最短路问题专题
数学建模最短路问题
![数学建模最短路问题](https://img.taocdn.com/s3/m/4091d8a70d22590102020740be1e650e52eacfa7.png)
设链W=v0e1v1e2…eivi已选定,则从E\{e1,e2,…,ei}中选取一条与ei相邻的边ei+1,除非已无选择余地,否则不要选G\{e1,e2,…,ei}的桥。
直到(2)不能进行为止,算法终止时得到的是Euler回路。
欧拉图与Fleury算法
01
02
如果G不是连通的Euler图,则G中含有奇度顶点(但奇度顶点的个数为偶数),此时图G的一条邮递路线必定在某些街着上重复走了一次或多次,它等价于在这些边上加一条或多条重复边,使新图G' 不含奇度顶点,并且所加边的总权为最小。
01
Dijkstra Algorithm
02
Dijkstra算法所需时间与n2成正比。
最短路问题求解算法
用Dijkstra求解最短路问题
例 求从顶点u0到其余顶点的最短路。
解:先写出距离矩阵(实际应为对称矩阵)
Dijkstra算法的迭代步骤如下
u0 u1 u2 u3 u4 u5 u6 u7
1 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2 2 1 8 ∞ ∞ ∞ ∞ 3 2 8 ∞ ∞ 10 ∞ 4 8 3 ∞ 10 ∞ 5 8 6 10 12 6 7 10 12 7 9 12 8 12
第11章 最短路问题
添加副标题
1 问题的提出
STEP2
STEP1
图论是离散数学的重要分支,在物理学、化学、系统控制、电力通讯、编码理论、可靠性理论、科学管理、电子计算机等各个领域都具有极其广泛的应用。
1
图论的历史可以追溯到1736年,这一年发表了图论的第一篇论文,解决了著名的哥尼斯堡(Königsberg)七桥问题。
02
1 匹配与覆盖
基本概念
定义1设若M的边互不相邻,则称M是G的一个匹配。M的边称为匹配边,E\M的边称为自由边,若(u, v)∈M,则称u(或v)是v(或u)的配偶。若顶点v与M的一条边关联,则称v是M-饱和的;否则称为M-非饱和的。若M使G中每个顶点都是M-饱和的,称M是G的完美(理想)匹配。设M是G的一个匹配,若不存在M' 使|M'|>|M|,则称M为G的最大匹配。
13.4轴对称最短路径问题专题练习人教版2024—2025学年八年级上册
![13.4轴对称最短路径问题专题练习人教版2024—2025学年八年级上册](https://img.taocdn.com/s3/m/0643466602d8ce2f0066f5335a8102d277a2617f.png)
13.4轴对称最短路径问题专题练习人教版2024—2025学年八年级上册题型一、两定点一动点作图问题1.如图,A、B是两个居民小区,快递公司准备在公路l上选取点P处建一个服务中心,使P A+PB最短.下面四种选址方案符合要求的是()A.B.C.D.2.如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.3.如图,直线l是一条公路,A、B是两个村庄.欲在l上的某点处修建一个车站,直接向A、B两地提供乘车服务.现有如下四种建设方案,图中实线表示铺设的行走道路,则铺设道路最短的方案是()A.B.C.D.4.为了促进A,B两小区居民的阅读交流,区政府准备在街道l上设立一个读书亭C,使其分别到A,B两小区的距离之和最小,则下列作法正确的是()A.B.C.D.5.如图,在正方形网格中有M,N两点,在直线l上求一点P使PM+PN最短,则点P应选在()A.A点B.B点C.C点D.D点题型二、两定点一动点求线段和最小值1.如图,在△ABC中,∠ABC=60°,AD⊥BC于D点,AB=12,.若点E、F分别是线段AD、线段AB上的动点,则BE+EF的最小值是()A.6B.12C.D.2.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E、F点.若点D为BC边的中点,点M为线段EF上一动点,则CM+DM的最小值为()A.21B.7C.6D.3.53.如图,在△ABC中,∠A=90°,AB=6,AC=8,BC=10,CD平分∠BCA交AB于点D,点P,Q分别是CD,AC上的动点,连接AP,PQ,则AP+PQ的最小值是()A.6B.5C.4.8D.44.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值()A.2.4B.4C.5D.4.85.如图,点N在等边△ABC的边BC上,CN=6,射线BD⊥BC,垂足为点B,点P是射线BD上一动点,点M是线段AC上一动点,当MP+NP的值最小时,CM=7,则AC的长为()A.8B.9C.10D.126.如图,已知等边△ABC的边长为4,点D,E分别在边AB,AC上,AE=2BD.以DE为边向右作等边△DEF,则AF+BF的最小值为()A.4B.4C.4D.47.数形结合是重要的数学思想,借助图形,求解的最小值为.8.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知线段AB=4,DE=2,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.9.如图,A,B两个小镇在河流CD的同侧,到河的距离分别为AC=6千米,BD=14千米,且CD=15千米,现要在河边建一自来水厂,同时向A,B两镇供水,铺设水管的费用为每千米3万元,请你在河流CD上选择水厂的位置M,使铺设水管的费用最省,并求出总费用是多少?题型三、两定点一动点求周长最小值1.如图,在△ABC中,直线m是线段BC的垂直平分线,点P是直线m上的一个动点.若AB=7,AC=4,BC=5,则△APC周长的最小值是()A.12B.11C.9D.72.如图,在△ABC中,AB=AC,BC=4,面积是12,AC的垂直平分线EF分别交AB,AC边于点E,F.若点D为BC边的中点,点P为线段EF上一动点,则△PCD周长的最小值为()A.8B.3C.6D.43.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时点C的坐标是()A.(0,3)B.(0,2)C.(0,1)D.(0,0)4.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5,D、E、F分别是AB、BC、AC边上的动点,则△DEF的周长的最小值是()A.2.5B.3.5C.4.8D.65.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC 外作等腰△ACD,过点D作∠ADC的平分线分别交AB,AC于点E,F.若BC=5,∠CAB=30°,点P是直线DE 上的一个动点,则△PBC周长的最小值为()A.15B.17C.18D.206.如图,在平面直角坐标系中,点P的坐标为(2,3),P A⊥x轴,PB⊥y轴,C是OA的中点,D是OB上的一点,当△PCD的周长最小时,点D的坐标是()A.(0,1)B.C.D.(0,2)7.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为______8.如图,点A(1,﹣1),B(2,﹣3)(1)点A关于x轴的对称点的坐标为.(2)若点P为坐标轴上一点,当△APB的周长最小时,点P的坐标为.三、一定点二动点线段或周长问题1.如图,在五边形中,∠BAE=140°,∠B=∠E=90°,在边BC,DE上分别找一点M,N,连接AM,AN,MN,则当△AMN的周长最小时,求∠AMN+∠ANM的值是()A.100°B.140°C.120°D.80°2.如图,∠AOB=30°,P是∠AOB内的一个定点,OP=12cm,C,D分别是OA,OB上的动点,连接CP,DP,CD,则△CPD周长的最小值为.3.如图,∠AOB=20°,M,N分别为OA,OB上的点,OM=ON=3,P,Q分别为OA,OB上的动点,则MQ+PQ+PN的最小值为.四、一定点二动点角度问题1.如图,在四边形ABCD中,∠C=40°,∠B=∠D =90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.100°B.90°C.70°D.80°2,如图,∠MON=45°,P为∠MON内一点,A 为OM上一点,B为ON上一点,当△P AB的周长取最小值时,∠APB的度数为()A.45°B.90°C.100°D.135°3.如图,点P为∠AOB内一点,点M,N分别是射线OA,OB上一点,当△PMN的周长最小时,∠OPM=50°,则∠AOB的度数是()A.55°B.50°C.40°D.45°4.已知点P在∠MON内.如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.(1)若∠MON=50°,求∠GOH的度数;(2)如图2,若OP=6,当△P AB的周长最小值为6时,求∠MON的度数.五、二定点二动点1.如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ=α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°2.如图,在四边形ABCD中,∠B=90°,AB∥CD,BC=3,DC=4,点E在BC上,且BE=1,F,G为边AB上的两个动点,且FG=1,则四边形DGFE的周长的最小值为.3.如图,锐角∠MON内有一定点A,连结AO,点B、C分别为OM、ON边上的动点,连结AB、BC、CA,设∠MON=α(0°<α<90°),当AB+BC+CA取得最小值时,则∠BAC=.(用含α的代数式表示)4.如图,在平面直角坐标系中,O为原点,点A,C,E的坐标分别为(0,4),(8,0),(8,2),点P,Q是OC边上的两个动点,且PQ=2,要使四边形APQE的周长最小,则点P的坐标为()A.(2,0)B.(3,0)C.(4,0)D.(5,0)5.已知B,C是平面直角坐标系中与x轴平行且距离x轴1个单位长度的直线上的两个动点(点B在点C左侧),且BC=2,若有点A(0,5)和点D(3,3),则当AB+BC+CD的值最小时,点C的坐标为.6.如图,在平面直角坐标系中,已知点A(0,1),B(4,0),C(m+2,2),D(m,2),当四边形ABCD的周长最小时,m的值是()A.B.C.1D.7.如图,在△ABC中,AB=AC,∠A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是()A.45°B.90°C.75°D.135°8.如图,∠MON=α,α<30°,点A为ON上一定点,点C为ON上一动点,B,D为OM上两动点,当AB+BC+CD最小时,∠BCD+∠ABC=()A.5αB.6αC.90°﹣αD.180°﹣α9.如图,直线l 1,l 2表示一条河的两岸,且l 1∥l 2.现要在这条河上建一座桥(桥与河的两岸相互垂直),使得从村庄A 经桥过河到村庄B 的路程最短,应该选择路线( )A .B .C .D .10.如图,直线l 1、l 2表示一条河的两岸,且l 1∥l 2,现要在这条河上建一座桥,使得村庄A 经桥过河到村庄B 的路程最短,现两位同学提供了两种设计方案,下列说法正确的是( )方案一:①将点A 向上平移d 得到A ';②连接A 'B 交l 1于点M ;③过点M 作MN ⊥l 1,交l 2于点N ,MN 即桥的位置.方案二:①连接AB 交l 1于点M ;②过点M 作MN ⊥l 1,交l 2于点N .MN 即桥的位置.A .唯方案一可行B .唯方案二可行C .方案一、二均可行D .方案一、二均不可行六、线段差的最大值1.如图,在正方形ABCD 中,AB =8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM =6.P为对角线BD上一点,则PM﹣PN的最大值为()A.2B.3C.D.2.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|P A﹣PB|的最大值为.七、多条线段和的最小值1.如图所示,已知A、B、C、D,请在图中找出一点P,使P A+PB+PC+PD最小.2.如图,在平面直角坐标系中,点E在原点,点D(0,2),点F(1,0),线段DE和EF构成一个“L”形,另有点A(﹣1,5),点B(﹣1,﹣1),点C(6,﹣1),连AD,BE,CF.若将这个“L”形沿y轴上下平移,当AD+DE+BE 的值最小时,E点坐标为;若将这个“L”形沿x轴左右平移,当AD+DE+EF+CF的值最小时,E点坐标为.。
《最短路问题》课件
![《最短路问题》课件](https://img.taocdn.com/s3/m/9c8c6d4591c69ec3d5bbfd0a79563c1ec5dad723.png)
3 最短路问题的历史
渊源
最短路问题最早由荷兰 数学家 Edsger Dijkstra 在 1956 年提出。
最短路问题的定义
图论中的最短路问 题指什么?
在无向连通图或有向连通图 中,从某一起点到其余各顶 点的最短路径。
什么是路径长度?
路径长度是指路径上边或弧 的权值之和。
什么是无环图?
无环图指不存在环的图,可 以用拓扑排序求解最短路。
《最短路问题》PPT课件
欢迎来到最短路问题的世界。在本课件中,我们将介绍四种最短路算法及其 应用,并分析它们的优缺点。
问题背景
1 什么是最短路问题? 2 为什么需要解决最
短路问题?
最短路问题是计算从源 节点到目标节点的最短 路径的问题。它是图论 中的一个经典算法问题。
很多实际问题都涉及到 最短路径的计算,比如 电网、交通、通信等领 域。
Floyd-Warshall算法解决的是所有点对之间 的最短路径问题,可以处理有向图或负边权 图。
Bellman-Ford算法
Bellman-Ford算法解决的是有向图中含有负 权边的单源最短路径问题。
A*算法
A*算法综合了贪心和广度优先搜索,在启发 函数的帮助下,可以高效解决带权图上的单 源最短路径问题。
算法示例
1
Step 1
假设我们要求从 A 点到其他各点的最
Step 2
2
短路径。
首先初始化 A 点到其他各点的距离为
无穷大,A 点到自身的距离为 0。
3
Step 3
找到 A 点的直接邻居,更新其距离值。
Step 4
4
重复 Step 3,直到所有节点的距离值 都已经更新。
总结
中考最短路径问题专题训练(将军饮马-胡不归-瓜豆原理-辅助圆-费马点)
![中考最短路径问题专题训练(将军饮马-胡不归-瓜豆原理-辅助圆-费马点)](https://img.taocdn.com/s3/m/9a6a7ee7b04e852458fb770bf78a6529647d35ba.png)
最短路径问题专题训练一、将军饮马问题特征:定直线上找一动点到两定点距离之和最小. 解法:做不动点对称点 如图,在直线上找一点P 使得P A +PB 最小?例1.(一动点两定点)如图,在等边△ABC 中,AB =6, N 为AB 上一点且BN =2AN , BC 的高线AD 交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________.例2.(一定点两动点)如图,点P 是△AOB 内任意一点,△AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.例3.(一定点两动点)已知P 为△AOB 内部一定点,在OA 、OB 上分别取M 、N 使得PM +MN 最小。
二、费马点问题若点P 满足∠PAB =∠BPC =∠CPA =120°,则PA +PB +PC 值最小,P 点称为该三角形的费马点. 在∠ABC 内找一点P ,使得PA +PB +PC 最小.PBAP OBAMNP'M NAPOOPBMABCDMN例1.如图,在△ABC 中,△BAC =90°,AB =AC =1,P 是△ABC 内一点,求P A +PB +PC 的最小值.例2.如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.三、胡不归问题从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”)【模型建立】如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BCV V 的值最小.ABCPCABCDME2驿道2MM【问题分析】121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =,即求BC +kAC 的最小值.【问题解决】构造射线AD 使得sin △DAN =k ,CH /AC =k ,CH =kAC .将问题转化为求BC +CH 最小值,过B 点作BH △AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.例1. 如图,△ABC 中,AB =AC =10,tanA =2,BE △AC 于点E ,D 是线段BE上的一个动点,则CD 的最小值是_______.例2. 如图,平行四边形ABCD 中,△DAB =60°,AB =6,BC =2,P 为边CD上的一动点,则PB 的最小值等于________.总结:在求形如“P A +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“P A +kPB ”型问题转化为“P A +PC ”型.四、瓜豆原理引例:如图,P 是圆O 上一个动点,A 为定点,连接AP ,Q 为AP 中点. 考虑:当点P 在圆O 上运动时,Q 点轨迹是?考虑到Q 点始终为AP 中点,连接AO ,取AO 中点M ,则M 点即为Q 点轨迹圆圆心,半径MQ 是OP 一半,ABCDEABCDP任意时刻,均有△AMQ △△AOP ,QM :PO =AQ :AP =1:2. 【模型总结】为了便于区分动点P 、Q ,可称点P 为“主动点”,点Q 为“从动点”. 此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角: ∠P AQ =∠OAM ;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP :AQ =AO :AM ,也等于两圆半径之比. 按以上两点即可确定从动点轨迹圆,Q 与P 的关系相当于旋转+伸缩.例1 如图,点P (3,4),圆P 半径为2,A (2.8,0),B (5.6,0),点M 是圆P 上的动点,点C 是MB 的中点,则AC 的最小值是_______.例2 如图,正方形ABCD 中,25AB ,O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.五、辅助圆(轨迹圆/隐圆) 定直线对定角/四点共圆例1 如图,已知圆C 的半径为3,圆外一定点O 满足OC =5,点P 为圆C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA =OB ,△APB =90°,l 不经过点C ,则AB 的最小值为________.例2 如图,在边长为2的菱形ABCD 中,△A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A’MN ,连接A ’C ,则A ’C 长度的最小值是__________.O yxA BCM POABCDEF例3 如图,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =42 ,点D 是AC 边上一动点,连接BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为__________.例4 如图,∠A O B =45°,边O A 、OB 上分别有两个动点C 、D ,连接C D ,以CD 为直角边作等腰Rt △CDE ,且CD =CE ,当CD 长保持不变且等于2cm 时,OE 最大值为__________.综合练习1. 如图,菱形ABCD 中,AB =2,△A =120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK +QK 的最小值为__________.2. 如图,在Rt △ABC 中,△C =90°,AB =17,AC =8,D 为AB 边上的一动点,E 、F 分别为AC 、BC 上两点,且DE △DF ,则EF 的最小值为__________.3. 如图,△MON =90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中AB =2,BC =1,运动过程中,点D 到点O 的最大距离为__________.4. 已知正方形ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为 2 +6,则正方形的边长 .5. 如图,在四边形ABCD 中,AB =2,BC =5,若AC =AD 且△ACD =60°,则当对角线BD 取得最大值时,对角线AC 的长是_________.lPO CBA A'NMABCD6. 在等边△ABC 中,AB =4,点D 是BC 的中点,连接AD ,P 为AD 上一动点,则CP +12BP 最小值为____.7. 如图,在等腰直角△ABC 中,BC =8,D 为BC 中点,E 为DC 中点,P 为AD 上一动点,则2PE +2AP 的最小值________.8. 如图,在△ABC 中,AB =AC =10,tan △A =2,BE △AC 于点E ,D 是线段BE 上的一个动点,则CD +55BD 的最小值为________.9.如图,已知正方形ABCD 的边长为4.点M 和N 分别从B 、C 同时出发,以相同的速度沿BC 、CD 方向向终点C 和D 运动.连接AM 和BN ,交于点P ,则PC 长的最小值为________.10. 如图,AC 为边长为4的菱形ABCD 的对角线,∠ABC =60°,点M 和N 分别从点B 、C 同时出发,以相同的速度沿BC 、CA 运动.连接AM 和BN ,交于点P ,则PC 长的最小值为________.11. 如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是________.。
最短路问题实际案例
![最短路问题实际案例](https://img.taocdn.com/s3/m/308f6c0af011f18583d049649b6648d7c1c70822.png)
最短路问题实际案例介绍最短路问题是图论中的一个经典问题,其目标是找到两个顶点之间的最短路径。
这个问题在日常生活中有着广泛的应用,例如导航系统、网络路由以及物流配送等场景中都需要解决最短路问题。
本文将通过实际案例来深入探讨最短路问题及其应用。
什么是最短路问题?最短路问题是指在一个给定的图中,找到两个顶点之间的最短路径。
通常情况下,路径的长度可以通过边的权重来衡量。
最短路问题可以分为单源最短路问题和全源最短路问题,前者是指从一个固定的起点出发,求到图中其他所有顶点的最短路径;后者是指求图中任意两个顶点之间的最短路径。
实际案例:导航系统导航系统是最短路问题的一个典型应用。
当我们使用导航系统来规划路线时,系统需要找到最短路径以优化我们的行车时间。
下面以一个具体案例来说明导航系统如何解决最短路问题。
案例场景假设我们身处一座陌生的城市,想要前往城市中心的一个著名景点。
我们打开导航系统,输入起点和终点信息。
导航系统会根据地图数据自动生成最短路径,并提供导航指引。
导航系统的实现导航系统实现最短路径规划的过程可以分为以下几个步骤:1.构建路网图:将城市中的道路以及交叉口等信息转化为图的形式。
图中的节点表示交叉口,边表示道路,边的权重可以表示行驶距离、时间等。
2.选择算法:根据实际需求选择合适的最短路径算法。
常见的算法有Dijkstra算法、Bellman-Ford算法和A*算法等。
3.计算最短路径:根据选定的算法,在路网图上计算起点到终点的最短路径。
算法会考虑边的权重以及路径的方向等因素。
4.导航指引:根据计算得到的最短路径,导航系统会生成具体的导航指引,包括行驶指示、路口转向、距离和预计时间等信息。
优化策略导航系统通过不断的优化,提高了最短路径的计算效率和准确性。
以下是几种常见的优化策略:1.路网数据更新:导航系统会及时更新路网数据,包括道路信息、交通状况等。
这样可以保证计算得到的最短路径更准确。
2.平行算法:为了加快计算速度,导航系统采用并行算法来计算最短路径。
最短路问题例题
![最短路问题例题](https://img.taocdn.com/s3/m/9b11c3a5dd3383c4bb4cd27b.png)
问题:求出A-F之间最短路线;(1)写出思路于算法;(2)Matlab 编程找出最短路径。
答案:A-F之间的最短路线有A-B3-D3-E1-F,A-B3-D3-E1-E2-F;A-B2-C1-D1-D2-E2-F 这三条路线的最短距离均为8。
方案一:思路:对于是否返回的分析:如图可以看出只有B端才能跨越C端的点直接到达D端的,其余的各端点都是必须按照字母顺序一路下来。
若如D端返回到C端或B端这是不可能的,因为这样无疑增加了路程,如图可以看出C端的点能到达D端的各个点,所以要求的直接命中想到达的该点;而D端出发去到E端后有图可以看出不可能再返回D端了,因为这只会增加路线的长度,而且E 端的各点是相通的,也没必要再返回D端;同样B端到达C端或D端的,因为B2,B2到能直接到达C端的各点,只有B1只能到达C1,但B1它到D1的距离和B1点到C1的距离同样为4但也不可能经过C1后返回B端的,因为C1也是联系D端的各点,而且你要返回B 段端,还不如在A端的时候就选择好一个理想的B点,这样距离会更加短。
所以不能进行返回。
如图将我们本来所需要的的路线分成两半,以D字母的为中间端。
后半部分:后半部分主要由D端连接到E端最后才连接到F端的,同时D端无法越过E端直接连接到F端。
更为重要的是前半部分,也必须要经过D端才能与F端相接,所以构成他们之间的枢纽定在D端是最好不过的。
首先的是先分析D端的三个点D1,D2,D3分别到点F的最短距离。
一、已经从D端出发去到E端后有图可以看出不可能再返回D端了,因为这只会增加路线的长度,而且E端的各点是相通的,也没必要再返回D端;二、由图可以看出E端到点F最好的路线是E2-F距离为1,除E2外的E1,E3他们到F点的方式(E1-F, E1-E2-F ,E3-F ,E3-E2-F)的距离均为2;所以如果能先到达E2则可以只考虑E2到F这条路线。
若先到达了E1,或E3、则这路线的最短路径必定变化为两条。
最短路问题实际案例
![最短路问题实际案例](https://img.taocdn.com/s3/m/93ad14f0a0c7aa00b52acfc789eb172dec639943.png)
最短路问题实际案例最短路问题是指在图中找出两个顶点之间的最短路径的问题,其中图可以是有向图或无向图,并且每条边可以有权重。
这个问题是在许多实际案例中都会遇到的。
以下是几个实际案例,其中涉及到最短路问题:1. 导航系统:导航系统是最常见的利用最短路问题的实例。
当用户输入起点和终点时,导航系统会计算出最短路径,并显示给用户。
这个过程中,导航系统需要考虑路程的时间或距离,同时还需要考虑道路的限速和交通情况等因素。
2. 物流配送:物流配送涉及到从一个地点到另一个地点的最短路径。
物流公司需要计算出从货物的起始点到目标点的最短路径,以最快速度将货物送达目的地。
在这个问题中,可能还会有其他限制条件,如运输工具的载重量、路段的通行能力等。
3. 电信网络:电信网络是一个复杂的网络,其中存在着许多节点和边,每个节点代表一个通信设备,边代表设备之间的通信连接。
在设计电信网络时,需要考虑到从一个节点到另一个节点的最短路径,以最小化通信的时延。
这个问题中,还会有其他因素,如网络拓扑的复杂性、网络流量的负载均衡等。
4. 交通规划:交通规划涉及到城市道路网络的设计和优化。
在设计城市交通规划时,需要考虑到不同节点之间的最短路径,以便在城市中建设高效的道路系统。
这个问题中,需要考虑到人口分布、交通流量、环境因素等复杂变量。
5. 谷歌地图:谷歌地图是一种广泛使用最短路径算法的应用。
当用户在谷歌地图上搜索起点和终点时,谷歌地图会计算出最短路径,并给出导航指引。
这个过程中,谷歌地图需要考虑到道路的限速、交通情况和实时路况等因素。
综上所述,最短路问题在许多实际案例中都有应用。
无论是导航系统、物流配送、电信网络、交通规划还是谷歌地图等,都需要计算出最短路径以满足需求。
因此,研究和解决最短路问题在实际应用中具有重要意义。
第8讲-最短路问题
![第8讲-最短路问题](https://img.taocdn.com/s3/m/f8640b87ac51f01dc281e53a580216fc700a5331.png)
V={v1 ,v2 , v3 , v4}, E={e1, e2 , e3, e4, e5},
(e1) v1v2 , (e2 ) v1v3, (e3 ) v1v4 , (e4 ) v1v4 , (e5 ) v3v3 .
G 的图解如图.
否则
即当vk被插入任何两点间旳最短 途径时,被统计在R(k)中,依次 求 D时( ) 求得 ,R() 可由 来R() 查找 任何点对之间最短路旳途径.
返回
算法原理—— 查找最短路途径旳措施
若 rij( ) p1 ,则点 p1 是点 i 到点 j 的最短路的中间点.
然后用同样的方法再分头查找.若:
称为 G 的由 E1 导出的子图,记为 G[E1].
G
G[{v1,v4,v5}]
G[{e1,e2,e3}]
返回
关联矩阵
对无向图G,其关联矩阵M=(mij ) ,其中:
mij 10
若vi与e j相关联 若vi与e j不关联
注:假设图为简朴图
e1 e2 e3 e4 e5
1 0 0 0 1 v1
M= 1 1 0 1 0 v2
d (v4 ) 4
d (v4 ) 2 d (v4 ) 3 d (v4 ) 5
定理1 d (v) 2 (G) vV (G)
推论1 任何图中奇次顶点的总数必为偶数.
例 在一次聚会中,认识奇数个人旳人数一定是偶数。
返回
子图
定义 设图 G=(V,E, ),G1=(V1,E1,1 )
(1) 若 V1 V,E1 E,且当 e E1 时,1 (e)= (e),则称 G1 是 G 的子图.
所以, 可采用树生长旳过程来求指定顶点到其他顶点 旳最短路.
3第三章 最短路问题
![3第三章 最短路问题](https://img.taocdn.com/s3/m/c00dfcd849649b6648d74795.png)
在这一章中,我们假设遇到的图G都是简单图.这 样假设是合理的,因为如果G有平行弧或平行边,例 如有好几条从vi到vj的弧,那么很显然,可以把这些 弧中最短的一条留下,其余的都去掉,然后在剩下的 简单图上再来求从vs到vt的最短有向路.因为G是简单 图,所以每一条弧ak被它的起点vi与终点vj唯一决定, 因此,下面我们就用<vi,vj>或<i,j>来表示一条弧, 用(vi,vj)或(i,j)来表示边,而用l(i,j)来表示弧或 边的长度.
大家也许会认为,这两个例子本来就不很难,把 它转化成图论问题,倒相当麻烦,有什么好处呢?其 实这种做法还是很有好处的.因为在转化前,想解决 这些问题,只能用凑的办法,或者最多是凭经验.而 转化成图论问题以后,就可以用一种系统的方法解决 了.
最后,还要指出一下,求最短有向路和求最短无 向路这两个问题是密切关联的.下面将看到,求最短有 向路的计算方法也可以用来求最短无向路.
例1 渡河问题:一个人带了一只狼、一只羊和一 棵白菜想要过河,河上有一只独木船,每次除了人以外, 只能带一样东西.另外,如果人不在旁时,狼就要吃羊, 羊就要吃白菜.问应该怎样安排渡河,才能做到把所有 东西都带过河去,而且在河上来回的次数又最少.
当然,这个问题不用图论也能解决.大家一眼就 能看出,第一次应该带着羊过河,让狼和白菜留下, 以下怎么渡法呢? 下面就来讲一下怎样把这个问题转化成最短路问 题. 我们用M代表人,W代表狼,S代表羊,V代表白菜. 开始时,设人和其他三样东西都在河的左岸,这种情 况,我们用MWSV来表示.又例如人带了羊渡到河的右 岸去了,这时左岸留下了狼和白菜,这种情况就用WV 来表示.例如MWS表示人(M)狼(W)羊(S)在左岸而白菜 (V)在右岸这种情况.那么总共可能有几种允许的情况 呢
八年级数学蚂蚁爬最短路问题(人教版)(专题)(含答案)
![八年级数学蚂蚁爬最短路问题(人教版)(专题)(含答案)](https://img.taocdn.com/s3/m/20b3620676a20029bc642d03.png)
蚂蚁爬最短路问题(人教版)(专题)一、单选题(共10道,每道10分)1.如图,一个三级台阶的每一级的长、宽、高分别为50cm,30cm,10cm,A和B是这个台阶的两个相对的端点,A点处有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,需要爬行的最短路径长为( )A.115cmB.130cmC.135cmD.169cm答案:B解题思路:将台阶展开,如图:因为BC=30×3+10×3=120,AC=50,所以,所以AB=130cm,所以壁虎爬行的最短线路为130cm.故选B试题难度:三颗星知识点:略2.如图所示,ABCD是长方形地面,长AB=20m,宽AD=10m.中间竖有一堵砖墙高MN=2m.一只蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它至少要走( )A.20mB.24mC.25mD.26m答案:D解题思路:如图所示,将图展开,图形长度增加2MN,原图长度增加4米,则AB=20+4=24m,连接AC,四边形ABCD是长方形,AB=24m,宽AD=10m,∴,解得AC=26∴蚂蚱从A点爬到C点,它至少要走26m的路程.故选D试题难度:三颗星知识点:略3.如图,一圆柱体的底面周长为48cm,高AB为7cm,BC是上底面的直径.一只昆虫从点A 出发,沿着圆柱的侧面爬行到点C,则昆虫爬行的最短路程为( )A.15cmB.20cmC.25cmD.30cm答案:C解题思路:把圆柱体展开,则与点A,B,C,D相对应的四点构成一个长方形,且所求最短路径为对角线AC的长.在矩形ABCD中AB长为原柱体的高,AD长为原柱体底面周长的一半.由勾股定理可知AC=25故选C试题难度:三颗星知识点:略4.有一个圆柱形油罐,油罐的底面半径是2m,高AB是5m,要以点环绕油罐建梯子,正好建在A点的正上方点B处,问梯子最短需( )米取.A.13mB.15mC.20mD.24m答案:A解题思路:如图,∵油罐的底面半径是2m,∴油罐的底面周长为4π=12m,又∵高AB为5m,即展开图中,BC=5m,所以,解得AB=13故所建梯子最短为13m.故选A试题难度:三颗星知识点:略5.如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )A.16cmB.18cmC.20cmD.24cm答案:C解题思路:如图展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE⊥CD于E,则SE=BC=×24=12EF=18-1-1=16在Rt△FES中,由勾股定理得:SF2=SE2+EF2=解得SF=20所以捕获苍蝇充饥的蜘蛛所走的最短路径的长度是20cm.故选C试题难度:三颗星知识点:略6.如图,这是一个供滑板爱好者使用的型池,该型池可以看作是一个长方体去掉一个半圆柱而成,中间可供滑行部分的横截面是半径为3m的半圆,该部分的边缘AB=CD=45m,点E在CD上,CE=5m,一滑行爱好者从A点滑到E点,则他滑行的最短距离是( )m.(边缘部分的厚度可以忽略不计,π取整数A.30mB.40mC.41mD.50m答案:C解题思路:U型池池面侧面展开图如图,连接AE,DE=CD-CE=45-5=40,AD=πr=9,在Rt△ADE中,∠D=90°,由勾股定理得,∴∴AE=41故他滑行的最短距离约为41m故选C.试题难度:三颗星知识点:略7.2015年是国际“光”年,某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图).在三棱镜的侧面上,从顶点A到顶点镶有一圈金属丝,已知此三棱镜的高为8cm,底面边长为2cm,则这圈金属丝的长度至少为( )A.8cmB.10cmC.12cmD.15cm答案:B解题思路:将三棱柱沿展开,其展开图如图,由勾股定理得,解得所以这圈金属丝的长度至少为10cm故选B试题难度:三颗星知识点:略8.如图,长方体的长、宽、高分别为4cm,2cm,5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为( )A.9cmB.13cmC.12cmD.5cm答案:B解题思路:如图,作出长方体的侧面展开图在Rt△PP′Q′中,∠PP′Q′=90°,PP′=12,P′Q′=5由勾股定理得,解得因此,蚂蚁爬行的最短路径长是13cm故选B试题难度:三颗星知识点:略9.如图,长方体的长为10 cm,宽为5 cm,高为20 cm.若一只蚂蚁沿着长方体的表面从点A爬到点B,需要爬行的最短路径是( )A.25cmB.22cmC.28cmD.20cm答案:A解题思路:①如图,把我们所看到的左面和上面组成一个平面则这个长方形的长和宽分别是10 cm和25 cm,则由勾股定理,可得所走的最短线段的平方为②如图,把我们看到的前面与上面组成一个长方形则这个长方形的长和宽分别是30cm和5 cm,则由勾股定理,可得所走的最短线段的平方为;③如图,把我们所看到的左面和后面组成一个长方形则这个长方形的长和宽分别是15 cm和20 cm,则由勾股定理,可得所走的最短线段的平方为;三种情况比较而言,第三种情况最短.所以爬行的最短路径为25cm故选A试题难度:三颗星知识点:略10.如图所示,一棱长为3cm的正方体,把所有的面均分成3×3个小正方形,其边长都为1cm,假设一只蚂蚁从下底面点A沿表面爬行至侧面的B点,最少要爬( )A.30cmB.13cmC.20cmD.5cm答案:D解题思路:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.①按前面和右面展开,由勾股定理得;②按底面和右面展开,由勾股定理得;所以②中所爬行的路径最短,最短路径长为5cm故应选D试题难度:三颗星知识点:略。
最短路问题专业知识讲座
![最短路问题专业知识讲座](https://img.taocdn.com/s3/m/2591a74511a6f524ccbff121dd36a32d7375c788.png)
5
0
5
V2
38
6 6 5 5 V6
V1 4
7 2
V4 7
1
6
8
V5 4
V3
V7
4
9
(7) 找出全部与v1,v2,v3,v4,v5,v6相邻旳未标识旳点v7, 求出从v1经过v5到这些点旳距离(v1->v2->v6->v5->v7:13) 以及经过v6到这些点旳距离(v1->v2->v6->v7:14)找出这些 距离中最短旳途径为v1->v2->v6->v5->v7,最短距离为 L15=13,将v7标识为13。至此全部点都已标识,即求出 了v1到全部其他点旳最短途径
5
5
0
5
V2
3
6 5 5 V6
V1 4
7 2
V4 7
1
6
8
V5 4
V3
V7
4
(4)找出全部与v1,v2,v3相邻旳未标识旳点v4,v5,v6,求出
从v1直接到这些点旳距离(v1->v4:7)以及经过v2到这些点 旳距离(v1->v2->v4:11;v1->v2->v5:10;v1->v2->v6:8)以及 经过v3到这些点旳距离(v1->v3->v4:6;v1->v3->v5:12)找出 这些距离中最短旳途径为v1->v3->v4,最短距离为L14=6, 将v4标识为6
数学模型
目的函数: P : min z
ij fij
(vi ,v j )A
fij 0或1, (vi , v j ) A
s.t.
fij f ji 1, i s
最短路算法 题
![最短路算法 题](https://img.taocdn.com/s3/m/fd100873effdc8d376eeaeaad1f34693daef102a.png)
最短路算法题最短路算法是用于解决图论中一类重要问题的算法,即寻找图中从一个顶点到另一个顶点的最短路径。
这里的最短路径可以是路径的长度(边的数量)或路径的权重之和(边的权重)。
以下是一些常见的最短路算法题目类型及其解法:1.单源最短路问题:给定一个图和一个起点,找到从起点到图中所有其他点的最短路径。
2.Dijkstra算法:适用于带权重的图,且权重非负。
该算法每次迭代都会选取当前距离起点最近的一个顶点,并更新该顶点与起点的最短距离。
所有顶点都被访问后,算法结束。
3.Bellman-Ford算法:适用于带权重的图,权重可以为负。
该算法通过对图中的所有边进行迭代松弛操作来找到最短路径。
此外,它还可以检测并处理负权重环。
4.Floyd-Warshall算法:适用于所有顶点对之间的最短路径问题。
它使用动态规划的思想,逐步构建中间点集合,并利用中间点来更新最短路径。
5.多源最短路问题:给定一个图和多个起点,找到从这些起点到图中所有其他点的最短路径。
一种常见的解决方法是对每个起点分别运行单源最短路算法。
但这种方法可能不够高效,特别是当起点数量较大时。
另一种方法是使用更高级的数据结构或算法,如优先队列优化的Dijkstra算法或基于矩阵乘法的Floyd-Warshall算法变种。
5.特定条件下的最短路问题:除了基本的最短路问题外,还有一些特定条件下的最短路问题,如有向无环图(DAG)中的最短路径、边权重受限制的最短路径等。
这些问题通常需要结合特定的图论知识和技巧来解决。
6.在解决最短路问题时,需要注意以下几点:确保理解问题的具体要求,如路径的长度是按边的数量还是按边的权重计算。
根据问题的特点选择合适的算法和数据结构。
例如,对于稠密图,邻接矩阵可能是更好的选择;而对于稀疏图,邻接表可能更合适。
注意处理特殊情况,如负权重环、不连通图等。
这些情况可能导致最短路径不存在或无穷大。
在实现算法时,注意优化性能和减少不必要的计算。
2022-2023学年人教版八年级数学上册《最短路径问题》专题练习(含答案)
![2022-2023学年人教版八年级数学上册《最短路径问题》专题练习(含答案)](https://img.taocdn.com/s3/m/4040462ef02d2af90242a8956bec0975f465a48e.png)
最短路径问题专题练习1.如图,要在街道l设立一个牛奶站O,向居民区A,B提供牛奶,下列设计图形中使OA+OB值最小的是()A.B.C.D.2.小颖的爸爸要在某条街道l上修建一个奶站P,向居民区A,B提供牛奶,要使点P到A,B的距离之和最短,则下列作法正确的是()A.B.C.D.3.A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行线,桥与河岸垂直)()A.(BM垂直于a)B.(AM不平行BN)4.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.9.6B.8C.6D.4.85.如图,在△AOB中,∠OAB=∠AOB=15°,OB=6,OC平分∠AOB,点P在射线OC上,点Q为边OA上一动点,则P A+PQ的最小值是()A.1B.2C.3D.46.如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF 的值最小时,∠AEB的度数为()A.105°B.115°C.120°D.130°7.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为()A.80°B.90°C.100°D.130°8.在△ABC中,AB=6,BC=7,AC==4,直线m是△ABC中BC边的垂直平分线,P是直线m.上的一动点,则△APC的周长的最小值为()A.6B.10C.11D.139.如图,Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AB =10,BD 平分∠ABC ,如果点M ,N 分别为BD ,BC上的动点,那么CM +MN 的最小值是( )A .4B .4.8C .5D .610.如图,OE 为∠AOB 的角平分线,∠AOB =30°,OB =6,点P ,C 分别为射线OE ,OB 上的动点,则PC +PB的最小值是( )A .3B .4C .5D .611.如图,△ABC 中,AD ⊥BC ,垂足为D ,AD =BC ,点P 为直线BC 上方的一个动点,△PBC 的面积等于△ABC的面积的12,则当PB +PC 最小时,∠PBD 的度数为( )A .30°B .45°C .60°D .90°12.如图,在锐角三角形ABC 中,AB =4,∠BAC =60°,∠BAC 的平分线交BC 于点D ,M ,N 分别是AD 和AB上的动点,当BM +MN 取得最小值时,AN =( )A .2B .4C .6D .813.如图,△ABC中,AD垂直BC于点D,且AD=BC,BC上方有一动点P满足S△PBC=12S△ABC,则点P到B、C两点距离之和最小时,∠PBC的度数为()A.30°B.45°C.60°D.90°14.如图,在等腰△ABC中,AB=AC,BC=8,作AD⊥BC于点D,AD=12AB,点E为AC边上的中点,点P为BC上一动点,则P A+PE的最小值为.15.如图,点P是∠AOB内任意一点,OP=5cm,点M、N分别是OB、OA边上的点,当△PMN周长的最小值是5cm时,则∠AOB=.16.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点N,交AB于点M,AB=12cm,△BMC的周长是20cm,若点P在直线MN上,则P A﹣PB的最大值为()A.12cm B.8cm C.6cm D.2cm17.如图,AB=AC=8,∠BAC=110°,AD是∠BAC内的一条射线,且∠BAD=25°,P为AD上一动点,则|PB ﹣PC|的最大值是.思考题1.如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ =α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°2.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN 最小时,∠MBN的度数为()A.15°B.22.5°C.30°D.47.5°最短路径问题专题练习(答案)1.如图,要在街道l设立一个牛奶站O,向居民区A,B提供牛奶,下列设计图形中使OA+OB值最小的是(D)A.B.C.D.2.小颖的爸爸要在某条街道l上修建一个奶站P,向居民区A,B提供牛奶,要使点P到A,B的距离之和最短,则下列作法正确的是(B)A.B.C.D.3.A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行线,桥与河岸垂直)(D)A.(BM垂直于a)B.(AM不平行BN)4.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.9.6B.8C.6D.4.8【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,∴BP=CP.过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,如图所示.∵S△ABC=12BC•AD=12AC•BQ,∴BQ=BC⋅ADAC=12×810=9.6.故选:A.5.如图,在△AOB中,∠OAB=∠AOB=15°,OB=6,OC平分∠AOB,点P在射线OC上,点Q为边OA上一动点,则P A+PQ的最小值是()A.1B.2C.3D.4【解答】解:作AH⊥OB于H,交OC于P,作PQ⊥OA于Q,∵∠OAB=∠AOB=15°,∴PH=PQ,∴P A+PQ=P A+PH=AH,∴P A+PQ的最小值为AH,在Rt△ABH中,∵OB=AB=6,∠ABH=30°,∴AH=12AB=3,∴P A+PQ的最小值为3,故选:C.6.如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF 的值最小时,∠AEB的度数为()A.105°B.115°C.120°D.130°【解答】解:过点B作BB′⊥AD于点G,交AC于点B′,过点B′作B′F′⊥AB于点F′,与AD交于点E′,连接BE′,如图,此时BE+EF最小.∵AD是△ABC的角平分线,∴∠BAD=∠B′AD=25°,∴∠AE′F′=65°,∵BB′⊥AD,∴∠AGB=∠AGB′=90°,∵AG=AG,∴△ABG≌△AB′G(ASA),∴BG=B′G,∠ABG=∠AB′G,∴AD垂直平分BB′,∴BE=BE′,∴∠E′B′G=∠E′BG,∵∠BAC=50°,∴∠AB′F′=40°,∴∠ABE=40°,∴∠BE′F′=50°,∴∠AE′B=115°.故选:B.7.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为()A.80°B.90°C.100°D.130°【解答】解:作A点关于CD的对称点F,作A点关于BC的对称点E,连接EF交CD 于N,交BC于M,连接AM、AN,∵∠B=∠D=90°,∴AN=NF,AM=EM,∴△AMN的周长=AM+AN+MN=NF+MN+EM=EF,此时△AMN的周长有最小值,∵∠F AN=∠F,∠E=∠EAM,∴∠E+∠F=180°﹣∠BAD,∵∠BAD=130°,∴∠E+∠F=50°,∴∠BAM+∠F AN=50°,∴∠MAN=130°﹣50°=80°,∴∠ANM+∠AMN=180°﹣∠MAN=100°,故选:C.8.在△ABC中,AB=6,BC=7,AC==4,直线m是△ABC中BC边的垂直平分线,P是直线m.上的一动点,则△APC的周长的最小值为()A.6B.10C.11D.13【解答】解:∵直线m是△ABC中BC边的垂直平分线,∴BP=CP,∴△ACP的周长=AP+PC+AC=BP+AP+AC≥AB+AC,∴当A、B、P三点共线时,△ACP的周长最小,∵AB=6,BC=7,AC=4,∴△ACP的周长6+4=10,∴△ACP的周长最小值为10,故选:B.9.如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,BD平分∠ABC,如果点M,N分别为BD,BC上的动点,那么CM+MN的最小值是()A.4B.4.8C.5D.6【解答】解:如图所示:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于点N,∵BD平分∠ABC,∴ME=MN,∴CM+MN=CM+ME=CE.∵Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,CE⊥AB,∴S△ABC=12•AB•CE=12•AC•BC,∴10CE=6×8,∴CE=4.8.即CM+MN的最小值是4.8,10.如图,OE 为∠AOB 的角平分线,∠AOB =30°,OB =6,点P ,C 分别为射线OE ,OB 上的动点,则PC +PB 的最小值是( )A .3B .4C .5D .6【解答】解:过点B 作BD ⊥OA 交于D 点,交OE 于点P ,过点P 作PC ⊥OB 交于C 点, ∵OE 为∠AOB 的角平分线,∴DP =CP ,∴PB +PC =PD +PB =BD ,此时PC +PB 的值最小,∵∠AOB =30°,OB =6,∴BD =3,故选:A .11.如图,△ABC 中,AD ⊥BC ,垂足为D ,AD =BC ,点P 为直线BC 上方的一个动点,△PBC 的面积等于△ABC 的面积的12,则当PB +PC 最小时,∠PBD 的度数为( )A .30°B .45°C .60°D .90° 【解答】解:∵△PBC 的面积等于△ABC 的面积的12,∴P 在与BC 平行,且到BC 的距离为12AD 的直线l 上,作点B关于直线l的对称点B',连接B'C交l于P,如图所示:则BB'⊥l,PB=PB',此时点P到B、C两点距离之和最小,作PM⊥BC于M,则BB'=2PM=AD,∵AD⊥BC,AD=BC,∴BB'=BC,BB'⊥BC,∴△BB'C是等腰直角三角形,∴∠B'=45°,∵PB=PB',∴∠PBB'=∠B'=45°,∴∠PBC=90°﹣45°=45°;故选:B.12.如图,在锐角三角形ABC中,AB=4,∠BAC=60°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM+MN取得最小值时,AN=()A.2B.4C.6D.8【解答】解:作B点关于AD的对称点E,过E点作EN⊥AB交AB于点N,交AD于CM于点M,连结BM,∵∠BAC=60°,AD平分∠BAC,∴E点在AC上,∵BM+MN=EM+MN=EN,此时BM+MN的值最小,由对称性可知,AE=AB,∵AB=4,在Rt △ABE 中,∠EAN =60°,∴∠AEN =30°,∴AN =2,故选:A .13.如图,△ABC 中,AD 垂直BC 于点D ,且AD =BC ,BC 上方有一动点P 满足S △PBC =12S △ABC,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A .30°B .45°C .60°D .90° 【解答】解:∵S △PBC =12S △ABC ,∴P 在与BC 平行,且到BC 的距离为12AD 的直线l 上, ∴l ∥BC ,作点B 关于直线l 的对称点B ',连接B 'C 交l 于P ,如图所示:则BB '⊥l ,PB =PB ',此时点P 到B 、C 两点距离之和最小,作PM ⊥BC 于M ,则BB '=2PM =AD ,∵AD ⊥BC ,AD =BC ,∴BB '=BC ,BB '⊥BC ,∴△BB 'C 是等腰直角三角形,∴∠B '=45°,∵PB =PB ',∴∠PBB '=∠B '=45°,∴∠PBC =90°﹣45°=45°;14.如图,在等腰△ABC中,AB=AC,BC=8,作AD⊥BC于点D,AD=12AB,点E为AC边上的中点,点P为BC上一动点,则P A+PE的最小值为4.【解答】解:∵AB=AC,BC=8,AD⊥BC,∴BD=CD=4,延长AD至A',使AD=A'D,连接A'E,交BC于P,此时P A+PE的值最小,就是A'E的长,∵AD=12AB,AA′=2AD,∴AA'=AB=AC,∵AD=A'D,AD⊥CD,∴AC=A'C,∴△AA'C是等边三角形,∵E是AC的中点,∴A'E⊥AC,∴A'E=CD=4,即P A+PE的最小值是4,故答案为:4.15.如图,点P是∠AOB内任意一点,OP=5cm,点M、N分别是OB、OA边上的点,当△PMN周长的最小值是5cm时,则∠AOB=30°.【解答】解:分别作点P关于OA、OB的对称点D、C,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,∴PM=DM,OP=OD,∠DOA=∠POA,∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD=5,∠AOB=12∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故答案为30°.16.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点N,交AB于点M,AB=12cm,△BMC的周长是20cm,若点P在直线MN上,则P A﹣PB的最大值为()A.12cm B.8cm C.6cm D.2cm【解答】解:∵MN垂直平分AC,∴MA=MC,又∵C△BMC=BM+MC+BC=20cm,BM+MA=AB=12cm,∴BC=20﹣12=8(cm),在MN上取点P,∵MN垂直平分AC连接P A、PB、PC∴P A=PC∴P A﹣PB=PC﹣PB在△PBC中PC﹣PB<BC当P、B、C共线时,即P运动到与P'重合时,(PC﹣PB)有最大值,此时PC﹣PB=BC=8cm.故选:B.17.如图,AB=AC=8,∠BAC=110°,AD是∠BAC内的一条射线,且∠BAD=25°,P 为AD上一动点,则|PB﹣PC|的最大值是8.【解答】解:如图.作点B关于射线AD的对称点B',连接AB'、CB'.则AB=AB',PB'=PB,∠B'AD=∠BAD=25°,∠B'AC=∠BAC﹣∠BAB'=110°﹣25°﹣25°=60°.∵AB=AC=8,∴AB'=AC=8,∴△AB'C是等边三角形,∴B'C=8,在△PB'C中,|PB'﹣PC|≤B'C,当P、B'、C在同一直线上时,|PB'﹣PC|取最大值B'C,即为8.∴|PB﹣PC|的最大值是8.故答案为:8.思考题1.如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ=α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°【解答】解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小,∴∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,∴∠QPN=12(180°﹣α)=∠AOB+∠MQP=20°+12(180°﹣β),∴180°﹣α=40°+(180°﹣β),∴β﹣α=40°,故选:C.2.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN的度数为()A.15°B.22.5°C.30°D.47.5°【解答】解:如图1中,作CH⊥BC,使得CH=BC,连接NH,BH.∵△ABC是等边三角形,AD⊥BC,CH⊥BC,∴∠DAC=∠DAB=30°,AD∥CH,∴∠HCN=∠CAD=∠BAM=30°,∵AM=CN,AB=BC=CH,∴△ABM≌△CHN(SAS),∴BM=HN,∵BN+HN≥BH,∴B,N,H共线时,BM+BN=NH+BN的值最小,如图2中,当B,N,H共线时,∵△ABM≌△CHN,∴∠ABM=∠CHB=∠CBH=45°,∵∠ABD=60°,∴∠DBM=15°,∴∠MBN=45°﹣15°=30°,∴当BM+BN的值最小时,∠MBN=30°,故选:C.。
最短路问题详解+题目
![最短路问题详解+题目](https://img.taocdn.com/s3/m/4bf550130640be1e650e52ea551810a6f424c854.png)
最短路问题详解+题⽬概念若⽹络中的每条边都有⼀个数值(长度、成本、时间等),则找出两节点(通常是源节点和阱节点)之间总权和最⼩的路径就是最短路问题算法1. Floyd-warshall算法(1)介绍:⾮常的好⽤,通常可以在任何图中使⽤,包括有向图、带负权边的图。
(2)算法讲解:Floyd算法从第⼀个顶点开始,依次将每个顶点作为媒介k,然后对于每⼀对顶点u和v,查看其是否存在⼀条经过k的,距离⽐已知路径更短的路径,如果存在则更新它。
2. Dijkstra算法(1)介绍:是典型的单源最短路径算法,⽤于计算⼀个节点到其他所有节点的最短路径。
主要特点是以起始点为中⼼向外层层扩展,直到扩展到终点为⽌。
注意该算法要求图中不存在负权边。
(2)算法讲解:⽤贪⼼实现,先把起点到所有点的距离存下来找个最短的,进⾏松弛操作再找出最短的,把所有的点找遍之后就存下了起点到其他所有点的最短距离。
> 松弛操作:遍历⼀遍看通过刚刚找到的距离最短的点作为中转站会不会更近,如果更近了就更新距离> 注意:除了距离起点的距离为0外,其他距离均设为⽆穷⼤。
3. Bellman-Ford算法(1)介绍:Bellman-ford算法适⽤于单源最短路径,图中边的权重可为负数即负权边,但不可以出现负权环。
> 负权边:为负数的边。
> 负权环:源点到源点的⼀个环,环上权重和为负数。
(2)算法讲解:1.初始化:除了起点的距离为0外,其他均设为⽆穷⼤。
2.迭代求解:循环对边集合E的每条边进⾏松弛操作,使得顶点集合V中的每个顶点v的距离长逐步逼近最终等于其最短距离长;3.验证是否负权环:再对每条边进⾏松弛操作。
如果还能有⼀条边能进⾏松弛,那么就返回False,否则算法返回True题⽬输⼊:第⼀⾏n表⽰边的个数,接下来n⾏a,b,len,最后⼀⾏s,t求点s到点t的距离输⼊样例:71 2 22 5 21 3 42 3 13 5 61 4 73 4 1Dijkstra打法#include <bits/stdc++.h>#define maxx 0x7fusing namespace std;int u[105][105]={0x7f},dis[105];bool vis[105]={false};int main(){int n,s,t,x,y,minn,k;cin>>n;for (int i=1;i<=n;i++){dis[i]=maxx;vis[i]=false;}for (int i=1;i<=n;i++)for (int j=1;j<=n;j++)u[i][j]=maxx;for (int i=1;i<=n;i++){cin>>x>>y;cin>>u[x][y];}cin>>s>>t;for (int i=1;i<=n;i++)dis[i]=u[s][i];dis[s]=0;vis[s]=true;for (int i=1;i<=n;i++){minn=maxx;k=0;for (int j=1;j<=n;j++)if (vis[j]==false&&dis[j]<minn){minn=dis[j];k=j;}if (k==0) break;vis[k]=true;for (int j=1;j<=n;j++)if (dis[k]+u[k][j]<dis[j])dis[j]=dis[k]+u[k][j];}cout<<dis[t];return 0;}floyd打法#include <bits/stdc++.h>using namespace std;const int maxx=0x7f;int u[105][105];int main(){int s,t,n,x,y;cin>>n;for (int i=1;i<=n;i++)for (int j=1;j<=n;j++)u[i][j]=0x7f;for (int i=1;i<=n;i++){cin>>x>>y;cin>>u[x][y];}cin>>s>>t;for (int k=1;k<=n;k++)for (int i=1;i<=n;i++)for (int j=1;j<=n;j++){if (i!=j&&i!=k&&j!=k&&u[i][j]>u[i][k]+u[k][j])u[i][j]=u[i][k]+u[k][j];}cout<<u[s][t];return 0;}题⽬⼤意找⼀个点使得到其他点的距离总和最⼩Floyed穷举出答案#include <bits/stdc++.h>using namespace std;const int inf=100000007;int p[105],dis[105][105],sum;int n,lch,rch;int main(){cin>>n;memset(dis,inf,sizeof(dis));for(int i=1;i<=n;i++){dis[i][i]=0;cin>>p[i];cin>>lch>>rch;if(lch>=0) dis[i][lch]=1;dis[lch][i]=1;if(rch>=0) dis[i][rch]=1;dis[rch][i]=1;}for(int k=1;k<=n;k++)for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)if(dis[i][j]>dis[i][k]+dis[k][j]) dis[i][j]=dis[i][k]+dis[k][j]; int minn=inf;for(int i=1;i<=n;i++){sum=0;for(int j=1;j<=n;j++)sum+=p[j]*dis[i][j];if(minn>sum) minn=sum;}cout<<minn<<endl;return 0;}。
网络规划2-最短路问题
![网络规划2-最短路问题](https://img.taocdn.com/s3/m/dbdff5e85ef7ba0d4a733b56.png)
第二节 最短路问题
一、最短路问题
1、什么是最短路? 在一网络中,求给定一初始点vs到一终点vt的一条路长 最短的路(即路的各边权数之和最小)。 2、最短路问题: 例6.2.1:以例5.1.1为例 某企业拟铺设一条从A地到F地的输油管道,可供选择 路线及各点间的距离如下图6.2-1 ;试问:应如何选择路 线使总距离最短?
购置年限 购置费用 使用年数 维修费用 2000 15 0-1 2 2001 16 1-2 6 2002 17 2-3 12 2003 18 3-4 20 2004 19 4-5 38
§6.2 最短路问题
二、最短路的求解方法
1、穷举法: 1)适用于路不多的简单问题; 2)求出每条路的路长,比较各条路长求一路长最短的路. 3)例6.2-3: 求如下网络图6.2-2中点1到点6的最短路。
1
2
9
2
6
3
4
5 9
ቤተ መጻሕፍቲ ባይዱ4 6
6
3
图6.2-2
5
§6.2 最短路问题
求解步骤如下图6.2-3:
1
2
9
2
6
3
4
5 9
4 6
6
3
序号 1 2 3 4 5 路 1-2-4-6 1-2-4-5-6 1-3-5-6 1-3-2-4-5-6 1-3-2-4-6
图6.2-3 路长 16 23 17 22 15
5
最短路
1-3-2-4-6
§6.2 最短路问题
2、标号法: 例6.2-4:以例6.2-1为例,解题步骤如下图6.2-4。
6 4 2 3 6 5 8
C1
8 7 4 5 3
5
5-2最短路问题
![5-2最短路问题](https://img.taocdn.com/s3/m/d6b2fcddb8f67c1cfad6b88a.png)
9 3 0 1
3
1
0
v1 v2 v3 v4 v5 v6
v1 0 2 5 10 9
v2
2
0
3
8
6
10
D(1) v3 5 3 0 5 3 4
v4 10 8
5
0
4
3
v5 v6
9
6 10
3 4
4 3
0 1
5-2. 最 短 路 问 题
一、问题的提法及应用背景
(1)问题的提法——寻求网络中两点间 的最短路就是寻求连接这两个点的边的 总权数为最小的通路。(注意:在有向 图中,通路——开的初等链中所有的弧 应是首尾相连的。)
(2)应用背景——管道铺设、线路安排、 厂区布局、设备更新等。
二、最短路算法:
1. D氏标号法(Dijkstra) (1)求解思路——从始点出发,逐步顺序
-2
-1 1
v2 3
1
6
vt
2
v3
vs v1 v2 vs 0 4 1 v1 --- 0 -2 v2 -1 --- 0 v3 --- --- --vt --- -1 ---
v3
vt
d
(1) j
d
(2) j
d
(3) j
--- --- 0 0 0
61444
3 --- 1 1 1
0 2 --- 4 4
--- 0 --- 5 5
9 取自第3列
d (1) 16
mkin{d1(k0)
d
} (0)
k6
(第1行+第6列)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Step3:令T(vji)=min{T(vj)| vj不属于Si}。如果T(vji)<+∞ ,则把vji的 T标号变为P标号,
令Si+1=Si ∪{vji},k=ji,i=i+1,转入step1.
Matlab程序(见附件)
2 算法介绍-floyd算法
算法步骤:
Step1:输入图G的权矩阵W,对所有i,j,有dij=wij,k=1;
Step2:更新dij,对所有i,j,若dij>dik+dkj,则令dij=dik+dkj;
由此可以看出,算法的时间与随问题规模增大呈指数增长,所以最 短路算法不适合大规模配送问题求解。
考虑经过2点的Matlab程序(见附件)
3 应用举例
3.3 多目标运输问题
求次短路 Matlab程序
参考文献: 多目标最短路模型及算法,西南交通大学大学学报
最短路问题算法及应用
主要内容
1 问题描述 2 算法介绍
2.1 dijkstra算法 2.2 floyd算法
3 应用举例
3.1 物流中心选址 3.2 物流配送问题 3.3 多目标运输问题
1 问题描述
ቤተ መጻሕፍቲ ባይዱ
定义1 对简单图G的每一边e赋予一个实数,记为w(e),称为边e的 权,而每边都赋予权的图称为赋权图。 定义2 (u,v)-路的边权之和称为该路的长,而u,v间路长达到最小的 路称顶点u和v的最短路。 在给定赋权图G中,求两个互异顶点间的最短路,简记为最短路问题。
Step3:若dii<0,则存在一条含有顶点vi的负回路,停止;或者k=n停止,否则转入 step2.
Matlab程序(见附件)
3 应用举例
3.1 物流中心选址
步骤: 求出最短路径矩阵U; 矩阵U每一行求和; 最小值行标号为选 址地点。
Matlab程序(见附件)
参考文献: F I oyd最短路径算法在配送中心选址中的应用,湖南农业大学学报
最短路问题是最优化问题之一,广泛应用于生产实践中的许多问 题,如线路安排、厂区选址、设备更新等。
2 算法介绍-dijkstra算法
基本思想:按距离u0由近及远为顺序,依次求得u0到G的各顶 点的最短路和距离,直到v0(或直到G的所有顶点),算法结束。
算法步骤:
初始化(i=0):S0={vs},P(vs)=0, λ(vs)=0,对每一个v≠vs,令T(v)=+∞, λ(v)=M,k=s
3 应用举例
3.2 物流配送问题
问题抽象:物流配送问题可以抽象为必须通过指定点的最短路问题。 分两种情况:车辆回到原点;车辆不回到原点。
举例:考虑2点的情况 由始点k1到终点k2,经过指定点t1、t2的最短路经过4个顶点的 顺序只能是如下两种情况,k1→t1→t2→k2和k1→t2→t1→k2. 若要满 足所求得的路是最短路,那么4个顶点中相邻顶点之间的路也一定 是最短路。 于是分别计算k1→t1,t1→t2,t2→k2和k1→t2,t2→t1,t1→k2 之间的最短路;然后前三者相加得d1,后三者相加得d2,比较d1与 d2之值,取较小者作为最终的输出结果。