小学数学解题方法解题技巧之份数法

合集下载

小学数学应用题解题技巧大全

小学数学应用题解题技巧大全

小学数学应用题解题技巧大全小升初应用题大全,可分为一般应用题与典型应用题。

1归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1买5支铅笔要0。

6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0。

6÷5=0。

12(元)(2)买16支铅笔需要多少钱?0。

12×16=1。

92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1。

92元。

例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次? 解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

2归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

六年级上册数学按比分配问题解题公式

六年级上册数学按比分配问题解题公式

六年级上册数学——按比分配问题·解题公式解题方法1:分数法:把总数量看作(单位“1”)类型1:已知甲、乙的总数量,甲与乙的比是a:b,求甲、乙两数各是多少?甲=总数量×aa+b乙=总数量×ba+b类型2:已知甲数,甲数与乙数的比是a:b,求甲、乙两数的总数量是多少?总数量=甲数÷aa+b乙数=甲数÷a×b解题方法2:份数法:先求出总份数,再求出每份是多少,最后分别求出各自的量。

类型1:已知甲和乙的总数量,甲数与乙数的比是a:b,求甲、乙两数各是多少?总份数=a+b 每一份=总数量+(a+b)甲数=总数量÷(a+b)×a乙数=总数量÷(a+b)×b类型2:已知甲数,甲数与乙数的比是a:b,求甲、乙两数之和是多少?甲、乙两数之和=甲数÷a×(a+b)乙数=甲数÷a×b六年级上册数学——按比分配问题·解题公式解题方法1:分数法:把总数量看作(单位“1”)类型1:已知甲、乙的总数量,甲与乙的比是a:b,求甲、乙两数各是多少?甲=总数量×aa+b乙=总数量×ba+b类型2:已知甲数,甲数与乙数的比是a:b,求甲、乙两数的总数量是多少?总数量=甲数÷aa+b乙数=甲数÷a×b解题方法2:份数法:先求出总份数,再求出每份是多少,最后分别求出各自的量。

类型1:已知甲和乙的总数量,甲数与乙数的比是a:b,求甲、乙两数各是多少?总份数=a+b 每一份=总数量+(a+b)甲数=总数量÷(a+b)×a乙数=总数量÷(a+b)×b类型2:已知甲数,甲数与乙数的比是a:b,求甲、乙两数之和是多少?甲、乙两数之和=甲数÷a×(a+b)乙数=甲数÷a×b。

六年级分数应用题解题方法

六年级分数应用题解题方法

分数(百分数)应用题典型解法一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。

画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。

【例1】一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。

原来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1-51-51)=20+22,则这桶油的千克数为:(20+22)÷(1-51-51)=70(千克)【例2】一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10,则这堆煤的千克数为: (290+10)÷(1-20%-50%)=1000(千克) 二、对应思想量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。

(量率对应常常和画线段图结合使用,效果极佳.)【例3】缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人?[分析与解]解题的关键是找到与具体数量144人的相对应的分率.从线段图上可以清楚地看出女职工占207,男职工占1-207=2013,女职工比男职工少占全厂职工人数的2013-207=103,也就是144人与全厂人数的103相对应.全厂的人数为: 144÷(1-207-207)=480(人) 【例4】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?[分析与解]从线段图上可以清楚地看出240千克的对应分率是第一天卖出31后余下的(1-52)。

小学数学奥数方法举一反三同步教材教案教师教案11-20周

小学数学奥数方法举一反三同步教材教案教师教案11-20周
【思路导航】甲、乙、丙三个组应挖的任务分别是24份数、21份数、18份数,求出1份数后,
用乘法便可求出各组应挖的任务。
2331÷(24+21+18)=37(米)
37×24=888(米)…………………甲组任务
37×21=777(米)…………………乙组任务
37×18同=步6教66材(视频米)…………………丙组任务
今年旱田的亩数是:(230+35×2)÷ 2=150(亩)
原来旱田的亩数是:150+35=185(亩)
综合算式=300÷2+35
第1讲 份数法 (二)以份数法解差倍应用题
【例题2】和平小学师生步行去春游。队伍走出10.5千米后,王东骑自行车去追赶, 经过1.5小时追上。已知王东骑自行车的速度是师生步行速度的2.4倍。王东和师 生每小时各行多少千米?(适于五年级程度)
【例题1】大、小两辆卡车同时载货从甲站出发,大卡车载货的重量是小卡车的3 倍。两车行至乙站时,大卡车增加了1400千克货物,小卡车增加了1300千克货物, 这时,大卡车的载货量变成小卡车的2倍。求两车出发时各载货物多少千克?(适 于五年级程度)【思路导航】
第1讲 份数法 (三)以份数法解变倍应用题
因为每个长方形的周长为16厘米,所以每份的长是:
16÷8=2(厘米)
长方形的长,也就是正方形的边长是2×3=6(厘米)
正方形的周长是:6×4=24(厘米)
第1讲 份数法 (九)以份数法解几何题
【例题2】长方形长宽的比是7∶3。如果把长减少12厘米,把宽增加16厘米,那么这个长方形就变 成了一个正方形。求原来这个长方形的面积。(适于六年级程度)
同步教材视频
第12讲 消元法(一)以同类数量相减的方法消元

人教版六年级数学上册第三单元《分数除法》知识总结

人教版六年级数学上册第三单元《分数除法》知识总结

《分数除法》知识总结1.分数除法计算(1)分数除法的意义和分数除以整数整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。

已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。

1013103=÷的意义是:已知两个因数的积是103,其中一个因数是3,求另一个因数是多少。

分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

分数除以整数的计算方法:把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。

分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。

(2)分数除以整数,等于分数乘这个整数的倒数。

练习: 1、填空(1)根据3565372=⨯和分数除法意义可得:=÷53356( ),=÷72356( )。

(2)把29m 长的绳子平均剪成4段,每段是29m 的( )。

(3)打字员打一份文件,打了20分钟后还剩52,平均每分钟打这份文件的( )。

2.列式计算。

(1)一个数的6倍是51,这个数是多少?(2)51的61是多少?3.看图列式计算。

811(2)一个数除以分数知识点一:一个数除以分数的计算方法:一个数除以分数,等于这个数乘分数的倒数。

知识点二:分数除法的统一计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

知识点三:商与被除数的大小关系:一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。

0除以任何数商都为0. 练习:1.算一算4851625÷ 44392213÷ 1427277⨯210÷ 2.填空。

(1)32的43是( ),它和32÷( )得数相同。

(2)分数除法可以转化为( )进行计算,计算过程中,转变成乘( )的倒数。

3.判断。

(1)两个真分数相除,商大于被除数。

小学数学奥数解题技巧-三到六年级-解工程问题的方法

小学数学奥数解题技巧-三到六年级-解工程问题的方法

【例题】
【点拔】 一般解法:
用解工程问题的方法解:如果把这批零件的总数作为一项“工 程”,以1表示,则这个工厂计划
工程问题是研究工作量、工作效率和工作时间三者之间关系 的问题。这三者之间的关系是: 工作效率×工作时间=工作量 工作量÷工作时间=工作效率 工作量÷工作效率=工作时间 根据上面的数量关系,只要知道三者中的任意两种量,就可 求出第三种量。 由于工作量的已知情况不同,工程问题可分为整数工程问题 和分数工程问题两类。在整数工程问题中,工作量是已知的 具体数量。解答这类问题时,只要按照上面介绍的数量关系 计算就可解题,计算过程中一般不涉及分率。在分数工程问 题中,工作量是未知数量。解这类题时,也要根据上面介绍 的数量关系计算,但在计算过程中要涉及到分率。 (四)用份数法解工程问题
【例题】甲、乙两地相距487千米。李华驾驶摩托车从甲地到乙 地,需要1小时;王明骑自行车从乙地到甲地需要3小时。照这 样的速度,两人分别从两地同时相向出发,经过几小时在途中 相遇?
【点拔】 一般解法:
用解工程问题的方法解:把全程看作1。李华驾驶摩托车从 甲地到乙地需要1小时,李华的速度就是1;王明骑自行车从乙 地到甲地需要3小时,王明每1小时要行全程的
【例题】师、徒二人共同加工一批零件,需要4小时完成。师 傅单独加工这批零件需要5小时完成。师、徒二人共同加工完 这批零件时,徒弟加工了30个。这批零件有多少个?
【点拔】 从时间差考虑,师、徒共同加工完的时间与师傅单独加工完的时间 相差5-4=1(小时)。这说明师傅1小时加工的零件数等于徒弟4小时加 工的零件数。 所以,师傅5小时加工的零件就是这批零件的总数: 30×5=150(个)
【例题】一份稿件需要打字,甲、乙两人合打10天可以完成。甲单 独打15天可以完成。乙单独打需要几天完成?

分数应用题的解题方法

分数应用题的解题方法

分数应用题的解题方法分数应用题,是六年级数学最重要也是最难的知识点,同时也是变化最多的知识点.在此之前整个小学阶段学过的应用题,不管是数学的,还是奥数的,把题中的数字换成分数,就成了分数应用题.所以,学习这章,要特别注意从思维和方法上去把握,以思维与方法上的“不变”应对题弄上的“万变”。

先要弄清两个概念:带单位的分数和不带单位的分数。

带单位的分数,如3/4吨,叫数量,与我们以前学过的“3吨”、“0.3吨”表示的意义一样,都是表示一个物体的具体的数量。

只不过在这里用分数的形式表示出来而已。

不带单位的分数,如3/4,叫分率,它表示一个数的几分之几。

由于这两种分数表示意义不同,出现在应用题中,它们的分析思路、解题过程也不同。

请仔细看下面的对比例子:例1.(1)一根铁丝长5米,用去了2/5米,还剩下多少米?(2)一根铁丝长5米,用去了2/5,还剩下多少米?解析:(1)剩下的=总长-用去的= 5 –2/5=4又3/5米(2)用去的:5 × 2/5=2米;剩下 5-2=3米例2.(1)一根铁丝,用去了2/5米,还剩下3米,这根铁丝多长?(2)一根铁丝,用去了2/5,还剩下3米,这根铁丝多长?解析:(1)总长=用去的+剩下的=2/5 +3 =3又2/5米(2)3÷(1 – 2/5)=3 ÷ 3/5=5米由此可见,大家在做分数应用题时,一定要看清楚题中的分数是哪类分数。

一、题中没有不带单位的分数。

解题思路:这类分数应用题与三、四、五年级学习的应用题,在解题思路和解题方法上是一样的,只不过题中的数量不是整数、也不是小数,而是分数。

当在做这类分数应用题出现障碍时,可把题中的分数换成整数来理解例:一辆汽车1/3小时行驶20千米,照这样的速度,3/4小时能行驶多少千米?解析:这是一道简单的行程问题,从“一辆汽车1/3小时行驶20千米”这句话,我们可以求出速度,速度=路程÷时间=20 ÷ 1/3 =60(千米/小时);题目求的是“3/4小时能行驶多少千米”,求路程=速度×时间=60 × 3/4 =45千米二、题中有不带单位的分数(即题中有分率)解题思路:四步法第一步:确定单位“1”找单位“1”的方法:找到题中不带单位的分数的那句话,“谁”的几分之几,那个“谁”就是单位“1”;如果这句话中含有“比”字,“比”后面的那个量就是单位“1”。

小学数学 分数知识点总结

小学数学 分数知识点总结

小学数学分数知识点总结分数是小学阶段数学学习的重要内容之一,也是学生在数学学习中的一个比较难点。

分数是用来表示一个整体被分成若干等分之一部分的数。

分数在实际生活中有着广泛的应用,所以学好分数对学生来说是非常重要的。

下面我将从分数的概念、分数的简化、分数的加减乘除以及分数的实际应用等方面对分数的知识进行总结。

一、分数的概念1. 分数的意义分数是用来表示一个整体被分成若干等分之一部分的数。

分数由分子和分母两部分组成,分子表示被分成的份数,分母表示整体被分成的份数。

比如在1/2这个分数中,1是分子,2是分母,表示整体被分成两等分之中的一份。

在实际生活中,分数经常用来表示比例、份额、比值等概念,如学生学习的时候,用分数可以方便的表示题目中的分数比例以及各种比较。

2. 分数的性质分子表示被分成的份数,分母表示整体被分成的份数。

当分数的分子比分母小时,分数就小于1,在均分的情况下,分子的值越大,整个分数代表的实际部分就越多。

而当分数的分子和分母相等时,表示整体被分成的份数和被分成的份数是相等的,此时分数等于1. 当分数的分子比分母大时,分数就大于13. 分数的类型分数可以分为真分数和假分数。

真分数的分子小于分母,如1/2, 2/3等,而假分数的分子大于等于分母,如3/2,5/4等。

真分数和假分数表示的意义不同,但都是分数的一种形式。

二、分数的简化1. 分数的简化分数的简化是指将分数的分子和分母同时除以一个相同的数,使得分子和分母的最大公约数为1。

简化后的分数称为最简分数。

比如分数2/4可以简化为1/2,3/9可以简化为1/3等。

简化分数的目的是为了方便计算和比较,将分数化为最简分数,能够更清晰的表达分数的大小。

2. 分数的扩展分数的扩展是将分数的分子和分母同时乘以一个相同的数,使得分数的值不变。

如分数1/2扩展为2/4,3/4扩展为6/8等。

扩展分数的目的是为了方便计算和比较,将分数化为更大的单位,可以更方便的进行计算。

解题方法与技巧之份数法_

解题方法与技巧之份数法_
1300×3-1400
=3900-1400
=2500(千克)
出发时,小卡车的载货量是:
2500-1300=1200(千克)
出发时,大卡车的载货量是:
1200×3=3600(千克)
答略。
例 2 甲、乙两个班组织体育活动,选出 15 名女生参加跳绳比赛,男生人数是剩下女 生人数的 2 倍;又选出 45 名男生参加长跑比赛,最后剩下的女生人数是剩下男生人数的 5 倍。这两个班原有女生多少人?(适于五年级程度)
行动感召行动、灵魂唤醒灵魂
7
让每个家庭都为自己的孩子感到骄傲
因为每个长方形的周长为 16 厘米,所以每份的长是: 16÷8=2(厘米)
长方形的长,也就是正方形的边长是:
2×3=6(厘米)
正方形的周长是:
6×4=24(厘米)
答略。
例 2 长方形长宽的比是 7∶3。如果把长减少 12 厘米,把宽增加 16 厘米,那么这个 长方形就变成了一个正方形。求原来这个长方形的面积。(适于六年级程度)
含有成正比例关系的量,并根据正比例关系的性质列出比例式来解的应用题,叫做 正 比例应用题。
这里是指以份数法解正比例应用题。 例 1 某化肥厂 4 天生产化肥 32 吨。照这样计算,生产 256 吨化肥要用多少天?(适 于六年级程度)
解:此题是工作效率一定的问题,工作量与工作时间成正比例。
以 4 天生产的 32 吨为 1 份数,256 吨里含有多少个 32 吨,就有多少个 4 天。
10.5÷1.5÷(2.4-1)
=7÷1.4
=5(千米/小时)…………………………步行的速度
5×2.4=12(千米/小时)………………………………骑自行车的速度
答略。
(三)以份数法解变倍应用题

五年级分数应用题解题技巧

五年级分数应用题解题技巧

五年级分数应用题解题技巧一、分数应用题解题技巧及例题解析。

1. 确定单位“1”- 技巧:一般来说,“是”“比”“占”后面的量就是单位“1”。

- 例1:五年级一班男生人数占全班人数的(3)/(5),全班有50人,男生有多少人?- 解析:这里全班人数是单位“1”,已知全班人数为50人,求男生人数,就是求50的(3)/(5)是多少,用乘法计算,50×(3)/(5)=30(人)。

2. 已知单位“1”,求部分量。

- 技巧:用单位“1”的量乘以部分量对应的分率。

- 例2:果园里有苹果树200棵,梨树的棵数是苹果树的(3)/(4),梨树有多少棵?- 解析:苹果树的棵数是单位“1”,已知为200棵,梨树棵数是苹果树的(3)/(4),那么梨树的棵数为200×(3)/(4)=150棵。

3. 求单位“1”- 技巧:已知部分量和它对应的分率,用部分量除以分率得到单位“1”的量。

- 例3:五年级二班女生人数是18人,占全班人数的(3)/(7),全班有多少人?- 解析:这里全班人数是单位“1”,女生人数18人对应的分率是(3)/(7),所以全班人数为18÷(3)/(7)=18×(7)/(3)=42人。

4. 分数的加、减法应用题。

- 技巧:先确定各个量对应的分率,再根据题意进行加、减运算。

- 例4:一根绳子,第一次用去全长的(1)/(4),第二次用去全长的(1)/(3),两次一共用去全长的几分之几?- 解析:把绳子的全长看作单位“1”,第一次用去的分率是(1)/(4),第二次用去的分率是(1)/(3),两次一共用去的分率为(1)/(4)+(1)/(3)=(3 + 4)/(12)=(7)/(12)。

5. 比较两个量的分率关系。

- 技巧:先求出两个量分别对应的分率,然后进行比较。

- 例5:甲仓库有货物120吨,乙仓库有货物150吨,甲仓库货物是乙仓库货物的几分之几?乙仓库货物比甲仓库货物多几分之几?- 解析:- 甲仓库货物是乙仓库货物的:120÷150=(120)/(150)=(4)/(5)。

小学生数学练习题分数的理解与运算技巧

小学生数学练习题分数的理解与运算技巧

小学生数学练习题分数的理解与运算技巧随着小学生学习数学的进一步深入,分数的概念和运算技巧也成为他们学习的重要内容。

正确理解和掌握分数,以及熟练运用运算技巧,对于小学生的数学学习以及日常生活中的应用都具有重要意义。

本文将重点介绍小学生数学练习题中分数的理解与运算技巧,帮助小学生更好地学习数学。

一、分数的理解分数是数学中非常重要的一个概念,它表示一个数相对于另一个数的部分或比例关系。

在小学生的数学学习中,分数主要是指真分数,即分子小于分母的情况。

小学生可以通过一些实际的例子来理解分数,例如将一个苹果切成几块,然后取其中的几块,这样就可以形象地表示分数。

在分数的理解过程中,小学生需要掌握以下几个重要的概念:1. 分子和分母:分数的分子表示分数的份数,分母表示每份的份数。

2. 真分数和假分数:真分数是指分子小于分母的分数,假分数是指分子大于或等于分母的分数。

3. 基准图形和分数表示:小学生可以通过将基准图形(如一个正方形)分成几份,并选取其中的几份来表示分数。

4. 分数和小数的关系:小学生需要理解分数和小数是可以互相转化的,并能够用分数和小数相互转换。

二、分数的四则运算技巧在小学生的数学练习题中,分数的四则运算是非常常见的题型。

针对不同的运算符号,小学生需要掌握相应的技巧。

1. 加法和减法:对于分数的加法和减法运算,小学生可以使用找公共分母的方法来进行计算。

具体步骤如下:a) 确定两个分数的分母是否相同,如果不相同,则将它们的分母进行相乘,同时将分子按照相同的倍数进行扩大或缩小,使得两个分数的分母相同。

b) 将两个分数的分子进行相加或相减,并保持分母不变。

2. 乘法:对于分数的乘法运算,小学生需要掌握以下方法:a) 将两个分数的分子相乘,分母相乘,得到新的分子和分母。

b) 对所得的新分子和新分母进行约分。

3. 除法:对于分数的除法运算,小学生需要将除法转化为乘法,即将被除数变为乘数的倒数,然后按照乘法的方法进行计算。

北师大版-数学-五年级上册-《分数与除法》知识讲解 求一个数是另一个数的几分之几

北师大版-数学-五年级上册-《分数与除法》知识讲解 求一个数是另一个数的几分之几

求一个数是另一个数的几分之几问题(1)导入蓝纸条的长是红纸条的几分之几?(教材70页)过程讲解1.读题,理解题意题中给出了红纸条和蓝纸条的长,求蓝纸条的长是红纸条的几分之几。

2.探究解题方法方法一根据分数的意义解题。

(l)解题思路:求蓝纸条的长是红纸条的几分之几,就是把红纸条的长作为标准量,看作单位“1”。

把单位“1”平均分成若干份,蓝纸条的长有这样的几份,就是红纸条的几分之几。

(2)动手操作。

用蓝纸条去量红纸条,正好量了3次,就是说把红纸条平均分成3份,蓝纸条的长是其中的1份,说明蓝纸条的长是红纸条的13。

方法二根据分数与除法的关系解题。

(1)解题思路:蓝纸条有1份,红纸条有这样的3份,求蓝纸条的长是红纸条的几分之几,可以用除法计算。

(2)列式解答:1÷3=1 3答:蓝纸条的长是红纸条的{。

问题(2)导入黄纸条的长是红纸条的几分之几?(教材70页)过程讲解1.读题,理解题意题中给出了红纸条和黄纸条的长,求黄纸条的长是红纸条的几分之几。

2.探究解题思路红纸条和黄纸条的每份数相同,份数不同,红纸条有这样的3份,可以用“3”表示;黄纸条有这样的4份,可以用“4”表示,求黄纸条的长是红纸条的几分之几,可以用除法计算。

3.列式解答4÷3=4 3答:黄纸条的长是红纸条的43。

归纳总结求一个数是另一个数的几分乏冗的问题的解题方法:一个数÷另一个数=一个数另一个数,即比较量÷标准量=比较量标准量,得到的商表示的是两个数的关系,没有单位名称。

误区警示 慧眼识真知,错误巧规避!【误区一】判断:因为3÷5=35,所以3÷5和35表示的意义相同。

( √ ) 错解分析 在算式3÷5=35中,3÷5表示的是一个除法算式,而35是一个数,是这个除法算式的商,二者的意义是不同的。

错解改正 ×温馨提示除法和分数之间有一定的联系,但表示的意义并不完全相同。

小学分数应用题解题技巧

小学分数应用题解题技巧

分数的初步认识1、把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

3、分子相同的两个分数,分母小的分数反而大,分母大的分数反而小。

4、分母相同的两个分数,分子大的分数比较大,分子小的分数比较小。

5、相同分母的分数相加:分母不变,分子相加。

相同分母的分数相减:分母不变,分子相减。

1与分数相减:1可以看作是分子分母相同的分数。

第6单元多位数乘一位数1、因数末尾有几个0,就在积的末尾添上几个0。

2、一个数和0相加等于这个数。

一个数和0相减等于这个数。

0和一个数相乘等于0。

第5单元时分秒1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。

2、钟面上有(12 )个数字,(12 )个大格,(60 )个小格;每两个数间是( 1 )个大格,也就是( 5 )个小格。

3、时针走1大格是( 1 )小时;分针走1大格是( 5 )分钟,走1小格是( 1 )分钟;秒针走1大格是( 5 )秒钟,走1小格是( 1 )秒钟。

4、时针走1大格,分针正好走( 1 )圈,分针走1圈是(60 )分,也就是( 1 )小时。

时针走1圈,分针要走(12 )圈。

5、分针走1小格,秒针正好走( 1 )圈,秒针走1圈是(60 )秒,也就是( 1 )分钟。

6、时针从一个数走到下一个数是(1小时)。

分针从一个数走到下一个数是(5分钟)。

秒7、公式。

1时= 60分 1分= 60秒 半时= 30 分60分=1时 60秒=1分 30 分=半时第4单元有余数的除法1、余数和除数之间的关系:进行有余数的除法计算时,结果中的余数一定要比除数小。

2、公式。

被除数 = 除数×商+余数除数 = (被除数-余数)÷商商 = (被除数-余数)÷除数分数应用题的解题方法一找二定三列式1、找准单位“1”的量。

小学数学奥数解题方法讲义40讲(二)之欧阳家百创编

小学数学奥数解题方法讲义40讲(二)之欧阳家百创编

(一)(二)第十一讲份数法————————————————姚老师数学乐园广安岳池姚文国把应用题中的数量关系转化为份数关系,并确定某一个已知数或未知数为1份数,然后先求出这个1份数,再以1份数为基础,求出所要求的未知数的解题方法,叫做份数法。

(一)以份数法解和倍应用题已知两个数的和及两个数的倍数关系,求这两个数的应用题叫做和倍应用题。

例1某林厂有杨树和槐树共320棵,其中杨树的棵数是槐树棵数的3倍。

求杨树、槐树各有多少棵?(适于四年级程度)解:把槐树的棵数看作1份数,则杨树的棵数就是3份数,320棵树就是(3+1)份数。

因此,得:320÷(3+1)=80(棵)…………………槐树80×3=240(棵)…………………杨树答略。

例2 甲、乙两个煤场共存煤490吨,已知甲煤场存煤数量比乙煤场存煤数量的4倍少10吨。

甲、乙两个煤场各存煤多少吨?(适于四年级程度)解:题中已经给出两个未知数之间的倍数关系:甲煤场存煤数量比乙煤场存煤数量的4倍少10吨。

因此可将乙煤场的存煤数量看作1份数,甲煤场的存煤数量就相当于乙煤场存煤数量的4倍(份)数少10吨,两个煤场所存的煤490吨就是(1+4)份数少10吨,(490+10)吨就正好是(1+4)份数。

所以乙场存煤:(490+10)÷(1+4)=500÷5=100(吨)甲场存煤:490-100=390(吨)答略。

例3 妈妈给了李平10.80元钱,正好可买4瓶啤酒,3瓶香槟酒。

李平错买成3瓶啤酒,4瓶香槟酒,剩下0.60元。

求每瓶啤酒、香槟酒各是多少钱?(适于五年级程度)解:因为李平用买一瓶啤酒的钱买了一瓶香槟酒,结果剩下0.60元,这说明每瓶啤酒比每瓶香槟酒贵0.60元。

把每瓶香槟酒的价钱看作1份数,则4瓶啤酒、3瓶香槟酒的10.80元钱就是(4+3)份数多(0.60×4)元,(10.80-0.60×4)元就正好是(4+3)份数。

小学数学总复习三十类应用题解题思路和方法

小学数学总复习三十类应用题解题思路和方法

小学数学总复习三十类应用题解题思路和方法一、归一问题含义在解题时,先求出一份是多少即单一量,然后以单一量为标准,求出所要求的数量;这类应用题叫做归一问题;数量关系总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷总量÷份数=所求份数解题思路和方法先求出单一量,以单一量为标准,求出所要求的数量;例1 买5支铅笔要元钱,买同样的铅笔16支,需要多少钱解1买1支铅笔多少钱÷5=元2买16支铅笔需要多少钱×16=元列成综合算式÷5×16=×16=元答:需要元;例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷解11台拖拉机1天耕地多少公顷90÷3÷3=10公顷25台拖拉机6天耕地多少公顷10×5×6=300公顷列成综合算式90÷3÷3×5×6=10×30=300公顷答:5台拖拉机6 天耕地300公顷;例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次解 11辆汽车1次能运多少吨钢材100÷5÷4=5吨27辆汽车1次能运多少吨钢材5×7=35吨3105吨钢材7辆汽车需要运几次105÷35=3次列成综合算式105÷100÷5÷4×7=3次答:需要运3次;二、归总问题含义解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题;所谓“总数量”是指货物的总价、几小时几天的总工作量、几公亩地上的总产量、几小时行的总路程等;数量关系 1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量解题思路和方法先求出总数量,再根据题意得出所求的数量;例1 服装厂原来做一套衣服用布米,改进裁剪方法后,每套衣服用布米;原来做791套衣服的布,现在可以做多少套解 1这批布总共有多少米×791=米2现在可以做多少套÷=904套列成综合算式×791÷=904套答:现在可以做904套;例2 小华每天读24页书,12天读完了红岩一书;小明每天读36页书,几天可以读完红岩解 1红岩这本书总共多少页24×12=288页2小明几天可以读完红岩288÷36=8天列成综合算式24×12÷36=8天答:小明8天可以读完红岩;例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜;后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天解 1这批蔬菜共有多少千克50×30=1500千克2这批蔬菜可以吃多少天1500÷50+10=25天列成综合算式50×30÷50+10=1500÷60=25天答:这批蔬菜可以吃25天;三、和差问题含义已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题;数量关系大数=和+差÷ 2小数=和-差÷ 2解题思路和方法简单的题目可以直接套用公式;复杂的题目变通后再用公式;例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人解甲班人数=98+6÷2=52人乙班人数=98-6÷2=46人答:甲班有52人,乙班有46人;例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积;解长=18+2÷2=10厘米宽=18-2÷2=8厘米长方形的面积=10×8=80平方厘米答:长方形的面积为80平方厘米;例3 有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克;解甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多32-30=2千克,且甲是大数,丙是小数;由此可知甲袋化肥重量=22+2÷2=12千克丙袋化肥重量=22-2÷2=10千克乙袋化肥重量=32-12=20千克答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克;例4 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐解“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是14×2+3,甲与乙的和是97,因此甲车筐数=97+14×2+3÷2=64筐乙车筐数=97-64=33筐答:甲车原来装苹果64筐,乙车原来装苹果33筐;四、和倍问题含义已知两个数的和及大数是小数的几倍或小数是大数的几分之几,要求这两个数各是多少,这类应用题叫做和倍问题;数量关系总和÷几倍+1=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数解题思路和方法简单的题目直接利用公式,复杂的题目变通后利用公式;例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵解 1杏树有多少棵248÷3+1=62棵2桃树有多少棵62×3=186棵答:杏树有62棵,桃树有186棵;例2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的倍,求两库各存粮多少吨解 1西库存粮数=480÷+1=200吨2东库存粮数=480-200=280吨答:东库存粮280吨,西库存粮200吨;例3 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍解每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站28-24辆;把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数52+32就相当于2+1倍,那么,几天以后甲站的车辆数减少为52+32÷2+1=28辆所求天数为 52-28÷28-24=6天答:6天以后乙站车辆数是甲站的2倍;例4 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少解乙丙两数都与甲数有直接关系,因此把甲数作为1倍量;因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;这时170+4-6就相当于1+2+3倍;那么,甲数=170+4-6÷1+2+3=28乙数=28×2-4=52丙数=28×3+6=90答:甲数是28,乙数是52,丙数是90;五、差倍问题含义已知两个数的差及大数是小数的几倍或小数是大数的几分之几,要求这两个数各是多少,这类应用题叫做差倍问题;数量关系两个数的差÷几倍-1=较小的数较小的数×几倍=较大的数解题思路和方法简单的题目直接利用公式,复杂的题目变通后利用公式;例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵;求杏树、桃树各多少棵解 1杏树有多少棵124÷3-1=62棵2桃树有多少棵62×3=186棵答:果园里杏树是62棵,桃树是186棵;例2 爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁解 1儿子年龄=27÷4-1=9岁2爸爸年龄=9×4=36岁答:父子二人今年的年龄分别是36岁和9岁;例3 商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元解如果把上月盈利作为1倍量,则30-12万元就相当于上月盈利的2-1倍,因此上月盈利=30-12÷2-1=18万元本月盈利=18+30=48万元答:上月盈利是18万元,本月盈利是48万元;例4 粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍解由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差138-94;把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,138-94就相当于3-1倍,因此剩下的小麦数量=138-94÷3-1=22吨运出的小麦数量=94-22=72吨运粮的天数=72÷9=8天答:8天以后剩下的玉米是小麦的3倍;六、倍比问题含义有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题;数量关系总量÷一个数量=倍数另一个数量×倍数=另一总量解题思路和方法先求出倍数,再用倍比关系求出要求的数;例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少解 13700千克是100千克的多少倍3700÷100=37倍2可以榨油多少千克40×37=1480千克列成综合算式40×3700÷100=1480千克答:可以榨油1480千克;例2 今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵解 148000名是300名的多少倍48000÷300=160倍2共植树多少棵400×160=64000棵列成综合算式400×48000÷300=64000棵答:全县48000名师生共植树64000棵;例3 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元全县16000亩果园共收入多少元解 1800亩是4亩的几倍800÷4=200倍2800亩收入多少元11111×200=2222200元316000亩是800亩的几倍16000÷800=20倍416000亩收入多少元2222200×20=元答:全乡800亩果园共收入2222200元,全县16000亩果园共收入元;七、相遇问题含义两个运动的物体同时由两地出发相向而行,在途中相遇;这类应用题叫做相遇问题;数量关系相遇时间=总路程÷甲速+乙速总路程=甲速+乙速×相遇时间解题思路和方法简单的题目可直接利用公式,复杂的题目变通后再利用公式;例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇解392÷28+21=8小时答:经过8小时两船相遇;例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间解“第二次相遇”可以理解为二人跑了两圈;因此总路程为400×2相遇时间=400×2÷5+3=100秒答:二人从出发到第二次相遇需100秒时间;例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离;解“两人在距中点3千米处相遇”是正确理解本题题意的关键;从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是3×2千米,因此,相遇时间=3×2÷15-13=3小时两地距离=15+13×3=84千米答:两地距离是84千米;八、追及问题含义两个运动物体在不同地点同时出发或者在同一地点而不是同时出发,或者在不同地点又不是同时出发作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体;这类应用题就叫做追及问题;数量关系追及时间=追及路程÷快速-慢速追及路程=快速-慢速×追及时间解题思路和方法简单的题目直接利用公式,复杂的题目变通后利用公式;例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马解 1劣马先走12天能走多少千米75×12=900千米2好马几天追上劣马900÷120-75=20天列成综合算式75×12÷120-75=900÷45=20天答:好马20天能追上劣马;例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑;小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米;解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了500-200米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间;又知小明跑200米用40秒,则跑500米用40×500÷200秒,所以小亮的速度是500-200÷40×500÷200=300÷100=3米答:小亮的速度是每秒3米;例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击;已知甲乙两地相距60千米,问解放军几个小时可以追上敌人解敌人逃跑时间与解放军追击时间的时差是22-16小时,这段时间敌人逃跑的路程是10×22-6千米,甲乙两地相距60千米;由此推知追及时间=10×22-6+60÷30-10=220÷20=11小时答:解放军在11小时后可以追上敌人;例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离;解这道题可以由相遇问题转化为追及问题来解决;从题中可知客车落后于货车16×2千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为16×2÷48-40=4小时所以两站间的距离为 48+40×4=352千米列成综合算式 48+40×16×2÷48-40=88×4=352千米答:甲乙两站的距离是352千米;例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米;哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇;问他们家离学校有多远解要求距离,速度已知,所以关键是求出相遇时间;从题中可知,在相同时间从出发到相遇内哥哥比妹妹多走180×2米,这是因为哥哥比妹妹每分钟多走90-60米, 那么,二人从家出走到相遇所用时间为180×2÷90-60=12分钟家离学校的距离为90×12-180=900米答:家离学校有900米远;例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课;后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校;求孙亮跑步的速度;解手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到10-5分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了10-5分钟;如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用9-10-5分钟;所以步行1千米所用时间为1÷9-10-5=小时=15分钟跑步1千米所用时间为 15-9-10-5=11分钟跑步速度为每小时1÷11/60=千米答:孙亮跑步速度为每小时千米;九、植树问题含义按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题;数量关系线形植树棵数=距离÷棵距+1环形植树棵数=距离÷棵距方形植树棵数=距离÷棵距-4三角形植树棵数=距离÷棵距-3面积植树棵数=面积÷棵距×行距解题思路和方法先弄清楚植树问题的类型,然后可以利用公式;例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳解136÷2+1=68+1=69棵答:一共要栽69棵垂柳;例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树解400÷4=100棵答:一共能栽100棵白杨树;例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯解220×4÷8-4=110-4=106个答:一共可以安装106个照明灯;例4 给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖解96÷×=96÷=400块答:至少需要400块地板砖;例5 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯解 1桥的一边有多少个电杆500÷50+1=11个2桥的两边有多少个电杆11×2=22个3大桥两边可安装多少盏路灯22×2=44盏答:大桥两边一共可以安装44盏路灯;十、年龄问题含义这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化;数量关系年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点;解题思路和方法可以利用“差倍问题”的解题思路和方法;例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍明年呢解35÷5=7倍35+1÷5+1=6倍答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍;例2 母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍解 1母亲比女儿的年龄大多少岁 37-7=30岁2几年后母亲的年龄是女儿的4倍30÷4-1-7=3年列成综合算式 37-7÷4-1-7=3年答:3年后母亲的年龄是女儿的4倍;例3 3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁解今年父子的年龄和应该比3年前增加3×2岁,今年二人的年龄和为 49+3×2=55岁把今年儿子年龄作为1倍量,则今年父子年龄和相当于4+1倍,因此,今年儿子年龄为55÷4+1=11岁今年父亲年龄为11×4=44岁答:今年父亲年龄是44岁,儿子年龄是11岁;例4 甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”;乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”;求甲乙现在的岁数各是多少解这里涉及到三个年份:过去某一年、今年、将来某一年;列表分析:因为两个人的年龄差总相等:□-4=△-□=61-△,也就是4,□,△,61成等差数列,所以,61应该比4大3个年龄差,因此二人年龄差为 61-4÷3=19岁甲今年的岁数为△=61-19=42岁乙今年的岁数为□=42-19=23岁答:甲今年的岁数是42岁,乙今年的岁数是23岁;十一、行船问题含义行船问题也就是与航行有关的问题;解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差;数量关系顺水速度+逆水速度÷2=船速顺水速度-逆水速度÷2=水速顺水速=船速×2-逆水速=逆水速+水速×2逆水速=船速×2-顺水速=顺水速-水速×2解题思路和方法大多数情况可以直接利用数量关系的公式;例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时解由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时320÷8-15=25千米船的逆水速为 25-15=10千米船逆水行这段路程的时间为320÷10=32小时答:这只船逆水行这段路程需用32小时;例2 甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间解由题意得甲船速+水速=360÷10=36甲船速-水速=360÷18=20可见 36-20相当于水速的2倍,所以, 水速为每小时 36-20÷2=8千米又因为, 乙船速-水速=360÷15,所以, 乙船速为360÷15+8=32千米乙船顺水速为 32+8=40千米所以, 乙船顺水航行360千米需要360÷40=9小时答:乙船返回原地需要9小时;例3 一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时解这道题可以按照流水问题来解答;1两城相距多少千米576-24×3=1656千米2顺风飞回需要多少小时1656÷576+24=小时列成综合算式576-24×3÷576+24=小时答:飞机顺风飞回需要小时;十二、列车问题含义这是与列车行驶有关的一些问题,解答时要注意列车车身的长度;数量关系火车过桥:过桥时间=车长+桥长÷车速火车追及:追及时间=甲车长+乙车长+距离÷甲车速-乙车速火车相遇:相遇时间=甲车长+乙车长+距离÷甲车速+乙车速解题思路和方法大多数情况可以直接利用数量关系的公式;例1 一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟;这列火车长多少米解火车3分钟所行的路程,就是桥长与火车车身长度的和;1火车3分钟行多少米900×3=2700米2这列火车长多少米 2700-2400=300米列成综合算式900×3-2400=300米答:这列火车长300米;例2 一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米解火车过桥所用的时间是2分5秒=125秒,所走的路程是8×125米,这段路程就是200米+桥长,所以,桥长为8×125-200=800米答:大桥的长度是800米;例3 一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间解从追上到追过,快车比慢车要多行225+140米,而快车比慢车每秒多行22-17米,因此,所求的时间为225+140÷22-17=73秒答:需要73秒;例4 一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间解如果把人看作一列长度为零的火车,原题就相当于火车相遇问题;150÷22+3=6秒答:火车从工人身旁驶过需要6秒钟;例5 一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥用了58秒;求这列火车的车速和车身长度各是多少解车速和车长都没有变,但通过隧道和大桥所用的时间不同,是因为隧道比大桥长;可知火车在88-58秒的时间内行驶了2000-1250米的路程,因此,火车的车速为每秒2000-1250÷88-58=25米进而可知,车长和桥长的和为25×58米,因此,车长为25×58-1250=200米答:这列火车的车速是每秒25米,车身长200米;十三、时钟问题含义就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等;时钟问题可与追及问题相类比;数量关系分针的速度是时针的12倍,二者的速度差为11/12;通常按追及问题来对待,也可以按差倍问题来计算;解题思路和方法变通为“追及问题”后可以直接利用公式;例1 从时针指向4点开始,再经过多少分钟时针正好与分针重合解钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/60=1/12格;每分钟分针比时针多走1-1/12=11/12格;4点整,时针在前,分针在后,两针相距20格;所以分针追上时针的时间为20÷1-1/12≈ 22分答:再经过22分钟时针正好与分针重合;例2 四点和五点之间,时针和分针在什么时候成直角解钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格包括分针在时针的前或后15格两种情况;四点整的时候,分针在时针后5×4格,如果分针在时针后与它成直角,那么分针就要比时针多走5×4-15格,如果分针在时针前与它成直角,那么分针就要比时针多走5×4+15格;再根据1分钟分针比时针多走1-1/12格就可以求出二针成直角的时间;5×4-15÷1-1/12≈ 6分5×4+15÷1-1/12≈ 38分答:4点06分及4点38分时两针成直角;例3 六点与七点之间什么时候时针与分针重合解六点整的时候,分针在时针后5×6格,分针要与时针重合,就得追上时针;这实际上是一个追及问题;5×6÷1-1/12≈ 33分答:6点33分的时候分针与时针重合;十四、盈亏问题含义根据一定的人数,分配一定的物品,在两次分配中,一次有余盈,一次不足亏,或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题;数量关系一般地说,在两次分配中,如果一次盈,一次亏,则有:参加分配总人数=盈+亏÷分配差如果两次都盈或都亏,则有:参加分配总人数=大盈-小盈÷分配差参加分配总人数=大亏-小亏÷分配差解题思路和方法大多数情况可以直接利用数量关系的公式;例1 给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个;问有多少小朋友有多少个苹果解按照“参加分配的总人数=盈+亏÷分配差”的数量关系:1有小朋友多少人11+1÷4-3=12人2有多少个苹果3×12+11=47个答:有小朋友12人,有47个苹果;例2 修一条公路,如果每天修260米,修完全长就得延长8天;如果每天修300米,修完全长仍得延长4天;这条路全长多少米解题中原定完成任务的天数,就相当于“参加分配的总人数”,按照“参加分配的总人数=大亏-小亏÷分配差”的数量关系,可以得知原定完成任务的天数为260×8-300×4÷300-260=22天这条路全长为300×22+4=7800米答:这条路全长7800米;例3 学校组织春游,如果每辆车坐40人,就余下30人;如果每辆车坐45人,就刚好坐完;问有多少车多少人解本题中的车辆数就相当于“参加分配的总人数”,于是就有1有多少车30-0÷45-40=6辆2有多少人40×6+30=270人答:有6 辆车,有270人;十五、工程问题含义工程问题主要研究工作量、工作效率和工作时间三者之间的关系;这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量;数量关系解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数它表示单位时间内完成工作总量的几分之几,进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式;工作量=工作效率×工作时间工作时间=工作量÷工作效率工作时间=总工作量÷甲工作效率+乙工作效率解题思路和方法变通后可以利用上述数量关系的公式;例1 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成解题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”;由于甲队独做需10天完成,那么每天完成这项工程的1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的1/10+1/15;由此可以列出算式:1÷1/10+1/15=1÷1/6=6天答:两队合做需要6天完成;例2 一批零件,甲独做6小时完成,乙独做8小时完成;现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个解设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成1/6-1/8,二人合做时每小时完成1/6+1/8;因为二人合做需要1÷1/6+1/8小时,这个时间内,甲比乙多做24个零件,所以1每小时甲比乙多做多少零件24÷1÷1/6+1/8=7个2这批零件共有多少个7÷1/6-1/8=168个答:这批零件共有168个;解二上面这道题还可以用另一种方法计算:两人合做,完成任务时甲乙的工作量之比为1/6∶1/8=4∶3由此可知,甲比乙多完成总工作量的 4-3 / 4+3 =1/7所以,这批零件共有24÷1/7=168个例3 一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成;现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成解必须先求出各人每小时的工作效率;如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是。

小学数学课件带分数的认识与运算

小学数学课件带分数的认识与运算
小学数学课件带分 数的认识与运算
XX,
汇报人:XX
目录
CONTENTS
01 添加目录标题 02 分数的认识 03 分数的运算 04 分数的混合运算
05 分数的应用题
单击添加章节标题
第一章
分数的认识
第二章
分数的定义
分数是数学中用 于表示部分与整 体关系的数。
分数由分子和分母 组成,分子表示部 分的、利润 和亏损等都可以用 分数来表示。
分数在科学实验中 的应用:在化学、 物理等实验中,经 常需要使用分数来 表示物质的浓度、 比例等。
分数在日常生活中 的应用:如时间、 距离、速度等都可 以用分数来表示。
解决分数应用题的思路和方法
理解题意,确定分数的意 义
建立数学模型,将实际问 题转化为数学问题
分数与分数的混合运算
分数加法:将 相同分母的分 数相加,分母 不变,分子相

分数减法:将 相同分母的分 数相减,分母 不变,分子相

分数乘法:将 分子相乘,分 母相乘,结果
化简
分数除法:将 除数与被除数 的分子分母分 别相除,结果
化简
分数运算的简便方法
约分:将分子分母同时除以一个相 同的数,简化分数
分数的混合运算
第四章
分数与整数的混合运算
分数与整数相加:先将分数化为假分数,再按照整数相加的规则进行计算。
分数与整数相减:先将分数化为假分数,再按照整数相减的规则进行计算。 分数与整数相乘:先将整数与分数的分子相乘,再将整数与分数的分母相 乘,最后将两个结果相除。 分数与整数相除:先将分数化为假分数,再按照整数相除的规则进行计算。
分数乘法
分数乘法的定 义:将两个分 数相乘,得到 它们的乘积。

小学数学分数百分数应用题应对技巧分析

小学数学分数百分数应用题应对技巧分析

小学数学分数百分数应用题应对技巧分析小学数学中,分数和百分数是孩子们很容易感到困惑的概念之一。

分数和百分数的应用题在小学数学教学中往往是孩子们感到困难的内容,但是只要掌握了一些技巧,就能轻松地解决这类问题。

下面我们就来分析一下小学数学分数和百分数应用题的应对技巧。

一、分数的应用题技巧分析1. 掌握分数的意义分数表示的是一个整体被分成若干等份,分数的分子表示被分成的份数,分母表示每份的份数。

掌握了这个概念,孩子们就能清楚地理解分数的意义,从而更容易解决分数的应用题。

2. 找到分数的最小公倍数在解决分数的应用题时,经常需要将分数的分母化为相同的数,这就需要找到这些数的最小公倍数。

孩子们可以通过列举法或者分解质因数的方法找到这些数的最小公倍数,然后将分数的分母化为最小公倍数即可。

4. 灵活运用分数的加减乘除在解决分数的应用题时,需要灵活运用分数的加减乘除法则。

孩子们可以根据具体的问题情况,选择合适的运算法则,将分数化简或者进行比较,从而得出正确的答案。

5. 熟练掌握分数的计算方法解决分数的应用题,离不开对分数的计算方法的熟练掌握。

孩子们需要多做练习,熟练掌握分数的加减乘除法,以及混合运算的方法,从而在解题时能够得心应手。

3. 注意百分数的比较在解决百分数的应用题时,经常需要进行百分数的比较,从而得出相应的结论。

孩子们需要注意百分数的大小关系,灵活运用百分数的比较方法,从而正确地解决问题。

总结小学数学分数和百分数的应用题需要孩子们掌握相应的技巧,才能轻松地解决这类问题。

在教学中,老师们可以通过讲解理论知识、引导解题思路和进行大量练习等方法,帮助孩子们掌握相应的技巧,从而提高解决分数和百分数应用题的能力。

家长们也可以通过陪孩子们做题、鼓励他们思考和解答问题等方式,促进孩子们对分数和百分数的理解和运用。

相信通过不懈的努力,孩子们一定能够轻松地应对分数和百分数的应用题,取得更好的成绩。

【小学数学】小学数学常考应用题归一问题、归总问题汇总(附例题、解题思路)

【小学数学】小学数学常考应用题归一问题、归总问题汇总(附例题、解题思路)

归一问题【含义】在解题时;先求出一份是多少(即单一量);然后以单一量为标准;求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量;以单一量为标准;求出所要求的数量。

例1买5支铅笔要0.6元钱;买同样的铅笔16支;需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例23台拖拉机3天耕地90公顷;照这样计算;5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例35辆汽车4次可以运送100吨钢材;如果用同样的7辆汽车运送105吨钢材;需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

归总问题【含义】解题时;常常先找出“总数量”;然后再根据其它条件算出所求的问题;叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量;再根据题意得出所求的数量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学解题方法解题技巧之份数法把应用题中的数量关系转化为份数关系,并确定某一个已知数或未知数为1份数,然后先求出这个1份数,再以1份数为基础,求出所要求的未知数的解题方法,叫做份数法。

(一)以份数法解和倍应用题已知两个数的和及两个数的倍数关系,求这两个数的应用题叫做和倍应用题。

例1某林厂有树和槐树共320棵,其中树的棵数是槐树棵数的3倍。

求树、槐树各有多少棵?(适于四年级程度)解:把槐树的棵数看作1份数,则树的棵数就是3份数,320棵树就是(3+1)份数。

因此,得:320÷(3+1)=80(棵)…………………槐树80×3=240(棵)…………………树答略。

例2 甲、乙两个煤场共存煤490吨,已知甲煤场存煤数量比乙煤场存煤数量的4倍少10吨。

甲、乙两个煤场各存煤多少吨?(适于四年级程度)解:题中已经给出两个未知数之间的倍数关系:甲煤场存煤数量比乙煤场存煤数量的4倍少10吨。

因此可将乙煤场的存煤数量看作1份数,甲煤场的存煤数量就相当于乙煤场存煤数量的4倍(份)数少10吨,两个煤场所存的煤490吨就是(1+4)份数少10吨,(490+10)吨就正好是(1+4)份数。

所以乙场存煤:(490+10)÷(1+4)=500÷5=100(吨)甲场存煤:490-100=390(吨)答略。

例3 妈妈给了平10.80元钱,正好可买4瓶啤酒,3瓶香槟酒。

平错买成3瓶啤酒,4瓶香槟酒,剩下0.60元。

求每瓶啤酒、香槟酒各是多少钱?(适于五年级程度)解:因为平用买一瓶啤酒的钱买了一瓶香槟酒,结果剩下0.60元,这说明每瓶啤酒比每瓶香槟酒贵0.60元。

把每瓶香槟酒的价钱看作1份数,则4瓶啤酒、3瓶香槟酒的10.80元钱就是(4+3)份数多(0.60×4)元,(10.80-0.60×4)元就正好是(4+3)份数。

每瓶香槟酒的价钱是:(10.80-0.60×4)÷(4+3)=8.4÷7=1.2(元)每瓶啤酒的价钱是:答略。

(二)以份数法解差倍应用题已知两个数的差及两个数的倍数关系,求这两个数的应用题叫做差倍应用题。

例1 三湾村原有的水田比旱田多230亩,今年把35亩旱田改为水田,这样今年水田的亩数正好是旱田的3倍。

该村原有旱田多少亩?(适于五年级程度)解:该村原有的水田比旱田多230亩(图11-1),今年把35亩旱田改为水田,则今年水田比旱田多出230+35×2= 300(亩)。

根据今年水田的亩数正好是旱田的3倍,以今年旱田的亩数为1份数,则水田比旱田多出的300亩就正好是2份数(图11-2)。

今年旱田的亩数是:(230+35×2)÷2=300÷2=150(亩)原来旱田的亩数是:综合算式:(230+35×2)÷2+35=300÷2+35=150+35=185(亩)答略。

*例2 和平小学师生步行去春游。

队伍走出10.5千米后,王东骑自行车去追赶,经过1.5小时追上。

已知王东骑自行车的速度是师生步行速度的2.4倍。

王东和师生每小时各行多少千米?(适于五年级程度)解:根据“追及距离÷追及时间=速度差”,可求出王东骑自行车和师生步行的速度差是10.5÷1.5=7(千米/小时)。

已知骑自行车的速度是步行速度的2.4倍,可把步行速度看作是1份数,骑自行车的速度就是2.4份数,比步行速度多2.4-1=1.4(份)。

以速度差除以份数差,便可求出1份数。

10.5÷1.5÷(2.4-1)=7÷1.4=5(千米/小时)…………………………步行的速度5×2.4=12(千米/小时)………………………………骑自行车的速度答略。

(三)以份数法解变倍应用题已知两个数量原来的倍数关系和两个数量变化后的倍数关系,求这两个数量的应用题叫做变倍应用题。

变倍应用题是小学数学应用题中的难点。

解答这类题的关键是要找出倍数的变化及相应数量的变化,从而计算出“1”份(倍)数是多少。

*例1大、小两辆卡车同时载货从甲站出发,大卡车载货的重量是小卡车的3倍。

两车行至乙站时,大卡车增加了1400千克货物,小卡车增加了1300千克货物,这时,大卡车的载货量变成小卡车的2倍。

求两车出发时各载货物多少千克?(适于五年级程度)解:出发时,大卡车载货量是小卡车的3倍;到乙站时,小卡车增加了1300千克货物,要保持大卡车的载货重量仍然是小卡车的3倍,大卡车就应增加1300×3千克。

把小卡车增加1300千克货物后的重量看作1份数,大卡车增加1300×3千克货物后的重量就是3份数。

而大卡车增加了1400千克货物后的载货量是2份数,这说明3份数与2份数之间相差(1300×3-1400)千克,这是1份数,即小卡车增加130 0千克货物后的载货量。

1300×3-1400=3900-1400=2500(千克)出发时,小卡车的载货量是:2500-1300=1200(千克)出发时,大卡车的载货量是:1200×3=3600(千克)*例2甲、乙两个班组织体育活动,选出15名女生参加跳绳比赛,男生人数是剩下女生人数的2倍;又选出45名男生参加长跑比赛,最后剩下的女生人数是剩下男生人数的5倍。

这两个班原有女生多少人?(适于五年级程度)解:把最后剩下的男生人数看作1份数,根据“最后剩下的女生人数是男生人数的5倍”可知,剩下的女生人数为5份数。

根据45名男生未参加长跑比赛前“男生人数是剩下女生人数的2倍”,而最后剩下的女生人数是5份数,可以算出参加长跑前男生人数的份数:5×2=10(份)因为最后剩下的男生人数是1份数,所以参加长跑的45名男生是:10-1=9(份)每1份的人数是:45÷9=5(人)因为最后剩下的女生人数是5份数,所以最后剩下的女生人数是:5×5=25(人)原有女生的人数是:25+15=40(人)综合算式:45÷(5×2-1)×5+15=45÷9×5+15=40(人)答略。

(四)以份数法解按比例分配的应用题把一个数量按一定的比例分成几个部分数量的应用题,叫做按比例分配的应用题。

例1一个工程队分为甲、乙、丙三个组,三个组的人数分别是24人、21人、18人。

现在要挖2331米长的水渠,若按人数的比例把任务分配给三个组,每一组应挖多少米?(适于六年级程度)解:甲、乙、丙三个组应挖的任务分别是24份数、21份数、18份数,求出1份数后,用乘法便可求出各组应挖的任务。

2331÷(24+21+18)=37(米)37×24=888(米)…………………甲组任务37×21=777(米)…………………乙组任务37×18=666(米)…………………丙组任务答略。

例2生产同一种零件,甲要8分钟,乙要6分钟。

甲乙两人在相同的时间共同生产539个零件。

每人各生产多少个零件?(适于六年级程度)解:由题意可知,在相同的时间,甲、乙生产零件的个数与他们生产一个零件所需时间成反比例。

把甲生产零件的个数看作1份数,那么,乙生产零件的个数就是:生产零件的总数539个就是:甲生产的个数:乙生产的个数:答略。

(五)以份数法解正比例应用题成正比例的量有这样的性质:如果两种量成正比例,那么一种量的任意两个数值的比等于另一种量的两个对应的数值的比。

含有成正比例关系的量,并根据正比例关系的性质列出比例式来解的应用题,叫做正比例应用题。

这里是指以份数法解正比例应用题。

例1某化肥厂4天生产化肥32吨。

照这样计算,生产256吨化肥要用多少天?(适于六年级程度)解:此题是工作效率一定的问题,工作量与工作时间成正比例。

以4天生产的32吨为1份数,256吨里含有多少个32吨,就有多少个4天。

4×(256÷32)=4×8=32(天)答略。

例2每400粒大豆重80克,24000粒大豆重多少克?(适于六年级程度)解:每400粒大豆重80克,这一数量是一定的,因此大豆的粒数与重量成正比例。

如把400粒大豆重80克看作1份数,则24000粒大豆中包含多少个400粒,2 4000粒大豆中就有多少个80克。

24000÷400=60(个)24000粒大豆的重量是:80×60=4800(克)综合算式:80×(24000÷400)=4800(克)答略。

(六)以份数法解反比例应用题成反比例的量有这样的性质:如果两种量成反比例,那么一种量的任意两个数值的比,等于另一种量的两个对应数值的比的反比。

含有成反比例关系的量,并根据反比例关系的性质列出比例式来解的应用题,叫做反比例应用题。

这里是指以份数法解反比例应用题。

例1有一批水果,每箱装36千克,可装40箱。

如果每箱多装4千克,需要装多少箱?(适于六年级程度)解:题中水果的总重量不变,每箱装的多,则装的箱数就少,即每箱装的重量与装的箱数成反比例。

如果把原来要装的40箱看做1份数,那么现在需要装的箱数就是原来要装箱数的:现在需要装的箱数是:答略。

天的用煤量看做1份数,那么改进炉灶后每天的用煤量是原来每天用煤量的:用煤天数与每天用煤量成反比例,原来要用24天的煤,现在可以用的天数是:答略。

(七)以份数法解分数应用题分数应用题就是指分数的三类应用题,即求一个数的几分之几是多少;求一个数是另一个数的几分之几;已知一个数的几分之几是多少,求这个数。

例1长征毛巾厂男职工人数比女职工人数少1/3,求女职工人数比男职工人数多百分之几?(适于六年级程度)解:从题中条件可知,男职工人数相当于女职工人数的:如果把女职工人数看作3份,那么男职工人数就相当于其中的2份。

所以,女职工人数比男职工人数多:(3-2)÷2=50%答略。

那么黄旗占:如果把21面黄旗看作1份数,总数量“1”中包含有多少个7/45,旗的总面数就是21的多少倍。

答略。

棉花谷多少包?(适于六年级程度)解:由题意可知,甲、乙两个仓库各运走了一些棉花之后,甲仓库剩下成8份时,甲仓库剩下的是2份;把乙仓库的棉花分成5份时,乙仓库剩下的也是2份。

但是,乙仓库剩下的2份比甲仓库剩下的2份多130包。

可以看出,乙仓库的1份比甲仓库的1份多出:130÷2=65(包)如果把乙仓库原有的棉花减少5个65包,再把剩下的棉花平均分成5份,这时乙仓库的每一份棉花就与甲仓库的每一份同样多了。

这样,从两仓库棉花的总数2600包中减去5个65包,再把剩下的棉花平均分成13份(其中甲仓库8份,乙仓库5份),其中的8份就是甲仓库原有的包数。

相关文档
最新文档