《余角和补角》人教版七年级数学上册PPT课件(3篇)
合集下载
【课件】余角和补角++课件人教版七年级数学上册
所以∠DOE= ∠BOD=75°.
所以∠COE=∠COD+∠DOE=90°+75°=165°.
②如图②所示,因为∠AOB=90°,∠COD=90°,
∠AOC=30°,
所以∠BOD=30°.
因为OE平分∠BOD,
所以∠DOE=15°.
所以∠COE=∠COD+∠DOE=90°+15°=105°.
故答案为165°或105°.
6.3.3 余角和补角
数学 七年级上册人教版
栏目导航
课堂互动
基 础 题
.
中 档 题
素 养 题
预习导学
1.如果两个角的和等于90°(直角),就说这两个角互为 余角 ,简称两个
角
互余
;如果两个角的和等于180°(平角),就说这两个角互为
补角
简称两个角
互补
.
2.同角(等角)的余角
相等;同角(等角)的补角 相等 .
解:(1)因为∠BOC=40°,所以∠AOC=140°.
因为 OE 是∠AOC 的平分线,
所以∠AOE= ∠AOC=70°.
(2)题图中与∠COE互余的角有∠COD,∠BOD.
(3)∠COE有补角吗?若有,请把它找出来,并说明理由.
解:(3)∠COE有补角.理由如下:
因为∠AOE=∠COE,∠AOE+∠BOE=180°,
补 角;如果∠3,∠4
知识点2 余角、补角的性质
例2
如图所示,直线AB,CD交于点O,因为∠1+∠3=180°,∠2+∠3=
180°,所以∠1=∠2的依据是(
)C
A.同角的余角相等
B.等角的余角相等
人教版数学七 年级上册4.3.3余角、补角的概念和性质ppt(共17张ppt)
A
动动脑
C
B O
练一练
1、一个角的补角是它的余角的4倍,求这个 角的余角是多少度?
解另:解设:这设个这角个的角度的数余为角x的,度则数依为题x意,得
1则80它的x补角4(可90设为x()x 90) . x x 9060 4x
90 6x0=3300
答答::这这个个角角的的余余角角的的度度数数为为3300。。
余角与补角
学习目标
1、掌握余角与补角的概念和性质,并能熟 练应用性质进行求值运算。 2、会利用方位角来描述物体的方位。
观赏意大利名胜比萨斜塔
1和 2有什么关系?
1
2
1和 2有什么关系?
1
2
3和 4有什么关系?
43
3和 4有什么关系?
43
2 1
4 3
如果两个角的 和为90 ,就说这两个角互为余角。
互余的互角余是的否两一个定角是一锐定角都?是锐角。
3
1
2
4
如果两个角的 和为180 ,就说这两个角互为补角。
一个角的补角是否一定是钝角?
帮找朋友 的余角 的补角
80
10
100
45
70 39'
45
19 21'
90
135
109 2个角AOB ,但人不能进入围 墙,我们如何去测量这个角的大小呢?
B
CB
1 O
2 1
AO 3
A
D
2 3
2和 3都是1的余角,它们有什么关系?
同角的余角相等
例1 1与2互余,3与4互余,如果2=4, 那么1与3相等吗?为什么?
1 2
3 4
等角的余角相等
人教版七年级数学上册4.余角和补角课件
A
D
解:OC平分AOB,
AOC BOC
C O
B
又AOC AOD 180,
BOC BOD 180
AOD BOD(等角的补角相等)
2、如图,EDC CDF 90 , 3 4, 1和2相等吗?为什么?
解:1 3 90, 2 4 90 3 4 1 2(等角的余角相等)
例1.如图,A,O,B在同一直线上,射线OD 和射线OE分别平分∠AOC和∠BOC,图中哪 些角互为余角?
探究 22:.已知∠1与∠2互补,∠3与∠4互补.若∠1=∠3,
那么∠2和∠4 有什么关系?为什么?
1
2
3
4
等角的补角相等.
归纳
补角的性质: 同角(等角 ) 的补角相 等.
探究3:
已知∠AOC=90°,∠BOD=90°,说出∠AOB的余角?
∠AOB的余角间有什么关系? C
B
∠BOC=∠AOD=90°-∠AOB O
若一个角的补角等于它的余角的4倍, 求这个角的度数。
解:设这个角的度数是 x ° ,
180-x = 4(90-x) x = 60
答:这个角的度数是60 °。
合作探究:
1、如图,已知 AO,B 利用直尺在图中画
出 AOB的补角?
A
2. AOB 的补角间有什么关系?
3.你能得到什么结论?
O
B
同角的补角相等.
32
4
1
如图,有两堵墙,小明想测量底面上所形成的 ∠AOB的度数,但他又不能进入围墙,只能站在 墙外,你能帮助他完成测量吗?
B B
O
O
这节课你收获了什么?
A
D
同角的余角相等.
探究 4:
D
解:OC平分AOB,
AOC BOC
C O
B
又AOC AOD 180,
BOC BOD 180
AOD BOD(等角的补角相等)
2、如图,EDC CDF 90 , 3 4, 1和2相等吗?为什么?
解:1 3 90, 2 4 90 3 4 1 2(等角的余角相等)
例1.如图,A,O,B在同一直线上,射线OD 和射线OE分别平分∠AOC和∠BOC,图中哪 些角互为余角?
探究 22:.已知∠1与∠2互补,∠3与∠4互补.若∠1=∠3,
那么∠2和∠4 有什么关系?为什么?
1
2
3
4
等角的补角相等.
归纳
补角的性质: 同角(等角 ) 的补角相 等.
探究3:
已知∠AOC=90°,∠BOD=90°,说出∠AOB的余角?
∠AOB的余角间有什么关系? C
B
∠BOC=∠AOD=90°-∠AOB O
若一个角的补角等于它的余角的4倍, 求这个角的度数。
解:设这个角的度数是 x ° ,
180-x = 4(90-x) x = 60
答:这个角的度数是60 °。
合作探究:
1、如图,已知 AO,B 利用直尺在图中画
出 AOB的补角?
A
2. AOB 的补角间有什么关系?
3.你能得到什么结论?
O
B
同角的补角相等.
32
4
1
如图,有两堵墙,小明想测量底面上所形成的 ∠AOB的度数,但他又不能进入围墙,只能站在 墙外,你能帮助他完成测量吗?
B B
O
O
这节课你收获了什么?
A
D
同角的余角相等.
探究 4:
人教版七年级数学上册《余角和补角》课件
那么∠2=∠4吗?
因为∠1+∠2= 90° ,
°
∠3+∠4= 90 ,
且∠1=∠3,
所以∠2=∠4.
等角的余角相等.
探索新知
如果∠1与∠2互补,∠3与∠4互补,且∠1=∠3,那
么∠2=∠4吗?
∠2=∠4.
如何证明?
探索新知
已知:∠1与∠2互补,∠3与∠4互补,且∠1=∠3,
求证:∠2=∠4.
证明:因为∠1与∠2互补,
如果两个角的和等于180º(平角),就说这
两个角互为补角,即其中一个角是另一个角的补角.
性质:同角(等角)的余角相等.
同角(等角)的补角相等.
作业:
1. 完成习题4.3中第8,
9题;
2.完成练习册本课时的
习题。
谢谢
21世纪教育网(www.21cnjyX)
中小学教育资源网站
兼职招聘:
https://www.21cnjyX/recruitment/home/admin
方向上,同时,在它北偏东40°、南偏西10°、西北(即北偏西
45°)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔
方位的方法,画出表示客轮B、货轮C和海岛D方向的射线.
D
西
北40° B
45°
O
●
东
60°
10°
●
A
巩固练习
练习1. 已知∠α=53°27′, ∠α与∠β互为余角,求∠β的度数
.
解: 因为∠与∠互为余角(已知),
所以∠ + ∠ = 90°(余角定义),
所以∠ = 90°-∠.
因为∠=53°27′,
′
所以∠ = 90°-∠=90°-53°27
因为∠1+∠2= 90° ,
°
∠3+∠4= 90 ,
且∠1=∠3,
所以∠2=∠4.
等角的余角相等.
探索新知
如果∠1与∠2互补,∠3与∠4互补,且∠1=∠3,那
么∠2=∠4吗?
∠2=∠4.
如何证明?
探索新知
已知:∠1与∠2互补,∠3与∠4互补,且∠1=∠3,
求证:∠2=∠4.
证明:因为∠1与∠2互补,
如果两个角的和等于180º(平角),就说这
两个角互为补角,即其中一个角是另一个角的补角.
性质:同角(等角)的余角相等.
同角(等角)的补角相等.
作业:
1. 完成习题4.3中第8,
9题;
2.完成练习册本课时的
习题。
谢谢
21世纪教育网(www.21cnjyX)
中小学教育资源网站
兼职招聘:
https://www.21cnjyX/recruitment/home/admin
方向上,同时,在它北偏东40°、南偏西10°、西北(即北偏西
45°)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔
方位的方法,画出表示客轮B、货轮C和海岛D方向的射线.
D
西
北40° B
45°
O
●
东
60°
10°
●
A
巩固练习
练习1. 已知∠α=53°27′, ∠α与∠β互为余角,求∠β的度数
.
解: 因为∠与∠互为余角(已知),
所以∠ + ∠ = 90°(余角定义),
所以∠ = 90°-∠.
因为∠=53°27′,
′
所以∠ = 90°-∠=90°-53°27
人教版数学七年级上册4.余角和补角课件
16 . (8 分 ) 如 图 , 已 知 直 线 AB 和 CD 相 交 于 点 O , OM 平 分 ∠ BOD , ON⊥OM,∠AOC=50°. (1)求∠AON的度数; (2)写出∠DON的余角.
解:(1)65° (2)∠DOM,∠MOB
17.(10分)如图,AB是一条直线,OC是一条射线,∠AOC=2∠AOF, ∠BOC=2∠BOE. (1)∠1与∠2互余吗?
解:如图:
19.(12分)如图甲所示,∠AOB,∠COD都是直角. (1)试猜想∠AOD与∠COB在数量上是相等、互余、还是互补的关 系,你能用推理的方法说明你的猜想是否成立吗? (2)当∠COD绕点O旋转到图乙的位置时,你本来的猜想还成立吗?
方位的表示方法
在表示方向时,要先在观测点画出方位图,然后测量出角度并在图 上表示出来,注意表示时要先写北还是南,再写偏东或偏西,偏多
少度,如图4-3-28,OA是表示北偏东30°的 一条射线,OB是表示南偏西50°的一条射线; 特别地,射线OC表示北偏西45°可写成西北 方向,OD表示东南方向.
例题
小结
1. 余角和补角的定义:
如果两个角的和等于
,就说这两个角互为余角;如果两个
角的和为
,就说这两个角互为补角.
2. 余角和补角的性质: 同角(等角)的补角________,同角(等角)的余角_________.
3. 如图,O是直线AB上的点,OC是∠AOB的平分线. (1)∠AOD的补角是__∠__B_O__D___,余角是__∠__C_O__D__; (2)∠DOB的补角是__∠__A__O_D_____. 4. 已 知 ∠ α = 20° , 则 ∠ α 的 余 角 为 _______70,° ∠ α 的 补 角 为 ______1_6_0.° 5. ∠A的补角为130°,则∠A的余角为________4.0°
人教版七年级数学上册4.余角和补角课件
∠的补角是(180 °—∠ )
5、如图,O是直线AB上一点,OC是∠AOB的平分线 ①∠AOD的补角是_____∠__B_O_D___ ②∠AOD的余角是____∠__C__O_D___ ③∠DOB的补角是_____∠__A_O__D__
2
13
3
3
3
4
∠1与∠2互余,∠3与∠4互余,如果∠1=∠3,那么∠2 与∠4相等吗?为什么?
x
∠α的余角
85°
58° 45° 13°
27°37′ 90° x
∠α的补角
175°
148°
135°
103°
117°37′ 180° x
从上面这张表格中,你还能得到什么信息?
若一个角的补角等于它的余角的3倍,求这 个角的度数。
1.
对应图形 数量关系 性质
互为余角
互为补角
1 2
21
∠1+ ∠2 = 90 ° ∠1+ ∠2 = 180 °
14
4
4
4
2
3
∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与 ∠4相等吗?为什么?
分析:由∠1与∠2互余,可得∠2=90°-_____ ∠1
由∠3与∠4互余,可得∠4=90°-_____ ∠3
答:因为∠1=∠3, 这就是∠2=∠4
所以90°-∠1= 90°-∠3,
等角的余角相等
分析:由∠1与∠2互补,可得∠2=180°-_____∠1
北
B
D
北
40°
东
西O 60°
A
东
西O 60°
A
南 C南
一艘渔船从O 点沿北偏东30°的方向以8千米/时的速度 行驶3小时到达A 处后,接到风浪警报,欲立即调头以16 千米/时的速度向正西方向行驶,争取1.5小时到达小岛B 处.A、B两处的距离是多少?B处在O点北偏西多少度? O、B两点的距离是多少?
5、如图,O是直线AB上一点,OC是∠AOB的平分线 ①∠AOD的补角是_____∠__B_O_D___ ②∠AOD的余角是____∠__C__O_D___ ③∠DOB的补角是_____∠__A_O__D__
2
13
3
3
3
4
∠1与∠2互余,∠3与∠4互余,如果∠1=∠3,那么∠2 与∠4相等吗?为什么?
x
∠α的余角
85°
58° 45° 13°
27°37′ 90° x
∠α的补角
175°
148°
135°
103°
117°37′ 180° x
从上面这张表格中,你还能得到什么信息?
若一个角的补角等于它的余角的3倍,求这 个角的度数。
1.
对应图形 数量关系 性质
互为余角
互为补角
1 2
21
∠1+ ∠2 = 90 ° ∠1+ ∠2 = 180 °
14
4
4
4
2
3
∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与 ∠4相等吗?为什么?
分析:由∠1与∠2互余,可得∠2=90°-_____ ∠1
由∠3与∠4互余,可得∠4=90°-_____ ∠3
答:因为∠1=∠3, 这就是∠2=∠4
所以90°-∠1= 90°-∠3,
等角的余角相等
分析:由∠1与∠2互补,可得∠2=180°-_____∠1
北
B
D
北
40°
东
西O 60°
A
东
西O 60°
A
南 C南
一艘渔船从O 点沿北偏东30°的方向以8千米/时的速度 行驶3小时到达A 处后,接到风浪警报,欲立即调头以16 千米/时的速度向正西方向行驶,争取1.5小时到达小岛B 处.A、B两处的距离是多少?B处在O点北偏西多少度? O、B两点的距离是多少?
6.3.3 余角和补角 课件 人教版数学七年级上册
∴∠BOC+∠AOE=90°.
∵∠BOC∶∠AOE=3∶1,
∴∠BOC= ×90°=67.5°.
又∵∠BOD=90°,
∴∠COD=90°-67.5°=22.5°.
(2)图中有哪几对角互为余角?
(2)∠COB与∠COD,∠COB与∠AOE,
∠DOE与∠COD,∠DOE与∠AOE.
(3)图中有哪几对角互为补角?
3.若一个角的余角是它的补角的 ,则这个角的补角是
( D )
A.30° B.60° C.120° D.150°
4.(1)已知∠α=24°30',则它的余角等于
65°30' ;
(2)一个角的余角比这个角的补角的 还小10°,求这个
Байду номын сангаас
角的余角及这个角的补角.
解:设这个角为x°,则这个角的余角为(90-x)°,这
∴∠BOE=∠COE+∠BOC=54°+72°=126°.
因为∠1+∠2=90°,
∠3+∠2=90°,
所以∠1=∠3.
等角的补角相等:
因为∠1+∠2=180°,
∠3+∠4=180°,
∠1=∠3,
所以∠2=∠4.
注意:①互余、互补指的是两个角的数量关系,互余、
互补的两个角只与它们的和有关,而与它们的位置无
关.
②一般地,锐角α的余角可以表示为(90°-α),一个
(3)∠AOC与∠BOC,∠AOC与∠DOE,
∠AOE与∠BOE,∠DOC与∠BOE,
∠AOD与∠BOD,∠AOD与∠EOC,
∠BOD与∠EOC.
∵∠BOC∶∠AOE=3∶1,
∴∠BOC= ×90°=67.5°.
又∵∠BOD=90°,
∴∠COD=90°-67.5°=22.5°.
(2)图中有哪几对角互为余角?
(2)∠COB与∠COD,∠COB与∠AOE,
∠DOE与∠COD,∠DOE与∠AOE.
(3)图中有哪几对角互为补角?
3.若一个角的余角是它的补角的 ,则这个角的补角是
( D )
A.30° B.60° C.120° D.150°
4.(1)已知∠α=24°30',则它的余角等于
65°30' ;
(2)一个角的余角比这个角的补角的 还小10°,求这个
Байду номын сангаас
角的余角及这个角的补角.
解:设这个角为x°,则这个角的余角为(90-x)°,这
∴∠BOE=∠COE+∠BOC=54°+72°=126°.
因为∠1+∠2=90°,
∠3+∠2=90°,
所以∠1=∠3.
等角的补角相等:
因为∠1+∠2=180°,
∠3+∠4=180°,
∠1=∠3,
所以∠2=∠4.
注意:①互余、互补指的是两个角的数量关系,互余、
互补的两个角只与它们的和有关,而与它们的位置无
关.
②一般地,锐角α的余角可以表示为(90°-α),一个
(3)∠AOC与∠BOC,∠AOC与∠DOE,
∠AOE与∠BOE,∠DOC与∠BOE,
∠AOD与∠BOD,∠AOD与∠EOC,
∠BOD与∠EOC.
6.3.3 余角和补角 课件(共21张PPT) 人教版七年级数学上册
请同学们完成课本177页练习2,3题.
小组展示
我提问
我回答
我补充
我质疑
提疑惑:你有什么疑惑?
越展越优秀
1.余角:(1)定义:如果两个角的和等于90°(直角),就说这两个角互为余角,简称这两个角互余,其中一个角是另一个角的余角.(2)数学语言:若∠1+∠2=90°,则说∠1是∠2的余角或∠2是∠1的余角或∠1与∠2互余.
1.我们学习了哪些知识?
余角
补角
定义
如果两个角的和为90°,就说这两个角互余,其中一个角是另一个角的余角
如果两个角的和为180°,就说这两个角互补,其中一个角是另一个角的补角
性质
同角(等角)的余角相等
同角(等角)的补角相等
常见图形
作用
说明两个角相等的重要依据
2.用到了哪些方法和思想?
知识点2:余角和补角的性质(难点)
【题型一】余角和补角的定义
例1:若∠A=23°,则∠A的余角的度数是( ) A.57° B.67° C.77° D.157°
B
变式:已知一个角的余角是这个角的补角的 ,求这个角的度数以及这个角的余角和补角的度数.
例2:如图所示,直线AB,CD相交于点O,因为∠1+∠3= 180°,∠2+∠3=180°,所以∠1=∠2.其推理依据是( )A.同角的余角相等 B.等角的余角相等C.同角的补角相等 D.等角的补角相等
请同学们准备一张长方形纸片,沿一个角折叠后,找出折痕与长方形的边形成的角。例:如图长方形纸片的折痕与长方形的边形成了4个角,思考:(1)∠1与∠2有什么数量关系?(2)∠3与∠4有什么数量关系?
活动导入
同学们,你们打过台球吗?请同学们观看一段视频:
视频导入
小组展示
我提问
我回答
我补充
我质疑
提疑惑:你有什么疑惑?
越展越优秀
1.余角:(1)定义:如果两个角的和等于90°(直角),就说这两个角互为余角,简称这两个角互余,其中一个角是另一个角的余角.(2)数学语言:若∠1+∠2=90°,则说∠1是∠2的余角或∠2是∠1的余角或∠1与∠2互余.
1.我们学习了哪些知识?
余角
补角
定义
如果两个角的和为90°,就说这两个角互余,其中一个角是另一个角的余角
如果两个角的和为180°,就说这两个角互补,其中一个角是另一个角的补角
性质
同角(等角)的余角相等
同角(等角)的补角相等
常见图形
作用
说明两个角相等的重要依据
2.用到了哪些方法和思想?
知识点2:余角和补角的性质(难点)
【题型一】余角和补角的定义
例1:若∠A=23°,则∠A的余角的度数是( ) A.57° B.67° C.77° D.157°
B
变式:已知一个角的余角是这个角的补角的 ,求这个角的度数以及这个角的余角和补角的度数.
例2:如图所示,直线AB,CD相交于点O,因为∠1+∠3= 180°,∠2+∠3=180°,所以∠1=∠2.其推理依据是( )A.同角的余角相等 B.等角的余角相等C.同角的补角相等 D.等角的补角相等
请同学们准备一张长方形纸片,沿一个角折叠后,找出折痕与长方形的边形成的角。例:如图长方形纸片的折痕与长方形的边形成了4个角,思考:(1)∠1与∠2有什么数量关系?(2)∠3与∠4有什么数量关系?
活动导入
同学们,你们打过台球吗?请同学们观看一段视频:
视频导入
2024新人编版七年级数学上册《第六章6.3.3余角和补角》教学课件
DO
A
因为OM,ON分别为∠AOC,∠AOB的平分线,
所以∠AOM= 1 (180o - x), ∠AON= 1 x .
所以
1
2(180o -来自x)-1
x
=
40o
,
2
2
2
解得x=50°,则180°–x =130°.
即∠AOB=50°,∠AOC=130°.
巩固练习
如图,AB是一条直线,OC是一条射线, ∠AOC=2∠AOF,∠BOC=2∠BOE. (1)∠1与∠2互余吗?
思考: ∠1 与∠2, ∠1 与∠3都互为补角, ∠2 与∠3 的大小有什么关系?
3
1
2
∠2=180°–∠1 = ∠3=180°–∠1
探究新知
结论:同角 (等角) 的补角相等. 类似地,可以得到:同角 (等角) 的余角相等.
探究新知
素养考点 余角和补角的识别
例 如图,点A,O,B在同一直线上,射线
D
OD 和射线 OE 分别平分∠AOC 和∠BOC,
图中哪些角互为余角?
AO
C E
B
探究新知
C D
E
解:因为点A,O,B在同一直线上,
所以∠AOC和∠BOC 互为补角.
AO
B
又因为射线 OD 和射线 OE 分别平分∠AOC 和∠BOC,
所以∠COD+∠COE
=
1 2
∠AOC+
1 2
∠BOC
=
1 2
探究新知
图中给出的各角,哪些互为余角?
15o
24o
46.2o
75o
66o
43.8o
探究新知
4 3
6.3.3 余角和补角-课件 -人教版数学七年级上册
2.连一连:图中给出的各角,哪些互为补角?
10o 30o
60o
80o
100o
120o
150o
170o
练一练
1.∠A=25°37′,则它的余角为__1_5_4_°__2_3_′ _,它的补角为__6_4_°__2_3_′__. 2.已知∠A=50°,则∠A的余角是_____4_0_°___,补角是____1_3_0_°___, 补角与余角的差是_____9_0_°___. 3.一个锐角为x度,它的余角为 __(_9_0_-_x_) _度,它的补角为_(_1_8_0_-_x_)_度, 则它的补角比余角大___9_0___度.
新知导入
认识方位角: 在航行、测绘等日常生活中,我们经常会碰到如何描述一个物体的 方位的问题.描述一个物体的方位,通常要用到表示方位的角—方 位角.方位角的表示习惯上以正北、正南方向为基准来描述物体的 方向.即用“北偏东多少度”、“北偏西多少度”或者“南偏东多少度”、 “南偏西多少度”来表示方向.
谢谢观看
合作探究
1 2
3 4
1.如图∠1 与∠2互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2与 ∠4相等吗?为什么?
解:∠2与∠4相等.
理由如下:∵∠1与∠2互余,
∴ ∠2=90°-∠1,
1
∵∠3与∠4互余,
2
∴∠4=90°-∠3,
∵∠1 =∠3,
∴∠2 =∠4(等量减等量,差相等)
余角的性质:同角(等角)的余角相等.
北
如图,射线表示的方位为:
射线OA:____南__偏__西__2_5_°_____;
B 西
70° O
射线OB:____北__偏__西__7_0_°_____; 东
6.3.3 余角和补角(课件)人教版(2024)数学七年级上册
等角的补角相等
归纳:
类型
性质
数学语言
余角
①如果∠1+∠2=90°,∠1+∠3=90°,
同角(等角) 那么∠2=∠3; 的余角相等 ②如果∠1+∠2=90°,∠3+∠4=90°,
且∠1=∠3,那么∠2=∠4
补角
①如果∠1+∠2=180°,∠1+∠3=180°, 同角(等角) 那么∠2=∠3;
的补角相等 ②如果∠1+∠2=180°,∠3+∠4=180°, 且∠1=∠3,那么∠2=∠4
所以∠3= 180°-∠1, 根据等式的性质,∠2=∠3.
同角的补角相等
思考4:已知:∠1与∠2互为补角,∠3与∠4互为补角, 如果∠1=∠3,那么∠2与∠4相等吗?为什么?
解:因为∠1与∠2互为补角,
所以∠2= 180°-∠1,
又∠3与∠4互为补角,
所以∠4= 180°-∠3,
因为∠1=∠3 根据等式的性质,∠2=∠4.
解:它的余角是 19°21′,补角是 109°21′.
【选自教材P177 练习 第3题】
5. ∠α的补角是它的3倍,∠α是多少度?
解:设∠α= x.则 3x=180°-x,解得 x=45°.所以∠α是 45°
【选自教材P177 练习 第4题】
6.如图,要测量两堵围墙所形成的∠AOB的度数,但人不 能进入围墙,如何测量?
【选自教材P177 练习 第1题】
3.图中给出的各角中,哪些互为余角?哪些互为补角?
解:互为余角的角是 10°和 80°、30°和 60°,互 为补角的角是10°和 170°、30°和 150°、60°和 120°、80°和 100°.
【选自教材P177 练习 第2题】
人教版七年级数学上册《余角和补角》课件(共21张PPT)
=27°28′
∠ 的补角=180o -∠ ∠ 的补角=180o - 62°32′
=117°28′ 答:这个角的余角为27°28′,补角117°28′。
2、余角和补角的性质。
(1)余角的基本性质:
∠ 的余角=90°- ∠
∠ 的余角=90°- ∠
若∠ = ∠
则90°- ∠ =90°- ∠
AC
解:∠BOC=∠AOB -∠AOC =90°- ∠AOC
D
∠AOD= ∠AOB -∠BOD
B
=90°- ∠AOC
O
例4、如图∠AOC= ∠BOC=∠DOE=90°,则 图中与∠3互余的角是__∠__2_, _∠__4_, 图中与∠4互余的角是_∠__3_, __∠__1_, 图中有与∠3互补的角吗?_∠__B_O__D___.
答:这个角是60°.
练习2、(1)如果∠的余角是∠的2
倍,求 ∠的度数。
(2)如果∠1的补角是∠1的3 倍,求∠1的度数。
练习2、(1)如果∠的余角是∠的2 倍, 求 ∠的度数。
解:设∠的度数为x度,则 ∠的余
角为(90-x)度。 由题意,得: 90-x=2 x -3x=-90
x=30(度)
答:∠ 的度数为30度。
即∠ 的余角= ∠ 的余角
同角或等角的余角相等。
图形一
(2)补角的基本性质:
∠ 的补角= 180o -∠
∠ 的补角= 180o -∠
若∠=∠
则 180o -∠=180o -∠
即∠ 的补角= ∠的补角
同角或等角的补角相等。
图形2
例1、如图,∠AOC=∠BOD=Rt∠, 问有哪两个锐角相等?
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7
∠ 的补角=180o -∠ ∠ 的补角=180o - 62°32′
=117°28′ 答:这个角的余角为27°28′,补角117°28′。
2、余角和补角的性质。
(1)余角的基本性质:
∠ 的余角=90°- ∠
∠ 的余角=90°- ∠
若∠ = ∠
则90°- ∠ =90°- ∠
AC
解:∠BOC=∠AOB -∠AOC =90°- ∠AOC
D
∠AOD= ∠AOB -∠BOD
B
=90°- ∠AOC
O
例4、如图∠AOC= ∠BOC=∠DOE=90°,则 图中与∠3互余的角是__∠__2_, _∠__4_, 图中与∠4互余的角是_∠__3_, __∠__1_, 图中有与∠3互补的角吗?_∠__B_O__D___.
答:这个角是60°.
练习2、(1)如果∠的余角是∠的2
倍,求 ∠的度数。
(2)如果∠1的补角是∠1的3 倍,求∠1的度数。
练习2、(1)如果∠的余角是∠的2 倍, 求 ∠的度数。
解:设∠的度数为x度,则 ∠的余
角为(90-x)度。 由题意,得: 90-x=2 x -3x=-90
x=30(度)
答:∠ 的度数为30度。
即∠ 的余角= ∠ 的余角
同角或等角的余角相等。
图形一
(2)补角的基本性质:
∠ 的补角= 180o -∠
∠ 的补角= 180o -∠
若∠=∠
则 180o -∠=180o -∠
即∠ 的补角= ∠的补角
同角或等角的补角相等。
图形2
例1、如图,∠AOC=∠BOD=Rt∠, 问有哪两个锐角相等?
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7
6.3.3余角和补角 课件-人教版数学七年级上册
∠WOA= ∠SOB,∠SOA= ∠EOB.
综合应用创新
解法提醒
1.以观测点为顶点,南北方向线和东西方向线各自形成
平角,可以解决互补问题.
2.以观测点为顶点,南北方向线和东西方向线相交形成
直角,可以解决互余问题.
3.利用角度计算或同角(或等角)的余角、补角相等,解决
等角问题.
综合应用创新
题型
4
利用角的和差关系及余角的性质探究两角之间的关系
2.等式的性质在角的推理中的应用,即若∠
1= ∠ 2,则∠1±∠3=∠2±∠3.
综合应用创新
方法点拨:
在图形的变换探究中,应善于抓住不变
的量(如本题的两个直角)和变化的量(如本题
图6.3-29 ①中∠ AOD=∠ AOB+∠ BOD,
图6.3-29 ②中∠ AOD=∠AOB- ∠BOD).结
合两个量才能探究出结论是否变化.
的符合要求.
综合应用创新
解:因为∠1+∠2 =180°,所以∠2+∠1+∠2 >180°,故
A 选项不是∠2 的余角. 因为∠2+∠1 - ∠2 = ∠1 ≠ 9 0°,
故B 选项不是∠2 的余角. 因为∠1+∠2 =180 °,所以 ∠1
+ ∠2 =9 0°. 所以∠2+ ∠1 = ∠1+ ∠2+ ∠2 >9 0°,
例 8 如图6.3-29 ①所示,将一副三角尺的直角顶点重合
在点О 处.
思路引导:紧扣要判定的角和
两个90 °角的关系进行分析.
综合应用创新
(1)(ⅰ)∠AOD和∠BOC 相等吗?请说明理由.
解:(ⅰ)∠AOD= ∠BOC. 理由如下:
综合应用创新
解法提醒
1.以观测点为顶点,南北方向线和东西方向线各自形成
平角,可以解决互补问题.
2.以观测点为顶点,南北方向线和东西方向线相交形成
直角,可以解决互余问题.
3.利用角度计算或同角(或等角)的余角、补角相等,解决
等角问题.
综合应用创新
题型
4
利用角的和差关系及余角的性质探究两角之间的关系
2.等式的性质在角的推理中的应用,即若∠
1= ∠ 2,则∠1±∠3=∠2±∠3.
综合应用创新
方法点拨:
在图形的变换探究中,应善于抓住不变
的量(如本题的两个直角)和变化的量(如本题
图6.3-29 ①中∠ AOD=∠ AOB+∠ BOD,
图6.3-29 ②中∠ AOD=∠AOB- ∠BOD).结
合两个量才能探究出结论是否变化.
的符合要求.
综合应用创新
解:因为∠1+∠2 =180°,所以∠2+∠1+∠2 >180°,故
A 选项不是∠2 的余角. 因为∠2+∠1 - ∠2 = ∠1 ≠ 9 0°,
故B 选项不是∠2 的余角. 因为∠1+∠2 =180 °,所以 ∠1
+ ∠2 =9 0°. 所以∠2+ ∠1 = ∠1+ ∠2+ ∠2 >9 0°,
例 8 如图6.3-29 ①所示,将一副三角尺的直角顶点重合
在点О 处.
思路引导:紧扣要判定的角和
两个90 °角的关系进行分析.
综合应用创新
(1)(ⅰ)∠AOD和∠BOC 相等吗?请说明理由.
解:(ⅰ)∠AOD= ∠BOC. 理由如下:
6.3.3 余角和补角 课件人教版(2024)数学七年级上册
证明:因为 OC ⊥ AB ,所以∠ COA =∠ COB =90°.
因为 OC 平分∠ DOE ,所以∠ COD =∠ COE .
因为∠ AOC +∠ COD =90°,∠ BOE +∠ COE =90°,
所以∠ AOD =∠ BOE .
4. 如图,∠ AOC =∠ COB =90°,∠ DOE =90°, A , O , B 三
∠ BOC ,则图中互余的角共有(
A. 1对
B. 2对
C. 3对
D. 4对
D
)
7. 几何直观【人教七上P188复习题T11改编】按如图所示的方法折
纸,然后回答问题:
(1)∠1与∠ AEC ,∠3和∠ BEF 分别有何关系?
解:(1)因为∠1+∠ AEC =180°,所以∠1与∠ AEC 互补.
因为∠3+∠ BEF =180°,所以∠3与∠ BEF 互补.
因为 OD 平分∠ BOC ,所以∠ COD =∠ DOB .
因为∠ COE +∠ COD =∠ DOE =90°,
所以∠ AOE =∠ COE .
所以 OE 平分∠ AOC .
2. 如图,点 O 在直线 AB 上,∠ AOC 与∠ COD 互补, OE 平分
∠ AOC ,∠ DOE =48°,求∠ BOD 的度数.
(2)∠1与∠3有何关系?
(2)由翻折的性质,得∠1+∠3= ×180°
6. (2023·北京)如图,∠ AOC =∠ BOD =90°,∠ AOD =126°,
则∠ BOC 的大小为(
A. 36°
B. 44°
C. 54°
D. 63°
C
)
7. 如图,若将一副三角尺折叠放在一起,使直角的顶点重合于点
6.3.3余角和补角 课件-人教版数学七年级上册
感悟新知
解题秘方:从图中找互余或互补的角,可从两个方 面进行:一个方面是从角的度数入手,和为9 0 °的 两个角互余,和为180 °的两个角互补;另一个方面 是从整体入手,将直角分成两个角,则这两个角互 余,将平角分成两个角,则这两个角互补.
感悟新知
知1-练
(1)图中互余的角有几对?分别是哪些?
所以∠AOC=180°-∠BOC=180°-72°=108°.
因为 OE 平分∠AOC,所以∠COE=12∠AOC=12×108°=54°. 所以∠BOE=∠COE+∠BOC=54°+72°=126°.
感悟新知
知1-练
例 2 如图6.3-23,O 为直线AB 上一点, ∠AOC= ∠DOE=90°.
感悟新知
知识点 2 余角、补角的性质
知2-讲
内容
几何语言
余角的
同角的余角相等
因为∠1+ ∠2=90°,∠1+ ∠3=90°, 所以∠2= ∠3
性质
等角的余角相等
因为∠1+ ∠2=90°,∠3+ ∠4=90°, 且∠1= ∠3,所以∠2= ∠4
补角的
同角的补角相等
因为∠1+ ∠2=180°,∠1+ ∠3=180°,所以∠2= ∠3
感悟新知
(3)写出∠COD 的补角. 解:∠COD的补角为∠AOE.
知2-练
感悟新知
知2-练
例 4 如图6.3-25,已知O 是直线AB 上的一点,OC是一 条射线,OD平分∠AOC,∠DOE=90 °,OE 平分 ∠BOC 吗?为什么?
解题秘方:先紧扣角平分线的定 义,利用余角的性质说明两个角 相等.
感悟新知
(1)求∠BOC 的度数; 解:因为∠BOC 与∠BOD 互为余角, 所以∠BOC+∠BOD=90°. 因为∠BOC=4∠BOD, 所以∠BOC=45×90°=72°.
人教版七年级数学上册 6.3.3 余角和补角 PPT
合作探究
(1) 若∠1与∠2,∠3都互为补角,∠2与∠3的大小有什么关系? (2) 若∠1与∠2互补,∠3与∠4互补,且∠1=∠3,那么∠2与∠4的大小有 什么关系?
我们得到关于补角的一个性质: 同角(等角)的补角相等.
对于余角也有类似的性质: 同角(等角)的余角相等.
迁移应用
重点
迁移应用
1.若∠ α =29°45′,则∠ α的余角等于( B )
迁移应用
难点
例4.如图,已知∠AOB和∠COD都是∠BOC的余角,OE,OF分别为∠AOB和∠COD 的平分线,且∠AOD=130°. (1)求∠BOC的度数;(2)求∠EOF的度数.
迁移应用 1.如图,∠AOB和∠AOD分别是∠AOC的余角和补角,且OC是∠BOD的平分线, 求∠COD的度数.
故这个锐角的度数为45°.
迁移应用
重点
例2: 如图6.3-15,点A,O,B在同一条直线上,射线 OD 和射线 OE 分别平分∠AOC 和∠BOC.图中哪些角互为余角?
迁移应用
1.已知∠1与∠2互补,∠3与∠4互补,且∠1=∠3,那么( C )
A.∠2>∠4 B.∠2<∠4 C.∠2=∠4 D.∠2与∠4的大小不确定
解:如图②所示,点A为少年宫的位置.
迁移应用
如图,点O是学校所在位置,A村位于学校南偏东42°方向上,B村位于学校北 偏东25°方向上,C村位于学校北偏西65°方向上,在B村和C村之间有一条公 路OE(射线)平分∠BOC. (1)求∠AOE的度数. (2)公路OE上的车站D相对于学校0的方位是什么? (以正北、正南方向为基准)
3.如图,已知射线OA与射线OB的夹角为90°, 射线0A表示北偏西25°的方
向,则射线OB表示的方向为___北__偏__东__6_5_°___.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
那么其余两个角的和是多少?
90°
(2)已知∠1=36°,∠2=54°,那么∠1+∠2=(
90°).
如果两个角的和等于90°(直角),就说这两个角互为余角,即其中 一个角是另一个角的余角。
例如:∠1与∠2互为余角,∠1是∠2的余角,∠2也是∠1的余角。
探究2 (1)观察如图所示的两个角,你能猜想∠1+∠2等于多 少度?
PPT模板:www. 1ppt.co m/ mob an/ PPT背景:/beiji ng/ PPT下载:/xiaz ai/ 资料下载:www. 1ppt.co m/zilia o/ 试卷下载:/shiti / 手抄报:/shouc haobao/ 语文课件:/keji an/yuwen/ 英语课件:/keji an/ying yu/ 科学课件:/keji an/kexue/ 化学课件:/keji an/huaxue/ 地理课件:/keji an/dili/
PPT素材:/s ucai/ PPT图表:www.1ppt .co m/tu biao/ PPT教程: /powerpoint/ 个人简历:www.1ppt. co m/jia nli/ 教案下载:www.1ppt. co m/jia oan/ PPT课件:www.1ppt. co m/ ke jian/ 数学课件:www.1ppt.c om/keji an/shuxue/ 美术课件:www.1ppt.c om/keji an/mei shu/ 物理课件:www.1ppt.c om/keji an/wuli / 生物课件:www.1ppt.c om/keji an/sheng wu/ 历史课件:www.1ppt.c om/keji an/lishi /
(2)说出一副三角尺中各个角的度数。 (3)观察两个锐角的大小之间的数量特征。
推进新课
探究1 (1)在一副三角板中,每块都有一个角是90°,
PPT模板:www. 1ppt.co m/ mob an/ PPT背景:/beiji ng/ PPT下载:/xiaz ai/ 资料下载:www. 1ppt.co m/zilia o/ 试卷下载:/shiti / 手抄报:/shouc haobao/ 语文课件:/keji an/yuwen/ 英语课件:/keji an/ying yu/ 科学课件:/keji an/kexue/ 化学课件:/keji an/huaxue/ 地理课件:/keji an/dili/
4.3.3 余角和补角
新课导入
问题(1)用量角器量出图中的两个角的度数,并求出这两 个角的和。
Байду номын сангаас
PPT模板:www. 1ppt.co m/ mob an/ PPT背景:/beiji ng/ PPT下载:/xiaz ai/ 资料下载:www. 1ppt.co m/zilia o/ 试卷下载:/shiti / 手抄报:/shouc haobao/ 语文课件:/keji an/yuwen/ 英语课件:/keji an/ying yu/ 科学课件:/keji an/kexue/ 化学课件:/keji an/huaxue/ 地理课件:/keji an/dili/
PPT素材:/s ucai/ PPT图表:www.1ppt .co m/tu biao/ PPT教程: /powerpoint/ 个人简历:www.1ppt. co m/jia nli/ 教案下载:www.1ppt. co m/jia oan/ PPT课件:www.1ppt. co m/ ke jian/ 数学课件:www.1ppt.c om/keji an/shuxue/ 美术课件:www.1ppt.c om/keji an/mei shu/ 物理课件:www.1ppt.c om/keji an/wuli / 生物课件:www.1ppt.c om/keji an/sheng wu/ 历史课件:www.1ppt.c om/keji an/lishi /
PPT素材:/s ucai/ PPT图表:www.1ppt .co m/tu biao/ PPT教程: /powerpoint/ 个人简历:www.1ppt. co m/jia nli/ 教案下载:www.1ppt. co m/jia oan/ PPT课件:www.1ppt. co m/ ke jian/ 数学课件:www.1ppt.c om/keji an/shuxue/ 美术课件:www.1ppt.c om/keji an/mei shu/ 物理课件:www.1ppt.c om/keji an/wuli / 生物课件:www.1ppt.c om/keji an/sheng wu/ 历史课件:www.1ppt.c om/keji an/lishi /
∠1+∠2=180°
(2)如果∠1=144°,∠2=36°,那么∠1+∠2=? ∠1+∠2=180°
【归纳结论】 如果两个角的和等于180°(平角),就说这 两个角互为补角,即其中一个角是另一个角的补角。
探究3 如图所示,下面方格图中∠1与∠3有什么关系?∠1与∠2,∠3 与∠4有什么关系?