南京市高考数学模拟试卷(理科)A卷

合集下载

南京市高考数学二模试卷(理科)A卷

南京市高考数学二模试卷(理科)A卷

南京市高考数学二模试卷(理科)A卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)已知集合则A .B .C .D .2. (2分) (2019高二上·郑州期中) 给出如下四个命题:①若“ ”为假命题,则,均为假命题;②命题“若,则”的否命题为“若,则”;③“ ,”的否定是“ ,”;④在中,“ ”是“ ”的充要条件.其中正确的个数是()A . 1B . 2C . 3D . 43. (2分) (2017高二上·汕头月考) 若一条直线a与平面α内的一条直线b所成的角为30°,则下列说法正确的是()A . 直线a与平面α所成的角为30°B . 直线a与平面α所成的角大于30°C . 直线a与平面α所成的角小于30°D . 直线a与平面α所成的角不超过30°4. (2分)已知=(4,1),=(-1,k)若A,B,C三点共线,则实数k的值为()A . 4B . -4C . -D .5. (2分) (2016高二上·会宁期中) 已知数列{an}是公比为q的等比数列,且a1 , a3 , a2成等差数列,则公比q的值为()A . ﹣2B .C .D . 16. (2分) (2016高一上·右玉期中) 将进货单价为80元的商品按90元出售时,能卖出400个.若该商品每个涨价1元,其销售量就减少20个,为了赚取最大的利润,售价应定为每个()A . 115元B . 105元C . 95元D . 85元二、填空题 (共6题;共6分)9. (1分) (2019高二下·上海月考) 若是复平面内的曲线与的两个交点,则________.10. (1分)(2020·长春模拟) 设变量满足约束条件,则的最小值等于________.11. (1分)已知直线l的参数方程(t为参数),若以原点O为极点,x轴的正半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=2 sin(θ+ ).则直线l和圆C的位置关系为________(填相交、相切、相离).12. (1分)(2017·泰州模拟) 对一批产品的长度(单位:毫米)进行抽样检测,样本容量为400,右图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则样本中三等品的件数为________.13. (1分)(2017·漳州模拟) 已知双曲线的离心率等于2,其两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点,,则p=________.14. (1分)下列命题中,所有真命题的序号是________.⑴函数的图象一定过定点;⑵函数的定义域是,则函数的定义域为;⑶已知函数在上有零点,则实数的取值范围是.三、解答题 (共6题;共55分)16. (10分)(2016·江苏模拟) 在四棱锥P﹣ABCD中,直线AP,AB,AD两两相互垂直,且AD∥BC,AP=AB=AD=2BC.(1)求异面直线PC与BD所成角的余弦值;(2)求钝二面角B﹣PC﹣D的大小.17. (10分)(2017·晋中模拟) 某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A、B、C 三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图.已知从A、B、C三种分期付款销售中,该经销商每销售此品牌汽车1俩所获得的利润分别是1万元,2万元,3万元.现甲乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率.(1)求甲乙两人采用不同分期付款方式的概率;(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,求X的分布列与期望.18. (10分) (2016高二下·重庆期末) 已知f(x)=ex(ax﹣1),g(x)=a(x﹣1),a∈R.(1)讨论f(x)的单调性;(2)若有且仅有两个整数xi(i=1,2),使得f(xi)<g(xi)成立,求实数a的取值范围.20. (10分) (2017高二上·南通期中) 已知数列{an}的前n项和为Sn ,满足Sn=2﹣an(n∈N*).数列{bn}满足(2n﹣1)bn+1﹣(2n+1)bn=0(n∈N*),且b1=1.(1)求数列{an}和{bn}的通项公式;(2)设cn=an•bn,求数列{cn}的前n项和为Tn.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共6题;共55分)16-1、16-2、17-1、17-2、18-1、20-1、20-2、第11 页共11 页。

江苏省南京市(新版)2024高考数学人教版模拟(自测卷)完整试卷

江苏省南京市(新版)2024高考数学人教版模拟(自测卷)完整试卷

江苏省南京市(新版)2024高考数学人教版模拟(自测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数是定义在上的奇函数,是的导函数,且,当时,,则使得成立的的取值范围是()A.B.C.D.第(2)题已知点为圆上的动点,则直线与圆的位置关系为()A.相交B.相离C.相切D.相切或相交第(3)题过点作斜率为的直线,若光线沿该直线传播经轴反射后与圆相切,则()A.B.C.2D.第(4)题已知复数的共轭复数为,且,则()A.B.1C.2D.3第(5)题定义在正整数上的函数满足,则()A.B.C.D.第(6)题为更好地满足民众个性化、多元化、便利化的消费需求,丰富购物体验和休闲业态,某市积极打造夜间经济.为不断创优夜间经济发展环境、推动消费升级,有关部门对某热门夜市开展“服务满意度调查”,随机选取了100 名顾客进行问卷调查,对夜市服务进行评分(满分100 分),根据评分情况绘制了如图所示的频率分布直方图,估计这组数据的第55 百分位数为()A.65B.72C.72.5D.75第(7)题已知,则()A.B.C.2D.4第(8)题已知集合A=,B=,则()A.A=B B.A B=C.A B D.B A二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题双曲线具有如下光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线平分该点与两焦点连线的夹角.已知,分别为双曲线的左,右焦点,过右支上一点作直线交轴于点,交轴于点,则()A.的渐近线方程为B.C.过点作,垂足为,则D.四边形面积的最小值为第(2)题已知直线和平面与所成锐二面角为.则下列结论正确的是()A.若,则与所成角为B.若,则与所成角为C.若,则与所成角最大值为D.若,则与所成角为第(3)题已知在边长为2的等边中,向量满足,则下列式子正确的是()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数,则曲线在点处的切线方程为 __.第(2)题已知向量,向量,则的最大值是____________.第(3)题设是数列的前n项和,,则____________;若不等式对任意恒成立,则正数k的最小值为____________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在三棱锥中,侧面是等边三角形,.(1)证明:平面平面;(2)若,则在棱上是否存在动点,使得平面与平面的夹角为?若存在,试确定点的位置;若不存在,说明理由.第(2)题已知(1)当时,求曲线在处的切线方程;(2)设,若当时,有三个不同的零点,求实数的最小值.第(3)题近几年,在缺“芯”困局之下,国产替代的呼声愈发高涨,在国家的政策扶持下,国产芯片厂商呈爆发式增长.为估计某地芯片企业的营业收入,随机选取了10家芯片企业,统计了每家企业的研发投入(单位:亿)和营业收入(单位:亿),得到如下数据:样本号i12345678910研发投入224681014161820营业收入1416303850607090102130并计算得,,,,.(1)求该地芯片企业的研发投入与营业收入的样本相关系数r,并判断这两个变量的相关性强弱(若,则线性相关程度一般,若,则线性相关程度较高,r精确到0.01);(2)现统计了该地所有芯片企业的研发投入,并得到所有芯片企业的研发投入总和为268亿,已知芯片企业的研发投入与营业收入近似成正比.利用以上数据给出该地芯片企业的总营业收入的估计值.附:相关系数,.第(4)题口袋中有大小、形状、质地相同的两个白球和三个黑球.现有一抽奖游戏规则如下:抽奖者每次有放回的从口袋中随机取出一个球,最多取球2n+1(n)次.若取出白球的累计次数达到n+1时,则终止取球且获奖,其它情况均不获奖.记获奖概率为.(1)求;(2)证明:.第(5)题已知函数.(1)求函数在点处的切线方程;(2)若对于任意,都有恒成立,求实数的取值范围.。

江苏省南京市2021年高考数学模拟试卷(理科)A卷

江苏省南京市2021年高考数学模拟试卷(理科)A卷

江苏省南京市2021年高考数学模拟试卷(理科)A卷姓名:________ 班级:________ 成绩:________一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的. (共12题;共24分)1. (2分)设P={x|x<1},Q={x|x2<4},则=()A . {x|-1<x<2}B . {x|-3<x<-1}C . {x|1<x<-4}D . {x|-2<x<1}2. (2分) (2020高二下·上饶期末) 命题“若,则”的逆否命题是()A . 若,则B . 若,则x,y不都为C . 若x,y都不为,则D . 若x,y不都为,则3. (2分) (2016高一下·郑州期中) 按照程序框图(如图)执行,第3个输出的数是()A . 3B . 4C . 5D . 64. (2分) (2019高一上·丹东月考) 给出下列4个命题:①命题“若且,则”为假命题;②命题,,则是,;③“ ”是“ ”的充分不必要条件;④若,则,其中所有正确命题是()A . ①B . ②C . ③D . ③④5. (2分)(2020·吉林模拟) 某单位有840名职工,现采用系统抽样方法从中抽取56人做问卷调查,将840人按1,2,3,,随机编号,若442号职工被抽到,则下列4名职工中未被抽到的是()A . 487号职工B . 307号职工C . 607号职工D . 520号职工6. (2分)(2016·孝义模拟) 某四棱锥的三视图如图所示,则该四棱锥外接球的表面积是()A . πB . 34πC . πD . 17 π7. (2分) (2017高二下·沈阳期末) 若,则的值为()A . 2B . 0C . -1D . -28. (2分)(2020·银川模拟) 若满足约束条件,则的最大值为()C .D . 29. (2分)(2020·湖南模拟) 已知数列满足 , ,()则数列的前项和()A . 1121B . 1186C . 1230D . 124010. (2分) (2015高三上·青岛期末) 在△ABC中,角A,B,C所对的边分别是a,b,c,若b2+c2=a2+bc,=4,则△ABC的面积等于()A .B . 4C . 4D . 211. (2分) (2019高二下·南宁期末) 若,满足约束条件,则的最大值为()A .B .12. (2分) (2019高二下·浙江期中) 已知椭圆,焦点, .过作倾斜角为的直线L交上半椭圆于点A,以,(O为坐标原点)为邻边作平行四边形,点B恰好也在椭圆上,则椭圆的长轴长为()A .B .C .D .二、填空题,把答案填在答题卡中对应题号后的横线上. (共4题;共4分)13. (1分)(2012·湖南理) 已知复数z=(3+i)2(i为虚数单位),则|z|=________.14. (1分) (2018高三上·河北月考) 在中,分别是角的对边,已知,,的面积为,则的值为________.15. (1分)圆C1:x2+y2﹣4x﹣2y+1=0与圆C2:x2+y2+2x+6y﹣39=0的位置关系是________.16. (1分)对于定义在R上的函数,下列命题:①若f(﹣2)=f(2),则f(x)为偶函数;②若f(﹣2)≠f(2),则f(x)不是偶函数;③若f(﹣2)=f(2),则f(x)一定不是奇函数.其中正确的命题是________(把所有正确命题的序号都填上).三、解答题:解答应写出文字说明、证明过程或演算步骤. (共8题;共75分)17. (10分) (2015高三上·锦州期中) 已知数列{an}的首项,,n=1,2,3,….(1)证明:数列是等比数列;(2)数列的前n项和Sn .18. (10分)(2014·辽宁理) 如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分别为AC、DC的中点.(1)求证:EF⊥BC;(2)求二面角E﹣BF﹣C的正弦值.19. (5分)某个海边旅游景点,有小型游艇出租供游客出海游玩,收费标准如下:租用时间不超过2小时收费100,超过2小时的部分按每小时100收取(不足一小时按一小时计算).现甲、乙两人独立来该景点租用小型游艇,各租一次.设甲、乙租用不超过两小时的概率分别为,;租用2小时以上且不超过3小时的概率分别为,,且两人租用的时间都不超过4小时.(Ⅰ)求甲、乙两人所付费用相同的概率;(Ⅱ)设甲、乙两人所付的费用之和为随机变量ξ,求ξ的分布列与数学期望.20. (10分) (2016高二上·包头期中) 抛物线顶点在原点,焦点在x轴上,且过点(4,4),焦点为F;(1)求抛物线的焦点坐标和标准方程:(2) P是抛物线上一动点,M是PF的中点,求M的轨迹方程.21. (10分)已知函数f(x)=x3﹣9x+5.(1)求曲线y=f(x)在点(2,f(2))处的切线与坐标轴围成三角形的面积;(2)求f(x)的单调区间和极值.22. (10分)如图,已知圆上的四点A、B、C、D,CD∥AB,过点D的圆的切线DE与BA的延长线交于E点.(1)求证:∠CDA=∠EDB;(2)若BC=CD=5,DE=7,求线段DE的长.23. (10分)(2018·银川模拟) 选修4—4:极坐标与参数方程在直角坐标系中,圆C的参数方程为(为参数).(1)以原点为极点、x轴正半轴为极轴建立极坐标系,求圆的极坐标方程;(2)已知,圆C上任意一点,求面积的最大值.24. (10分) (2016高一上·重庆期末) 已知全集U=R,函数的定义域为集合A,集合B={x|5≤x<7}(1)求集合A;(2)求(∁UB)∩A.参考答案一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的. (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题,把答案填在答题卡中对应题号后的横线上. (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题:解答应写出文字说明、证明过程或演算步骤. (共8题;共75分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:第21 页共21 页。

(新课标)高考数学模拟系列(二)试题 理 新人教A版

(新课标)高考数学模拟系列(二)试题 理 新人教A版

12023年高考模拟系列试卷(二) 数学试题【新课标版】(理科)1.本试卷分第一卷(阅读题)和第二卷(表达题)两局部。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷上无效。

3.考试完毕后,将本试卷和答题卡一并交回。

第一卷(选择题,共60分)一、此题共12小题,每题5分,共60分,在每题给出的四个选项中只有一个选项是符合题目要求的1、设集合{}21,M x x x =-≤∈R ,{}21,02N y y x x ==-+≤≤,那么()RM N ⋂等于( )A .RB .{}|1x x R x ∈≠且C .{}1D .∅2、在复平面内,复数2013ii 1iz =+-表示的点所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限3、假设sin601233,log cos60,log tan 30a b c ===,那么( )A .a b c >>B .b c a >>C .c b a >>D .b a c >>4、设数列{}n a 是公差不为零的等差数列,它的前n 项和为n S ,且1S 、2S 、4S 成等比数列,那么41a a 等于( ) A .6B .7C .4D .35、已知点()1,0A -和圆222x y +=上一动点P ,动点M 满足2MA AP =,那么点M 的轨迹方程是( )A .()2231x y -+=B .223()12x y -+=C .2231()22x y -+= D .223122x y ⎛⎫+-= ⎪⎝⎭6、命题“存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥-”的否认为( )A .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥- B .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<- C .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<- D .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≤- 7、设a b <,函数()()2y x a x b =--的图象可能是( )28、程序框图如下:如果上述程序运行的结果S 的值比2023小,假设使输出的S 最大,那么判断框中应填入( ) A .10k ≤ B .10k ≥ C .9k ≤ D .9k ≥9、图为一个空间几何体的三视图,其中俯视图是下边一个等边三角形,其内切圆的半径是1,正视图和侧视图是上边两个图形,数据如图,那么此几何体的体积是( )A .1533π+B .21533π+C .3033π+D .43033π+ 10、在9212x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( )A .5376-B .5376C .84-D .8411、如果点P 在平面区域220140x y x x y -+≤⎧⎪≥-⎨⎪+-≤⎩上,点Q 在曲线(x -1)2+(y -1)2=1上,那么|PQ |的最小值为( )A .5-1B .355 C .3515- D .523-1 12、已知椭圆C :22221(0)x ya b a b+=>>的左右焦点为12,F F ,过2F 的直线与圆222()()x a y b b -+-=相切于点A ,并与椭圆C 交与不同的两点P ,Q ,如图,假设A 为线段PQ 的靠近P 的三等分点,那么椭圆的离心率为 ( )3A .23B .33C .53D .73第二卷(非选择题,共90分)二、填空题:本大题共4小题,每题4分,共16分,把答案填在题中横线上 13、由曲线23y x =-和直线2y x =所围成的面积为 。

江苏省南京市2024年数学(高考)部编版摸底(提分卷)模拟试卷

江苏省南京市2024年数学(高考)部编版摸底(提分卷)模拟试卷

江苏省南京市2024年数学(高考)部编版摸底(提分卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题我们学过,复数的共轭复数.实际上,双曲线也有类似“共轭”这一定义:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.则原双曲线的离心率与其共轭双曲线的离心率满足()A.B.C.D.第(2)题如图所示,已知抛物线过点,圆. 过圆心的直线与抛物线和圆分别交于,则的最小值为()A.B.C.D.第(3)题设复数,则z的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限第(4)题已知复数z满足,则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限第(5)题已知e是自然对数的底数.若,使,则实数m的取值范围为()A.B.C.D.第(6)题函数的图像大致为()A.B.C.D.第(7)题若集合,其中且,则实数m的取值范围是()A.B.C.D.第(8)题已知函数()的图象的两个相邻对称中心之间的距离为,则()A.2B.4C.8D.16二、多项选择题(本题包含3小题,每小题6分,共18分。

在每小题给出的四个选项中,至少有两个选项正确。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知是定义域为的函数,满足,当时,,则下列说法正确的是()A.的最小正周期为4B.的图象只关于直线对称C.当时,函数有5个零点D.当时,函数的最小值为第(2)题函数的部分图象如图所示,则()A.,B .不等式的解集为,C .为的一个零点D.若A,B,C为内角,且,则或第(3)题对于数列(),定义为,,…,中最大值()(),把数列称为数列的“M值数列”.如数列2,2,3,7,6的“M值数列”为2,2,3,7,7,则()A.若数列是递减数列,则为常数列B.若数列是递增数列,则有C.满足为2,3,3,5,5的所有数列的个数为8D.若,记为的前n项和,则三、填空(本题包含3个小题,每小题5分,共15分。

江苏省南京市高考数学模拟试卷(理科)(一)

江苏省南京市高考数学模拟试卷(理科)(一)

江苏省南京市高考数学模拟试卷(理科)(一)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·重庆模拟) 复数满足,则()A .B .C .D .2. (2分)已知全集则()A .B .C .D .3. (2分) (2019高二下·仙桃期末) 命题“ ”的否定是()A .B .C .D .4. (2分)一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何的体积为()A .B .C .D .5. (2分) (2016高二下·桂林开学考) 执行如图所示的程序框图,输出的S值为()A . 1B .C .D .6. (2分) (2015高二下·九江期中) 过双曲线 =1(a>0,b>0)的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为坐标原点,若 = ( + ),则双曲线的离心率为()A .B .C .D .7. (2分)(2013·山东理) 在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为()A . 2B . 1C . -D . -8. (2分) (2018高一下·淮北期末) 在“淘淘”微信群的某次抢红包活动中,所发红包被随机的分配为元,元,元,元,元共五份,每人只能抢一次,若红包抢完时,则其中小淘、小乐两人抢到红包金额之和不少于元的概率是()A .B .C .D .9. (2分)设随机变量X的分布列为P(X=k)=(k=1,2,3,...,n,...),则的值为()A . 1B .C .D .10. (2分) (2016高三上·湛江期中) 已知向量 =(﹣), =(),则∠ABC=()A . 30°B . 45°C . 60°D . 90°11. (2分) (2017高二下·莆田期末) 某单位拟安排6位员工在今年5月28日至30日(端午节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值28日,乙不值30日,则不同的安排方法共有()A . 30种B . 36种C . 42种D . 48种12. (2分) (2017高二下·武汉期中) 设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有3f(x)+xf′(x)>0,则不等式(x+2017)3f(x+2017)+27f(﹣3)>0的解集是()A . (﹣2020,﹣2017)B . (﹣∞,﹣2017)C . (﹣2018,﹣2017)D . (﹣∞,﹣2020)二、填空题 (共4题;共4分)13. (1分)已知向量=(cosθ,sinθ),=(1,﹣2),若∥,则代数式=________14. (1分)顺次计算数列:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…的前4项的值,由此猜测:an=1+2+3+…+(n﹣1)+n+(n﹣1)+…+3+2+1的结果为________15. (1分) (2017高二下·寿光期中) ∠AOB在平面α内,OC是平面α的一条斜线,若已知∠AOB=∠BOC=∠COA=60°,则OC与平面α所成的角的余弦值等于________.16. (1分) (2016高三上·闵行期中) 已知f(x)=2sin(ωx)(ω>0)在[﹣, ]上单调递增,则ω的取值范围是________三、解答题 (共7题;共70分)17. (10分) (2018高二上·湖南月考) 数列满足, .(1)求证:数列是等差数列;(2)若,求的取值范围.18. (15分) (2017高一上·邢台期末) 一名大学生尝试开家小“网店”销售一种学习用品,经测算每售出1盒盖产品获利30元,未售出的商品每盒亏损10元.根据统计资料,得到该商品的月需求量的频率分布直方图(如图所示),该同学为此购进180盒该产品,以x(单位:盒,100≤x≤200)表示一个月内的市场需求量,y(单位:元)表示一个月内经销该产品的利润.(1)根据直方图估计这个月内市场需求量x的平均数;(2)将y表示为x的函数;(3)根据直方图估计这个月利润不少于3800元的概率(用频率近似概率).19. (5分)(2017·日照模拟) 如图,菱形ABCD与正三角形BCE的边长均为2,它们所在平面互相垂直,FD⊥平面ABCD,且FD= .(I)求证:EF∥平面ABCD;(Ⅱ)若∠CBA=60°,求二面角A﹣FB﹣E的余弦值.20. (10分)(2019·临川模拟) 已知椭圆:,离心率,是椭圆的左顶点,是椭圆的左焦点,,直线: .(1)求椭圆方程;(2)直线过点与椭圆交于、两点,直线、分别与直线交于、两点,试问:以为直径的圆是否过定点,如果是,请求出定点坐标;如果不是,请说明理由.21. (10分) (2017高二下·沈阳期末) 已知函数(1)若函数F(x)= +ax2在上为减函数,求的取值范围;(2)当时,,当时,方程 - =0有两个不等的实根,求实数的取值范围;22. (10分) (2016高三上·贵阳模拟) 在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2 sinθ.(1)求圆C的直角做标方程;(2)圆C的圆心为C,点P为直线l上的动点,求|PC|的最小值.23. (10分)(2018·南阳模拟) 已知函数 .(1)若,使不等式成立,求满足条件的实数的集合;(2)为中最大正整数,,,,,求证: .参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分) 17-1、17-2、18-1、18-2、18-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。

江苏省南京市(新版)2024高考数学苏教版模拟(强化卷)完整试卷

江苏省南京市(新版)2024高考数学苏教版模拟(强化卷)完整试卷

江苏省南京市(新版)2024高考数学苏教版模拟(强化卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知离心率为的双曲线的左、右焦点分别是,若点是抛物线的准线与的渐近线的一个交点,且满足,则双曲线的方程是A.B.C.D.第(2)题若,则()A.1B.C.D.第(3)题命题“”为假命题,则命题成立的充分不必要条件是()A.B.C.D.第(4)题某公司的员工中,有是行政人员,有是技术人员,有是研发人员,其中的行政人员具有博士学历,的技术人员具有博士学历,的研发人员具有博士学历,从具有博士学历的员工中任选一人,则选出的员工是技术人员的概率为()A.B.C.D.第(5)题已知函数的定义域为,且函数的图象关于直线对称,当时,(其中是的导函数),若,,,则的大小关系是A.B.C.D.第(6)题已知复数,则()A.2B.4C.D.第(7)题已知抛物线的准线过双曲线的一个焦点,则()A.1B.2C.4D.8第(8)题已知复数满足,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题对于给定数列,如果存在实数,对于任意的均有成立,那么我们称数列为“M数列”,则下列说法正确的是()A.数列是“M数列”B.数列不是“M数列”C.若数列为“M数列”,则数列是“M数列”D.若数列满足,,则数列不是“M数列”第(2)题已知函数且,则()A.当时,曲线在处的切线方程为B.函数总存在极值点C.当曲线有两条过原点的切线,则D.若有两个零点,则第(3)题在椭圆中,其所有外切矩形的顶点在一个定圆上,称此圆为该椭圆的蒙日圆.该圆由法国数学家Monge(1746-1818)最先发现.若椭圆,则下列说法正确的有()A.椭圆外切矩形面积的最小值为48B.椭圆外切矩形面积的最大值为48C.点为蒙日圆上任意一点,点,,当取最大值时,D.若椭圆的左、右焦点分别为,,过椭圆上一点和原点作直线与蒙日圆相交于点,,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题设函数在上的值域为,则的取值范围是______.第(2)题的展开式中系数为有理数的各项系数之和为________.第(3)题正的边长为1,中心为O,过O的动直线l与边AB,AC分别相交于点M、N,,,.给出下列四个结论:①;②若,则;③不是定值,与直线l的位置有关;④与的面积之比的最小值为.其中所有正确结论的序号是______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)讨论函数的单调性;(2)证明:当时,.第(2)题已知椭圆的左、右焦点分别为、,椭圆上点在点正上方,且满足.(1)求椭圆的标准方程;(2)点是椭圆的上顶点,点、在椭圆上,若直线、的斜率分别为、,满足,求面积的最大值.第(3)题已知.(1)解不等式;(2)若对于任意正实数,不等式恒成立,求实数的取值范围.第(4)题在平面直角坐标系中,已知,,.动点与,的距离的和等于18,动点满足.动点的轨迹与轴交于,两点,的横坐标小于的横坐标,是动点的轨迹上异于,的动点,直线与直线交于点,设直线的斜率为,的中点为,点关于直线的对称点为.(1)求动点的轨迹方程;(2)是否存在,使的纵坐标为0?若存在,求出使的纵坐标为0的所有的值;若不存在,请说明理由.第(5)题已知函数(,e是自然对数的底数).(1)当时,求过原点且与曲线相切的直线方程;(2)若恒成立,求实数a的取值范围.。

江苏省南京市(新版)2024高考数学苏教版摸底(综合卷)完整试卷

江苏省南京市(新版)2024高考数学苏教版摸底(综合卷)完整试卷

江苏省南京市(新版)2024高考数学苏教版摸底(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知椭圆,过原点的直线交椭圆于、(在第一象限)由向轴作垂线,垂足为,连接交椭圆于,若三角形为直角三角形,则椭圆的离心率为( )A.B .C .D .第(2)题已知为等比数列,则“”是“,是任意正整数”的( )A .充分条件但不是必要条件B .必要条件但不是充分条件C .充要条件D .既不是充分条件也不是必要条件第(3)题如图是我国2017~2022年人用疫苗进出口均价,下列结论不正确的是( )A .疫苗进口均价最低约为2100美元/千克B .疫苗出口均价的极差小于3700美元/千克C .疫苗进口均价的中位数大于2750美元/千克D .疫苗出口均价的方差大于疫苗进口均价的方差第(4)题已知为两条不同的直线,为两个不同的平面,下列命题为真命题的是( )A .若,,,,则B .若,,则C .若,,,则D .若,,,则第(5)题已知集合则( )A .B .C .D .第(6)题已知集合,则A .B .C.D .第(7)题已知集合,,则( )A .B .C .D .第(8)题如图所示方格纸上的图形为某几何体的三视图(其中小方格边长为1),则该几何体的表面积为( )A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题如图,已知函数的图象与轴交于点,若,图象的一个最高点,则下列说法正确的是()A.B.的最小正周期为4C.的一个单调增区间为D.图象的一条对称轴为第(2)题等差数列中,,,若,,则()A.有最小值,无最小值B.有最小值,无最大值C.无最小值,有最小值D.无最大值,有最大值第(3)题如图,棱长为的正方体中,点、满足,,其中、,点是正方体表面上一动点,下列说法正确的是()A .当时,平面B.当时,若平面,则的最大值为C .当时,若,则点的轨迹长度为D.过、、三点作正方体的截面,截面图形可以为矩形三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知椭圆的左、右焦点分别为F1,F2,O为坐标原点,椭圆上一点P满足|OP|=3,则△F1PF2的面积为________.第(2)题已知变量x,y满足约束条件则的最小值为___________.第(3)题已知向量,,若,则______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)当时,求函数的最值;(2)当时,对任意都有恒成立,求实数的取值范围;(3)当时,设函数,数列满足,,求证:,.第(2)题已知直线与抛物线交于两点,且.(1)求抛物线的标准方程;(2)已知直线与抛物线交于两点(异于点),直线与交于点,直线与交于点,证明:直线与轴交于定点.第(3)题如图,四棱锥中,底面为矩形,点在线段上,平面.(1)求证:;(2)若是等边三角形,,平面平面,四棱锥的体积为,试问在线段上是否存在点,使得直线与平面所成角的正弦值为?若存在,求出此时的长;若不存在,请说明理由.第(4)题已知函数,且.(1)讨论的单调性;(2)比较与的大小,并说明理由;(3)当时,证明:.第(5)题已知函数.(1)讨论函数的单调性;(2)设,若有两个零点,求整数的最大值.。

高考数学 2024年江苏省南京市高考数学全真模拟试卷

高考数学 2024年江苏省南京市高考数学全真模拟试卷

2024年江苏省南京市高考数学全真模拟试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.A .(4,+∞)B .[4,+∞)C .(-∞,0)∪[4,+∞)D .(-∞,0]∪(4,+∞)1.(5分)已知全集U =R ,集合A ={x |log 2x ⩽2},则∁U A =( )A .1B .C .2D .22.(5分)已知复数z =,则|z |=( )+iM 6√21-iM 3√2A .B .-C .D .-3.(5分)已知sin (-α)+sinα=,则sin (2α+)=( )π313π679798989A .134B .135C .136D .1374.(5分)已知数列{a n }和数列{b n }的通项公式分别为a n =3n +1和b n =5n +1,若它们的公共项从小到大依次排列构成新数列{cn },则满足不等式c n ≤2024的最大的整数n =( )A .=,<B .Z 甲=Z 乙,>C .>,>D .Z 甲<Z 乙,>5.(5分)甲、乙两名运动员在一次射击训练中各射靶20次,命中环数的频率分布条形图如图.设甲、乙命中环数的众数分别为Z 甲,Z 乙,方差分别为,,则( )s 甲2s 乙2Z 甲Z 乙s 甲2s 乙2s 甲2s 乙2Z 甲Z 乙s 甲2s 乙2s 甲2s 乙2A .若m ⊂α,n ⊂α,l ⊥m ,l ⊥n ,则l ⊥α6.(5分)设α是空间中的一个平面,l ,m ,n 是三条不同的直线,则( )二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分对的得部分分,有选错的得0分.B .若l ∥m ,m ∥n ,l ⊥α,则n ⊥αC .若l ∥m ,m ⊥α,n ⊥α,则l ⊥nD .若m ⊂α,n ⊥α,l ⊥n ,则l ∥mA .(0,e )B .(e ,+∞)C .(0,2e )D .(2e ,+∞)7.(5分)若函数f (x )=-有两个零点,则实数m 的取值范围为( )lnx x xmA .B .C .D .28.(5分)已知A 为双曲线E :-=1(a >0,b >0)的右顶点,O 为坐标原点,B ,C 为双曲线E 上两点,且AB +AC =2AO ,直线AB ,AC 的斜率分别为4和,则双曲线E 的离心率为( )x 2a 2y 2b 2→→→12M 3M 52M 62A .拿走x 3,这组数据的方差变大B .拿走x 2,x 4,这组数据的方差变大C .拿走x 2,x 3,x 4,这组数据的方差减小D .拿走x 1,x 2,x 4,x 5,这组数据的方差减小9.(6分)设一组样本数据x 1,x 2,x 3,x 4,x 5满足x i <x i +1(i =1,2,3,4),则( )A .正四面体P -ABC 的外接球表面积为4πB .正四面体P -ABC 内任意一点到四个面的距离之和为定值C .正四面体P -ABC 的相邻两个面所成二面角的正弦值为D .正四面体S -EFG 在正四面体P -ABC 的内部,且可以任意转动,则正四面体S -EFG 的体积最大值为10.(6分)已知正四面体P -ABC 的棱长为,则( )√213181A .函数f (x )的单调递减区间为(0,1)∪(1,e )B .f (π)<f (2)11.(6分)对于函数f (x )=,下列说法正确的是( )xlnx三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,第15小题13分,第16、17小题15分,第18、19小题17分,共77分.解答应写出文字说明、明过程或演算步骤.C .若方程|f (|x |)|=k 有6个不等实数根,则k >eD .对任意正实数x 1,x 2,且x 1≠x 2,若f (x 1)=f (x 2),则>x 1x 2e 212.(5分)已知向量a =(2-t ,-3),b =(-1,2+t ),若a ⊥b ,则t =.→→→→13.(5分)设(2-x =+(x -1)+(x -1+⋯+(x -1,若a 5+a 6=0,则n =.)na 0a 1a 2)2a n )n14.(5分)已知△ABC 的三内角A ,B ,C 满足16sinCcos (A -B )+8sin 2C =3π,则△ABC 的面积与△ABC 外接圆的面积之比为.15.(13分)设△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且向量m =(a ,b ),n =(-cosA ,sinB )满足m ∥n .(1)求A ;(2)若a =,b =3,求BC 边上的高h .→→M 3→→M 1316.(15分)已知数列{a n }满足=,+=2.(1)证明数列{}是等差数列,并求{a n }的通项公式;(2)若数列{b n }满足,b n =(a n -1)(a n +1-1),求{b n }的前n 项和S n .a 132a n +11a n 1-1a n 17.(15分)某公司为了解旗下的某产品的客户反馈情况,随机抽选了250名客户体验该产品并进行评价,评价结果为“喜欢”和“不喜欢”,整理得到如下列联表:不喜欢喜欢合计男50100150女5050100合计100150250(1)是否有99%的把握认为客户对该产品评价结果与性别因素有关系?(2)公司为进一步了解客户对产品的反馈,现从评价结果为“喜欢”的客户中,按性别用分层抽样的方法选取6人,收集对该产品改进建议.若在这6人中随机抽取2人,求所抽取的2人中至少有1名女性的概率.附:=,P (K 2≥k )0.100.050.0100.001K 2n (ad -bc )2(a +b )(c +d )(a +c )(b +d )k 2.706 3.841 6.63510.82818.(17分)如图,在三棱台ABC -A 1B 1C 1中,AC 1与A 1C 相交于点D ,BB 1⊥平面ABC ,AB =6,BC =4,BB 1=2,=,AE =2EB ,且DE ∥平面BCC 1B 1.(1)求线段AC 的长;(2)求三棱锥C -A 1B 1C 1的体积.A 1C 1M 13→→19.(17分)已知椭圆C :+=1(a >0,b >0)的左、右焦点分别为F 1、F 2,离心率为,经过点F 1且倾斜角为θ(0<θ<)的直线l 与椭圆交于A 、B 两点(其中点A 在x 轴上方),△ABF 2的周长为8.(1)求椭圆C 的标准方程;(2)如图,将平面xOy 沿x 轴折叠,使y 轴正半轴和x 轴所确定的半平面(平面AF 1F 2)与y 轴负半轴和x 轴所确定的半平面(平面BF 1F 2)互相垂直.(i )若θ=,求异面直线AF 1和BF 2所成角的余弦值;(ii )是否存在θ(0<θ<),使得△ABF 2折叠后的周长与折叠前的周长之比为?若存在,求tanθ的值;若不存在,请说明理由.x 2a 2y 2b 212π2π3π21516。

2024年新高考数学模拟卷A卷(解析版)

2024年新高考数学模拟卷A卷(解析版)

2024年新高考数学模拟卷A 卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2468M =,,,,{}2|280N x x x =--≤,则M N ⋂=()A .{}2,4B .{}2,4,6C .{}2,4,6,8D .[]24,【答案】A【详解】由题意{}2|280{|24}N x x x x x =--≤=-≤≤,∴{2,4}M N ⋂=.故选:A .2.复数2(2)i z i-=i 为虚数单位,则A .25B .C .5D .【答案】C【详解】()()()223443,1i i i z i i--⨯-===--()()2243 5.z -+-=3.已知()1,3a =-,()2,1b =- ,且()()2//a b ka b +-,则实数k =()A .2-B .2C .12D .12-【答案】D【详解】 (1,3)=- a ,()2,1b =- ,(1ka b k ∴-= ,3)(2---,1)(2k =+,13)k --,2(3,1)a b +=--,()//(2)ka b a b +-,(2)3(13)k k ∴-+=---,∴解得:12k =-.故选:D .4.已知函数2,(1)()4,(1)x a x ax x f x a x ⎧-++<⎪=⎨⎪≥⎩,若()y f x =在(),-∞+∞上单调递增,则实数a 的取值范围是()A .[]2,4B .()2,4C .()2,+∞D .[)2,+∞【答案】A【详解】()f x 在(),-∞+∞上单调递增;∴2112211414aa a a a a a a⎧≥⎪≥⎧⎪⎪>⇒>⎨⎨⎪⎪≤⎩⎪-++≤⎩,解得24a ≤≤;所以实数a 的取值范围为[]2,4.故选:A .5.若椭圆X :()22211x y a a +=>与双曲线H :2213x y -=的离心率之和为736,则=a ()A .2B 3C 2D .1【答案】A【详解】椭圆X :()22210x y aa +=>H :2213x y -==,=2a=.故选:A.6.设过点(0,P 与圆22:410C x y x +--=相切的两条直线的夹角为α,则cos α=()A .19BC .19-D .【答案】A【详解】解法1:如图,圆22410x yx +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r ,过点(0,P 作圆C 的切线,切点为,A B ,连接AB .因为3PC =,则2PA PB ==,得2sin 3APC APC ∠∠=,则221cos cos sin 09APB APC APC∠=∠-∠=-<,即APB ∠为钝角,且α为锐角,所以1cos cos(π)9APB α=-∠=.故选A.解法2:如图,圆22410x y x +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r =,过点(0,P 作圆C 的切线,切点为,A B ,连接AB .因为3PC =,则2PA PB ==,因为22222cos 2cos PA PB PA PB APB CA CB CA CB ACB+-⋅∠=+-⋅∠,且πACB APB ∠=-∠,则448cos 5510cos APB ACB +-∠=+-∠,即44cos 55cos APB ACB -∠=-∠,解得1cos 09APB ∠=-<,即APB ∠为钝角,且α为锐角,则1cos cos(π)9APB α=-∠=.故选:A.解法3:圆22410x y x +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r =线方程为0x=,则圆心到切点的距离2d r =<,不合题意;若切线斜率存在,则设切线方程为y kx =,即0kx y -=,则圆心到切线的距离d =120,k k ==-1212sin tan 1cos k k k k ααα-==+,又α为锐角,由22sin cos 1αα+=解得1cos 9α=.故选:A.7.若数列{}n a 满足212n na p a +=(p 为常数,n ∈N ,1n ≥),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列,则().A .甲是乙的充分非必要条件B .甲是乙的必要非充分条件C .甲是乙的充要条件D .甲是乙的既非充分也非必要条件【答案】B【详解】若{}n a 为等比数列,设其公比为q ,则()222112n n n n a a q p a a ++⎛⎫=== ⎪⎝⎭,p 为常数,所以{}2n a 成等比数列,即{}n a 是等方比数列,故必要性满足.若{}n a 是等方比数列,即{}2n a 成等比数列,则{}n a 不一定为等比数列,例如23452,2,2,2,2,...--,有()221224n na a +=±=,满足{}n a 是等方比数列,但{}n a 不是等比数列,充分性不满足.故选:B8.若ππ2sin sin sin 44βααβ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,则()tan αβ+=()A .-1B .1C .-2D .2【答案】A【详解】解法一:由题得()()2sin sin cos 2222βαααβαβ⎫-=-+-⎪⎪⎝⎭,所以2sin sin 2cos sin sin cos cos sin cos cos sin sin αβαβαβαβαβαβ-=-++,即sin cos cos sin cos cos sin sin 0αβαβαβαβ++-=,即()()sin cos 0αβαβ+++=,显然()cos 0αβ+≠,故()tan 1αβ+=-.解法二:令π4αθ-=,则π4αθ=+,所以ππ2sin sin sin 44βααβ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭可化为π2sin sin sin 2βθθβ⎛⎫=-+ ⎪⎝⎭,即()2sin sin cos βθθβ=-,所以2sin sin cos cos sin sin βθθβθβ=+,即cos cos sin sin 0θβθβ-=,所以()cos 0θβ+=,则ππ2k θβ+=+,k ∈Z ,所以()πππ3πtan tan tan πtan 14424k αβθβ⎛⎫⎛⎫+=++=++==- ⎪ ⎪⎝⎭⎝⎭,k ∈Z .故选:A.二、多选题:本题共3小题,每小题6分,共18分。

江苏省南京市(新版)2024高考数学苏教版模拟(综合卷)完整试卷

江苏省南京市(新版)2024高考数学苏教版模拟(综合卷)完整试卷

江苏省南京市(新版)2024高考数学苏教版模拟(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知等比数列中所有项均为正数,若,则的最小值为()A.B.C.D.第(2)题已知,数列中,,,为数列的前项和,,则()A.3B.4C.5D.6第(3)题已知函数,将函数的图象向左平移个单位长度,得到函数的部分图象如图所示,则()A.B.C.D.第(4)题已知等差数列的前n项和为,且,则的值为()A.24B.21C.16D.14第(5)题命题P:,,…,的平均数与中位数相等;命题Q:,,…,是等差数列,则P是Q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第(6)题根据近五年的资料显示,某村庄月光照量(小时)的统计数据(注:月光照量指的是当月的阳光照射总时长)以及在适合温度下,月光照量与草莓花芽分化的概率的关系,表格如下:(小时)月份数271815草莓花芽分化的概率0.900.950.80该村庄现有一批草莓,根据上表,试估计在适合温度下,草莓花芽分化的概率为()A.0.85B.0.89C.0.91D.0.95第(7)题安排A,B,C,D,E,F共6名义工照顾甲、乙、丙三位老人,每两位义工照顾一位老人,考虑到义工与老人住址距离问题,义工A不安排照顾老人甲,则安排方法共有()种A.60B.61C.62D.63第(8)题已知集合,,则().A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知为圆上的两点,为直线上一动点,则()A.直线与圆相离B .当为两定点时,满足的点有2个C.当时,的最大值是D.当为圆的两条切线时,直线过定点第(2)题已知两个不为零的实数x,y满足,则下列结论正确的是()A.B.C.D.第(3)题某校举行学习党史知识比赛,甲、乙两个班各有10名同学参加,根据成绩绘制茎叶图如下,则()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题某产品生产厂家的市场部在对家商城进行调研时,获得该产品售价(元/件)和销售量(万件)之间的四组数据如表所示.售价(元/件)销售量(万件)为决策产品的市场指导价,用最小二乘法求得销售量与售价之间的线性回归方程为:,若售价为元/件,则销售量约为___________万件.第(2)题已知,把数列的各项排列成如图所示的三角形数阵,记表示该数阵中第行中从左到右的第个数,则对应数阵中的数是__________.第(3)题直线截圆得到的劣弧所对的圆心角为________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在直三棱柱中,,,,是棱的中点.(1)求证: 平面;(2)求平面与平面所成角的大小.第(2)题某企业生产经营的某种产品的广告费支出x与销售额y之间有如下对应数据:x(万元)24568y(万元)3040605070(1)求x与y的相关系数(精确到0.01);(2)当广告费支出每增加1万元时,求销售额平均增加多少万元.附:相关系数回归方程的最小二乘估计公式为,;.第(3)题已知抛物线的焦点为F,若的三个顶点都在抛物线E上,且满足,则称该三角形为“核心三角形”.(1)设“核心三角形”的一边所在直线的斜率为2,求直线的方程;(2)已知是“核心三角形”,证明:三个顶点的横坐标都小于2.第(4)题如图,等腰梯形ABCD中,,,,E为DC中点,以AE为折痕把折起,使得点D到达点P的位置,且二面角P-AE-C的余弦值为.(1)证明:;(2)求直线PE与平面PBC所成的角.第(5)题在中,角的对边分别为,,,且.(1)求的大小;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使存在且唯一确定,求的面积.条件①:,为锐角;条件②:;条件③:.。

南京市数学高三理数统一模拟考试试卷A卷

南京市数学高三理数统一模拟考试试卷A卷

南京市数学高三理数统一模拟考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分) (2019高一下·安徽月考) 设集合,集合,则()A .B .C .D .2. (1分) (2019高三上·杭州月考) 已知复数对应复平面上的点,复数满足,则()A .B .C .D .3. (1分)(2019高一上·哈尔滨期末) 已知则()A .B .C .D .4. (1分)(2017·湖北模拟) 已知双曲线的左,右焦点分别为F1 , F2 , O为坐标原点,圆O是以F1F2为直径的圆,直线与圆O有公共点.则实数t的取值范围是()A .B . [﹣4,4]C . [﹣5,5]D .5. (1分) (2019高二上·张家口月考) 已知函数,若在上随机取一个实数,则的概率为()A .B .C .D .6. (1分) (2016高一上·西安期末) 若l,m,n是互不相同的空间直线,α,β是不重合的平面,下列命题正确的是()A . 若α∥β,l⊂α,n⊂β,则l∥nB . 若α⊥β,l⊂α,则l⊥βC . 若l⊥n,m⊥n,则l∥mD . 若l⊥α,l∥β,则α⊥β7. (1分)在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,且AB=3,BD=4,则三棱锥A﹣BCD外接球的半径为()A . 2B . 3C . 4D .8. (1分) (2017高一上·焦作期末) 若圆C1:(x﹣1)2+(y+3)2=1与圆C2:(x﹣a)2+(y﹣b)2=1外离,过直线l:x﹣y﹣1=0上任意一点P分别做圆C1 , C2的切线,切点分别为M,N,且均保持|PM|=|PN|,则a+b=()A . ﹣2B . ﹣1C . 1D . 29. (1分)已知关于a的方程有两个不同的解,则x的取值范围是()A . RB .C .D .10. (1分) (2017高一上·宜昌期末) 在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A .B .C .D .11. (1分) (2016高二上·蕲春期中) 点P是抛物线y2=4x上一动点,则点P到点A(0,﹣1)的距离与到直线x=﹣1的距离和的最小值是()A .B .C . 2D .12. (1分)若将函数(ω>0)的图象向右平移个单位长度后,与函数的图象重合,则ω的最小值为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)(2018·河北模拟) 已知向量,的夹角为,且,则 ________.14. (1分)(2012·湖南理) ()6的二项展开式中的常数项为________(用数字作答).15. (1分) (2018高一下·通辽期末) 在中,,则此三角形的最大边的长为________.16. (1分) (2017高二下·赤峰期末) 定义在上的可导函数,其导函数为满足恒成立,则不等式的解集为________.三、解答题 (共7题;共11分)17. (2分)(2017·赣州模拟) 设等差数列{an}的公差d>0,前n项和为Sn ,已知3 是﹣a2与a9的等比中项,S10=﹣20.(1)求数列{an}的通项公式;(2)设bn= ,求数列{bn}的前n项和Tn(n≥6).18. (1分) (2015高三上·广州期末) 如图所示,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是梯形,AD∥BC,侧面ABB1A1为菱形,∠DAB=∠DAA1 .(1)求证:A1B⊥AD;(2)若AD=AB=2BC,∠A1AB=60°,点D在平面ABB1A1上的射影恰为线段A1B的中点,求平面DCC1D1与平面ABB1A1所成锐二面角的余弦值.19. (2分) (2016高二上·黄骅期中) 一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.20. (1分) (2018高二下·双流期末) 已知中心在原点,焦点在轴上的椭圆过点,离心率为 .(1)求椭圆的方程;(2)设过定点的直线与椭圆交于不同的两点,且,求直线的斜率的取值范围;21. (2分)(2020·洛阳模拟) 设函数 .(1)若,求的单调区间;(2)若存在三个极值点,且,求的取值范围,并证明: .22. (2分)(2018·河北模拟) 选修4-4:坐标系与参数方程在直角坐标系中,直线过,倾斜角为.以为极点,轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.(Ⅰ)求直线的参数方程和曲线的直角坐标方程;(Ⅱ)已知直线与曲线交于、两点,且,求直线的斜率.23. (1分)(Ⅰ)设函数f(x)=|x﹣|+|x+a|(a>0).证明:f(x)≥2;(Ⅱ)若实数x,y,z满足x2+4y2+z2=3,求证:|x+2y+z|≤3.参考答案一、单选题 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共11分) 17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、23-1、。

江苏省南京市(新版)2024高考数学部编版模拟(评估卷)完整试卷

江苏省南京市(新版)2024高考数学部编版模拟(评估卷)完整试卷

江苏省南京市(新版)2024高考数学部编版模拟(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3,…若b1>c1,b1+c1=2a1,a n+1=a n,b n+1=,c n+1=,则A.{S n}为递减数列B.{S n}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列D.{S2n-1}为递减数列,{S2n}为递增数列第(2)题下列函数中,定义域与值域均为R的是()A.B.C.D.第(3)题已知等差数列的前项和为,若,则()A.2B.4C.6D.8第(4)题在圆柱内有一个球,球分别与圆柱的上、下底面及母线均有且只有一个公共点.若,则圆柱的表面积为().A.B.C.D.第(5)题已知成等比数列,且.若,则A.B.C.D.第(6)题设,数列中,, ,则A.当B.当C.当D.当第(7)题定义:一对轧辊的减薄率.如图所示,为一台擀面机的示意图,擀面机由若干对轧辊组成,面带从一端输入,经过各对轧辊逐步减薄后输出.已知擀面机没对轧辊的减薄率都为0.2(轧面的过程中,面带宽度不变,且不考虑损耗).有一台擀面机共有10对轧辊,所有轧辊的横截面积均为,若第对轧辊有缺陷,每滚动一周在面带上压出一个疵点,在擀面机输出的面带上,疵点的间距为,则()A.B.C.D.第(8)题样本数据16,20,21,24,22,14,18,28的分位数为()A.16B.14C.23D.22二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题如图所示,已知三棱锥的外接球的半径为为球心,为的外心,为线段的中点,若,则()A.线段的长度为2B.球心到平面的距离为2C.球心到直线的距离为D.直线与平面所成角的正弦值为第(2)题已知关于的不等式的解集是,则()A.B.C.D.不等式的解集是或第(3)题如图,在长方体中,,,,以直线,,分别为轴、轴、轴,建立空间直角坐标系,则()A.点的坐标为,5,B.点关于点对称的点为,8,C.点关于直线对称的点为,5,D.点关于平面对称的点为,5,三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若的二项展开式的第7项为常数项,则__________.第(2)题已知椭圆()的左、右焦点分别为,,过点的直线交椭圆于两点,若的最小值为,则的最大值为______.第(3)题正方体中,点分别在棱上,且其中,若平面与线段的交点为,则__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题设抛物线方程为,过点的直线分别与抛物线相切于两点,且点在轴下方,点在轴上方.(1)当点的坐标为时,求;(2)点在抛物线上,且在轴下方,直线交轴于点,直线交轴于点,且.若的重心在轴上,求的最大值.(注:表示三角形的面积)第(2)题已知函数(1)当时,设函数,求函数的单调区间和极值;(2)设是的导函数,若对任意的恒成立,求的取值范围;(3)设函数,当时,求在区间上的最大值和最小值.第(3)题在锐角中,设边所对的角分别为,且.(1)求角的取值范围;(2)若,求中边上的高的取值范围.第(4)题如图,是边长为4的等边三角形,,分别是,的中点,把沿折起,使到达位置,已知.(1)证明:平面平面;(2)求点到平面的距离.第(5)题如图,已知三棱柱的底面是正三角形,,是的中点.(1)证明:平面平面;(2)若,求点到平面的距离.。

南京市高考数学一模试卷A卷(模拟)

南京市高考数学一模试卷A卷(模拟)

南京市高考数学一模试卷A卷姓名:________ 班级:________ 成绩:________一、填空题 (共12题;共12分)1. (1分)函数f(x)=ax2+2ax+c(a≠0)的一个零点为1,则它的另一个零点为________.2. (1分)当0<a<1时,不等式组的解集为________.4. (1分) (2017高三上·浦东期中) 设f﹣1(x)为f(x)= 的反函数,则f﹣1(2)=________.6. (1分)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=6,且AB+BD=AC+CD=10,则四面体ABCD的体积的最大值是________.7. (1分) (2018高二下·吴忠期中) 有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,则不同的站法有________.8. (1分)集合M={a| ∈Z,a∈N*}用列举法表示为________.9. (1分)向量,满足||=1,|-|=,与的夹角为60°,则||=________10. (1分) (2016高二上·上海期中) 设实数a,b满足a+ab+2b=30,且a>0,b>0,那么的最小值为________.11. (1分)已知向量与的夹角为120°,||=1,||=3,则|﹣|=________12. (1分)数列1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…其通项公式为 ________ .二、选择题 (共4题;共8分)13. (2分)对于常数m、n,“”是“方程的曲线是椭圆”的()A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件14. (2分)已知复数z满足(2+i)z=1+2i+3i2+4i3(i为虚数单位),则z的共轭复数是()A . + iB . ﹣ iC . ﹣ + iD . ﹣﹣ i16. (2分)若三棱锥的一条棱长为x,其余棱长均为1,体积是V(x),则函数V(x)在其定义域上为()A . 增函数且有最大值B . 增函数且没有最大值C . 不是增函数且有最大值D . 不是增函数且没有最大值三、解答题 (共5题;共45分)17. (10分) (2016高三上·焦作期中) 如图,在四棱台ABCD﹣A1B1C1D1中,平面BCC1B1⊥平面ABCD,四边形ABCD为平行四边形,四边形BCC1B1为等腰梯形,BC=4,B1C1=C1C=2,AB=5,AC⊥BC.(1)求证:BC1⊥平面ACC1;(2)求直线BC1与平面ADD1A1所成的角的正弦值.18. (10分) (2017高一上·黄石期末) 已知,,函数f(x)=(x∈R)(1)求函数f(x)的周期;(2)若方程f(x)﹣t=1在内恒有两个不相等的实数解,求实数t的取值范围.20. (5分)(2019·东北三省模拟) 已知椭圆:的短轴端点为,,点是椭圆上的动点,且不与,重合,点满足, .(Ⅰ)求动点的轨迹方程;(Ⅱ)求四边形面积的最大值.21. (10分)(2016·四川理) 已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N* .(1)若2a2,a3,a2+2成等差数列,求an的通项公式;(2)设双曲线x2﹣ =1的离心率为en,且e2= ,证明:e1+e2+⋅⋅⋅+en>.参考答案一、填空题 (共12题;共12分)1-1、2-1、4-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、选择题 (共4题;共8分)13-1、14-1、16-1、三、解答题 (共5题;共45分)17-1、17-2、18-1、18-2、21-1、21-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京市高考数学模拟试卷(理科)A卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分)(2019·安徽模拟) 复数,则()
A .
B . 8
C .
D . 20
2. (2分) (2018高一上·北京期中) 设集合M={x|x<1},N={x|0<x≤1},则M∪N=()
A .
B .
C .
D .
3. (2分)在二项式(的展开式中,各项系数之和为M,各项二项式系数之和为N,且M+N=72,则展开式中常数项的值为()
A . 18
B . 12
C . 9
D . 6
4. (2分) (2016高二上·德州期中) 圆x2+y2=50与圆x2+y2﹣12x﹣6y+40=0的位置关系为()
A . 相离
B . 相切
C . 相交
D . 内含
5. (2分)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图,则该样本的中位数、众数分别是()
A . 45,56
B . 46,45
C . 47,45
D . 45,47
6. (2分)命题怕:,命题q:,则p是q的().
A . 充分非必要条件
B . 必要非充分条件
C . 充要条件
D . 既不充分也不不要条件
7. (2分) (2017高一上·唐山期末) 要得到函数图象,只需要将函数的图象()
A . 向左平移个单位
B . 向右平移个单位
C . 向左平移个单位
D . 向右平移个单位
8. (2分)(2018·宁德模拟) 设满足约束条件若目标函数的最小值大于
,则的取值范围为()
A .
B .
C .
D .
9. (2分)将函数的图象向_________单位可得到函数的图象。

A . 向左平移
B . 向右平移
C . 向右平移
D . 向左平移
10. (2分) (2018高二下·定远期末) 已知点,抛物线的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若,则的值等于()
A .
B . 2
C . 4
D . 8
二、填空题 (共5题;共6分)
11. (1分) (2018高二上·遂宁期末) 执行如右图所示的程序框图,若输入x=3,则输出的值为________.
12. (1分) (2016高二上·孝感期中) 给出一个如图所示的程序框图,若要使输入的x值与输出的y值相等,则这样的x值得个数是________个.
13. (1分) (2015高三上·青岛期末) 已知O是坐标原点,点A的坐标为(2,1),若点B(x,y)为平面区
域上的一个动点,则z= 的最大值是________.
14. (2分)在地球上海洋占70.9%的面积,陆地占29.1%的面积,现在太空有一颗陨石正朝着地球的方向飞来,将落在地球的某一角.你认为陨石落在陆地的概率约为________,落在我国国土内的概率为________.(地球的面积约为5.1亿平方千米)
15. (1分)(2014·天津理) 已知函数f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则实数a的取值范围为________.
三、解答题 (共6题;共50分)
16. (5分) (2017高一下·正定期中) 如图,隔河看两目标A、B,但不能到达,在岸边选取相距 km的
C、D两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面内),求两目标A、B之间的距离.
17. (10分)(2017·新课标Ⅰ卷理) 如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.
18. (5分) (2016高三上·连城期中) 已知数列{an}的前n项和Sn和通项an满足(g是常数,且(q>0,q≠1).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当时,试证明;
(Ⅲ)设函数.f(x)=logqx,bn=f(a1)+f(a2)+…+f(an),使对n∈N*?若存在,求出m的值;若不存在,请说明理由.
19. (5分)(2017·西安模拟) 某研究小组在电脑上进行人工降雨模拟试验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如表
方式实施地点大雨中雨小雨模拟实验总次数
A甲4次6次2次12次
B乙3次6次3次12次
C丙2次2次8次12次
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟试验的统计数据
(I)求甲、乙、丙三地都恰为中雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.
20. (10分) (2019高三上·沈河月考) 设,
(1)证明;
(2)若,证明: .
21. (15分) (2018高二下·中山月考) 设函数,已知曲线在点
处的切线与直线平行
(1)求的值;
(2)是否存在自然数,使得方程在内存在唯一的根?如果存在,求出;如果不存在,请说明理由。

(3)设函数(表示中的较小者),求的最大值。

参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、答案:略
8-1、
9-1、
10-1、
二、填空题 (共5题;共6分)
11-1、
12-1、
13-1、
14-1、
15-1、
三、解答题 (共6题;共50分)
16-1、
17-1、
17-2、
18-1、
19-1、
20-1、
20-2、21-1、
21-2、
21-3、。

相关文档
最新文档