线性代数案例
【课程思政优秀教学案例】《线性代数》课程
案例课程:可逆矩阵一、课程简介《线性代数》是面向我校理工类,经管类专业学生的数学基础课程。
通过线性方程组、向量、矩阵的理论和方法的学习,培养学生具有初步的抽象思维能力、逻辑推理能力,一定的计算和表述能力以及综合运用所学知识分析、解决问题的能力。
课程思政建设中特色和改革创新点:1.教育为学生提升自身价值为教学理念支撑课程思政建设。
2.课程思政方法可移植,模式可复制。
项目教学模式的探索和研究也可以为相应的其它公共基础课程借鉴性和移植,具有较大的应用和推广价值。
3.课程思政元素贯穿课堂教学全过程。
二、案例展示1、课程思政育人目标(1)素质提升目标。
通过线性代数课程的学习不但要掌握课程知识而且还要让学生感受“文化自信”,实现课程育人。
(2)专业学习目标。
通过课程的学习掌握课程内容,满足后续专业课程的学习。
(3)价值塑造目标。
把数学教学内容和知名数学家的事迹相结合,激励学生学好课程知识的同时奋发向上、努力进取;把数学定理的阐述和做人道理相结合;把课程具体内容讲授和逻辑思维推进相结合。
2、课程思政元素及实施路径课程思政元素:矩阵有广泛的应用,既要学到知识也要学会运用知识,同时要让知识实现最大的价值,为国家富强添砖加瓦。
实施路径1)展示线性方程组与矩阵的联系:通过平面图形和空间图形以及高维空间图形的介绍让学生发现可逆矩阵的存在。
2)突出重点的方法:“抓两面、突重点”即①思维启发面:通过几何展示。
②逻辑思维面:可逆矩阵的介绍,环环相扣,层层递进。
3)突破难点的手段:“抓两点,破难点”即一抓学生情感和思维的兴奋点;二抓教学内容的切入点。
3、教学改革成效1)课程内容生动有趣,深入浅出,便于学生理解。
学生对教师教学评价好,教学相长。
2)我校学生考研数学成绩逐年稳步提升;数学建模和高等数学竞赛等学科竞赛成绩稳中有升。
3)《线性代数》课程是省首批线上线下混合式一流课程,也是省首批课程思政示范课程。
4)基于线性代数相关的课程建设获得省级以上教学改革研究立项5项,发表相关教育研究论文6篇。
线性代数案例04(平板的稳态温度分布问题)
案例四. 平板的稳态温度分布问题在热传导的研究中, 一个重要的问题是确定一块平板的稳态温度分布. 根据…定律, 只要测定一块矩形平板四周的温度就可以确定平板上各点的温度.图8 一块平板的温度分布图【模型准备】如图9所示的平板代表一条金属梁的截面. 已知四周8个节点处的温度(单位°C), 求中间4个点处的温度T 1, T 2, T 3, T 4.图9 一块平板的温度分布图【模型假设】假设忽略垂直于该截面方向上的热传导, 并且每个节点的温度等于与它相邻的四个节点温度的平均值.【模型建立】根据已知条件和上述假设, 有如下线性方程组1232143144231(90100)41(8060)41(8060)41(5050)4T T T T T T T T T T T T ⎧=+++⎪⎪⎪=+++⎪⎨⎪=+++⎪⎪=+++⎪⎩ 【模型求解】将上述线性方程组整理得1231241342344190414041404100T T T T T T T T T T T T −−=⎧⎪−+−=⎪⎨−+−=⎪−−+=⎪⎩. 在Matlab 命令窗口输入以下命令>> A = [4,-1,-1,0;-1,4,0,-1;-1,0,4,-1;0,-1,-1,4]; b = [190;140;140;100]; >> x = A\b; x ’Matlab 执行后得ans =82.9167 70.8333 70.8333 60.4167可见T 1 = 82.9167, T 2 = 70.8333, T 3 = 70.8333, T 4 = 60.4167.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 电子工业出版社, 2007. 页码: 15-16.Matlab 实验题假定下图中的平板代表一条金属梁的截面, 并忽略垂直于该截面方向上的热传导. 已知平板内部有30个节点, 每个节点的温度近似等于与它相邻的四个节点温度的平均值. 设4条边界上的温度分别等于每位同学学号的后四位的5倍, 例如学号为16308209的同学计算本题时, 选择T l = 40, T u = 10, T r = 0, T d = 45.图10 一块平板的温度分布图(1) 建立可以确定平板内节点温度的线性方程组.(2) 用Matlab 软件求解该线性方程组.(3) 用Matlab 中的函数mesh 绘制三维平板温度分布图.。
《线性代数》课程思政的案例及思考
《线性代数》课程思政的案例及思考
1. 案例:
一个公司有三个部门,分别是生产部、销售部和财务部,每个部门都有自己的工作任务,但是三个部门之间也有一定的联系,比如生产部的产品需要销售部去销售,销售部的销售额需要财务部去统计,财务部的财务报表需要生产部和销售部去提供数据。
这个案例可以用线性代数的矩阵来表示,比如可以用一个3×3的矩阵来表示三个部门之间的关系,比如第一行表示生产部和其他部门的关系,第二行表示销售部和其他部门的关系,第三行表示财务部和其他部门的关系,比如:
1 0 1
1 1 0
0 1 1
这个矩阵表示,生产部和财务部有关系,销售部和生产部、财务部都有关系,财务部和生产部、销售部都有关系。
2. 思考:
这个案例可以用来引导学生思考,比如可以让学生思考,如果有四个部门,那么应该如何用矩阵来表示?如果有五个部门,又应该如何用矩阵来表示?这样可以让学生学习如何用矩阵来表示多个部门之间的关系,从而加深对线性代数的理解。
线性代数应用案例
线性代数应用案例线性代数是数学中的一个重要分支,它研究向量空间和线性映射的理论。
线性代数的应用非常广泛,涉及到物理学、工程学、计算机科学等多个领域。
本文将介绍线性代数在实际应用中的一些案例,以帮助读者更好地理解和应用线性代数知识。
1. 机器学习中的特征空间转换。
在机器学习领域,特征空间转换是一种常见的数据预处理方法。
通过线性代数中的矩阵运算,可以将原始的高维特征空间转换为新的低维特征空间,从而实现对数据的降维处理。
这种方法不仅可以减少数据的维度,还可以保留数据的主要特征,提高机器学习模型的训练效果。
2. 图像处理中的矩阵变换。
在图像处理领域,矩阵变换是一种常用的技术。
通过线性代数中矩阵的旋转、缩放、平移等运算,可以实现对图像的各种变换操作,如图像的旋转、放大缩小、平移等。
这些操作可以帮助我们实现图像的处理和增强,提高图像的质量和美观度。
3. 电路分析中的矩阵方程。
在电路分析中,线性代数的矩阵方程是一种常用的建模和求解方法。
通过建立电路元件的电压电流关系,并转化为矩阵方程组,可以利用线性代数的方法求解电路中各个节点的电压和电流。
这种方法不仅简化了电路分析的复杂度,还可以有效地分析和设计各种复杂电路。
4. 控制系统中的状态空间模型。
在控制系统领域,线性代数的状态空间模型是一种常用的描述和分析方法。
通过线性代数的矩阵运算,可以将控制系统的动态方程转化为状态空间模型,从而实现对控制系统的建模和分析。
这种方法不仅可以方便地进行系统的稳定性和性能分析,还可以实现对控制系统的设计和优化。
5. 金融工程中的投资组合优化。
在金融工程领域,线性代数的投资组合优化是一种常见的方法。
通过建立投资组合的收益和风险之间的线性关系,并利用线性代数的优化方法,可以实现对投资组合的优化配置。
这种方法不仅可以帮助投资者实现收益和风险的平衡,还可以提高投资组合的收益率和稳定性。
总结。
线性代数作为一门重要的数学学科,其在实际应用中发挥着重要的作用。
线性代数在天气预报中的应用 案例解析
线性代数在天气预报中的应用案例解析线性代数是一门数学分支,与线性方程组、线性变换以及向量空间等概念相关。
尽管它看起来可能与天气预报没有任何关系,但实际上,线性代数在天气预报中有着重要的应用。
本文将通过案例解析,介绍线性代数在天气预报中的具体应用。
案例一:温度预测温度预测是天气预报中最常见的任务之一。
我们常常需要根据过去几天的气温数据,通过建立数学模型来预测未来几天的气温变化。
线性代数提供了一种有效的方法来解决这个问题。
假设我们有一组数据,包含过去7天的气温情况,分别是28°C、25°C、27°C、26°C、29°C、31°C和30°C。
我们将这组数据表示为向量(28, 25, 27, 26, 29, 31, 30)。
为了建立一个能够预测未来气温的模型,我们利用线性代数中的最小二乘法来拟合一条直线。
我们假设直线的方程为 y = a + bx,其中 y 表示温度,x 表示天数。
通过最小二乘法,我们可以求得最佳拟合直线的参数 a 和 b。
根据这个模型,我们可以预测未来几天的温度。
案例二:风向风速预测风向和风速的预测对于许多行业和领域都有着重要的意义,例如风力发电、飞行器安全等。
线性代数也可以应用于风向风速的预测中。
所示:(80°, 3m/s)(90°, 4m/s)(75°, 3.5m/s)(85°, 3.2m/s)(70°, 2.8m/s)我们将这组数据表示为矩阵形式:[80 3][90 4][75 3.5][85 3.2][70 2.8]为了预测未来的风向和风速,我们可以使用线性代数中的回归分析方法。
通过将矩阵进行分解和计算得到的拟合方程,我们可以得到预测模型。
案例三:降水量预测对于农业、水资源管理等领域来说,降水量的准确预测十分重要。
线性代数可以提供一种有效的方法来建立降水量预测模型。
2024版《线性代数》课程思政教学设计的两个案例[1]
《线性代数》课程思政教学设计的两个案例目录•课程思政教学背景与意义•案例一:结合历史人物故事进行思政教育•案例二:利用实际问题探讨社会责任意识培养•教学方法与手段创新•考核方式改革及评价标准制定•总结与展望01课程思政教学背景与意义线性代数涉及大量抽象概念,如向量空间、线性变换等,需要学生具备较强的抽象思维能力。
高度抽象性广泛应用性严密逻辑性线性代数作为数学的一个重要分支,在自然科学、社会科学、工程技术等领域都有广泛应用。
线性代数课程强调逻辑推理和证明,有助于培养学生的逻辑思维能力和数学素养。
030201线性代数课程特点思政教育融入线性代数课程必要性落实立德树人根本任务将思政教育融入线性代数课程,有助于实现全员全程全方位育人,落实立德树人根本任务。
培养学生正确价值观通过在线性代数课程中融入思政教育元素,可以引导学生树立正确的价值观、世界观和人生观。
提高学生综合素质思政教育不仅关注学生的知识传授,还注重学生的能力培养和素质提升,有助于提高学生的综合素质。
通过线性代数课程的学习,培养学生追求真理、尊重科学、勇于创新的价值观念。
价值观引导学生认识数学与自然界的内在联系,理解数学在认识世界和改造世界中的重要作用,树立正确的世界观。
世界观鼓励学生将所学的线性代数知识和方法应用于实际问题的解决中,培养学生积极向上、勇于探索的人生态度。
人生观培养学生正确价值观、世界观和人生观02案例一:结合历史人物故事进行思政教育选取具有代表性历史人物故事01选择在数学或科学领域有杰出贡献的历史人物,如华罗庚、陈景润等。
02讲述他们为数学或科学事业奋斗的故事,包括他们的成长经历、学术成就以及为国家和社会做出的贡献。
挖掘故事背后所蕴含思政元素强调历史人物的爱国情怀和民族精神,如华罗庚在困难时期坚持数学研究,为国家的科学事业做出贡献。
突出历史人物的科学精神和创新精神,如陈景润在数论领域的突破性研究,展现了他对数学科学的追求和勇于创新的精神。
应用线性代数解决实际问题
应用线性代数解决实际问题线性代数作为数学的一个重要分支,广泛应用于各个领域,包括计算机科学、物理学、经济学等。
它不仅是数学家们研究的重要工具,更是解决实际问题的有效途径。
本文将通过具体案例,介绍线性代数在实际问题中的应用,从而展示其强大的解决能力。
案例一:网络流量优化现代社会离不开互联网,而网络流量的优化是提高互联网服务质量的重要问题之一。
假设我们有一组服务器,每个服务器的带宽和消耗成本有所不同,现在需要将用户的请求合理地分配到这些服务器上,以最大化带宽利用率并最小化消耗成本。
这就可以转化为一个线性代数中的线性规划问题。
首先,我们可以用一个向量表示服务器的带宽,用另一个向量表示服务器的消耗成本。
设请求到达的向量为x,那么我们的目标就是最大化带宽利用率和最小化消耗成本,可以构建如下优化模型:maximize cᵀx subject to Ax ≤ b其中,c是服务器的消耗成本向量,x是请求到达的向量,A是服务器带宽的矩阵,b是服务器的带宽上限。
通过求解这个线性规划问题,我们可以得到最佳的请求分配方案,从而实现网络流量的优化。
案例二:图像处理线性代数在图像处理中有着广泛的应用。
以黑白图片为例,可以将其表示为一个矩阵,其中的元素代表每个像素点的灰度值。
通过矩阵的加减、乘除运算,以及线性变换等操作,可以实现图像的平移、旋转、缩放等处理效果。
举个例子,假设我们想要将一张黑白图片的亮度增加一倍。
我们可以将这张图片表示为一个矩阵A,然后构造一个倍增矩阵B,即每个元素都是2。
通过这两个矩阵的乘法运算,即可实现亮度的增加。
这个过程可以用下面的表达式表示:A' = BA其中,A'表示亮度增加后的图像矩阵。
通过线性代数的运算,我们可以方便地实现图像处理中的各种效果。
总结线性代数作为数学的重要分支,具有广泛的应用领域。
本文通过网络流量优化和图像处理两个具体案例,展示了线性代数在实际问题中的应用。
线性代数的强大解决能力不仅能帮助我们解决现实生活中的问题,同时也为我们提供了一种思维方式和方法论。
线性代数在工程技术中的应用 案例解析
线性代数在工程技术中的应用案例解析一、简介线性代数是数学中的一个重要分支,它的应用十分广泛,尤其在工程技术领域中发挥着重要的作用。
本文将通过几个具体的案例,探讨线性代数在工程技术中的应用,并进行详细的解析。
二、案例一:图像处理中的矩阵变换在图像处理领域,矩阵变换是一项常用的技术。
例如,通过线性代数中的矩阵乘法运算,可以实现图像的旋转、平移、缩放等操作。
假设我们有一张图片,我们可以将其表示为一个二维矩阵,每个像素点对应矩阵中的一个元素。
通过对这个二维矩阵进行线性代数运算,我们可以实现对图像的各种变换操作。
以旋转为例,我们可以通过构造旋转矩阵,将原始图像进行旋转,从而得到新的图像。
这样的应用不仅可以用于图像处理软件,还可以应用于计算机游戏、计算机图形学等领域。
三、案例二:机器学习中的线性回归在机器学习中,线性回归是一个重要的算法。
线性回归可以用于建立输入变量与输出变量之间的线性关系模型。
这个模型可以通过线性方程来表示,其中输入变量和输出变量都可以表示为向量形式。
线性回归的目标是找到最佳拟合的线性方程,从而实现对未知数据的预测。
在实际应用中,线性回归可以用于预测房价、股票价格、销售额等各种实际问题。
线性回归利用线性代数中的矩阵运算方法,通过求解最小二乘法问题,得到最佳的回归参数。
四、案例三:控制系统中的状态空间法在控制系统中,状态空间法是一种常用的分析与设计方法。
状态空间模型可以用线性代数中的矩阵形式来表示。
通过将系统的状态、输入、输出表示为向量形式,并通过状态方程和输出方程来描述系统的动态行为,可以利用线性代数方法分析系统的稳定性、可控性、可观测性等特性,并进行系统控制器的设计与优化。
这种方法广泛应用于电力系统、机械系统、飞行器控制等领域。
五、案例四:密码学中的线性代数在密码学中,线性代数常常用来构造密码算法。
例如,RSA加密算法中,使用了大数的乘法和模运算,这是线性代数中的矩阵乘法与模运算的扩展。
数学建模案例分析--线性代数建模案例20例
线性代数建模案例汇编目录案例一. 交通网络流量分析问题1案例二. 配方问题4案例三. 投入产出问题6案例四. 平板的稳态温度分布问题7案例五. CT图像的代数重建问题11案例六. 平衡结构的梁受力计算13案例七. 化学方程式配平问题16案例八. 互付工资问题17案例九. 平衡价格问题19案例十. 电路设计问题20案例十一. 平面图形的几何变换22案例十二. 太空探测器轨道数据问题24案例十三. 应用矩阵编制Hill密码25案例十四. 显示器色彩制式转换问题27案例十五. 人员流动问题29案例十六. 金融公司支付基金的流动31案例十七. 选举问题33案例十八. 简单的种群增长问题34案例十九. 一阶常系数线性齐次微分方程组的求解36 案例二十. 最值问题38附录数学实验报告模板错误!未定义书签。
案例一. 交通网络流量分析问题城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。
根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。
【模型准备】 某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).图3 某城市单行线车流量(1) 建立确定每条道路流量的线性方程组.(2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x 4 = 350时, 确定x 1, x 2, x 3的值.(4) 若x 4 = 200, 则单行线应该如何改动才合理?【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等.【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足500 = x 1 + x 2① 400 + x 1 = x 4 + 300 ② x 2 + x 3 = 100 + 200 ③ x 4 = x 3 + 300 ④ 【模型求解】根据上述等式可得如下线性方程组12142334500100300300x x x x x x x x +=⎧⎪-=-⎪⎨+=⎪⎪-+=⎩其增广矩阵(A , b ) =1100500100110001103000011300⎛⎫ ⎪--⎪ ⎪ ⎪-⎝⎭−−−−→初等行变换10011000101600001130000000--⎛⎫ ⎪⎪-- ⎪⎪⎝⎭由此可得142434100600300x x x x x x -=-⎧⎪+=⎨⎪-=-⎩ 即142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩. 为了唯一确定未知流量, 只要增添x 4统计的值即可. 当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50.若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = -100 < 0. 这表明单行线“③←④”应该改为“③→④”才合理.【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计.(2) 由142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩可得213141500200100x x x x x x =-+⎧⎪=-⎨⎪=+⎩, 123242500300600x x x x x x =-+⎧⎪=-+⎨⎪=-+⎩, 132343200300300x x x x x x =+⎧⎪=-+⎨⎪=+⎩, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值.Matlab 实验题某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开的车数相等, 整个图中进入和离开的车数相等.图4 某城市单行线车流量(1)建立确定每条道路流量的线性方程组.(2)分析哪些流量数据是多余的.(3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.案例二. 配方问题在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模. 【模型准备】一种佐料由四种原料A 、B 、C 、D 混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成?【模型假设】 (1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A 、B 、C 、D 四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A 、B 、C 、D 四种原料分别为1克, 2克, 1克, 2克). 【模型建立】 根据已知数据和上述假设, 可以进一步假设将x 袋第一种规格的佐料与y 袋第二种规格的佐料混合在一起, 得到的混合物中A 、B 、C 、D 四种原料分别为4克, 7克, 3克, 5克, 则有以下线性方程组24,327,3,2 5.x y x y x y x y +=⎧⎪+=⎨+=⎪+=⎩ 【模型求解】上述线性方程组的增广矩阵(A , b ) =214327113125⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭−−−−→初等行变换101012000000⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭,可见{1,2.x y == 又因为第一种规格的佐料每袋净重7克, 第二种规格的佐料每袋净重6克, 所以第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成. 【模型分析】(1) 若令α1 = (2, 3, 1, 1)T , α2 = (1, 2, 1, 1)T , β = (4, 7, 5, 3)T , 则原问题等价于“线性方程组Ax = b 是否有解”, 也等价于“β能否由α1, α2线性表示”.(2) 若四种原料的比例是按体积计算的, 则还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比, 然后再按上述方法处理.(3) 上面的模型假设中的第三个假设只是起到简化运算的作用. 如果直接设x 克第一种规格的佐料与y 克第二种规格的佐料混合得第三种规格的佐料, 则有下表因而有如下线性方程组214(),7619327(),7619113(),7619125().7619x y x y x y x y x y x y x y x y ⎧+=+⎪⎪⎪+=+⎪⎨⎪+=+⎪⎪⎪+=+⎪⎩(*) 【模型检验】把x = 7, y = 12代入上述方程组(*), 则各等式都成立. 可见模型假设中的第三个假设不影响解的正确性.Matlab 实验题蛋白质、碳水化合物和脂肪是人体每日必须的三种营养, 但过量的脂肪摄入不利于健康.人们可以通过适量的运动来消耗多余的脂肪. 设三种食物(脱脂牛奶、大豆面粉、乳清)每100克中蛋白质、碳水化合物和脂肪的含量以及慢跑5分钟消耗蛋白质、碳水化合物和脂肪的量如下表.问怎样安排饮食和运动才能实现每日的营养需求?案例三. 投入产出问题在研究多个经济部门之间的投入产出关系时, W. Leontief 提出了投入产出模型. 这为经济学研究提供了强有力的手段. W. Leontief 因此获得了1973年的Nobel 经济学奖.【模型准备】某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求? 【模型假设】假设不考虑价格变动等其他因素.【模型建立】设煤矿, 电厂, 铁路分别产出x 元, y 元, z 元刚好满足需求. 则有下表根据需求, 应该有(0.60.5)60000(0.30.10.1)100000(0.20.1)0x y z y x y z z x y -+=⎧⎪-++=⎨⎪-+=⎩, 即0.60.5600000.30.90.11000000.20.10x y z x y z x y z --=⎧⎪-+-=⎨⎪--+=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.6,-0.5;-0.3,0.9,-0.1;-0.2,-0.1,1]; b = [60000;100000;0]; >> x = A\bMatlab 执行后得 x =1.0e+005 *1.99661.84150.5835可见煤矿要生产1.9966⨯105元的煤, 电厂要生产1.8415⨯105元的电恰好满足需求.【模型分析】令x =xyz⎛⎫⎪⎪⎝⎭, A =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭, b =60000100000⎛⎫⎪⎪⎝⎭, 其中x称为总产值列向量,A称为消耗系数矩阵, b称为最终产品向量, 则Ax =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭xyz⎛⎫⎪⎪⎝⎭=0.60.50.30.10.10.20.1y zx y zx y+⎛⎫⎪++⎪+⎝⎭根据需求, 应该有x-Ax = b, 即(E-A)x = b. 故x = (E-A)-1b.Matlab实验题某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元.(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值.(2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?案例四. 平板的稳态温度分布问题在热传导的研究中, 一个重要的问题是确定一块平板的稳态温度分布. 根据…定律, 只要测定一块矩形平板四周的温度就可以确定平板上各点的温度.图8 一块平板的温度分布图【模型准备】如图9所示的平板代表一条金属梁的截面. 已知四周8个节点处的温度(单位°C), 求中间4个点处的温度T 1, T 2, T 3, T 4.图9 一块平板的温度分布图【模型假设】假设忽略垂直于该截面方向上的热传导, 并且每个节点的温度等于与它相邻的四个节点温度的平均值.【模型建立】根据已知条件和上述假设, 有如下线性方程组1232143144231(90100)41(8060)41(8060)41(5050)4T T T T T T T T T T T T ⎧=+++⎪⎪⎪=+++⎪⎨⎪=+++⎪⎪=+++⎪⎩ 【模型求解】将上述线性方程组整理得1231241342344190414041404100T T T T T T T T T T T T --=⎧⎪-+-=⎪⎨-+-=⎪--+=⎪⎩. 在Matlab 命令窗口输入以下命令T 1T 2 T 3 T 4 10080908060506050>> A = [4,-1,-1,0;-1,4,0,-1;-1,0,4,-1;0,-1,-1,4]; b = [190;140;140;100];>> x = A\b; x’Matlab执行后得ans =82.9167 70.8333 70.8333 60.4167可见T1 = 82.9167, T2 = 70.8333, T3 = 70.8333, T4 = 60.4167.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 15-16.Matlab实验题假定下图中的平板代表一条金属梁的截面, 并忽略垂直于该截面方向上的热传导. 已知平板内部有30个节点, 每个节点的温度近似等于与它相邻的四个节点温度的平均值. 设4条边界上的温度分别等于每位同学学号的后四位的5倍, 例如学号为16308209的同学计算本题时, 选择T l = 40, T u = 10, T r = 0, T d = 45.图10 一块平板的温度分布图(1) 建立可以确定平板内节点温度的线性方程组.(2) 用Matlab软件求解该线性方程组.(3) 用Matlab中的函数mesh绘制三维平板温度分布图.案例五. CT图像的代数重建问题X射线透视可以得到3维对象在2维平面上的投影, CT则通过不同角度的X射线得到3维对象的多个2维投影, 并以此重建对象内部的3维图像. 代数重建方法就是从这些2维投影出发, 通过求解超定线性方程组, 获得对象内部3维图像的方法.图11双层螺旋CT 图12 CT图像这里我们考虑一个更简单的模型, 从2维图像的1维投影重建原先的2维图像. 一个长方形图像可以用一个横竖均匀划分的离散网格来覆盖, 每个网格对应一个像素, 它是该网格上各点像素的均值. 这样一个图像就可以用一个矩阵表示,其元素就是图像在一点的灰度值(黑白图像). 下面我们以3⨯3图像为例来说明.3⨯3图像各点的灰度值水平方向上的叠加值x1 = 1 x2 = 0 x3 = 0 x1 + x2 + x3 = 1x4 = 0 x5 = 0.5 x6 = 0.5 x4 + x5 + x6 = 1x7 = 0.5 x8 = 0 x9 = 1 x7 + x8 + x9 = 1.5 竖直方向上的叠加值x1 + x4 + x7= 1.5x2 + x5 + x8= 0.5x3 + x6 + x9= 1.5i色. 如果我们不知道网格中的数值, 只知道沿竖直方向和水平方向的叠加值, 为了确定网格中的灰度值, 可以建立线性方程组(含有6个方程, 9个未知数)123456369111x x xx x xx x x++=⎧⎪++=⎪⎨⎪++=⎪⎩显然该方程组的解是不唯一的, 为了重建图像, 必须增加叠加值. 如我们增加从右上方到左下方的叠加值, 则方程组将增加5个方程x1 = 1,x2 + x4 = 0,x3 + x5 + x7 = 1,x 6 + x 8 = 0.5, x 9 = 1,和上面的6个方程放在一起构成一个含有11个方程, 9个未知数的线性方程组. 【模型准备】设3⨯3图像中第一行3个点的灰度值依次为x 1, x 2, x 3, 第二行3个点的灰度值依次为x 4, x 5,x 6, 第三行3个点的灰度值依次为x 7, x 8, x 9. 沿竖直方向的叠加值依次为1.5, 0.5, 1.5, 沿水平方向的叠加值依次为1, 1, 1.5, 沿右上方到左下方的叠加值依次为1, 0, 1, 0.5, 1. 确定x 1, x 2, …, x 9的值.【模型建立】由已知条件可得(含有11个方程, 9个未知数的)线性方程组1234569111x x x x x x x ++=⎧⎪++=⎪⎨⎪=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1;1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1; 1,0,0,0,0,0,0,0,0;0,1,0,1,0,0,0,0,0;0,0,1,0,1,0,1,0,0; 0,0,0,0,0,1,0,1,0;0,0,0,0,0,0,0,0,1];>> b = [1;1;1.5;1.5;0.5;1.5;1;0;1;0.5;1]; >> x = A\b; x ’Matlab 执行后得Warning: Rank deficient, rank = 8 tol =4.2305e-015. ans =1.0000 0.0000 0 -0.0000 0.5000 0.5000 0.5000 -0.0000 1.0000 可见上述方程组的解不唯一. 其中的一个特解为x 1 = 1, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = 0.5, x 6 = 0.5, x 7 = 0.5, x 8 = 0, x 9 = 1.【模型分析】上述结果表明, 仅有三个方向上的叠加值还不够.可以再增加从左上方到右下方的叠加值. 在实际情况下, 由于测量误差, 上述线性方程组可能是超定的. 这时可以将超定方程组的近似解作为重建的图像数据.Matlab 实验题给定一个3⨯3图像的2个方向上的灰度叠加值: 沿左上方到右下方的灰度叠加值依次为0.8, 1.2, 1.7, 0.2, 0.3; 沿右上方到左下方的灰度叠加值依次为0.6, 0.2, 1.6, 1.2, 0.6.(1) 建立可以确定网格数据的线性方程组, 并用Matlab 求解. (2) 将网格数据乘以256, 再取整, 用Matlab 绘制该灰度图像.案例六. 平衡结构的梁受力计算在桥梁、房顶、铁塔等建筑结构中, 涉及到各种各样的梁. 对这些梁进行受力分析是设计师、工程师经常做的事情.图14 埃菲尔铁塔局部下面以双杆系统的受力分析为例, 说明如何研究梁上各铰接点处的受力情况. 【模型准备】在图15所示的双杆系统中, 已知杆1重G1 = 200牛顿, 长L1 = 2米, 与水平方向的夹角为θ1 = π/6, 杆2重G2 = 100牛顿, 长L2 = 2米, 与水平方向的夹角为θ2 = π/4. 三个铰接点A, B, C所在平面垂直于水平面. 求杆1, 杆2在铰接点处所受到的力.图15双杆系统【模型假设】假设两杆都是均匀的. 在铰接点处的受力情况如图16所示.【模型建立】对于杆1:水平方向受到的合力为零, 故N1 = N3,竖直方向受到的合力为零, 故N2 + N4 = G1,以点A为支点的合力矩为零, 故(L1sinθ1)N3 + (L1cosθ1)N4 = (12L1cosθ1)G1.图16 两杆受力情况对于杆2类似地有AC杆1杆2CN1N2N3N5N6G1G2A B杆1杆2π/6π/4N 5 = N 7, N 6 = N 8 + G 2, (L 2sin θ2)N 7 = (L 2cos θ2)N 8 + (12L 2cos θ2)G 2.此外还有N 3 = N 7, N 4 = N 8. 于是将上述8个等式联立起来得到关于N 1, N 2, …, N 8的线性方程组:132414800N N N N G N N -=⎧⎪+=⎪⎨⎪⎪-=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> G1=200; L1=2; theta1=pi/6; G2=100; L2=sqrt(2); theta2=pi/4; >> A = [1,0,-1,0,0,0,0,0;0,1,0,1,0,0,0,0;0,0,L1*sin(theta1),L1*cos(theta1),0,0,0,0;0,0,0,0,1,0,-1,0; 0,0,0,0,0,1,0,-1;0,0,0,0,0,0,L2*sin(theta2),-L2*cos(theta2); 0,0,1,0,0,0,-1,0;0,0,0,1,0,0,0,-1];>> b = [0;G1;0.5*L1*cos(theta1)*G1;0;G2;0.5*L2*cos(theta2)*G2;0;0]; >> x = A\b; x ’ Matlab 执行后得 ans =95.0962 154.9038 95.0962 45.0962 95.0962 145.0962 95.0962 45.0962【模型分析】最后的结果没有出现负值, 说明图16中假设的各个力的方向与事实一致. 如果结果中出现负值, 则说明该力的方向与假设的方向相反. 参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 157- 158.Matlab 实验题有一个平面结构如下所示, 有13条梁(图中标号的线段)和8个铰接点(图中标号的圈)联结在一起. 其中1号铰接点完全固定, 8号铰接点竖直方向固定, 并在2号, 5号和6号铰接点上, 分别有图示的10吨, 15吨和20吨的负载. 在静平衡的条件下,任何一个铰接点上水平和竖直方向受力都是平衡的. 已知每条斜梁的角度都是45º.(1) 列出由各铰接点处受力平衡方程构成的线性方程组. (2) 用Matlab 软件求解该线性方程组, 确定每条梁受力情况.图17 一个平面结构的梁案例七. 化学方程式配平问题在用化学方法处理污水过程中, 有时会涉及到复杂的化学反应. 这些反应的化学方程式是分析计算和工艺设计的重要依据. 在定性地检测出反应物和生成物之后,可以通过求解线性方程组配平化学方程式.【模型准备】某厂废水中含K, 其浓度为650mg/L. 现用氯氧化法处理, 发生如下反应:K + 2KOH + Cl 2 = KO+ 2KCl + H 2O.投入过量液氯, 可将氰酸盐进一步氧化为氮气. 请配平下列化学方程式:KO +KOH +Cl 2 ===CO 2+N 2+KCl +H 2O.(注: 题目摘自XX 省XX 外国语学校2008-2009学年高三第三次月考化学试卷) 【模型建立】设x 1KO +x 2KOH +x 3Cl 2 === x 4CO 2 +x 5N 2 +x 6KCl +x 7H 2O,则1261247141527362222x x x x x x xx x x x x x x x +=⎧⎪+=+⎪⎪=⎪⎨=⎪⎪=⎪=⎪⎩, 即1261247141527360200202020x x x x x x x x x x x x x x x +-=⎧⎪+--=⎪⎪-=⎪⎨-=⎪⎪-=⎪-=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,0,0,0,-1,0;1,1,0,-2,0,0,-1;1,0,0,-1,0,0,0;1,0,0,0,-2,0,0;0,1,0,0,0,0,-2;0,0,2,0,0,-1,0];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得 ans =1 2 3/2 1 1/2 3 1 可见上述齐次线性方程组的通解为x = k (1, 2, 3/2, 1, 1/2, 3, 1)T .取k = 2得x = (2, 4, 3, 2, 1, 6, 2)T . 可见配平后的化学方程式如下2KO + 4KOH + 3Cl 2 ===2CO 2+ N 2+ 6KCl + 2H 2O.【模型分析】利用线性方程组配平化学方程式是一种待定系数法. 关键是根据化学方程式两边所涉及到的各种元素的量相等的原则列出方程. 所得到的齐次线性方程组Ax = θ中所含方程的个数等于化学方程式中元素的种数s , 未知数的个数就是化学方程式中的项数n .当r(A ) = n -1时, Ax = θ的基础解系中含有1个(线性无关的)解向量. 这时在通解中取常数k 为各分量分母的最小公倍数即可. 例如本例中1, 2, 3/2, 1, 1/2, 3, 1分母的最小公倍数为2, 故取k = 2.当r(A ) ≤n -2时, Ax = θ的基础解系中含有2个以上的线性无关的解向量. 这时可以根据化学方程式中元素的化合价的上升与下降的情况, 在原线性方程组中添加新的方程. Matlab 实验题配平下列反应式(1) FeS + KMnO 4 + H 2SO 4—— K 2SO 4 + MnSO 4 + Fe 2(SO 4)3 + H 2O + S ↓ (2) Al 2(SO 4)3 + Na 2CO 3 + H 2O —— Al(OH)3↓+ CO 2↑+ Na 2SO 4案例八. 互付工资问题互付工资问题是多方合作相互提供劳动过程中产生的. 比如农忙季节, 多户农民组成互助组, 共同完成各户的耕、种、收等农活. 又如木工, 电工, 油漆工等组成互助组, 共同完成各家的装潢工作. 由于不同工种的劳动量有所不同, 为了均衡各方的利益, 就要计算互付工资的标准.【模型准备】现有一个木工, 电工, 油漆工. 相互装修他们的房子, 他们有如下协议:(1) 每人工作10天(包括在自己家的日子), (2) 每人的日工资一般的市价在60~80元之间, (3) 日工资数应使每人的总收入和总支出相等.求每人的日工资. 【模型假设】假设每人每天工作时间长度相同. 无论谁在谁家干活都按正常情况工作, 既不偷懒, 也不加班.【模型建立】设木工, 电工, 油漆工的日工资分别为x , y , z 元, 则由下表可得2610451044310x y z xx y z y x y z z++=⎧⎪++=⎨⎪++=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩【模型求解】在Matlab 命令窗口输入以下命令>> A = [-8,1,6;4,-5,1;4,4,-7];>> x = null(A,’r ’); format rat, x ’ Matlab 执行后得ans =31/36 8/9 1可见上述齐次线性方程组的通解为x = k (31/36, 8/9, 1)T . 因而根据“每人的日工资一般的市价在60~80元之间”可知60 ≤3631k <98k < k ≤ 80, 即 312160≤k ≤ 80.也就是说, 木工, 电工, 油漆工的日工资分别为3631k 元, 98k 元, k 元, 其中312160≤k ≤ 80. 为了简便起见, 可取k = 72, 于是木工, 电工, 油漆工的日工资分别为62元, 64元, 72元.【模型分析】事实上各人都不必付自己工资, 这时各家应付工资和各人应得收入如下6845447y z x x z y x y z +=⎧⎪+=⎨⎪+=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩ 可见这样得到的方程组与前面得到的方程组是一样的.Matlab 实验题甲, 乙, 丙三个农民组成互助组, 每人工作6天(包括为自己家干活的天数), 刚好完成他们三人家的农活, 其中甲在甲, 乙, 丙三家干活的天数依次为: 2, 2.5, 1.5; 乙在甲, 乙, 丙三家各干2天活, 丙在甲, 乙, 丙三家干活的天数依次为: 1.5, 2, 2.5. 根据三人干活的种类, 速度和时间, 他们确定三人不必相互支付工资刚好公平. 随后三人又合作到邻村帮忙干了2天(各人干活的种类和强度不变), 共获得工资500元.问他们应该怎样分配这500元工资才合理?案例九. 平衡价格问题为了协调多个相互依存的行业的平衡发展, 有关部门需要根据每个行业的产出在各个行业中的分配情况确定每个行业产品的指导价格, 使得每个行业的投入与产出都大致相等.【模型准备】假设一个经济系统由煤炭、电力、钢铁行业组成, 每个行业的产出在各个行业中的分配如下表所示:等的平衡价格.【模型假设】假设不考虑这个系统与外界的联系.【模型建立】把煤炭、电力、钢铁行业每年总产出的价格分别用x 1,x 2, x 3表示, 则123212331230.40.60.60.10.20.40.50.2x x x x x x x x x x x =+⎧⎪=++⎨⎪=++⎩, 即1231231230.40.600.60.90.200.40.50.80x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩. 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.4,-0.6;-0.6,0.9,-0.2;-0.4,-0.5,0.8]; >> x = null(A,’r ’); format short, x ’ Matlab 执行后得ans =0.9394 0.8485 1.0000 可见上述齐次线性方程组的通解为x = k(0.9394, 0.8485, 1)T.这就是说, 如果煤炭、电力、钢铁行业每年总产出的价格分别0.9394亿元, 0.8485亿元, 1亿元, 那么每个行业的投入与产出都相等.【模型分析】实际上, 一个比较完整的经济系统不可能只涉及三个行业, 因此需要统计更多的行业间的分配数据.Matlab实验题假设一个经济系统由煤炭、石油、电力、钢铁、机械制造、运输行业组成, 每个行业的产出在各个行业中的分配如下表所示:产出分配购买者煤炭石油电力钢铁制造运输0 0 0.2 0.1 0.2 0.2 煤炭0 0 0.1 0.1 0.2 0.1 石油0.5 0.1 0.1 0.2 0.1 0.1 电力0.4 0.1 0.2 0 0.1 0.4 钢铁0 0.1 0.3 0.6 0 0.2 制造0.1 0.7 0.1 0 0.4 0 运输等的平衡价格.案例十. 电路设计问题电路是电子元件的神经系统. 参数的计算是电路设计的重要环节. 其依据来自两个方面: 一是客观需要, 二是物理学定律.图22 USB扩展板【模型准备】假设图23中的方框代表某类具有输入和输出终端的电路. 用11vi⎛⎫⎪⎝⎭记录输入电压和输入电流(电压v以伏特为单位, 电流i以安培为单位), 用22vi⎛⎫⎪⎝⎭记录输出电压和输入电流. 若22vi⎛⎫⎪⎝⎭= A11vi⎛⎫⎪⎝⎭,则称矩阵A为转移矩阵.图23 具有输入和输出终端的电子电路图图24给出了一个梯形网络, 左边的电路称为串联电路, 电阻为R 1(单位: 欧姆). 右边的电路是并联电路, 电路R 2. 利用欧姆定理和楚列斯基定律, 我们可以得到串联电路和并联电路的转移矩阵分别是1101R -⎛⎫ ⎪⎝⎭和2101/1R ⎛⎫ ⎪-⎝⎭串联电路 并联电路图24 梯形网络设计一个梯形网络, 其转移矩阵是180.55-⎛⎫⎪-⎝⎭. 【模型假设】假设导线的电阻为零.【模型建立】设A 1和A 2分别是串联电路和并联电路的转移矩阵, 则输入向量x 先变换成A 1x , 再变换到A 2(A 1x ). 其中A 2A 1 =2101/1R ⎛⎫ ⎪-⎝⎭1101R -⎛⎫ ⎪⎝⎭=121211/1/R R R R -⎛⎫ ⎪-+⎝⎭就是图22中梯形网络的转移矩阵.于是, 原问题转化为求R 1, R 2的值使得121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭. 【模型求解】由121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭可得121281/0.51/5R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据其中的前两个方程可得R 1 = 8, R 2 = 2. 把R 1 = 8, R 2 = 2代入上面的第三个方程确实能使等式成立. 这就是说在图22中梯形网络中取R 1 = 8, R 2 = 2即为所求.【模型分析】若要求的转移矩阵改为180.54-⎛⎫⎪-⎝⎭, 则上面的梯形网络无法实现. 因为v 2这时对应的方程组是121281/0.51/4R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据前两个方程依然得到R 1 = 8, R 2 = 2, 但把R 1= 8, R 2 = 2代入上第三个方程却不能使等式成立.练习题根据基尔霍夫回路电路定律(各节点处流入和流出的电流强度的代数和为零, 各回路中各支路的电压降之和为零), 列出下图所示电路中电流i 1, i 2, i 3所满足的线性方程组, 并用矩阵形式表示:图25简单的回路案例十一. 平面图形的几何变换随着计算机科学技术的发展, 计算机图形学的应用领域越来越广, 如仿真设计、效果图制作、动画片制作、电子游戏开发等.图形的几何变换, 包括图形的平移、旋转、放缩等, 是计算机图形学中经常遇到的问题. 这里暂时只讨论平面图形的几何变换.【模型准备】平面图形的旋转和放缩都很容易用矩阵乘法实现, 但是图形的平移并不是线性运算, 不能直接用矩阵乘法表示. 现在要求用一种方法使平移、旋转、放缩能统一用矩阵乘法来实现. 【模型假设】设平移变换为(x , y ) → (x +a , y +b )旋转变换(绕原点逆时针旋转θ角度)为(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)放缩变换(沿x 轴方向放大s 倍, 沿y 轴方向放大t 倍)为(x , y ) → (sx , ty )【模型求解】R 2中的每个点(x , y )可以对应于R 3中的(x , y , 1). 它在xOy 平面上方1单E 12位的平面上. 我们称(x , y , 1)是(x , y )的齐次坐标. 在齐次坐标下, 平移变换(x , y ) → (x +a , y +b )可以用齐次坐标写成(x , y , 1) → (x +a , y +b , 1).于是可以用矩阵乘积1001001a b ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1x a y b +⎛⎫⎪+ ⎪⎝⎭实现.旋转变换(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)可以用齐次坐标写成(x , y , 1) → (x cos θ-y sin θ, x sin θ + y cos θ, 1). 于是可以用矩阵乘积cos sin 0sin cos 0001θθθθ-⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=cos sin sin cos 1x y x y θθθθ-⎛⎫⎪+ ⎪⎝⎭实现.放缩变换(x , y ) → (sx , ty )可以用齐次坐标写成(x , y , 1) → (sx , ty , 1).于是可以用矩阵乘积0000001s t ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1sx ty ⎛⎫⎪ ⎪⎝⎭实现.【模型分析】由上述求解可以看出, R 2中的任何线性变换都可以用分块矩阵1⎛⎫⎪⎝⎭A O O 乘以齐次坐标实现, 其中A 是2阶方阵. 这样, 只要把平面图形上点的齐次坐标写成列向量, 平面图形的每一次几何变换, 都可通过左乘一个3阶变换矩阵来实现.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译,: 人民邮电, 2009. 页码: 139-141.Matlab 实验题在Matlab 命令窗口输入以下命令 >>clear all , clc,>>t=[1,3,5,11,13,15]*pi/8; >>x=sin(t); y=cos(t); >>fill(x,y,'r'); >>grid on ;>>axis([-2.4, 2.4, -2, 2])运行后得图25.图26Matlab绘制的图形(1) 写出该图形每个顶点的齐次坐标;; 最后进行横(2) 编写Matlab程序, 先将上面图形放大0.9倍; 再逆时针旋转3坐标加0.8, 纵坐标减1的图形平移. 分别绘制上述变换后的图形.案例十二. 太空探测器轨道数据问题太空航天探测器发射以后, 可能需要调整以使探测器处在精确计算的轨道里. 雷达监测到一组列向量x1, …, x k,它们给出了不同时刻探测器的实际位置与预定轨道之间的偏差的信息.图28 火星探测器【模型准备】令X k = [x1, …, x k]. 在雷达进行数据分析时需要计算出矩阵G k = X k X k T. 一旦接收到数据向量x k+1,必须计算出新矩阵G k+1. 因为数据向量到达的速度非常快, 随着k的增加, 直接计算的负担会越来越重. 现需要给出一个算法, 使得计算G k的负担不会因为k的增加而加重.【模型求解】因为G k = X k X k T=[x 1, …, x k ]T 1T k⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦x x =T 1k i i i =∑x x ,G k +1 = X k +1T1k +X =[X k , x k +1]T T 1k k +⎡⎤⎢⎥⎣⎦X x = X k X k T +x k +1T 1k +x =G k +x k +1T 1k +x ,所以一旦接收到数据向量x k +1, 只要计算x k +1T1k +x , 然后把它与上一步计算得到的G k相加即可. 这样计算G k 的负担不会因为k 的增加而加重.【模型分析】计算机计算加法的时间与计算乘法的时间相比可以忽略不计. 因此在考虑计算矩阵乘积的负担时, 只要考察乘法的次数就可以了. 设x k 的维数是n , 则X k = [x 1, …, x k ]是n ⨯k 的矩阵, G k = X k X k T 是n ⨯n 的矩阵. 直接计算G k = X k X k T 需要做n 2k 次乘法. 因而计算的负担会随着k 的增加而增加. 但是对于每一个k , 计算x k Tk x 始终只要做n 2次乘法.Matlab 实验题用Matlab 编写一个程序用于处理这个问题.案例十三. 应用矩阵编制Hill 密码密码学在经济和军事方面起着极其重要的作用. 现代密码学涉及很多高深的数学知识. 这里无法展开介绍.图29 XX 通信的基本模型密码学中将信息代码称为密码, 尚未转换成密码的文字信息称为明文, 由密码表示的信息称为密文. 从明文到密文的过程称为加密, 反之为解密. 1929年, 希尔(Hill)通过线性变换对待传输信息进行加密处理, 提出了在密码史上有重要地位的希尔加密算法. 下面我们略去一些实际应用中的细节, 只介绍最基本的思想.【模型准备】若要发出信息action, 现需要利用矩阵乘法给出加密方法和加密后得到的密文, 并给出相应的解密方法.。
线性代数在实际生活中应用实例
0
(1) 某医院要购买这七种特效药,但药厂的第 3 号药和第 6 号 药已经卖完,请问能否用其它特效药配制出这两种脱销的药品? (2) 现在医院想用这 7 种草药配制三种新的特效药,表 2 给出 了三种新的特效药的成份,请问能否配制?如何配制?
A B C D E F G H I 1 号新药 40 62 14 44 53 50 71 41 14 2 号新药 162 141 27 102 60 155 118 68 52 3 号新药 88 67 8 51 7 80 38 21 30
xc1 0.94 0.02 0.3 0.2960 x1 = Ax0 = x = ⋅ = 0.7040 s1 0.06 0.98 0.7
从初始到 k 年,此关系保持不变,因此上述算式可扩展为 x= Axk −= A2 xk −= = Ak x0 . 2 k 1 经 Mablab 计算可得:
解:(1)把每一种特效药看成一个九维列向量,分析 7 个列 向量构成向量组的线性相关性。 若向量组线性无关,则无法配制脱销的特效药; 若向量组线性相关,并且能找到不含 u3,u6 的一个最大线性无 关组,则可以配制 3 号和 6 号药品。 经计算该向量组线性相关,一个最大无关组为 u1,u2,u4,u5,u7 且 u3=u1+2u2,u6=3u2+u4+u5. 所以可以配置处这两种脱销的药品。
解 将 M 和 P 相乘,得到的矩阵设为 Q,Q 的第一行第一列元 素为 Q(1,1)=0.10×4000+0.30×2000+0.15×5800=1870 其中 Q =
1870 3450 1670
2220 4020 1940 2070 3810 1830 1960
1740
线性代数案例
线性代数案例线性代数案例Cayler-Hamilton 定理【实验⽬的】1.理解特征多项式的概念2.掌握Cayler-Hamilton 定理【实验要求】掌握⽣成Vandermonde 矩阵的vander 命令、求矩阵特征多项式系数的poly()命令、求矩阵范数的norm 命令及矩阵多项式运算的polyvalm 命令【实验内容】Cayler-Hamilton 定理是矩阵理论中的⼀个⽐较重要的定理,其内容为:若矩阵A 的特征多项式为1121)det()(+-++++=-=n n n n n a s a s a s a A sI s f Λ则有()0,f A =亦即11210n n n n a A a A a A a E -+++++=L假设矩阵A 为Vandermonde 矩阵,试验证其满⾜Cayler-Hamilton 定理。
【实验⽅案】Matlab 提供了求取矩阵特征多项式系数的函数poly(),但是poly()函数会产⽣⼀定的误差,⽽该误差在矩阵多项式求解中可能导致了巨⼤的误差,从⽽得出错误的结论。
在实际应⽤中还有其他简单的数值⽅法可以精确地求出矩阵的特征多项式系数。
例如,下⾯给出的Fadeev-Fadeeva 递推算法也可以求出矩阵的特征多项式。
()1111,1,2,...,,,2,...,kk k k k c tr AR k n k R I R AR c I k n--?=-=??==+=该算法⾸先给出⼀个单位矩阵I ,并将之赋给1R ,然后对每个k 的值分别求出特征多项式参数,并更新k R 矩阵,最终得出矩阵的特征多项式的系数k c 。
该算法可以直接由下⾯的Matlab 语句编写⼀个()1poly 函数实现:Function c=poly1(A) [nr,nc]=size(A);if nc==nr % 给出若为⽅阵,则⽤Fadeev-Fadeeva 算法求特征多项式 I=eye(nc); R=I; c=[1 zeros(1,nc)];for k=1:nc,c(k+1)=-1/k*trace(A*R);r=A*R+c(k+1)*I;endelseif (nr==1 \ nc==1) % 给出为向量时,构造矩阵A=A(isfinite(A));n=length(A) ; % 出去⾮数或⽆界的特征根c=[1 zeros(1,n)];for j=1:nc(2:(j+1))=c(2:(j+1))-A(j).*c(1:j);endelse % 参数有误则给出错误信息error (’Argument must be a vector or a square matrix.’)end.【实验过程】>> A = vander([1 2 3 4 5 6 7]);运⾏结果:A =1 1 1 1 1 1 164 32 16 8 4 2 1729 243 81 27 9 3 14096 1024 256 64 16 4 115625 3125 625 125 25 5 146656 7776 1296 216 36 6 1117649 16807 2401 343 49 7 1>> A运⾏结果:aa1 =+009 *如调⽤新的poly1()函数,则可以得出如下的精确结果。
线性代数在人力资源管理中的应用案例研究
线性代数在人力资源管理中的应用案例研究人力资源管理是组织中至关重要的一个部门,旨在通过合理的人员配置和科学的管理方法提高组织的整体运营效率和员工满意度。
而线性代数作为一门数学学科,也在人力资源管理中发挥了重要的作用。
本文将通过介绍几个应用案例,探讨线性代数在人力资源管理中的具体应用。
案例一:绩效评估与线性变换绩效评估是人力资源管理中的重要环节,通过对员工绩效进行评估,可以对员工的工作质量和能力进行客观的量化分析。
而线性代数中的线性变换可以帮助我们进行综合评估。
假设我们有一组评估指标(如工作态度、工作表现、学习能力等),我们可以将这些指标构建成一个向量。
然后通过线性变换,将这个向量映射到一个新的向量空间,这个新的向量可以代表员工的整体表现。
通过对新的向量进行分析,可以更全面、客观地评估员工的工作绩效。
案例二:组织结构与矩阵运算组织结构是人力资源管理中的重要组成部分,良好的组织结构可以帮助组织实现高效的协同工作和资源优化。
而线性代数中的矩阵运算可以帮助我们对组织结构进行分析和优化。
例如,我们可以将组织中的各个部门和岗位抽象成一个矩阵,其中矩阵的行代表部门,矩阵的列代表岗位。
通过对这个矩阵进行转置、相乘等运算,可以得到员工间的协作关系和沟通路径。
基于这些信息,我们可以优化组织结构,提高协同效率,并避免资源的重复浪费。
案例三:招聘与特征提取招聘是人力资源管理中的一项重要任务,找到合适的人才对于组织的发展至关重要。
而线性代数中的特征提取方法可以帮助我们在众多应聘者中挑选出最适合的候选人。
基于特征提取的方法,我们可以将应聘者的各项背景信息(如教育背景、工作经验等)抽象成一个特征向量。
然后通过线性代数中的特征值分析和特征向量归一化等方法,可以提取出最重要的特征,从而筛选出最符合组织需求的候选人。
结语通过以上几个案例,我们可以看到线性代数在人力资源管理中的应用是广泛而且重要的。
它能够帮助我们进行绩效评估、优化组织结构以及招聘合适的候选人。
线性代数应用案例
线性代数应用案例之一:传球游戏(难度指数:**)
5个小朋友玩传球游戏。游戏规则:任何两个人之间都可以相互传球,但自己不能
给自己传。请用Matlab完成如下操作:
(1)把5个小朋友看成5个节点,构造这5个节点的邻接矩阵A;
(2)假设从第一个小朋友开始传球,经过四次传球后,球又回到第一个小朋友手
5
35
5
35
55
50
G
9
4
17
25
2
39
25
H
6
5
16
10
10
35
10
I
8
2
12
0
0
6
20
线性代数应用案例之六:药方配制问题
(1)某医院要买这7种特效药,但药厂的第3号药和第6号特效药已经卖完,请问能
否用其他特效药配制出这两种脱销的药品;
(2)现在该医院想用这9种草药配制三种新的特效药,表2中给出新药所需的成分
(1)根据数据矩阵画出字母的形状;
(2)取 =
1 0.25
作为变换矩阵对进行变换,并画出变换后的图形,和(1)
0
1
做个比较。
线性代数应用案例之四:交通流量分析(难度指数:***)
某城市有如图所示的9节点交通图,每一条道路都是单行道,图中数字表示某一个时段
该路段的机动车流量。若针对每一个十字路口,进入和离开的车辆数相等。请计算每两
每年有5%的市区居民搬到郊区,而有15%的郊区居民搬到市区。若开始有
700000人口居住在市区,300000人口居住在郊区,请分析:
(1)10年后市区和郊区的人口各是多少?
(2)30年后、50年后市区和郊区的人口各是多少?
线性代数在金融领域的应用 案例解析
线性代数在金融领域的应用案例解析在金融领域中,线性代数是一种强大的工具,它可以用于解决多个重要问题,如投资组合优化、风险管理和金融衍生品定价等。
本文将通过案例解析的方式,探讨线性代数在金融领域中的实际应用。
案例一:投资组合优化投资组合优化是金融领域中的一项重要任务,其目标是在给定的一组资产中,寻找最优的投资组合,以实现投资者的风险和收益要求。
线性代数为解决这个问题提供了有效的工具。
假设我们有n个资产,每个资产有其预期收益率和风险。
我们可以将这些信息表示为一个n维向量,其中每个元素代表一个资产的收益率。
此外,我们还可以通过协方差矩阵来表示资产之间的相关性。
协方差矩阵是一个n×n的对称矩阵,其中每个元素给出了两个资产之间的协方差。
利用线性代数的方法,我们可以在给定收益率和风险约束的情况下,通过优化问题求解技术,找到最优的投资组合。
具体而言,我们可以通过最小化一个标准差的目标函数,同时满足给定的收益率要求,来求解该优化问题。
这是一个线性规划问题,可以通过矩阵乘法和线性方程组求解方法得到最优解。
案例二:风险管理风险管理在金融领域中扮演着重要的角色。
线性代数为风险管理提供了强大的工具,其中之一就是主成分分析(PCA)。
主成分分析是一种通过线性变换将一组可能存在相关性的变量转化为一组无关的变量的技术。
在风险管理中,我们可以将这一技术应用于股票收益率的分析。
假设我们有m只股票,我们可以将它们的收益率表示为一个m维向量。
通过PCA,我们可以找到一组新的变量,其中每个变量都是原始变量的线性组合,且彼此之间相互无关。
通过PCA,我们可以降低数据的维度,并且保留大部分的信息。
这对于风险管理非常有用,因为它能够帮助我们识别主要的风险因素,并提供更有效的投资决策。
案例三:金融衍生品定价金融衍生品是金融市场中的一种重要工具,其定价是金融领域的核心问题之一。
线性代数为金融衍生品的定价提供了强有力的数学工具,其中之一就是离散时间期权定价模型。
线性代数应用案例
线性代数应用案例线性代数是数学中的一个重要分支,它在各个领域都有着重要的应用。
从最基础的向量运算到高级的矩阵理论,线性代数贯穿于整个数学体系,并且在物理、工程、计算机科学等领域中有着广泛的应用。
本文将通过几个实际案例,展示线性代数在不同领域的应用。
案例一,图像处理中的线性代数应用。
在图像处理领域,线性代数有着重要的应用。
例如,图像可以表示为一个矩阵,其中每个元素代表一个像素的数值。
通过对这个矩阵进行线性变换,可以实现图像的旋转、缩放、平移等操作。
此外,线性代数还可以用于图像的压缩和去噪,通过对图像矩阵进行特定的变换,可以实现对图像信息的提取和优化。
案例二,机器学习中的线性代数应用。
在机器学习领域,线性代数是必不可少的工具。
例如,在回归分析中,线性代数可以用来解决最小二乘法的问题,通过对数据矩阵进行变换,可以得到最优的回归系数。
此外,线性代数还可以用于主成分分析、奇异值分解等高级机器学习算法中,帮助我们理解和处理复杂的数据结构。
案例三,通信系统中的线性代数应用。
在通信系统中,线性代数也有着重要的应用。
例如,在信号处理中,线性代数可以用来描述信号的传输和变换过程,通过对信号矩阵进行运算,可以实现信号的编解码、调制解调等操作。
此外,线性代数还可以用于设计和分析通信系统中的滤波器、编码器等模块,帮助我们优化通信系统的性能。
通过上述案例的介绍,我们可以看到线性代数在不同领域都有着重要的应用。
它不仅可以帮助我们理解和解决实际问题,还可以为各种工程技术提供强大的数学工具支持。
因此,对线性代数的深入理解和应用将对我们的工作和研究产生重要的影响。
希望本文所介绍的案例能够帮助读者更好地理解线性代数的应用,并激发大家对这一领域的兴趣和研究。
《线性代数》课程思政
《线性代数》课程思政典型教学案例(一)1. 案例名称“Matlab 被禁”事件的启示2. 结合知识点矩阵乘法3. 案例意义以2020年“Matlab 被禁”事件给我们中国社会大众敲响警钟——中国科技的发展更需要依赖于自身实力,未来国产替代进口刻不容缓。
此次事件让我们认识到我们不能将国家和企业的信息安全完全寄托于外国软件的商业道德与自律,加快研发自主可控软件是保证中国信息安全的重要手段。
使学生认识有关线性代数应用的科技发展现况与趋势,培养持续学习的习惯和勇于探索的创新精神,培育学生精益求精的大国工匠精神,激发学生科技报国的使命担当。
4.案例设计与实施(1)教学设计(1.1)总体思路课前要求学生观看教师在泛雅平台开设的湖南省一流本科建设课程《线性代数》在线开放课程视频,并且回答矩阵的乘法与数的乘法有何不同?是否满足交换律?可交换的条件是什么?这一系列问题环环相扣,层层递进,引导学生在回答问题链的过程中还原科学探索路径,并归纳提取抽象的定义和一些重要的结论。
课中内容导入:由国产片《哪吒之魔童降世》导入本章主题,对比国内外动画电影技术,简单概括矩阵相关理论在其中的应用,点出中国技术的快速发展,增强民族自豪感、激发奋斗激情。
同时,简单介绍5G 网络技术.5G 网络技术即第五代移动通信网络技术,其技术基础是极化码。
极化码看起来很复杂,但本质上还是一些矩阵的乘法,教师还可简要介绍人工智能技术以及民营企业之星“华为”的故事。
内容讲解:抓住“矩阵”这一根主线进行教学,从实际问题出发探索矩阵概念的形成、矩阵运算的定义,完成由具体问题到抽象数学符号语言的转化, 从中归纳处相应的数学本质。
在讲解矩阵乘法时介绍案例“Matlab 被禁”事件,强调科技报国和工匠精神。
课堂测验:采用学习通在线测试,检验学生课堂学习效果。
通过课后作业和思考题的形式复习巩固课堂所学知识点;设置在线问卷,了解学情。
(1.2)思政设计知识点精讲:矩阵的乘积:设()ij m s A a ⨯=矩阵,()ij s n B a ⨯=矩阵,即:课后111221222112s m m ms s a a a A a a a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭, 121222122111n n s s sn b b b b B b b b b b ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭, 则定义A 与B 的乘积是一个m n ⨯的矩阵()ij m n C c ⨯=,记作: ()ij m n AB C c ⨯==其中,1122ij i j i j is sj c a b a b a b =+++1(1,2,,;1,2,,).sik kj k a b i m j n ====∑ (ij c 等于A 第i 行的所有元素与B 的第j 列的对应元素乘积的和) 几点说明① 相乘条件: 左矩阵A 的列数等于右矩阵B 的行数;② 相乘方法:——乘积C 矩阵的元素ij c 等于左A 的第i 行与右B 的第j 列的对应元素乘积的和);③ 相乘结果:——乘积C 矩阵的行列数,分别取自左A 的行数,右B 的列数。
《线性代数》课程思政的案例及思考
2、提高教师素质:加强教师的政治素养和人文素养培训,使其具备将思政 教育融入专业课程中的能力。同时,可以邀请一些专家学者进行授课或讲座,为 教师提供更多的学习机会和交流平台。
3、学生需求:学生的个体差异和需求,有针对性地进行教学。同时,可以 增加一些互动环节和实践环节,让学生更好地参与到课程中来,提高学生的学习 积极性和主动性。
二、案例分析
1、案例一:数学之美
在《线性代数》课程中,矩阵是重要的概念之一。教师可以通过介绍一些有 趣的矩阵变换,如通过矩阵变换生成图像、文字等,让学生感受到数学之美。同 时,教师还可以引导学生思考这些变换背后的哲学意义,培养学生的审美意识和 创新思维。
2、案例二:逻辑思维与批判性 思维
在讲解线性方程组时,教师可以引导学生通过观察、归纳、推理等方式,自 主发现规律,从而培养学生的逻辑思维和批判性思维。同时,教师还可以通过一 些实际案例,让学生了解这些思维方式在解决实际问题中的应用,从而增强学生 的社会责任感和解决问题的能力。
1、深入挖掘思政教育元素。在深入理解线性代数课程内容的基础上,从课 程中挖掘出与思政教育相关的元素,如矩阵的行列式计算可以与国家的经济发展 起来,矩阵的初等变换可以与社会的变革起来等。
2、设计具有代表性的教学案例。根据挖掘出的思政教育元素,设计具有代 表性的教学案例。例如,我们可以设计一个关于中国高铁发展的案例,通过高铁 的运营数据来展示矩阵的计算和应用。
线性方程组是线性代数中的一个重要内容,它在实际生活中有着广泛的应用。 例如,在解决环境污染问题时,我们可以建立一个线性方程组来表示不同因素对 环境的影响,并通过求解这个方程组来找到解决问题的最优方案。
在这个案例中,教师可以首先介绍线性方程组的概念和求解方法。然后,通 过一个具体的例子,让学生理解线性方程组在解决问题中的应用。例如,假设我 们面临一个城市交通拥堵的问题,我们可以建立一个线性方程组来表示不同政策 对交通拥堵的影响,并通过求解这个方程组来找到最优的解决方案。
线性代数应用案例
行列式的应用案例1 大学生在饮食方面存在很多问题,多数大学生不重视吃早餐,日常饮食也没有规律,为了身体的健康就需要注意日常饮食中的营养。
大学生每天的配餐中需要摄入一定的蛋白质、脂肪和碳水化合物,下表给出了这三种食物提供的营养以及大学生的正常所需营养(它们的质量以适当的单位计量)。
试根据这个问题建立一个线性方程组,并通过求解方程组来确定每天需要摄入的上述三种食物的量。
解:设123,,x x x 分别为三种食物的摄入量,则由表中的数据可以列出下列方程组12323123365113337 1.1352347445x x x x x x x x ++=⎧⎪+=⎨⎪++=⎩ 利用matlab 可以求得 x =0.27722318361443 0.39192086163701 0.23323088049177案例2 一个土建师、一个电气师、一个机械师组成一个技术服务社。
假设在一段时间,每个人收入1元人民币需要支付给其他两人的服务费用以及每个人的实际收入如下表所示,问这段时间,每人的总收入是多少?(总收入=实际收入+支付服务费)解:设土建师、电气师、机械师的总收入分别是123,,x x x 元,根据题意,建立方程组1232133120.20.35000.10.47000.30.4600x x x x x x x x x --=⎧⎪--=⎨⎪--=⎩ 利用matlab 可以求得 x =1.0e+003 *1.25648414985591 1.44812680115274 1.55619596541787案例3医院营养师为病人配制的一份菜肴由蔬菜、鱼和肉松组成,这份菜肴需含1200cal 热量,30g 蛋白质和300mg 维生素c ,已知三种食物每100g 中的有关营养的含量如下表,试求所配菜肴中每种食物的数量。
解:设所配菜肴中蔬菜、鱼和肉松的数量分别为123,,x x x 百克,根据题意,建立方程组12312312360300600120039630906030300x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩利用matlab 可以求得 x =1.521739130434782.39130434782609 0.65217391304348矩阵的应用案例1 矩阵概念的引入 (1)线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的系数(,1,2,,),(1,2,,)i j j a i j n b j n ==按原来的位置构成一数表11121121222212n n n n nnn a a a b aa ab a a a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦该数表决定着上述方程组是否有解,以及如果有解,解是什么等问题,因而研究这个数表就很重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数案例Cayler-Hamilton 定理【实验目的】1.理解特征多项式的概念2.掌握Cayler-Hamilton 定理 【实验要求】掌握生成Vandermonde 矩阵的vander 命令、求矩阵特征多项式系数的poly()命令、求矩阵范数的norm 命令及矩阵多项式运算的polyvalm 命令 【实验内容】Cayler-Hamilton 定理是矩阵理论中的一个比较重要的定理,其内容为:若矩阵A 的特征多项式为1121)det()(+-++++=-=n n n n n a s a s a s a A sI s f则有()0,f A =亦即11210n n n n a A a A a A a E -+++++=假设矩阵A 为Vandermonde 矩阵,试验证其满足Cayler-Hamilton 定理。
【实验方案】Matlab 提供了求取矩阵特征多项式系数的函数poly(),但是poly()函数会产生一定的误差,而该误差在矩阵多项式求解中可能导致了巨大的误差,从而得出错误的结论。
在实际应用中还有其他简单的数值方法可以精确地求出矩阵的特征多项式系数。
例如,下面给出的Fadeev-Fadeeva 递推算法也可以求出矩阵的特征多项式。
()1111,1,2,...,,,2,...,kk k k k c tr AR k n k R I R AR c I k n--⎧=-=⎪⎨⎪==+=⎩该算法首先给出一个单位矩阵I ,并将之赋给1R ,然后对每个k 的值分别求出特征多项式参数,并更新k R 矩阵,最终得出矩阵的特征多项式的系数k c 。
该算法可以直接由下面的Matlab 语句编写一个()1poly 函数实现:Function c=poly1(A) [nr,nc]=size(A);if nc==nr % 给出若为方阵,则用Fadeev-Fadeeva 算法求特征多项式 I=eye(nc); R=I; c=[1 zeros(1,nc)];for k=1:nc,c(k+1)=-1/k*trace(A*R);r=A*R+c(k+1)*I;endelseif (nr==1 \ nc==1) % 给出为向量时,构造矩阵A=A(isfinite(A));n=length(A) ; % 出去非数或无界的特征根c=[1 zeros(1,n)];for j=1:nc(2:(j+1))=c(2:(j+1))-A(j).*c(1:j);endelse % 参数有误则给出错误信息error (’Argument must be a vector or a square matrix.’)end.【实验过程】>> A = vander([1 2 3 4 5 6 7]);运行结果:A =1 1 1 1 1 1 164 32 16 8 4 2 1729 243 81 27 9 3 14096 1024 256 64 16 4 115625 3125 625 125 25 5 146656 7776 1296 216 36 6 1117649 16807 2401 343 49 7 1>> A运行结果:aa1 =1.0e+009 *0.0000 -0.0000 -0.0002 0.0287 1.1589 -6.2505 -2.4223 0.0249如调用新的poly1()函数,则可以得出如下的精确结果。
>> aa1=poly1(A);b1=polyvalm(aa1,A);norm(B1)运行结果:ans =可见,由此得出的B矩阵就会完全等于0,故该矩阵满足Cayley-Hamilton定理。
小行星轨道问题【实验目的】1. 掌握线性方程组求解2. 加深对正交变换的理解3. 掌握Matlab 软件中的ezplot 、zplot 命令的区别和适用范围 【实验要求】掌握绘制隐函数曲线ezplot 命令和彗星状轨迹图comet 命令 【实验内容】天文学家要确定一颗小行星绕太阳运行的轨道,在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:9300万里)。
在五个不同的时间点对小行星作了观察,测得轨道上五个点的坐标数据如下:221234522210a x a xy a y a x a y +++++=试确定椭圆的方程并在轨道的平面内以太阳为原点绘出椭圆曲线。
并应用坐标平移变换和正交变换将上例题中的二次曲线方程化为标准方程,绘椭圆轨道图,完成小行星运行的动态模拟。
【实验方案】(1)二次曲线方程中有五个待定系数:1a ,2a ,3a ,4a ,5a 。
将观察所得的五个点坐标数据(,)j j x y ,(1,2,,5)j =代入二次曲线方程得到关于1a ,2a ,3a ,4a ,5a 的线性方程组2211211314151221222232425222132333343532214244344454221525535455522212221222122212221a x a x y a y a x a y a x a x y a y a x a y a x a x y a y a x a y a x a x y a y a x a y a x a x y a y a x a y ⎧++++=-⎪++++=-⎪⎪++++=-⎨⎪++++=-⎪⎪++++=-⎩ 求解该方程组得椭圆方程的系数:[1a ,2a ,3a ,4a ,5a ] 。
(2)将椭圆的一般方程写成矩阵形式[][]412345210a a a x xy x y a a a y ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦通过变量变换(平移变换和旋转变换)化为椭圆标准方程。
首先化去一次项,然后将二次型化为标准型。
为了用平移变换消去一次项,令0x x ξ=+,0y y η=+(0x ,0y 待定),代入方程整理,得[][][]041212343450220x a a a a a F aa a a a y ξξηξηξηη⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ 其中,22102003040502221F a x a x y a y a x a y =+++++。
要化简消去一次项,只须选择0x ,0y 使满足二阶线性方程组041234500x a a a a a a y ⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 将0x ,0y 代入椭圆的一般方程,得[]12340a a F aa ξξηη⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦ 令1234a a C a a ⎡⎤=⎢⎥⎣⎦求出特征值12,λλ极其对应的特征向量12,αα。
可以取与12,αα等价的正交单位向量12,ββ。
构造正交矩阵[]12,Q ββ=,利用正交变换u Q v ξη⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦得椭圆的标准方程:22120u v F λλ++=。
椭圆长半轴和短半轴分别为a =,b =【实验过程】(1) MATLAB 程序如下:x=[4.5596;5.0816;5.5546;5.9636;6.2756]; y=[0.8145;1.3685;1.9895;2.6925;3.5265]; A=[x.^2,2*x.*y,y.^2,2*x,2*y]; b=-[1;1;1;1;1]; a=A\b;syms x y a1 a2 a3 a4 a5fun=a1*x^2+2*a2*x*y+a3*y^2+2*a4*x+2*a5*y+1; fun=subs(fun,a1,a(1)); fun=subs(fun,a2,a(2)); fun=subs(fun,a3,a(3)); fun=subs(fun,a4,a(4)); fun=subs(fun,a5,a(5));ezplot(fun,[-1.4,7,-1.5,6.5]) 运行结果: a=-0.3378 0.1892 -0.3818 0.4609 0.4104 结果表明:二次曲线方程中的各项系数为1a =-0.3378,2a =0.1892,3a =-0.3818,4a =0.4609,5a =0.4104。
-11234567x y-6085444263974395/18014398509481984 x 2+...+1 = 0图2-2小行星绕太阳运行的轨道(2) MATLAB 程序如下:x=[4.5596;5.0816;5.5546;5.9636;6.2756]; y=[0.8145;1.3685;1.9895;2.6925;3.5265]; A=[x.^2,2*x.*y,y.^2,2*x,2*y]; b=-[1;1;1;1;1]; ak=A\b;C=[ak(1),ak(2);ak(2),ak(3)]; X=-C\[ak(4);ak(5)];x0=X(1);y0=X(2);X=[X;1];D=[ak(1),ak(2),ak(4);ak(2),ak(3),ak(5);ak(4),ak(5),1]; F=X'*D*X; [U d]=eig(C);a=sqrt(-F/d(1,1));b=sqrt(-F/d(2,2)); t=2*pi*(0:5000)/5000; u=a*cos(t);v=b*sin(t); V=U*[u;v];x1=V(1,:)+x0;y1=V(2,:)+y0;plot(x1,y1,x,y,'*',x0,y0,'rO'),hold on x2=[x1,x1,x1];y2=[y1,y1,y1]; comet(x2,y2) disp([x0,y0]) disp([a,b])-2-10123456图2-3 椭圆轨道图运行结果:2.7213 2.4234 2.4299 4.3799。
结果表明:椭圆标准方程为:222214.3799 2.4299x y +=。
矩阵相似变换在控制理论中的应用【实验目的】1.掌握矩阵的相似变换2.利用矩阵相似变换方法,将控制理论中一般的状态方程变换成某种特殊的形式,以便于更好地进行系统的性质分析3.掌握控制系统的可控标准型、可观察标准型和Jordan 标准型 【实验要求】掌握Matlab 软件中有关相似变换的命令 【实验内容】给出系统的相似变换的概念,介绍基于矩阵相似变换的各种标准及变换方法,并用MATLAB 编程实现。
试求出下面系统的可控标准型:430137130113113110x x ---⎡⎤⎢⎥----⎢⎥=⎢⎥---⎢⎥----⎣⎦+014716u ⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,[]00120y x =并求该状态方程模型的可观测标准型以及Jordan 标准型。
【实验方案】1. 线性系统的相似变换假设存在一个非奇异矩阵T ,且定义了 一个新的状态变量z 使得1z T x -=,这样关于新状态变量z 的状态方程模型可以写成()()()()()()t t t t z t A z t B u t y t C z t D u t =+⎧⎨=+⎩ ,且1(0)(0)Z T x -=式中1t A T AT -=,1t B T B -=,1t C C T -=,t D D =。