线性代数第五章(第一节内积)PPT课件
合集下载
线性代数§5.1向量的内积
|| x || || y ||
称为n维向量 x 与 y 的夹角, 规定0 .
例1: 求向量x = (1, 2, 2, 3)与y = (3, 1, 5, 1)的夹角. 解: [x, y]=13+21+25+31=18,
|| x || 12 22 22 32 18,
|| y || 32 12 52 12 36,
由于1, 2, ···, r 是两两正交的非零向量组,则有
当 i j 时, [i, j]=iTj = 0, 当 i = j 时, [i, i]=iTi 0,
用iT ( i =1, 2, ···, r )左乘上式得, 1iT1 + ···+ iiTi + ···+ riTr = iT0 = 0,
2. 正交向量组的概念 若一非零向量组中的向量两两正交, 则称该向量 组为正交向量组. 3. 正交向量组的性质
定理1: 若向量组1, 2, ···, r 是n维正交向量组, 则1, 2, ···, r 线性无关.
证明: 设有数1, 2, ···,r, 使得: 11 + 22 + ···+ rr = 0
解: 先正交化. 取
b1= a1=(1, 1, 1, 1),
b2
a2
[b1 ,a2 [b1 ,b1
] ]
b1
(1, 1,0,4)
114
(1,1,1,1) (0, 2, 1,3),
1111
b3
a3
[b1 ,a3 [b1 ,b1
] ]
b1
[b2 [b2
,a3 , b2
] ]
b2
(3,5,1, 1) 8 (1,1,1,1) 14(0, 2, 1,3)
称为n维向量 x 与 y 的夹角, 规定0 .
例1: 求向量x = (1, 2, 2, 3)与y = (3, 1, 5, 1)的夹角. 解: [x, y]=13+21+25+31=18,
|| x || 12 22 22 32 18,
|| y || 32 12 52 12 36,
由于1, 2, ···, r 是两两正交的非零向量组,则有
当 i j 时, [i, j]=iTj = 0, 当 i = j 时, [i, i]=iTi 0,
用iT ( i =1, 2, ···, r )左乘上式得, 1iT1 + ···+ iiTi + ···+ riTr = iT0 = 0,
2. 正交向量组的概念 若一非零向量组中的向量两两正交, 则称该向量 组为正交向量组. 3. 正交向量组的性质
定理1: 若向量组1, 2, ···, r 是n维正交向量组, 则1, 2, ···, r 线性无关.
证明: 设有数1, 2, ···,r, 使得: 11 + 22 + ···+ rr = 0
解: 先正交化. 取
b1= a1=(1, 1, 1, 1),
b2
a2
[b1 ,a2 [b1 ,b1
] ]
b1
(1, 1,0,4)
114
(1,1,1,1) (0, 2, 1,3),
1111
b3
a3
[b1 ,a3 [b1 ,b1
] ]
b1
[b2 [b2
,a3 , b2
] ]
b2
(3,5,1, 1) 8 (1,1,1,1) 14(0, 2, 1,3)
《内积外积混合积》课件
内积具有交换律、分配律和结合 律等基本性质。
内积的性质
内积的结果是一个标量,其值在 -1到1之间,表示两向量的相似
程度。
当两向量垂直时,内积为0;当 两向量平行或同向时,内积为正 ;当两向量反向时,内积为负。
内积可以用于计算向量的投影、 角度、距离等几何量。
内积的应用
01
在线性代数中,内积用 于定义向量空间和矩阵 运算。
应用举例
通过具体的应用举例,演示内 积、外积和混合积在解决实际
问题中的应用。
02 内积(点积)
内积的定义
内积是指两个向量的点乘,其结 果是一个标量,表示两个向量的
相似程度。
内积的定义公式为:a·b = |a||b|cosθ,其中a和b是两个向 量,|a|和|b|分别是它们的模,θ
是两向量之间的夹角。
不同点
内积和外积的结果分别是标量和向量 ,而混合积的结果是标量;内积和外 积分别用于计算长度和方向,而混合 积用于计算平行和垂直关系。
课程中的难点和重点
难点
理解内积、外积和混合积的概念 和应用,掌握它们的计算方法和 技巧。
重点
掌握内积、外积和混合积的基本 性质和几何意义,理解它们在解 决实际问题中的应用。
外积与内积的关系
外积与内积之间存在一定的关系 ,即两向量的内积等于它们所构 成的平行四边形的面积在它们所
构成的平面上的投影。
外积的应用
物理应用
01
外积在物理中有广泛的应用,如描述旋转物体的角速度和线速
度之间的关系,以及磁场中电流产生的力矩等。
计算机图形学应用
02
在计算机图形学中,外积常用于计算旋转和缩放矩阵,以及实
混合积
混合积是三个向量的运算,表示一 个向量在另外两个向量构成的平面 上的投影长度。
线性代数第五章5.1向量的内积
, r 是V的一组基,则 1 , 2 ,
, r 就是
V的一组标准正交基.
上述方法称为施密特(Schmidt)正交化法.
注
上述方法中的两个向量组对任意的 1 k r ,
1 , 2 , , k 与 1 , 2 , , k 都是等价的.
四、应用举例 例1 把向量组
化为标准正交向量组. 解: 将 a1 , a2 , 3正交化, 取
i=1,2,
, am 线性无关.
定理 若向量β与 1 , 2 , 5、正交基 若正交向量组1 , 2 , 则称 1 , 2 , 6、标准正交基 若单位向量组 1 , 2 , 则称 为一个标准正交基.
, s 中每个向量都正交,则
β与 1 , 2 , , s 的任一线性组合也正交.
证: 设 a1 , a2 ,
, am 是正交向量组, 若有线性关系
k1a1 k2a2
ki ai , ai 0
ki 0,
故 a1 , a2 ,
km am 0,
用 a i 与等式两边作内积,得
i=1,2,
,m
,m .
则 ai 0, 有 ai , ai 0, 从而得
2、正交矩阵的充要条件 ① A的列向量是标准正交组.
② A的行向量是标准正交组. 3、正交矩阵的性质 ① A A1 即A的转置就是A的逆矩阵; ② 若A是正交矩阵,则 A(或A1 )也是正交矩; ③ 两个同阶的正交阵的乘积仍是正交阵; ④ 正交阵的行列式等于1或-1. 注 正交矩阵A的n个列(行)向量构成向量空间R n 的一个标准正交基.
r 1 , r r 1 r 1 , r 1
则 1 , 2 , 2)标准化 令 1
线性代数5
所以 2 x , y
即
2
4 x , x y , y 0
(5.1)
x , y
2
x , x y , y
上式被称为许瓦兹(Schwarz)不等式.
西安建大
二.正交向量组与正交化方法
1.正交向量组
1.正交向量组
当 x
y 0 时,定义向量
cos
2.施密特正交化方法
西安建大
三.正交矩阵与正交变化
1. 正交矩阵 定义5.2 定理5.3
1.正交矩阵
2.正交变换
如果 n阶方阵 A 满足 AT A 则称 A 为正交矩阵.
I
如果 A , B均为 n阶正交矩阵,
T
1
那么:⑴ A1 AT ⑵ A 即 A 为正交矩阵
1 A A ⑶ 2 A A 为 2n 阶正交矩阵
量两两正交,从而这 n 个向量就构成了向量空 间 R n的一组正交基.
西安建大
例5.1
T 已知 R 3的一个向量 1 1 ,1 ,1, 求 R 3的一组正交基. T T 解:求 2 x21 , x22 , x23 ,使 1 2 0
即: x21 x22 x23 0
bi ( i 1 ,2 , , r ) 再取 i bi
显然 1 , 2 , , r为正交规范化的向量组, 且与 1 , 2 , , r 等价.
西安建大
T T T 例5.2:已知 1 1 ,1 ,1 , 2 1, 2 ,1 , 3 1 ,1 ,2
西安建大
定义5.1
设n 维向量 1 , 2 , , r是向量空间 V ( V R n )的一组正交基,如果它们均为单位向 量,则称 1 , 2 , , r 为V 的一组正交规范基 或标准正交基.
线性代数课件--5.1向量空间基本概念
R( A) {v | v c1a1 c2a2 cnan , c1, 2 , , n R} c c
可等价写成
R( A) {v | v Ax,x Rn }
对一般线性代数方程组成立如下定理 定理 m n线性代数方程组Ax=b相容的充要 条件是
b R( A)
1 1 1 1 1 0 3 2 1 2 1 0 r 0 1 2 1 B ~ 0 0 0 0 2 1 4 3 2 3 0 1 0 0 0 0 所以r(A)r(B) 因此向量b能由 向量组a1 a2 a3线性表示
x1a1 x2a2 xnan b
a1 ,a2 ,… ,an 的线性组合 则方程组有解的条件是 b 可作为
定义 若干个同维数的列向量(行向量)所组成的集
合称为向量组. 有限向量组
a11 A34 a21 a 31
a12 a22 a32
a13 a23 a33
a14 , , , a24 1 2 3 4 a34
因此
b R( A)
r ( A) r ( A)
例
试证m n齐次线性代数方程组Ax=0
的解集依向量线性运算法则是Rn的子空间. 解 已知齐次线性代数方程组的解集非空,
若记此解集为N(A), 则显然有
1. 若 x1 N ( A),即 Ax1 0, 则对任意常数 c , 必 A(cx1 ) cAx1 c0 0 ,即 cx1 N ( A) ; 2. 若 x1 N ( A), x2 N ( A), 即 Ax1 0, Ax2 0, 则必
为讨论,先将方程组改写成向量形式
1 0 b1 x1 5 x 2 4 b2 记为 x1a1 x2 a2 b 2 4 b3
线性代数课件第5章相似矩阵
(3)可以证明,对应于 A的每一个 若正好有 ki个线性无关的特征向量,即
k重i 特征值
R( A i E)
i
n
ki
则 A必有 n 个线性无关的特征向量,从而一定可以
对角化. 15
例8 判断下列矩阵是否可以对角化?若可以 对角化,求可逆矩阵使之对角化.
1 0 0
1
(1)
A
2
0 3
,
(2)B
2
x3 1
的全部特征向量为
0 ,1 0
1
2 0
得同解方程组
x1 x2
x3 2 x3
x3 x3
(c1 R) 所以对应于特征值 1 2 1
c11 c1 1 2 2T (c1 0)
7
对于特征值
. ,解方程 (A 2E)x 由0
3 1 0 1 0 0
A
2E
4
1
0
0
1
0
1 0 0 0 0 0
得同解方程组
x1 x2
0 0
故得通解
x3 x3
x1 0
x2
c2
0
x3 1
对应于特征值 3 2 的全部特征向量为
0
c2 2
0
(c2
0)
1
(c2 R)
8
5.1.2 特征值的性质
n 性质1 若 阶方阵 A (ai j ) 的全部特征值为 1, 2, , n ( k 重特征值算作 k 个特征值)则:
1
5.1 方阵的特征值与特征向量
5.1.1 方阵的特征值与特征向量
定义1 设 A (ai j ) 是一个 n 阶方阵,如果存在数 及
x1
n
线性代数第五章
1.内积 2.向量旳范数 3.许瓦兹不等式
x x1 , x2 , , xn T , y y1 , y2 , , yn T
称 xT y x1 y1 x2 y2 xn yn
为向量 x与 y 旳内积,记为 x , y.
2
内积满足下列运算规律:
⑴ x, y y, x
⑵ kx , y kx ,y
15
三.正交矩阵与正交变化
1. 正交矩阵
1.正交矩阵 2.正交变换
定义5.2 假如 n阶方阵 A 满足AT A I
则称 A 为正交矩阵.
定理5.3 假如 A , B均为 n 阶正交矩阵,
那么:⑴ A1 AT
⑵ AT 即 A1 为正交矩阵
⑶
1 2
A A
A A
为
2n
阶正交矩阵
⑷ AB,BA 都是正交矩阵
8
定理5.2 若 1 , 2 , , r为 n 维正交向
量组,且 r n ,则必有非零 n 维向量 x , 使 x 与 1 , 2 , , r 两两正交.
推论:对 rr n个两两正交旳 n 维非零向量,总
能够添上 n r个 n 维非零向量,使 n 个向
量两两正交,从而这 n 个向量就构成了向量空
第五章 特征值 特征向量 二次型
第一讲 正交向量组与正交矩阵 第二讲 方阵旳特征值与特征向量 第三讲 相同矩阵与实对称矩阵旳对角化 第四讲 二次型及其原则形 第五讲 惯性定理和正定二次型 第六讲 习题课
1
第一讲 正交向量组与正交矩阵
一.向量旳内积与许瓦兹
(Schwarz)不等式
1.内积
内积定义:对 n维列向量
19
第二讲 方阵旳特征值和特征向量
1.定义
同济大学线性代数课件__第五章相似矩阵及二次型
p3
0 4
30
设
1 0 1
P ( p1, p2 , p3 ) 0 1 0
1 1 4
则
1
P 1AP 2
2
31
性质:若l 是 A 的特征值, 即 Ax = lx (x≠0),则
(1) kl 是 kA 的特征值(k是常数),且 kAx = klx (2) lm 是 Am 的特征值(m是正整数),且 Amx = lmx (3) 若 A可逆,则l-1是 A-1的特征值, 且 A-1x = l-1x
16
定义4 若 n 阶矩阵 A 满足 A A E 则称 A 为正交矩阵, 且 A1 A
令 A (1,2 , ,n )
A
A
1
2
(1
,
2
,
n
,n
)
11
21
n1
故
[i , j ] i j
ij
1, 0,
i i
j j
1 2 2 2
n 2
1 n 2 n
nn
17
特征值及二次型问题是线性代数的重要问题。
[ x ty, x ty] 0, t [ x, x] 2[ x, y]t [ y, y]t 2 0
(1) [ x, y ] = [ y, x ]; [ x, y]2 [x, x][ y, y]
(2) [lx, y] = l[ x, y ];
(3) [ x + y, z ] = [ x, z ] + [ y, z ];
解: (1) A2 2A 3E 有特征值 l 2 2l 3
(2) 3阶阵 A有特征值 1, -1, 2,故 | A | 2,A可逆。 A 3A 2E 有特征值 -1,-3,3
线性代数 第五章 向量空间
称为n元向量空间。
,an P
向量空间---基和维数
向量空间V中若向量组 1 ,2 , ,k 为极大
向 线性无关组,则称其为向量空间V的一组基
量 维数:基中所含向量的个数,dimV k.
空 Pn 的基和维数:由n个n元向量组成的极大
间
线性无关组。故基不唯一。
1,2, ,n , i 0,0, ,1, ,0T
m2 n 2
mn1n , mn2n ,
m11
M=
m21
mnnn .
mn1
m12 m22
mn2
m1n
m2
n
mnn
1 2
n 1 2
n M
M称为基(I)到基(II)的过渡矩阵。(M可逆?)
向量空间---过渡矩阵
(I ) 1,2, ,n; (II) 1, 2, , n 是 Pn
间
Байду номын сангаас
k31 3 , 1 / 1, 1 ; k32 3 , 2 / 2 , 2 ;
3 3
3 , 2 2 , 2
2
3, 1 1, 1
1.
向量空间---作业
向 P139 6 量 P142 3(1), 3(2) 空 P147 6,7
, , , ;
, 0, 且 , 0 O.
, , 是 Rn 中任意向量,k为任意实数。
向量空间---内积和标准正交基
向量的长度:|| || ,
向
单位向量: || || 1
向 的两组基,向量 在基(I)、(II)的坐标分
线性代数第五章第一节向量的内积长度及正交性课件
a1 a1
a1T a2 a2T a2
a1T a2T
an an
1 0
0 1
0
0
anT
anT a1 anT a2
anT an
0
0
1
于是
[ai , a j ]
aiT a j
1, 0,
i j (i, j 1, 2,
i j
, n)
从而可得
方阵A 为正交阵的充分必要条件是 A 的列向量都是单位向 量,且两两正交.即 A 的列向量组构成Rn 的规范正交基.
例:已知3
维向量空间R3中两个向量
a1
1
,
a2
2
1
1
正交,试求一个非零向量a3 ,使a1, a2, a3 两两正交.
分析:显然a1⊥a2 .
解:设a3 = (x1, x2, x3)T ,若a1⊥a3 , a2⊥a3 ,则
[a1, a3] = a1T a3 = x1 + x2 + x3 = 0
b1
[b2 , a3 ] [b2 , b2 ]
b2
c32
c31 c3 c2
a1 b1
b2 a2
第一步:正交化——施密特(Schimidt)正交化过程 设 a1, a2, …, ar 是向量空间 V 中的一个基,那么令
b1 a1
b2
a2
c2
a2
[b1 , [b1 ,
a2 b1
] ]
b1
br
ar
[b1 [b1
齐次性: || l x || = | l | ·|| x ||.
三角不等式: || x + y || ≤ || x || + || y ||.
线性代数第5章课件
内积是向量的一种运算,用矩阵的记号表示,当 x与 y 都是列向量时,有
[x,y] = x' y
例 计算[x, y],其中x, y如下 : (1)x = (0,1,5,-2), y = (-2,0,-1,3); (2)x = (-2,1,0,3), y = (3,-6,8,4),
解 (1) [ x, y] = 0 • (-2) 1• 0 5• (-1) (-2) • 3 = -11
第五章
特征值与二次型
第五章主要内容
第一节 向量的内积 第二节 方阵的特征值与特征向量 第三节 相似矩阵 第四节 化二次型为标准型 第五节 正定二次型
第一节 向量的内积
定义1 设有n 维向量
x1
y1
x = x2 , y = y2
....
xn
yn
令 [x,y] = x1 y1+ x2 y2 +…+ xn yn, 则 [x,y] 称为向量x与 y 的 内积
定义2 令 x = [x, x] = x12 x22 xn2
称为 n 维向量 x 的长度(或范数)
x
若向当量xx
=10时,则, 称xxx为是单单位位向量向.量.
向量的长度具有下述性质:
(i)非负性:当x 0时,x 0;当x = 0时,x =0;
(ii)齐次性: x = x ;
(iii)三角不等式 : x y x y ;
上述从线性无关向量组a1 , …,ar 导出 1, 2 ,K , r 的 过程称为施密特正交化过程。它不仅满足1, 2 ,K , r 与a1 , …,ar 等价,还满足:对任何k ( 1≤ k ≤r ) ,向量组 1, 2 ,K , k 与a1 , …,ak 等价。
线性代数5.1-4
3的一个与基
v
v
v
1 1 1 v v v α 1 = 1 α 2 = 0 α 3 = 1 1 1 0
1 v v v r v 1 1 − 1 1 v v [α 3 , β 1 ] v [α 3 , β 2 ] β 3 =α3- − v v β 11 - v v β 2 = 1 − 2 1 − 3 ⋅ 1 − 2 = 1 0 . β3 = α 3 β 3 6 3 2 [β 2 , β 2 ] [β 1 , β 1 ] 0 1 1 − 1 9 v v v v v v β , β , 3 单位化, α3等价标准正交基为: 再将β11,β22,β3 单位化,便得与α11,α2, α 3 等价标准正交基为 2 v v v 1 1 1 β1 v v v 1 ε = βv2 = 1 − 2 , ε = βv3 = 1 0 . ε1 = v = 2 3 1 , β2 β3 2 β1 6 3 − 1 1 1
验证向量组 α11 = , , α
1 1 1 1 ,0 ,α 22 = − ,− , ,0 , 2 2 2 2 T T v 1 1 1 v 1 1 1 α 3 3= ,− ,0, ,0 为R4的一个基 , α 44 = − , , α α 的一个基. 2 2 2 2 2 2
是否可由它得到V的一个标准正交基呢? 是否可由它得到 的一个标准正交基呢? 的一个标准正交基呢 条件是
二、施密特(Schmidt)正交化方法 施密特(Schmidt)正交化方法 (Schmidt)
个与其等价的单位正交向量组。 个与其等价的单位正交向量组。 v v v α,α ,… 正交化. (1) 将线性无关的向量组α11,α22,...,αr正交化 r v v v v v v- [α 2 , β 1 ] β , β2 = α =1 令 β1=αα 1 , β 2 =α2 2 − v v β11 [β 1 , β 1 ] v v v r v v v v [α 3 , β 1 ] [α 3 , β 2 ] v v β 11 ββ3= α33- − v v β 2, β 2 3 =α [β 1 , β 1 ] [β 2 , β 2 ] … … … … … … … , v v v v v v v v [α r , β 2 ] [α r , β r −1 ] v [α r , β 1 ] v v v v v v = r ββr= ααr− v v β1 - [ β , β ] β2 - …- [β , β ] ββr-1. 1 2 r −1 r [β1 , β 1 ] 2 2 r −1 r −1
v
v
v
1 1 1 v v v α 1 = 1 α 2 = 0 α 3 = 1 1 1 0
1 v v v r v 1 1 − 1 1 v v [α 3 , β 1 ] v [α 3 , β 2 ] β 3 =α3- − v v β 11 - v v β 2 = 1 − 2 1 − 3 ⋅ 1 − 2 = 1 0 . β3 = α 3 β 3 6 3 2 [β 2 , β 2 ] [β 1 , β 1 ] 0 1 1 − 1 9 v v v v v v β , β , 3 单位化, α3等价标准正交基为: 再将β11,β22,β3 单位化,便得与α11,α2, α 3 等价标准正交基为 2 v v v 1 1 1 β1 v v v 1 ε = βv2 = 1 − 2 , ε = βv3 = 1 0 . ε1 = v = 2 3 1 , β2 β3 2 β1 6 3 − 1 1 1
验证向量组 α11 = , , α
1 1 1 1 ,0 ,α 22 = − ,− , ,0 , 2 2 2 2 T T v 1 1 1 v 1 1 1 α 3 3= ,− ,0, ,0 为R4的一个基 , α 44 = − , , α α 的一个基. 2 2 2 2 2 2
是否可由它得到V的一个标准正交基呢? 是否可由它得到 的一个标准正交基呢? 的一个标准正交基呢 条件是
二、施密特(Schmidt)正交化方法 施密特(Schmidt)正交化方法 (Schmidt)
个与其等价的单位正交向量组。 个与其等价的单位正交向量组。 v v v α,α ,… 正交化. (1) 将线性无关的向量组α11,α22,...,αr正交化 r v v v v v v- [α 2 , β 1 ] β , β2 = α =1 令 β1=αα 1 , β 2 =α2 2 − v v β11 [β 1 , β 1 ] v v v r v v v v [α 3 , β 1 ] [α 3 , β 2 ] v v β 11 ββ3= α33- − v v β 2, β 2 3 =α [β 1 , β 1 ] [β 2 , β 2 ] … … … … … … … , v v v v v v v v [α r , β 2 ] [α r , β r −1 ] v [α r , β 1 ] v v v v v v = r ββr= ααr− v v β1 - [ β , β ] β2 - …- [β , β ] ββr-1. 1 2 r −1 r [β1 , β 1 ] 2 2 r −1 r −1
线性代数 第5章 特征值特征向量相似矩阵
若 α1,α2, ,αr 为向量空间V的一个基,
(1)正交化,取 β1 = α1 ,
β2
=
α2
−
[ β1,α2 ] [β1, β1 ]
β1,
上页 下页 返回 14
β3
=
α3
−
[β1 ,α3 ] [β1, β1]
β1
−
[β 2 ,α 3 ] [β2, β2]
β2
βr
=
βr
−
[β1,αr ] [β1, β1]
= δ ij
=
⎧1, i =
⎨ ⎩
0,
i
≠
j; j
(i, j = 1, 2,
,n)
上页 下页 返回 24
4
第五章 特征值特征向量相似矩阵
定义5 若 P为正交阵,则线性变换 y = Px 称为正 交变换.
性质 正交变换保持向量的长度和夹角不变.
证明 设y = Px为正交变换,
则有 y = yT y = xT PT Px = xT x = x .
e1
=
⎜1 ⎜ ⎜⎜⎝
0 0
2⎟⎟,e2 ⎟⎟⎠
=
⎜−1
⎜ ⎜⎜⎝
0 0
2⎟⎟,e3 ⎠⎟⎟
=
⎜ ⎜⎜⎜⎝11
0
2⎟⎟,e4 2⎟⎟⎠
=
⎜0
⎜ ⎜⎜⎝
1 −1
22⎟⎟⎟⎟⎠.
上页 下页 返回 11
⎛1 2⎞ ⎛ 1 2 ⎞ ⎛ 0 ⎞ ⎛ 0 ⎞
⎜
e1
=
⎜1 ⎜
⎜⎜⎝
⎟⎜
0 0
2
⎟ ⎟
,
e2
⎟⎟⎠
=
β1
+
线性代数课件(高教版)5-4
例 求向量 1,2,2,3与 3,1,5,1的夹角.
解
cos
18 2 3 26 2
.
4
二、 正交向量组 1 正交的概念
当[ x, y] 0时, 称向量x与 y正交. 由定义知,若 x 0,则 x 与任何向量都正交. 2 正交向量组的概念
若一非零向量组中的向量两两正交,则称该向 量组为正交向量组.
例 用施密特正交化方法,将向量组
a1 (1,1,1,1),a2 (1,1,0,4),a3 (3,5,1,1) 正交规范化.
解 先正交化,取
b1 a1 1,1,1,1
b2
a2
[b1,a2 ] [b1 , b1 ]
b1
1,1,0,4
1
1
4
1,1,1,1 0,2,1,3
1111
b3
a3
由 1 0 1T1 1 2 0, 从而有1 0 .
同理可得2 r 0. 故1,2 ,,r线性无关.
4 单位正交向量组 (单位正交组,标准正交组,规范正交组)
正交向量组的每个向量都是单位向量,称其为 单位正交向量组。
例如
1 2 1 2 0 0
e1
1
0 0
2 ,e2
正交矩阵的性质
(1)若A为正交阵 则A1AT也是正交阵 且|A|1 (2)若A和B都是正交阵 则AB也是正交阵; (3)若A为正交阵 则-A也是正交阵。
定义5 若 P为正交阵,则线性变换 y Px 称为正
交变换.
四、 共轭矩阵
定义 矩阵A的每一个元素都取它的共轭复 数得到的矩阵称为A的共轭矩 Nhomakorabea,记为 A
§5.4 正交矩阵
一、实向量内积与长度
定义 设有n 维向量
解
cos
18 2 3 26 2
.
4
二、 正交向量组 1 正交的概念
当[ x, y] 0时, 称向量x与 y正交. 由定义知,若 x 0,则 x 与任何向量都正交. 2 正交向量组的概念
若一非零向量组中的向量两两正交,则称该向 量组为正交向量组.
例 用施密特正交化方法,将向量组
a1 (1,1,1,1),a2 (1,1,0,4),a3 (3,5,1,1) 正交规范化.
解 先正交化,取
b1 a1 1,1,1,1
b2
a2
[b1,a2 ] [b1 , b1 ]
b1
1,1,0,4
1
1
4
1,1,1,1 0,2,1,3
1111
b3
a3
由 1 0 1T1 1 2 0, 从而有1 0 .
同理可得2 r 0. 故1,2 ,,r线性无关.
4 单位正交向量组 (单位正交组,标准正交组,规范正交组)
正交向量组的每个向量都是单位向量,称其为 单位正交向量组。
例如
1 2 1 2 0 0
e1
1
0 0
2 ,e2
正交矩阵的性质
(1)若A为正交阵 则A1AT也是正交阵 且|A|1 (2)若A和B都是正交阵 则AB也是正交阵; (3)若A为正交阵 则-A也是正交阵。
定义5 若 P为正交阵,则线性变换 y Px 称为正
交变换.
四、 共轭矩阵
定义 矩阵A的每一个元素都取它的共轭复 数得到的矩阵称为A的共轭矩 Nhomakorabea,记为 A
§5.4 正交矩阵
一、实向量内积与长度
定义 设有n 维向量
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、内积的性质
设 x, y, z 为 n 维向量, 为实数,则内积有
下列性质: (1) <x, y> =<y, x>;
(2) <x, y> = <x, y>;
(3) <x + y, z> = <x, z> + <y, z>; (4) <x, x> 0, 且当 x 0 时有<x, x> > 0.
在解析几何中,我们曾引进向量的数量积
定义1 设有 n 维向量
x1
y1
x
x2
,
y
y2
,
xn
yn
令 <x, y> = x1y1 + x2y2 + … + xnyn , <x, y> 称为向
量 x 与 y 的内积.
内积是向量的一种运算,这种运算也可用矩 阵记号表示. 当 x 与 y 都是列向量时,有
<x, y> = xTy .
4
1
0
则 a4 应满足齐次线性方程 Ax = 0, 即
1 2 3 1 x1
1 1 1 5 4 1
0 0
x2 x3 x4
0,
解之得
五、正交规范基
1. 定义5 设 a1 , a2 , … , ar 是向量空间 V ( V Rn )
的一个基, 如果 a1 , a2 , … , ar 两两正交, 则称
当 < x, y > = 0 时, 称向量 x 与 y 正交. 显然,若
x = 0, 则 x 与任何向量都正交, 即零向量与任何向 量正交.
四、正交向量组
1. 正交向量组的定义 定义4 由两两正交的非零向量构成的向量
组称为正交向量组. 2. 正交向量组的性质
定理1 若 n 维向量 a1 , a2 , … , ar 是一组
a = k1ε1 + k2 ε2 + … + krεr .
分别用 εi 与α做内积 得 < a, εi > = <k1ε1 + k2 ε2 + … + krεr , εi >
=ki<εi , εi >=ki,
即
ki = <a, εi>.
六规范正交基的求法
设 a1 , a2 , … , ar 是向量空间 V 的一个基, 要 求 V 的一个正交规范基. 这也就是要找一组两两
三、向量的长度和夹角
1. 向量的长度
定义2 令
x x, x x12 x22 xn2 ,
‖ x ‖ 称为 n 维向量 x 的长度 ( 或范数 ).
特别地,当 ‖x‖=1 时, 则称 x 为单位向量.
显然,当α=0时, ‖α‖=0; 当α≠0时, 则 ‖α‖>0,
单位向量
称为向量α的单位化.
a1, a2 , …, ar 是 V 的一个正交基.
定义 6 设 n 维向量 ε1 , ε2 , … , εr 是向量空间V
( VRn ) 的一个基, 如果 ε1 , … , εr 两两正交, 且都是
单位向量, 则称 ε1, …, εr 是 V 的一个正交规范基.
2. 用正交规范基表示向量
若 ε1 , ε2 , … , εr 是 V 的一个正交规范基, 那 么 V 中任一向量 a 应能由 ε1 , ε2 , … , εr 线 性 表 示, 设表示式为
因 <αi αi>≠0, 从而必有ki=0.
证毕.
例 1 已知 4 维向量空间 R4 中三个向量
1
1
5
a1
2
31
,
a2
1
01
, a3
4
1 0
正交,试求一个非零向量 a4,使 a1,a2,a3,a4 a2T
1 1
2 1
3 1 1 0 ,
a3T
5
两两正交的非零向量, 则 a1 , a2 , … , ar 线性无关.
证明: 设有 k1 , k2 , … , kr 使
k1a1 + k2a2 + … + krar = 0 , 那么
对任意的αi (1≤i≤r) ,
0,i k11 k22 ... krr ,i k1 1,i k2 2,i ... kr r ,i ki i ,i 0
1
1 b1
b1 , 2
1 b2
b2 ,
就得 V 的一个正交规范基.
,r
1 br
br ,
上述从线性无关向量组 a1 , … , ar 导出正交
向量组 b1 , … , br 的过程称为施密特(Schimidt) 正交化过程. 它不仅满足 b1 , … , br 与 a1, … , ar
第五章
本章讨论在理论上和实际应用上都非常重 要的矩阵特征值问题, 并利用特征值的有关理论, 讨论矩阵在相似意义下化简为对角矩阵的问题.
第 一 节 向量的内积
主要内容
内积定义 内积的性质 n 维向量的长度(范数)和夹角 向量夹角,正交向量组的性质 正交基与规范正交基 施密特正交化方法
一、内积的定义
<b1 ,a2 > <b1 ,b1>
b1
;
br
ar
<b1,ar > <b1 ,b1 >
b1
<b2 ,ar > <b2 ,b2 >
b2
<br1,ar > <br1 ,br1>
br 1
.
容易验证 b1 , … , br 两两正交, 且 b1 , … , br 与 a1 , …, ar 等价.
然后只要把它们单位化, 即取
2. 向量的夹角 向量的内积满足施瓦茨不等式
< x, y >2 < x, x >< y, y>, 由此可得
<x, y> 1 (当 || x || || y || 0 时), xy
于是有下面的定义:
定义3 当 || x || 0, || y || 0 时,
arccos <x, y>
xy 称为 n 维向量 x 与 y 的夹角.
x ·y = |x| |y| cos ,
且在直角坐标系中,有 ( x1, x2, x3 ) ·(y1, y2 , y3 ) = x1y1 + x2y2 + x3y3 .
所以 n 维向量的内积是数量积的一种推广. 但 n 维向量没有 3 维向量那样直观的长度和夹角的概 念,因此只能按数量积的直角坐标计算公式来推 广. 并且反过来,利用内积来定义 n 维向量的长 度和夹角:
正交的单位向量 ε1 , ε2 , … , εr , 使 ε1 , … , εr 与
a1 , a2 , … , ar 等价这样一个问题, 称为把 a1 , a2 , … , ar 这个基规范正交化.
我们可以用以下方法把 a1 , a2 , … , ar 规范 正交化:
取 b1 = a1 ;
b2
a2
设 x, y, z 为 n 维向量, 为实数,则内积有
下列性质: (1) <x, y> =<y, x>;
(2) <x, y> = <x, y>;
(3) <x + y, z> = <x, z> + <y, z>; (4) <x, x> 0, 且当 x 0 时有<x, x> > 0.
在解析几何中,我们曾引进向量的数量积
定义1 设有 n 维向量
x1
y1
x
x2
,
y
y2
,
xn
yn
令 <x, y> = x1y1 + x2y2 + … + xnyn , <x, y> 称为向
量 x 与 y 的内积.
内积是向量的一种运算,这种运算也可用矩 阵记号表示. 当 x 与 y 都是列向量时,有
<x, y> = xTy .
4
1
0
则 a4 应满足齐次线性方程 Ax = 0, 即
1 2 3 1 x1
1 1 1 5 4 1
0 0
x2 x3 x4
0,
解之得
五、正交规范基
1. 定义5 设 a1 , a2 , … , ar 是向量空间 V ( V Rn )
的一个基, 如果 a1 , a2 , … , ar 两两正交, 则称
当 < x, y > = 0 时, 称向量 x 与 y 正交. 显然,若
x = 0, 则 x 与任何向量都正交, 即零向量与任何向 量正交.
四、正交向量组
1. 正交向量组的定义 定义4 由两两正交的非零向量构成的向量
组称为正交向量组. 2. 正交向量组的性质
定理1 若 n 维向量 a1 , a2 , … , ar 是一组
a = k1ε1 + k2 ε2 + … + krεr .
分别用 εi 与α做内积 得 < a, εi > = <k1ε1 + k2 ε2 + … + krεr , εi >
=ki<εi , εi >=ki,
即
ki = <a, εi>.
六规范正交基的求法
设 a1 , a2 , … , ar 是向量空间 V 的一个基, 要 求 V 的一个正交规范基. 这也就是要找一组两两
三、向量的长度和夹角
1. 向量的长度
定义2 令
x x, x x12 x22 xn2 ,
‖ x ‖ 称为 n 维向量 x 的长度 ( 或范数 ).
特别地,当 ‖x‖=1 时, 则称 x 为单位向量.
显然,当α=0时, ‖α‖=0; 当α≠0时, 则 ‖α‖>0,
单位向量
称为向量α的单位化.
a1, a2 , …, ar 是 V 的一个正交基.
定义 6 设 n 维向量 ε1 , ε2 , … , εr 是向量空间V
( VRn ) 的一个基, 如果 ε1 , … , εr 两两正交, 且都是
单位向量, 则称 ε1, …, εr 是 V 的一个正交规范基.
2. 用正交规范基表示向量
若 ε1 , ε2 , … , εr 是 V 的一个正交规范基, 那 么 V 中任一向量 a 应能由 ε1 , ε2 , … , εr 线 性 表 示, 设表示式为
因 <αi αi>≠0, 从而必有ki=0.
证毕.
例 1 已知 4 维向量空间 R4 中三个向量
1
1
5
a1
2
31
,
a2
1
01
, a3
4
1 0
正交,试求一个非零向量 a4,使 a1,a2,a3,a4 a2T
1 1
2 1
3 1 1 0 ,
a3T
5
两两正交的非零向量, 则 a1 , a2 , … , ar 线性无关.
证明: 设有 k1 , k2 , … , kr 使
k1a1 + k2a2 + … + krar = 0 , 那么
对任意的αi (1≤i≤r) ,
0,i k11 k22 ... krr ,i k1 1,i k2 2,i ... kr r ,i ki i ,i 0
1
1 b1
b1 , 2
1 b2
b2 ,
就得 V 的一个正交规范基.
,r
1 br
br ,
上述从线性无关向量组 a1 , … , ar 导出正交
向量组 b1 , … , br 的过程称为施密特(Schimidt) 正交化过程. 它不仅满足 b1 , … , br 与 a1, … , ar
第五章
本章讨论在理论上和实际应用上都非常重 要的矩阵特征值问题, 并利用特征值的有关理论, 讨论矩阵在相似意义下化简为对角矩阵的问题.
第 一 节 向量的内积
主要内容
内积定义 内积的性质 n 维向量的长度(范数)和夹角 向量夹角,正交向量组的性质 正交基与规范正交基 施密特正交化方法
一、内积的定义
<b1 ,a2 > <b1 ,b1>
b1
;
br
ar
<b1,ar > <b1 ,b1 >
b1
<b2 ,ar > <b2 ,b2 >
b2
<br1,ar > <br1 ,br1>
br 1
.
容易验证 b1 , … , br 两两正交, 且 b1 , … , br 与 a1 , …, ar 等价.
然后只要把它们单位化, 即取
2. 向量的夹角 向量的内积满足施瓦茨不等式
< x, y >2 < x, x >< y, y>, 由此可得
<x, y> 1 (当 || x || || y || 0 时), xy
于是有下面的定义:
定义3 当 || x || 0, || y || 0 时,
arccos <x, y>
xy 称为 n 维向量 x 与 y 的夹角.
x ·y = |x| |y| cos ,
且在直角坐标系中,有 ( x1, x2, x3 ) ·(y1, y2 , y3 ) = x1y1 + x2y2 + x3y3 .
所以 n 维向量的内积是数量积的一种推广. 但 n 维向量没有 3 维向量那样直观的长度和夹角的概 念,因此只能按数量积的直角坐标计算公式来推 广. 并且反过来,利用内积来定义 n 维向量的长 度和夹角:
正交的单位向量 ε1 , ε2 , … , εr , 使 ε1 , … , εr 与
a1 , a2 , … , ar 等价这样一个问题, 称为把 a1 , a2 , … , ar 这个基规范正交化.
我们可以用以下方法把 a1 , a2 , … , ar 规范 正交化:
取 b1 = a1 ;
b2
a2