2+x+4=-
(x2-4x+4-4)+4=-
(x
-2)2+5,
∴此抛物线的开口向下,顶点坐标是(2,5),对称轴为直
线x=2.
2-_______.
=(x+_______)
4
15
2. 配方:y=2x2-4x+1
=2(x2-2x)+1
=2(x2-2x+______________-______________)+1
1
1
2-______________.
=2(x-______________)
1
1
课堂导练
【例1】利用配方法把抛物线y=x2-6x-3化为y=a(x-h)2
形式,并写出其开口方向、顶点坐标和对称轴.
解:y=x2-8x+16-16=(x-4)2-16,
∴该抛物线开口向上,顶点坐标为(4,-16),对称轴
为直线x=4.
【例2】用配方法把二次函数y=x2-x+2化成顶点式.
解:y=x2-x+2=x2-x+
即y= −
2
+
-
+2= −
新知探究
课堂小结
这节课你收获了什么? 还有什么疑惑?
新知探究
新知探究
新知探究
2
+
,
.
思路点拨:利用一次项系数的一半的平方来凑完全平方式
3. 将二次函数y=-
1
4
x2+x+4写成y=a(x-h)2+k的形
式,并写出其开口方向、顶点坐标和对称轴.
解:y=-
x2+x+4=-
(x2-4x+4-4)+4=-
(x
-2)2+5,
∴此抛物线的开口向下,顶点坐标是(2,5),对称轴为直
线x=2.
2-_______.
=(x+_______)
4
15
2. 配方:y=2x2-4x+1
=2(x2-2x)+1
=2(x2-2x+______________-______________)+1
1
1
2-______________.
=2(x-______________)
1
1
课堂导练
【例1】利用配方法把抛物线y=x2-6x-3化为y=a(x-h)2
形式,并写出其开口方向、顶点坐标和对称轴.
解:y=x2-8x+16-16=(x-4)2-16,
∴该抛物线开口向上,顶点坐标为(4,-16),对称轴
为直线x=4.
【例2】用配方法把二次函数y=x2-x+2化成顶点式.
解:y=x2-x+2=x2-x+
即y= −
2
+
-
+2= −
新知探究
课堂小结
这节课你收获了什么? 还有什么疑惑?
新知探究
新知探究
新知探究
2
+
,
.
思路点拨:利用一次项系数的一半的平方来凑完全平方式
人教版数学九年级上册第二十二章《二次函数》课件(共22张)
解:因为第1档次的产品一天能生产 95 件,每件利润 6 元,每 提高一个档次,每件利润增加 2 元,但一天产量减少 5 件, 所以第 x 档次,提高了(x−1)档,利润增加了 2(x−1)元. 所以 y=[6+2(x−1)][95−5(x−1)], 即 y=−10x2+180x+400(其中 x 是正整数,且1≤x≤10).
2.一个圆柱的高等于底面半径,写出它的表面积 S 与底面半径 r 之间的关系式.
解:由圆柱的表面积=2×圆柱的底面积+圆柱的侧面积, 得 S=2πr2+2πr•r=4πr2.
3.如图,矩形绿地的长、宽各增加 x m,写出扩充后的绿地的面 积 y 与 x 的关系式.
解:由图可得,扩充后的绿地的面积y(m2)与 x(m) 之间的函数关系式是y=(30+x)(20+x)=x2+50x+600, 即 y=x2+50x+600.
这个函数与我们学过的函数不同,其中自变量x的最高次数是2. 这类函数具有哪些性质呢?这就是本章要学习的二次函数.
合作探究
n 个球队参加比赛,每两队之间进行一场比赛,比赛的场次数 m 与球队数 n 有什么关系?
分析:每个球队要与其他 (n-1) 个球队各比赛一场,甲队对乙队的比赛与乙
队对甲队的比赛是同一场比赛,所以比赛的场次数为
形如 y=ax²+bx+c (a,b,c是常数,a≠ 0)的函数叫做二次函数.其中 x 是自变量,a,b,c 分别是二次项系数、一次项系数和常数项.
(1)等号左边是变量y,右边是关于自变量x的整式; (2)a,b,c为常数,且a≠ 0; (3)等式的右边最高次数为 2,可以没有一次项和常数项,但 不能没有二次项.
2.一个圆柱的高等于底面半径,写出它的表面积 S 与底面半径 r 之间的关系式.
解:由圆柱的表面积=2×圆柱的底面积+圆柱的侧面积, 得 S=2πr2+2πr•r=4πr2.
3.如图,矩形绿地的长、宽各增加 x m,写出扩充后的绿地的面 积 y 与 x 的关系式.
解:由图可得,扩充后的绿地的面积y(m2)与 x(m) 之间的函数关系式是y=(30+x)(20+x)=x2+50x+600, 即 y=x2+50x+600.
这个函数与我们学过的函数不同,其中自变量x的最高次数是2. 这类函数具有哪些性质呢?这就是本章要学习的二次函数.
合作探究
n 个球队参加比赛,每两队之间进行一场比赛,比赛的场次数 m 与球队数 n 有什么关系?
分析:每个球队要与其他 (n-1) 个球队各比赛一场,甲队对乙队的比赛与乙
队对甲队的比赛是同一场比赛,所以比赛的场次数为
形如 y=ax²+bx+c (a,b,c是常数,a≠ 0)的函数叫做二次函数.其中 x 是自变量,a,b,c 分别是二次项系数、一次项系数和常数项.
(1)等号左边是变量y,右边是关于自变量x的整式; (2)a,b,c为常数,且a≠ 0; (3)等式的右边最高次数为 2,可以没有一次项和常数项,但 不能没有二次项.
人教版九年级初中数学上册第二十二章二次函数-二次函数的图像和性质PPT课件全文
你还记得如何画出一次函数的图像吗?
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:
…
-2
-1
0
1
2
…
…
4
1
0
1
2
…
新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:
…
-2
-1
0
1
2
…
…
4
1
0
1
2
…
新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?
人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)
当已知二次函数 y 值,求自变量 x值时,可以看作是解对应的一 元二次方程.相反地,由解一元二次方程,又可看作是二次函数值 为0时,求自变量x的值
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
人教九年级数学上册《二次函数图像与性质》课件(共14张PPT)
(3) 二次函数的图象是什么 形 状呢?
结合图象讨论
性质是数形结合
的研究函数的重要 方法.我们得从最 简单的二次函数开 始逐步深入地讨论 一般二次函数的图 象和性质.
画最简单的二次函数 y = x2 的图象
1. 列表:在y = x2 中自变量x可以是任意实数,列表表示几组对应值:
x ··· -3 -2 -1 0
2 0.5
0 0.5 2 4.5
···
8
x
·· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
·
y 2x2 ·· 8 4.5 2 0.5 0 0.5 2 4.5 8 ···
·
y x2
y 2x2
8
6
4
y 1 x2
2
2
-4 -2
24
函数 y 1 x2 , y 2x2 的图象与函数 y=x2 的图象相比 ,有什么共同2 点和不同点?
相同点:开口:向上, 顶点:原点(0,0)——最低点 对称轴: y 轴
增减性:y 轴左侧,y随x增大而减小
y 轴右侧,y随x增大而增大
y x2
8 6
y 2x2
不同点:a 值越大,抛物线的开 口越小.
4 2 -4 -2
y 1 x2 2
24
探究
画出函数 yx2,y1x2,y2x2 的图象,并考虑这些抛物 2
1
2
3 ···
y = x2 ··· 9 4 1 0 1 4 9 ···
2. 根据表中x,y的数值在坐标平面中描点(x,y)
3.连线 如图,再用平滑曲线顺次
9
连接各点,就得到y = x2 的图象
.
6
y = x2
人教版九年级数学上册《二次函数y=a(x-h)_+k的图象和性质》第1课时 课件(共22张PPT)
复习回顾
二次函数 =
>0
的图像和性质
<0
图像
开口方向
对称轴
顶点
<0
增减性
>0
开口大小
向上
向下
轴
轴
(0,0) (0,0) 最低点ቤተ መጻሕፍቲ ባይዱ
(0,0) (0,0) 最高点
随 的增大而减小
随 的增大而增大
随 的增大而增大
随 的增大而减小
越大,开口越小
探究二次函数 =
2
+ ≠ 0 的图像和性质
1 在同一个直角坐标系中画出 1 = 22,2 = 22 + 1,3 = 22 − 1 的图象.
1. 列表
1 =
···
2
2
2 = 22 + 1
3 =
2
2
−1
−2 −1.5 −1 −0.5
0
0.5
1
1.5
2
···
···
8
4.5
2
0.5
0
0.5
(0, ) 最高点
函数性质
最值
有最小值是
有最大值是
探究二次函数 =
2
+ ≠ 0 的图像和性质
6 抛物线 = 2 + 的性质.
图像从左至右 在对称轴左侧
的变化趋势 在对称轴右侧
增减性
>0
<0
下降
上升
上升
下降
>0
<0
<0
随 的增大而减小 随 的增大而增大
二次函数 =
>0
的图像和性质
<0
图像
开口方向
对称轴
顶点
<0
增减性
>0
开口大小
向上
向下
轴
轴
(0,0) (0,0) 最低点ቤተ መጻሕፍቲ ባይዱ
(0,0) (0,0) 最高点
随 的增大而减小
随 的增大而增大
随 的增大而增大
随 的增大而减小
越大,开口越小
探究二次函数 =
2
+ ≠ 0 的图像和性质
1 在同一个直角坐标系中画出 1 = 22,2 = 22 + 1,3 = 22 − 1 的图象.
1. 列表
1 =
···
2
2
2 = 22 + 1
3 =
2
2
−1
−2 −1.5 −1 −0.5
0
0.5
1
1.5
2
···
···
8
4.5
2
0.5
0
0.5
(0, ) 最高点
函数性质
最值
有最小值是
有最大值是
探究二次函数 =
2
+ ≠ 0 的图像和性质
6 抛物线 = 2 + 的性质.
图像从左至右 在对称轴左侧
的变化趋势 在对称轴右侧
增减性
>0
<0
下降
上升
上升
下降
>0
<0
<0
随 的增大而减小 随 的增大而增大
二次函数(1)PPT课件(人教版)
九年级上册人教版数学
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.1 二次函数
1.一般地,形如 y=ax2+bx+c(a,b,c 是常数,a≠0)的函数,叫做 __二__次__函__数_,其中 x 是自变量,a,b,c 分别是函数解析式的_二__次__项___系数、 一__次__项___系数和常数项.
14.边长为4 m的正方形中间挖去一个边长为x(m)(x<4)的小正方形,剩 余的四方框的面积为y(m2),则y与x之间的函数关系式为y_=__1_6_-__x_2_(_0_<__x_<_,4) 它是_二__次____函数.
15.若y=(m-1)xm2+2m-1+3. (1)m取什么值时,此函数是二次函数? (2)m取什么值时,此函数是一次函数?
解 : 降 低 x 元 后 , 所 销 售 的 件 数 是 (500 + 100x) , 则 y = (13.5 - 2.5 - x)(500+100x),即y=-100x2+600x+5500(0<x≤11)
18.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P 从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开 始沿边BC向C以4 mm/s的速度移动(不与点C重合).如果P,Q分别从A,B 同时出发,设运动的时间为x s,四边形APQC的面积为y mm2.
C.y=12(x-1)(x+4)不是二次函数 D.在 y=1- 2x2 中,一次项系数为 1
3.若y=(a+3)x2-3x+2是二次函数,则a的取值范围是__a_≠_-__3___. 4.对于二次函数y=1-3x+2x2,其二次项系数、一次项系数及常数 项的和是__0__. 5.已知两个变量x,y之间的关系式为y=(a-2)x2+(b+2)x-3. (1)当___a≠__2____时,x,y之间是二次函数关系; (2)当___a_=__2_且__b_≠_-__2_____时,x,y之间是一次函数关系.
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.1 二次函数
1.一般地,形如 y=ax2+bx+c(a,b,c 是常数,a≠0)的函数,叫做 __二__次__函__数_,其中 x 是自变量,a,b,c 分别是函数解析式的_二__次__项___系数、 一__次__项___系数和常数项.
14.边长为4 m的正方形中间挖去一个边长为x(m)(x<4)的小正方形,剩 余的四方框的面积为y(m2),则y与x之间的函数关系式为y_=__1_6_-__x_2_(_0_<__x_<_,4) 它是_二__次____函数.
15.若y=(m-1)xm2+2m-1+3. (1)m取什么值时,此函数是二次函数? (2)m取什么值时,此函数是一次函数?
解 : 降 低 x 元 后 , 所 销 售 的 件 数 是 (500 + 100x) , 则 y = (13.5 - 2.5 - x)(500+100x),即y=-100x2+600x+5500(0<x≤11)
18.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P 从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开 始沿边BC向C以4 mm/s的速度移动(不与点C重合).如果P,Q分别从A,B 同时出发,设运动的时间为x s,四边形APQC的面积为y mm2.
C.y=12(x-1)(x+4)不是二次函数 D.在 y=1- 2x2 中,一次项系数为 1
3.若y=(a+3)x2-3x+2是二次函数,则a的取值范围是__a_≠_-__3___. 4.对于二次函数y=1-3x+2x2,其二次项系数、一次项系数及常数 项的和是__0__. 5.已知两个变量x,y之间的关系式为y=(a-2)x2+(b+2)x-3. (1)当___a≠__2____时,x,y之间是二次函数关系; (2)当___a_=__2_且__b_≠_-__2_____时,x,y之间是一次函数关系.
人教版数学九年级上册第二十二章《22.1.3 二次函数y=a(x-h)2+k》课件
人教版数学九年级上册第二十二章
22.1.3 二次函数y=a(x-h)2+k y=a(x-h)2的图象和性质
复习巩固:
y
O
y=ax2和y=ax2+k 的图象和性质
yy==axa2x2+k(k>0)
重点关注5方面
x
yy==a-axx2+2 k(k>0)
开口方向 对称轴
顶点坐标
增减性
最值
复习巩固 1、二次函数y=ax2+k(a≠0)的图象性质.
复习巩固
2、二次函数 y=ax2+k(a≠0)与 y=ax2(a ≠0)
两个函数图象沿什么方向平移,由一个函数得到另一 个?平移规律是什么?
上下平移规律:上加下减.
3、 函数 y=a(x-h)2的图象,能否也可以由函数 y=ax2 平移得到?
学习新知
x
··· -4 -2 0 2 4 ···
··· 8 2 0 2 8 ···
x
··· -2 0 2 4 6 ···
··· 8 2 0 2 8 ···
学习新知
根据所画图象,填写下表:
抛物线
开口方 向
对称轴
顶点坐标
向上
y轴
(0,0)
函数
向上 直线x=2 (2,0)
的图象向右平移两个单位得到
的图象 .
学习新知
根据所画图象,填写下表:
抛物线
开口 方向
对称轴 顶点坐标
向上 y轴
(0,0)
3.将二次函数y=-2x2的图象平移后,可得到二次函 数 y=-2(x+1)2的图象,平移的方法是( C ) A.向上平移1个单位 B.向下平移1个单位 C.向左平移1个单位 D.向右平移1个单位
22.1.3 二次函数y=a(x-h)2+k y=a(x-h)2的图象和性质
复习巩固:
y
O
y=ax2和y=ax2+k 的图象和性质
yy==axa2x2+k(k>0)
重点关注5方面
x
yy==a-axx2+2 k(k>0)
开口方向 对称轴
顶点坐标
增减性
最值
复习巩固 1、二次函数y=ax2+k(a≠0)的图象性质.
复习巩固
2、二次函数 y=ax2+k(a≠0)与 y=ax2(a ≠0)
两个函数图象沿什么方向平移,由一个函数得到另一 个?平移规律是什么?
上下平移规律:上加下减.
3、 函数 y=a(x-h)2的图象,能否也可以由函数 y=ax2 平移得到?
学习新知
x
··· -4 -2 0 2 4 ···
··· 8 2 0 2 8 ···
x
··· -2 0 2 4 6 ···
··· 8 2 0 2 8 ···
学习新知
根据所画图象,填写下表:
抛物线
开口方 向
对称轴
顶点坐标
向上
y轴
(0,0)
函数
向上 直线x=2 (2,0)
的图象向右平移两个单位得到
的图象 .
学习新知
根据所画图象,填写下表:
抛物线
开口 方向
对称轴 顶点坐标
向上 y轴
(0,0)
3.将二次函数y=-2x2的图象平移后,可得到二次函 数 y=-2(x+1)2的图象,平移的方法是( C ) A.向上平移1个单位 B.向下平移1个单位 C.向左平移1个单位 D.向右平移1个单位
人教版九年级数学上册《二次函数顶点式的图像和性质》PPT
前几节课我们学习了哪几种类型的二次函数?
y ax2、
y ax2 k、 y a(x h)2
研究了它们的图象和性质
说出下列抛物线的开口方向、对称轴、顶点
抛物线 y 1 x2
2 y 1 x2 1
2 y 1 (x 2)2
2
开口方向 对称轴 顶点
向下 y轴 0, 0
向下 y轴 0, 1
A.y x 2 2 B.y x 2 2 6
C.y x2 6 D.y x2
5、已知点A 2, y1 、B 3, y2 在抛物线y x 12 1上,
则 y1
y2 (填“ ”、“ ”、“ ”)
若点A 3, y1 、B 2, y2 在抛物线y x 12 1上,
1抛物线y a(x h)2 k与y ax2
形状 相同, 位置 不同,
2抛物线y ax2经过 向上(或向下),
向左(或向右),平移,可以得到
抛物线y a(x h)2 k. 平移的方向、距离由h、k决定
1.抛物线y 5( x 2)2 6的开口方向、对称轴、 顶点,下列选项正确的是( )
向下直线x 2 2, 0
y 1 (x 2)2 1 向下直线x 2 2, 1 2
不画图象,类比说出抛物线的开口方向、对称轴、顶点
抛物线
开口方向 对称轴
顶点
y 1 (x 2)2 2
1
向下直线x 2
2, 1
y
1 ( x 2)2 2
1
向上直线x 2 2,1
2
抛物线
开口方向 对称轴 顶点
平移方法1:
y 1 x2 向下平移 y 1 x2 1 向右平移y 1 (x 2)2 1
2 1个单位
2
2个单位 2
y ax2、
y ax2 k、 y a(x h)2
研究了它们的图象和性质
说出下列抛物线的开口方向、对称轴、顶点
抛物线 y 1 x2
2 y 1 x2 1
2 y 1 (x 2)2
2
开口方向 对称轴 顶点
向下 y轴 0, 0
向下 y轴 0, 1
A.y x 2 2 B.y x 2 2 6
C.y x2 6 D.y x2
5、已知点A 2, y1 、B 3, y2 在抛物线y x 12 1上,
则 y1
y2 (填“ ”、“ ”、“ ”)
若点A 3, y1 、B 2, y2 在抛物线y x 12 1上,
1抛物线y a(x h)2 k与y ax2
形状 相同, 位置 不同,
2抛物线y ax2经过 向上(或向下),
向左(或向右),平移,可以得到
抛物线y a(x h)2 k. 平移的方向、距离由h、k决定
1.抛物线y 5( x 2)2 6的开口方向、对称轴、 顶点,下列选项正确的是( )
向下直线x 2 2, 0
y 1 (x 2)2 1 向下直线x 2 2, 1 2
不画图象,类比说出抛物线的开口方向、对称轴、顶点
抛物线
开口方向 对称轴
顶点
y 1 (x 2)2 2
1
向下直线x 2
2, 1
y
1 ( x 2)2 2
1
向上直线x 2 2,1
2
抛物线
开口方向 对称轴 顶点
平移方法1:
y 1 x2 向下平移 y 1 x2 1 向右平移y 1 (x 2)2 1
2 1个单位
2
2个单位 2
《二次函数》PPT优秀课件
说一说以上二次函数解析式的各项系数.
链接中考
1.下列函数解析式中,一定为二次函数的是( C )
A.y=3x-1 C.s=2t2-2t+1
B.y=ax2+bx+c
D.y=x2+
1
2
x
链接中考
2.已知函数 y=(m²﹣m)x²+(m﹣1)x+m+1. (1)若这个函数是一次函数,求m的值; (2)若这个函数是二次函数,则m的值应怎样? 解:(1)根据一次函数的定义,得m2﹣m=0,
探究新知
素养考点 1 二次函数的识别
例1 下列函数中是二次函数的有 ①⑤⑥ .
①√ y= 2x2 2
×③y x2(1 x2 ) 1
最高次数是4
⑤√ y=x( x 1)
×②y 2x2 x(1 2x) a=0
×④y
1 x2
x2
√⑥y
x4 x2 x2 1
=x2
二次函数:y=ax²+bx+c(a,b,c为常数,a≠0)
素养目标
2. 能根据实际问题中的数量关系列出二次函数 解析式,并能指出二次函数的项及各项系数.
1.掌握二次函数的定义,并能判断所给函数 是否是二次函数.
探究新知
知识点 1 二次函数的概念
问题1 正方体的六个面是全等的正方形(如下图),设正方
形的棱长为x,表面积为y,显然对于x的每一个值, y都 有一个对应值,即y是x的函数,它们的具体关系可以表 示为 y=6x2①.
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的 步骤: (1)将函数解析式右边整理为含自变量的代 数式,左边是函数(因变量)的形式; (2)判断右边含自变量的代数式是否是整式; (3)判断自变量的最高次数是否是2; (4)判断二次项系数是否不等于0.
链接中考
1.下列函数解析式中,一定为二次函数的是( C )
A.y=3x-1 C.s=2t2-2t+1
B.y=ax2+bx+c
D.y=x2+
1
2
x
链接中考
2.已知函数 y=(m²﹣m)x²+(m﹣1)x+m+1. (1)若这个函数是一次函数,求m的值; (2)若这个函数是二次函数,则m的值应怎样? 解:(1)根据一次函数的定义,得m2﹣m=0,
探究新知
素养考点 1 二次函数的识别
例1 下列函数中是二次函数的有 ①⑤⑥ .
①√ y= 2x2 2
×③y x2(1 x2 ) 1
最高次数是4
⑤√ y=x( x 1)
×②y 2x2 x(1 2x) a=0
×④y
1 x2
x2
√⑥y
x4 x2 x2 1
=x2
二次函数:y=ax²+bx+c(a,b,c为常数,a≠0)
素养目标
2. 能根据实际问题中的数量关系列出二次函数 解析式,并能指出二次函数的项及各项系数.
1.掌握二次函数的定义,并能判断所给函数 是否是二次函数.
探究新知
知识点 1 二次函数的概念
问题1 正方体的六个面是全等的正方形(如下图),设正方
形的棱长为x,表面积为y,显然对于x的每一个值, y都 有一个对应值,即y是x的函数,它们的具体关系可以表 示为 y=6x2①.
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的 步骤: (1)将函数解析式右边整理为含自变量的代 数式,左边是函数(因变量)的形式; (2)判断右边含自变量的代数式是否是整式; (3)判断自变量的最高次数是否是2; (4)判断二次项系数是否不等于0.
人教版九年级数学上册第22章第1节二次函数的图像和性质(共46张PPT)
1.y=x2 8x 7
2.y=-2x2 9x 17
3.y=mx2 kx-4k2
x
⑶a,b决定抛物线对称轴的位置: 对称轴是直线x =
b 2a
① a,b同号<=> 对称轴在y轴左侧;
② b=0 <=> 对称轴是y轴;
③ a,b异号<=> 对称轴在y轴右侧
y
左同右异
o
x
练习:
1.若抛物线yax2 bxc的图象如图,说出a,b,
c的符号。
2.若抛物线yax2 bxc经过原点和第一二三
象限,则a,b,c的取值范围分别是
3.若抛物线yax2 bxc的图象
如图所示,则一次函数y=ax+bc
的图象不经过
。y
。 y ox
o 图1
x 图2
y abc 0 ( 4 ) 与 直 线 x1 交 点 y a b c 0
y a b c 0
方法归纳
1
配方法
2
公式法
二次函数y=ax2+bx+c(a≠0)的图象和性质
1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表:
抛物线 顶点坐标
对称轴 位置
y=ax2+bx+c(a>0)
b 2a
,
4acb2 4a
直线x b
2a
由a,b和c的符号确定
y=ax2+bx+c(a<0)
小结 拓展 回味无穷 驶向胜利 的彼岸
二次函数y=ax2+bx+c(a≠0)与=ax²的关系
2.不同点:
(1)位置不同(2)顶点不同:分别是
b 2a
,
4acb2 4a
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题
二次函数的图你象用经了过什(么2方,法0 ?)
解
(4,5)、(你-的1、方0法)简三单点吗。?
析
小 结: 能够从题目条件中总结 二次函数的特征,采用 适当的二次函数的解析 式形式,使问题简单化。
例4.已知二次函数 y x2 2kx k 2 k 2
(1)当k为何值时,函数图象经过原点?
点 二、图象 式
三个点
总 结
顶 三、性质 点
式
已知顶点
y=a(x-h)2+k
(h,k)及 另一点
四解析式
交 点
式
y=a(x-x1) (x-x2)
已知与x 轴的两个 交点返及回另 一个点
抛物线与X轴、Y轴的交点坐标:
y ax2 bx c
与x轴交点,令y=0; 与y轴交点,令x=0
抛物线的平移:
④连线
• • • (-1,-2)
(0,-3–2)
例2: (1)求已抛知物二线次开函口数方y=向—12,x2对+x称-—32轴和顶点M的坐标。
经 (2)设抛物线与y轴交于C点,与x轴交于A、B两点,
求C, A,B的坐标。
典
(3)画出函数图象的示意图。 (4)求ΔMAB的周长及面积。
例
(5)x为何值时,y随的增大而减小,x为何值时, y有最大(小)值,这个最大(小)值是多少?
y a(x b )2 4ac b2 2a 4a
开口方向 顶点坐标
(0,0)
当a>0时开口向上,并向上无限延伸;
当a<0时开口向下,并向下无限延伸.
(0,c) (h,0)
(h,k)
b 4ac b2
( ,
)
2a
4a
对称轴
y轴
y轴 直线 x h 直线 x h
直线 x b
总
y叫做x的二次函数。
结 三、性质
四解析式
返回
知 识
二次函数y=ax2+bx+c
一、概念
配方后得: y=a(x+ 2ba)2
+
4ac-b2 4a
点 二、图象
总 结 三、性质
0
–
b 2a
四解析式
返回
二次函数的图象及性质
抛物线
y ax2
y ax2 c y a(x h)2 y a(x h)2 k y ax2 bx c
(2)当k在什么范围取值时,图象的顶点在第 四象限?
练习:
1.二次函数y=aχ2+bχ+c的图象如下图所
示,试判断下列各式的符号
y
1、a 、 b 、 c
2、2a+b,2a-b,
1
3、 b2 4ac
-1
0
x 4、a+b+c 5、a-b+c
a b c 2a+b
2a-b
b2-4ac a+b+c a-b+c 4a+2b+c 4a-2b+c
二次函数复习
第一课时
新课标 知识结构 概念理解 经典考题
通过对实际问题情境的分析确定二次
新 函数的表达式,体会二次函数的意义
课 标 内
会用描点法画二次函数的图象, 能从图象上认识二次函数的性质。
容 会根据公式确定图象的顶点、开口
解 读
方向和对称轴(公式不要求推导和 记忆),并能解决简单的实际问题。
点 把二次函数y=ax2+bx+c(a≠0)的右边 二次三项式配方,得
x
总
y a(x b )2 4ac b2 (a 0)
2a
4a
结
点 (
b
4ac b2
,
)为抛物线的顶点,
y
2a 4a
b
x
直线 x 为抛物线的对称轴.
2a
练习2
练 (2)请写出函数y=x2+1与y=(x+1)2
会利用二次函数的图象求一元二 次、二元一次方程组的近似值。
返回
知
识二
结
次 函
数
构
二次函数图象 二次函数性质 二次函数解析返回
知 识 一、概念 点 二、图象 总 结 三、性质
四解析式
返回
知 一、概念 一般地,如果
识
y=ax2+bx+c(a,b,c
点 二、图象 是常数,a≠0),那么,
(6)x为何值时,y<0?x为何值时,y>0?
题 解:(1)∵a= —12 >0
解
∴抛物线的开口向上 ∵y= —12 (x2+2x+1)-2
析
=—1 (x+1)2-2 ∴对称轴x=-12 ,顶点坐标M(-1,-2)
例2: (1)求已抛知物二线次开函口数方y=向—12,x2对+x称-—32轴和顶点M的坐标。
解 (6)x为何值时,y<0?x为何值时,y>0?
析
例2: (1)求已抛知物二线次开函口数方y=向—12,x2对+x称-—32轴和顶点M的坐标。
经 (2)设抛物线与y轴交于C点,与x轴交于A、B两点,
求C, A,B的坐标。
典 (3)画出函数图象的示意图。 (4)求ΔMAB的周长及面积。
例 (5)x为何值时,y随的增大而减小,x为何值时, y有最大(小)值,这个最大(小)值是多少?
开口方向大小 向上a>0 向下a<o 对称轴与y轴比较 左侧ab同号 右侧ab异号
与y轴交点 交于上半轴c>o 下半轴c<0 b
- 2a 与1比较
b - 2a 与-1比较
与x轴交点个数 令x=1,看纵坐标 令x=-1,看纵坐标 令x=2,看纵坐标 令x=-2,看纵坐标
2.已知抛物线y=x2-kx+k+1,根据 下列条件,求k的值
具有的共同性质
.
习
巩 (3)用配方法把二次函数y=x2-2x-3
固
化成y = a(x-h)2+K的形式得 . 当x 时y随x的增大而增大.
你能快速画出
①画对称轴 ②确定顶点
它的示意图吗?
③确定与坐 标轴交点
④连 线
作业: P30 复习题 7
再见
返回
典
(3)画出函数图象的示意图。 (4)求ΔMAB的周长及面积。
例
(5)x为何值时,y随的增大而减小,x为何值时, y有最大(小)值,这个最大(小)值是多少?
题
解 (6)x为何值时,y<0?x为何x值=-时1 ,yy>0?
①画对称轴
解 • ②确定顶点 ③确定与坐标轴的
(-3,0)
•(1,0) x
0
析
交点及对称点
经 (2)设抛物线与y轴交于C点,与x轴交于A、B两点, 求C, A,B的坐标。
典 (3)画出函数图象的示意图。 (4)求ΔMAB的周长及面积。
例 (5)x为何值时,y随的增大而减小,x为何值时, y有最大(小)值,这个最大(小)值是多少?
(6)x为何值时,y<0?x为何值时,y>0?
题 解
解: (2)由x=0,得y= - -32—
M(-1,-2)
3 C(0,-2–)
例2: (1)求已抛知物二线次开函口数方y=向—12,x2对+x称-—32轴和顶点M的坐标。
经 (2)设抛物线与y轴交于C点,与x轴交于A、B两点,
求C, A,B的坐标。
典
(3)画出函数图象的示意图。 (4)求ΔMAB的周长及面积。
例
(5)x为何值时,y 随的增大而减小,x为何值时, y有最大(小)值,这个最大(小)值是多少?
(-3,0)
当-3 < x < 1时,y < 0
•(1, x
0 0)
析 • • 当x< -3或x>1时,y > 0 • (-1,-2)
3 (0,-–2)
返回
例 3 根据下列条件求二次函
经
数解析式:
二次函数的图象经过(0,7 )
典
(1,9)、(-1、1)三点。
例
二次函数图象的顶点是(2,-4)
且过点(4,0)。
经 (2)设抛物线与y轴交于C点,与x轴交于A、B两点,
求C, A,B的坐标。
典
(3)画出函数图象的示意图。 (4)求ΔMAB的周长及面积。
例
(5)x为何值时,y随的增大而减小,x为何值时, y有最大(小)值,这个最大(小)值是多少?
题 解(:6)(6)x为何值时,y<0?x为何值y时,y>0?
• 解 由图象可知
2a
a>0 最
x 0时,x 0时, x h时 x h时 ym in 0 ymin c ymin 0 ymin k
值 a<0 x 0时 x 0时 x h时 x h时 ymax 0 ymax c ymax 0 ymax k
x
b 2a
时,ymin
(1)顶点在x轴上,k=_____。 (2)抛物线过点(-1,-2),k____。 (3)当x=-1时,函数有最小值,k=_____。 (4)抛物线的最小值为-1 , k=_____。
例5:
如图,在ΔABC中,AB=8cm,BC=6cm,∠B=90°, 点P从点A开始沿AB边向点B以2厘米/秒的速度移动,
抛物线与y轴的交点C(0,- -32—)
析
由x1y==-30,得—12x2x=21+x- —32 =0
与x轴交点A(-3,0)B(1,0)
例2: (1)求已抛知物二线次开函口数方y=向—12,x2对+x称-—32轴和顶点M的坐标。