20余种液位测量方法分析比较
20种液位计工作原理及常见故障分析
20种液位计工作原理及常见故障分析3、钢带液位计它是利用力学平衡原理设计制作的。
当液位改变时,原有的力学平衡在浮子受浮力的扰动下,将通过钢带的移动达到新的平衡。
液位检测装置(浮子)根据液位的情况带动钢带移动,位移传动系统通过钢带的移动策动传动销转动,进而作用于计数器来显示液位的情况。
4、雷达液位计雷达液位计是基于时间行程原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。
探头发出高频脉冲并沿缆式探头传播,当脉冲遇到物料表面时反射回来被仪表内的接收器接收,并将距离信号转化为物位信号。
5、磁致伸缩液位计磁致伸缩液位计的传感器工作时,传感器的电路部分将在波导丝上激励出脉冲电流,该电流沿波导丝传播时会在波导丝的周围产生脉冲电流磁场。
在磁致伸缩液位计的传感器测杆外配有一浮子,此浮子可以沿测杆随液位的变化而上下移动。
在浮子内部有一组永久磁环。
当脉冲电流磁场与浮子产生的磁环磁场相遇时,浮子周围的磁场发生改变从而使得由磁致伸缩材料做成的波导丝在浮子所在的位置产生一个扭转波脉冲,这个脉冲以固定的速度沿波导丝传回并由检出机构检出。
通过测量脉冲电流与扭转波的时间差可以精确地确定浮子所在的位置,即液面的位置。
6、射频导纳液位计射频导纳料位仪由传感器和控制仪表组成,传感器可采用棒式、同轴或缆式探极安装于仓顶。
传感器中的脉冲卡可以把物位变化转换为脉冲信号送给控制仪表,控制仪表经运算处理后转换为工程量显示出来,从而实现了物位的连续测量。
7、音叉物位计音叉式物位控制器的工作原理是通过安装在音叉基座上的一对压电晶体使音叉在一定共振频率下振动。
当音叉与被测介质相接触时,音叉的频率和振幅将改变,这些变化由智能电路来进行检测,处理并将之转换为一个开关信号。
8、玻璃板液位计(玻璃管液位计)玻璃板式液位计是通过法兰与容器连接构成连通器,透过玻璃板可直接读得容器内液位的高度。
9、压力液位变送器压力式液位计采用静压测量原理,当液位变送器投入到被测液体中某一深度时,传感器迎液面受到的压力的同时,通过导气不锈钢将液体的压力引入到传感器的正压腔,再将液面上的大气压Po 与传感器的负压腔相连,以抵消传感器背面的Po ,使传感器测得压力为:ρ .g.H ,通过测取压力P ,可以得到液位深度。
液位测量方法
液位测量方法嗨,朋友!你有没有想过,在那些大大的油罐里、高高的水塔里,人们是怎么知道里面的液体到底有多高的呢?这就涉及到液位测量方法啦,这可是个超级有趣又相当实用的事儿呢。
我有个朋友叫小李,他在一家炼油厂工作。
有一次我去他那儿玩,看到那些巨大的油罐,我就好奇地问他:“小李啊,你咋知道这油罐里的油有多少呢?”他就笑着跟我说:“这就得靠液位测量呀。
”液位测量的方法有好多呢。
先来说说直接测量法吧。
这就像是拿把尺子直接去量东西一样直白。
在一些小型的、比较敞口的容器里,你就可以用这种简单粗暴的方法。
比如说,你家有个小水缸,你想知道水有多少,直接拿根带刻度的棍子插进去,看看水淹到哪儿了,这不就知道液位了嘛。
可是,这种方法在那些大型的、封闭的容器里就不好使了。
你能想象拿根大长棍子去捅油罐吗?那可太危险啦!这时候呢,就有了另一种方法——静压式液位测量。
这就好比你站在水里,水越深,你感受到的压力就越大。
在容器里的液体也是这样的。
在容器底部装一个压力传感器,液体的压力就会作用在这个传感器上。
根据物理学里的公式,就可以算出液位的高度啦。
我记得小李跟我说,他们厂里有些地方就用这种方法。
不过呢,这种方法也有小缺点。
要是液体的密度有变化,或者容器不是那种规规矩矩的形状,那测量结果可能就有点偏差了。
就像你本来以为按一个标准身材做的衣服能适合所有人,结果来了个身材特别奇特的,那衣服肯定不合身啦。
还有一种液位测量方法叫超声波液位测量。
这个可就有点高科技的感觉了。
它就像蝙蝠探路一样,发射超声波出去,超声波碰到液面就反射回来。
通过测量超声波往返的时间,就能算出液位的高度。
我当时就跟小李打趣说:“这是不是就像跟液面打电话,看看信号往返的时间啊?”小李被我逗得哈哈大笑。
这种方法的好处是不用接触液体,比较安全,而且精度也还不错。
但是呢,要是容器里有很多干扰的东西,比如说雾气、灰尘啥的,就可能影响超声波的传播,就像你打电话的时候有很多杂音,听不清对方说啥一样。
储油罐液位测量方法分析
储油罐液位测量方法分析摘要:介绍了几种常用的油罐液位测量技术,对这几种油罐测量技术进行了比较。
结果表明,每种测量技术都有不同的适用范围,现场应根据油品类型和实际情况,选用合适的测量技术。
关键词:油罐液位测量方法分析1 引言储油罐液位测量主要是对油品的液位、体积和重量等参数进行直接或间接测量。
早期液位测量大多采用机械原理,近年来随着电子技术的应用,逐步向机电一体化方向发展,并且发展了许多新的测量原理,在传统原理中也渗透了电子技术及微机技术,结构上和功能上都有了很大的提高。
随着油罐液位测量技术的不断发展,测量方法和测量仪表类型也随之增多。
2 储油罐液位测量技术现状目前国内外在液位测量方面采用的技术和产品很多,传统的液位传感器按其采用的测量技术及使用方法已经多达十余种,比较实用的油罐液位测量技术和方法有人工检尺、浮体式液位测量仪表、伺服式液位计、雷达液位计、静压式液位测量法以及超声波液位计。
2.1人工检尺人工检尺这种测量方法可作为其它液位计性能校验的工具之一。
即采用带有重锤的米制钢带卷尺或者有刻度的标尺计量,手工记录读数,人工查表换算,最后得到油量数据。
这种方法不仅劳动强度大,同时存在不安全因素。
人工检尺的方法液位测量一般有±2mm的人为误差。
2.2浮体式液位测量仪表浮体式液位测量仪表分为浮筒式与浮子式。
浮筒式液位计是在滑轮组上用钢丝绳一端挂浮球,另一端挂重锤,通过浮球与重锤的运动距离达到液位测量的目的。
其缺点是钢丝绳与滑轮间存在滑动摩擦力,回位误差较大,特别是在钢丝绳和滑轮生锈时,回位误差更大,甚至无法测量。
在浮子式液位计中钢带浮子式液位计在原理及使用方面更为典型,钢带浮子式液位计是一种最简单的液位测量装置,由一根不锈钢管和一个空心球组成。
不锈钢管内部装有若干个干簧继电器,空心球内装有一块永久磁铁,当空心球随着液位上下运动时,空心球的运动被干簧继电器转换为相应的液位。
20世纪60年代到80年代初期,开始研制和使用各种钢带浮子式液位计。
20余种液位测量方法分析比较
20余种液位测量方法分析比较物位包括液位和料位两类。
液位又包括液位信号器和连续液位测量两种。
液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。
连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。
文中对20余种连续液位测量方法进行比较分析。
1、玻璃管法、玻璃板法、双色水位法、人工检尺法玻璃管法:该方法利用连通器原理工作,如图1—1所示[1]。
图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。
液位直接从指示标度尺读出。
玻璃板法:玻璃板可通过连通器安装,也可在容器壁上开孔安装,并可串联几段玻璃板以增大量程。
液位数值直接从玻璃板刻度尺读出。
双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,从而指示出水位[2]。
人工检尺法:该方法用于测量油罐液位。
测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。
根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高[3]。
以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。
2、吹气法、差压法、HTG法吹气法:该方法的工作原理如图2—1所示[4]。
图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。
因吹气管内压力近似等于液柱的静压力,故P=ρgH式中,ρ-液体密度;H-液位。
故由静压力P即可测量液位H。
吹气法适用于测量腐蚀性强、有悬浊物的液体,主要应用在测量精度要求不高的场合。
差压法:该方法的工作原理如图2-2所示[4]。
图中,1、2-阀门;3-差压变送器。
对于开口容器或常压容器,阀门1及气相引压管道可以省掉。
压力差与液位的关系为ΔP=P2-P1=ρgH式中:ΔP-变送器正、负压室压力差;P2、P1-引压管压力;H-液位。
差压变送器将压力差变换为4~20 mA的直流信号。
油罐中使用液位计的两种测量方法 液位计常见问题解决方法
油罐中使用液位计的两种测量方法液位计常见问题解决方法1、间接测量法:利用传感元件测出与液位有关的信号后,再利用电量的转换得到所测液位仪。
例如:某油库某号罐区所使用的差压式液位仪就是测量液体在不同高度所产生的压力差,然后利用计算机通过密度换算,温度补偿等得到液位值。
再比如光导液位仪表是利用光电原理从与浮子罐内浮子相连的信息码带上读取液位编码信息,然后通过二次表翻译成液位值。
此种测量方法较为多而杂,成本高,系统误差大,但可以大大降低劳动强度,能有效适时的避开溢罐等安全事故的发生,简单实现储罐区自动化管理。
2、直接测量:人工测量法是利用计量工具直接测取液位,不需要任何中心转换。
例如,石油化工储运系统用的人工量油尺,浮子钢带式直读液位表(如读取光导表一次表刻度值),磁性液位计,磁翻版液位计等等。
这种测量方法直观、可信度高、使用简单,并且造价低,但人为读数误差较大。
目前在多数石化企业人工检尺仍是测量、掌控液位的紧要方法,并且常常作为标定其他仪表的紧要参考。
其实油库油罐的液位,并不特别紧要,用户实际要了解的并不是液位,而是通过测量液位来了解油罐中油品的实际数量(即吨数),从而防止满溢。
由此分析接受差压法来测液位(实际为吨数)也不失为一个好的选择。
磁翻板和其他任何仪表一样,在使用中都会显现一些这样或那样的情况,今日我们就讲讲当显现假液位怎么办?磁翻板液位计在长期的使用中简单显现假液位的现象,给用户带来了几大的麻烦,造成磁翻板液位计显现假液位的原因有以下几种:1、首先确定液相、气相都是通的!2、用一块磁铁,沿其表面扫一下全程,你即可以体会到会修正好。
3、假如是安全液体,先把液相放掉,执行操作2;4、假如气相的蒸汽压较大,关闭气相伐,将管中液体压回贮罐,执行2,操作。
顶装式磁翻板液位计适用于测量各种不便于侧面安装液位计的容器,特别是地下贮槽内的液位测量。
广泛适用于石油、化工、冶金、电力、轻工及医药等行业和部门。
5、外界干扰信号过大,造成电路得到的是假的信号,不是实际测量的信号;6、液位计内部的波导丝故障,比如松动,密封不好进水生锈等,造成信号失真;7、波导丝安装不正确,信号传递失真;8、信号处理电路故障。
液位的测量原理
液位的测量原理
液位的测量原理通常可以分为以下几种常用的方法:
1. 浮子法:利用浮子在液面上漂浮或下沉的原理来测量液位。
浮子通常与液位计相连,当液位升高时,浮子随之上升;当液位降低时,浮子相应下沉。
通过观察浮子所处的位置,可以确定液位的高低。
2. 压力法:利用液体的静压力与液面高度之间的关系来测量液位。
通过将一个管道的一端浸没于液体中,并将另一端接入压力传感器,液体的压力可以通过传感器转化为电信号,从而测量液位的高度。
3. 振动法:利用液面导致振动频率改变的原理来测量液位。
传感器通常会产生特定频率的振动,当振动波传播到液体时,液体的密度改变会导致振动频率的改变。
通过测量传感器接收到的反射信号的频率,可以确定液位的高低。
4. 电容法:利用液体与电极之间的电容变化来测量液位。
电极可安装在液体表面或容器壁上,当液位改变时,液体与电极之间的电容会发生变化。
通过测量电极之间的电容值,可以确定液位的高低。
以上是几种常见的液位测量原理,不同的应用场景会选择不同的测量方法来实现液位的准确测量。
液氮液位测量方法
液氮液位测量方法1. 液氮液位测量方法的一种常用方式是超声波液位测量。
超声波传感器通过发射超声波脉冲并接收反射回来的信号来测量液氮液面的位置。
2. 另一种液氮液位测量方法是雷达液位测量,通过雷达波束的发射和接收来确定液氮液面的位置,适用于长距离和艰苦环境。
3. 漂浮球液位计是一种简单而有效的液氮液位测量方法,通过测量漂浮球的位置来确定液位高度。
4. 压力变送器液位计利用液氮液位对压力的变化进行测量,通过压力传感器转换为电信号,从而获得液位信息。
5. 震荡棒液位计是一种适用于液氮液位测量的方法,通过观察震荡棒的震动频率和振动来确定液位高度。
6. 毛细管液位计利用毛细管在液体表面上的液层高度与管内压力之间的关系进行液位测量,适用于低温液氮。
7. 液位开关是一种简单的液氮液位测量方法,适用于对液位高度进行开关控制的场合。
8. 导电液位探头通过测量液体的电导率来确定液位的高度,适用于液氮液位的测量。
9. 液位计总线系统通过数字信号传输液位信息,适用于多点、多种类型的液位测量。
10. 振弦式液位计通过观察振弦的频率变化来确定液体的液位高度。
11. 毫米波液位计通过毫米波技术测量液体的液位高度,适用于大部分液氮液位测量。
12. 看板液位计是一种直观读取液位情况的液位测量方法,适用于现场操作的观测需求。
13. 激光液位测量系统通过激光束的反射来测量液体液位高度,适用于液氮液位的非接触式测量。
14. 液位雷达适用于高温、高压和腐蚀性环境下的液氮液位测量,通过雷达波束的测量来确定液面位置。
15. 液位阀液位计是一种适用于液氮液位测量的方式,通过液位阀控制液位高度并进行测量。
16. 脉冲波液位计通过发送脉冲波并接收反射信号来测量液位高度,适用于液氮液位测量。
17. 液位图形显示系统通过电子屏幕实时显示液位信息,适用于需要远程监控的液氮液位测量。
18. V型液位计是一种通过测量流经液体时的压力来测量液位高度的方法。
19. 液位比例系统是一种通过液位高度比例来进行液位测量的系统,适用于多种液位体积的测量。
21种液位计工作原理及常见故障分析
21种液位计工作原理及常见故障分析液位计是用来测量容器内液体或粉状物料的液位或固位高度的仪器。
液位计的工作原理有许多种,下面将介绍其中的21种,并对常见故障进行分析。
液位计的工作原理如下:1.气动液位计:利用气体的压力变化来测量液位的高度,通常包括闭式气体液位计和开式气体液位计。
2.泡沫液位计:通过酒精和表面活性剂的混合物,将液位上升到观测设备。
当液位上升时,显示设备显示气泡的数量。
3.振动液位计:通过发射声波或机械振动,并测量液体反射或吸收声波或振动的时间来测量液位高度。
4.磁性液位计:利用磁性浮子内部的金属块与磁力耦合,来测量液位高度。
5.水密液面计:通过膨胀传感器和一个浮球,来测量液位的高度。
6.启闭器液位计:利用微动开关或霍尔传感器来测量液位的高度。
7.固体微波液位计:通过微波辐射来测量液位的高度。
8.麦克风液位计:利用液体池中的声音反射来测量液位的高度。
9.指针式液位计:通过一个浮子连接到一根细长的杆,杆上有一个指针,指针随液位的上升和下降而移动,来测量液位的高度。
10.螺旋杆液位计:通过一个螺旋杆连接到一个浮子,刻度板上有数字或刻度,通过浮子的上升和下降来测量液位的高度。
11.滴答液位计:利用一个滴落的液滴,通过计时器和亮度传感器来测量液位的高度。
12.摆锤液位计:利用一个摆锤连接到一个杆,杆上有一个指示器,摆锤的运动在液位的上升和下降时移动指示器,来测量液位的高度。
13.光纤液位计:通过纤维光束的传输和反射来测量液位的高度。
14.阻抗液位计:利用液体与电极之间的电容变化来测量液位的高度。
15.压力液位计:利用液体的压力变化,通过压力传感器来测量液位的高度。
16.微分压力液位计:利用垂直管道两侧的液位压力差来测量液位的高度。
17.电导率液位计:利用液体的电导率变化来测量液位的高度。
18.导热液位计:利用液体与固体导热系数之间的差异来测量液位的高度。
19.热电阻液位计:利用液体的温度变化来测量液位的高度。
20种液位计工作原理及常见故障分析
20种液位计工作原理及常见故障分析液位计是一种用于测量液体或固体物料的高度或液位的仪器。
根据不同的工作原理,液位计可以分为多种类型。
以下是常见的液位计工作原理及常见故障分析:1. 浮子式液位计:通过浮子的浮沉来测量液位,常见故障包括浮子卡住、浮子磨损、浮子漏气等。
2. 静压式液位计:利用液体的静压力来测量液位,常见故障包括压力传感器故障、管路堵塞、液体泄漏等。
3. 雷达式液位计:利用雷达波的反射时间来测量液位,常见故障包括天线故障、信号干扰、介质变化等。
4. 超声波液位计:利用超声波的传播时间来测量液位,常见故障包括传感器故障、信号干扰、介质变化等。
5. 电容式液位计:利用电容的变化来测量液位,常见故障包括电容传感器故障、电路故障、介质变化等。
6. 振弦式液位计:利用振弦的频率变化来测量液位,常见故障包括振弦破裂、振弦松动、信号干扰等。
7. 磁翻板液位计:通过磁翻板的翻转来测量液位,常见故障包括磁翻板卡住、磁性材料脱落、磁力变化等。
8. 导纳式液位计:利用液体的导纳变化来测量液位,常见故障包括电极腐蚀、电路故障、介质变化等。
9. 阻抗式液位计:利用液体的阻抗变化来测量液位,常见故障包括电极腐蚀、电路故障、介质变化等。
10. 压阻式液位计:利用液体的压阻变化来测量液位,常见故障包括压阻传感器故障、管路堵塞、介质变化等。
11. 振荡式液位计:利用液体的振荡频率变化来测量液位,常见故障包括振荡器故障、信号干扰、介质变化等。
12. 电阻式液位计:利用液体的电阻变化来测量液位,常见故障包括电极腐蚀、电路故障、介质变化等。
13. 毛细管式液位计:利用毛细管的液位上升高度来测量液位,常见故障包括毛细管堵塞、液体泄漏、液面扩散等。
14. 液位开关:通过液位的高低来触发开关,常见故障包括开关损坏、接触不良、液体泄漏等。
15. 悬臂式液位计:通过悬臂的偏转来测量液位,常见故障包括悬臂断裂、悬臂松动、液体泄漏等。
16. 光电液位计:利用光电传感器的光强变化来测量液位,常见故障包括传感器故障、光源故障、液体浑浊等。
液位测量原理及其方法
液位测量原理及其方法液位测量是工业自动化领域中非常重要的一项技术,用于测量容器中液体的高度或深度。
液位测量的原理和方法有多种,下面将详细介绍几种常见的原理和方法。
1.水尺法:水尺法是一种直观、简单的液位测量方法。
通过在容器边缘固定一根透明的水尺,当液体升高时,液位也会随之上升,通过读取水尺上刻度来获得液体的高度。
这种方法适用于小容器和操作较简单的场景。
2.压力法:压力法利用液位所产生的静水压力来测量液位的高度。
在容器底部设置一个压力传感器,当液体的高度增加时,液体对传感器的压力也会增加。
通过测量传感器上的压力变化,可以确定液体的高度。
这种方法适用于连续液位测量,常用于大容器和高精度要求的场景。
3.浮子法:浮子法利用浮子的浮力来测量液位的高度。
常见的浮子有磁性浮子和浮子杆。
通过固定浮子在容器内并使其与表头相连,当浮子随着液位的升降而移动时,表头也会随之上下移动,通过读取表头上的刻度来确定液位的高度。
这种方法适用于中小容器和较低精度要求的场景。
4.音频法:音频法是通过液体对声波传播的速度和传播路径的改变来测量液位高度的方法。
将声波传感器固定在容器的顶部,当液体高度升高时,声波的传播路径和速度会发生变化,通过测量声波的时间差和传播路径的变化,可以确定液位的高度。
这种方法适用于易挥发、腐蚀性强或高温的液体测量。
5.毛细管法:毛细管法利用液体在毛细管中的上升高度与容器中液位的高度成正比的原理来测量液位。
通过将毛细管插入容器中,当液位升高时,液体会在毛细管中上升,通过测量液体在毛细管中的上升高度来确定液位的高度。
这种方法适用于小容器和较高精度要求的场景。
总结:液位测量原理和方法多种多样,选择适合的原理和方法主要根据具体的应用场景、液体性质、精度要求和经济性来决定。
在进行液位测量时,还应考虑液体的特性、环境条件和测量结果的可靠性,选用合适的传感器和仪表,并进行正确的校准和调试,以确保测量的准确性和可靠性。
液位测量的各种方法及其在CCPP锅炉液位测量中的应用
浅谈液位测量的各种方法及其在CCPP锅炉液位测量中的应用[摘要]液位测量广泛地应用于工业生产中,由于被测液位所在的容器不同,测量方法也很多。
根据工艺的需求,各种仪表按需分配,各显其能。
如:有的需要模拟量信号,有的需要开关量信号;有的需要远程信号,有的能在现场反映示值即可。
工作的几年中,我所接触到的最多的就是锅炉,而锅炉最重要的就是水位。
下面我简单介绍一下液位测量的各种方法及其在ccpp锅炉液位测量中的应用。
[关键词]液位测量锅炉 ccpp 各种方法中图分类号:td353 文献标识码:a 文章编号:1009-914x(2013)13-0272-02一、测量方法介绍彩色石英管液位计利用自然光在液体中折、反射原理,借助于红、绿片,在测量时,使液相显示绿色,气相显示为红色。
由于液气相显示反差大,指示鲜明清晰,所以对远距离操作和夜巡视更为有利。
因此被广泛用于石油、化工、电力、冶金等行业的各种透明液体容器和锅炉上,如水、汽油、液化气、液氨、丙烷、丙稀、芳烃、酸等油品和化工原料的液位测量。
同时对于两种不同介质密度的界面测量,可选用三色界面石英管液位计。
三色界面石英管液位计是利用浮力与比重差的原理而设计的,石英管中的小浮子悬浮于两种介质的分界部分,由于浮子呈黑色,上下部分液体颜色有异,所以显示醒目。
将一根吹气管插入至被测液体的最低面,使吹气管通入一定量的气体,吹气管中的压力与管口处液柱静压力相等。
g=ρ·g·h,用压力计测量吹气管上端压力,就可以测量液位。
假设液体的密度保持不变,则测量液位和测量管内的空气压力之间就存在着一种线性关系。
大气压力和测量管内的压力可以通过传感器卡上的绝对压力测量室同时进行测量。
液位就是通过两次信号之间的差异计算出来的。
这种测量方法可以防止测量室可能发生的零点漂移,从而确保测量结果的准确。
由于吹气式液位计将压力检测电移至顶部,其使用维修都很方便,很适合于地下储罐、深槽等场合。
液位计
2、光纤光路部分
• 光纤光路部分由光源5、光纤6、 等强度分束器7、两组光纤光路和 两个相应的光电检测单元10等组 成。 • 两组光纤分别安装在齿盘的上下 两边,每当齿盘转过一个齿,上 下光纤光路就被切数据一次,各 自产生一个相应的光脉冲信号。 • 由于两组光纤光路的光脉冲信号 在时间上有一个很小的相位差, 这样,就可辨别齿盘是顺时针转 动还是逆时针转动。
13
2013-8-4
物位检测方法及仪表
(1)正迁移
变送器的安装位置与容器的最低液位(H=0) 不在同一水平位置 正、负压室的压力分别为
P P气 Hg h1 g
P P气
正、负压室的压差为
P P P Hg h1 g
当被测液位H=0时,ΔP=h1ρg >0,从而使变送器在H=0时输 出电流大于4 mA;H=Hmax时,输出电流大于20 mA。
第三节 液位测量
• 在容器中液体介质的高低叫液位。测量液位的仪 表叫液位计。液位计为物位仪表的一种。 • 液位测量主要基于相界面两侧物质的物性差异或 液位改变时引起有关物理参数的变化。 一、浮力式液位仪表 • 利用液体浮力原理来测量液位的方法通常分为 两种类型: • 恒浮力式液位仪表,通过浮子随液位升降的位 移反映液位变化; • 变浮力式液位仪表,通过液面升降对浮筒所受 2013-8-4 浮力的改变反映液位。 1
2013-8-4
7
7
(二)浮沉式光纤液位计
• 浮沉式光纤液位计是一种复合型液位测量仪表, 由普通的浮沉式液位传感器和光信号检测系统组 成,主要包括机械转换、光纤电路和电子仪表电 路等三部分。
2013-8-4
8
8
1、机械转换部分
多种液位测量方法
20余种液位测量方法分析任开春,涂亚庆(后勤工程学院,重庆400016)[摘要]该文对磁致伸缩法、核辐射法、光纤传感器法和雷达法等20余种液位测量方法进行了分类归纳,并对各自的原理、特点等进行了较系统的比较分析。
[关键词]液位;测量方法;分析物位包括液位和料位两类。
液位又包括液位信号器和连续液位测量两种。
液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。
连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。
文中对20余种连续液位测量方法进行比较分析。
1 玻璃管法、玻璃板法、双色水位法、人工检尺法玻璃管法:该方法利用连通器原理工作,如图1—1所示[1]。
图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。
液位直接从指示标度尺读出。
玻璃板法:玻璃板可通过连通器安装,也可在容器壁上开孔安装,并可串联几段玻璃板以增大量程。
液位数值直接从玻璃板刻度尺读出。
双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,从而指示出水位[2]。
人工检尺法:该方法用于测量油罐液位。
测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。
根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高[3]。
以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。
2 吹气法、差压法、HTG法吹气法:该方法的工作原理如图2—1所示[4]。
图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。
因吹气管内压力近似等于液柱的静压力,故P=ρgH式中,ρ-液体密度;H-液位。
故由静压力P即可测量液位H。
吹气法适用于测量腐蚀性强、有悬浊物的液体,主要应用在测量精度要求不高的场合。
差压法:该方法的工作原理如图2-2所示[4]。
图中,1、2-阀门;3-差压变送器。
三种常用液位计优缺点分析 液位计常见问题解决方法
三种常用液位计优缺点分析液位计常见问题解决方法常规液位计中,差压式液位变送器、雷达液位计、磁致伸缩液位计、浮筒液位计等应用较为广泛,但它们因受自身测量原理影响,都存着确定的不足。
对几种液位计优缺点进行分析如下。
1、差压式液位变送器双法兰(或单法兰)差压式变送器是利用罐内液位更改时,液位产生的静压也随之变化的原理工作的。
优点:稳定性好,性价比高,不受罐内件影响。
缺点:需接触介质,受密度影响大,在毛细管过长时存在滞后。
2、雷达液位计雷达液位计分非接触式雷达和导波雷达两种,原理是液位计向液面发射超高频电磁脉冲(导波雷达沿钢缆、探棒),然后测量发射波和回波的时差,从而计算出液面高度。
导波雷达优点:不受温度、蒸汽、粉尘、泡沫等的影响。
缺点:以接触介质,对介电常数有要求,钢缆、探棒易挂料,钢缆可能脱落。
非接触式雷达优点:不接触介质。
缺点:对介电常数有要求,不适合汽化、带泡沫介质,对安装位置、法兰高度有限制。
3、磁致伸缩和浮筒液位计磁致伸缩液位计原理是利用发送器发送低电流脉冲信号,沿磁致伸缩线向下传输,产生环形磁场,当磁场碰到浮球时,和浮球内磁场产生扭应力脉冲,被接收器接收,依据脉冲发出到接收的时间差,计算出液位高度。
浮筒液位计是基于浮力原理,扭力管受到浮筒所产生的扭力矩时转过一个角度,变送器把这个角度转换成4~20mA信号,与被测量的液位成正比。
优点:精度高,可用于短间距。
缺点:接触介质,不适合黏稠介质,浮球易卡死,不能用于小密度,维护和修理费用高。
有关玻璃管液位计的技术参数介绍玻璃管液位计紧要适用于直接指示各种罐、塔、槽、箱等容器内介质液位的高度。
仪表结构简单,使用便利。
仪表上下阀门内装有安全钢珠,当玻璃因意外损坏时,钢珠在容器内压力的作用下自动密封,防止容器内液体外溢。
玻璃管液位计的主技术参数:测量范围:300~5000mm工作压力:—0.1MPa~1.6MPa工作温度:—20~180℃蒸汽夹套压力:1.0MPa蒸汽夹套接头:G1/2M外螺纹显示范围:法兰中心跟距L—2000mm过程连接:HG20592~20635—97 DN20~DN50接液材质:碳钢,不锈钢高碉硅玻璃管石英玻璃管钢珠自动封闭压力:≥0.2MPa排污阀:球阀,针形阀注:其它法兰标准(如GB、JB/T、HGJ、ANSI、DIN等)请用户在订货时注明。
测量液位的方法
测量液位的方法在工业领域中,要测量液位,有许多的方式和原理:1、浮球液位计是一种依靠浮力原理测量液位的方法。
通常是通过浮球与刻度尺配合的方式,使观测者能够直观读取液位的高度。
优点:能够快速、直观地读数;价格低廉;安装简便。
缺点:精度低;安装受容器形状结构的限制比较大;不适合用于腐蚀性强、有危险性的介质;无法实现远传和调节。
2、磁翻板液位计是靠安装在容器内部的磁力浮子,带动容器外部的磁力翻板翻转实现信号转换和液位显示。
优点:能够快速、直观地读数;价格较低;可实现远传和调节。
缺点:精度低;安装复杂;量程限制;安装体积比较大。
3、电容式液位传感器是利用电容两极板间电容值变化测量液面的高低。
优点:体积较小,容易实现远传和调节;适用于具有腐蚀性和高压介质。
缺点:介质和液面上部的介电常数必须保持恒定才能准确测量;测量范围受金属棒长度限制;对容器材质有较高的要求;被测介质具有导电性。
4、雷达液位计是通过探测自身发出的微波(波长很短的电磁波)被液面反射后的信息换算液/物面位置。
优点:可以测量压力容器内液位,可以忽略高温、高压、结垢和冷凝物的影响;精度较高;与介质无直接接触;耐腐蚀性强;可在真空环境中使用;安装简便。
缺点:价格昂贵;受容器几何结构和材料特性影响;容易受电磁波干扰。
5、超声波液位计是通过探测自身发出的超声波被液面反射后的信号换算液/物面位置的。
优点:与介质无直接接触;耐腐蚀性强;精度较高;安装简便。
缺点:价格比较昂贵;超声波受传输媒介的气体成分影响较大;受容器几何结构特性影响较大;不适用于有气泡或悬浮物的介质;容易受电磁波干扰。
6、气泡法是通过气源从容器底部向介质内充气。
供气系统内的吹气压力只有与容器底部的液体静压平衡时,气体才会从气管内进入容器形成气泡。
这时测量供气系统内的气压可换算出测量点的静压,进而得到液位值。
优点:耐腐蚀性强;能够测量高温介质。
缺点:维护费用较高,精度较低。
7、激光测量:激光类传感器基于光学检测原理,通过物体表面反射光线至接收器进行检测,其光斑较小且集中,易于安装、校准,灵活性好,可应用于散料或液位的连续或者限位报警等;但其不适合应用于透明液体(透明液体容易折射光线,导致光线无法反射至接收器),含泡沫或者蒸汽环境(无法穿透泡沫或者容易受到蒸汽干扰),波动性液体(容易造成误动作),振动环境等。
液位测试方法
20余种液位测量方法分析比较作者:发布时间:2008-9-5 22:31:21 阅读次数:3345物位包括液位和料位两类。
液位又包括液位信号器和连续液位测量两种。
液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。
连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。
文中对20余种连续液位测量方法进行比较分析。
1、玻璃管法、玻璃板法、双色水位法、人工检尺法玻璃管法:该方法利用连通器原理工作,如图1—1所示[1]。
图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。
液位直接从指示标度尺读出。
玻璃板法:玻璃板可通过连通器安装,也可在容器壁上开孔安装,并可串联几段玻璃板以增大量程。
液位数值直接从玻璃板刻度尺读出。
双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,从而指示出水位[2]。
人工检尺法:该方法用于测量油罐液位。
测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。
根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高[3]。
以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。
2、吹气法、差压法、HTG法吹气法:该方法的工作原理如图2—1所示[4]。
图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。
因吹气管内压力近似等于液柱的静压力,故P=ρgH式中,ρ-液体密度;H-液位。
故由静压力P即可测量液位H。
吹气法适用于测量腐蚀性强、有悬浊物的液体,主要应用在测量精度要求不高的场合。
差压法:该方法的工作原理如图2-2所示[4]。
图中,1、2-阀门;3-差压变送器。
对于开口容器或常压容器,阀门1及气相引压管道可以省掉。
压力差与液位的关系为ΔP=P2-P1=ρgH式中:ΔP-变送器正、负压室压力差;P2、P1-引压管压力;H-液位。
常用20种液位计工作原理
本文通过对常用20种液位计工作原理的解读,从各液位计安装使用及注意事项的分析,来判断液位计可能岀现的故障现象以及如何来处理,系统的了解液位计,从而为遇到工况能够在选择液位计上,做出准确的判断提供依据。
常见液位计种类1、磁翻板液位计2、浮球液位计3、钢带液位计4、雷达物位计5、磁致伸缩液位计6、射频导纳液位计7、音叉物位计8、玻璃板/玻璃管液位计9、静压式液位计10、压力液位变送器11、电容式液位计12、智能电浮筒液位计13、浮标液位计14、浮筒液位变送器15、电接点液位计16、磁敏双色电子液位计17、外测液位计18、静压式液位计19、超声波液位计20、差压式液位计(双法兰液位计)常用液位计的工作原理1、磁翻板液位计磁翻板液位计:又叫磁浮子液位计,磁翻柱液位计。
原理:连通器原理,根据浮力原理和磁性耦合作用研发而成,当被测容器中的液位升降时,浮子内的永久磁钢通过磁耦合传递到磁翻柱指示面板,使红白翻柱翻转180°,当液位上升时翻柱由白色转为红色,当液位下降时翻柱由红色转为白色,面板上红白交界处为容器内液位的实际高度,从而实现液位显示。
2、浮球液位计浮球液位计结构主要基于浮力和静磁场原理设计生产的。
带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。
浮球中的磁体和传感器(磁簧开关)作用,使串连入电路的元件(如定值电阻)的数量发生变化,进而使仪表电路系统的电学量发生改变。
也就是使磁性浮子位置的变化引起电学量的变化。
通过检测电学量的变化来反映容器内液位的情况。
3、钢带液位计它是利用力学平衡原理设计制作的。
当液位改变时,原有的力学平衡在浮子受浮力的扰动下,将通过钢带的移动达到新的平衡。
液位检测装置(浮子)根据液位的情况带动钢带移动,位移传动系统通过钢带的移动策动传动销转动,进而作用于计数器来显示液位的情况。
4、雷达液位计雷达液位计是基于时间行程原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。
液位计物位计种类和注意事项
液位计、物位计种类和注意事项◆◆◆本文通过对常用20种液位计工作原理的解读,从各液位计安装使用及注意事项的分析,来判断液位计可能出现的故障现象以及如何来处理,让仪表人系统的了解液位计,从而为遇到工况能够在选择液位计上,做出准确的判断提供依据。
常见液位计种类1、磁翻板液位计2、浮球液位计3、钢带液位计4、雷达物位计5、磁致伸缩液位计6、射频导纳液位计7、音叉物位计8、玻璃板/玻璃管液位计9、静压式液位计10、压力液位变送器11、电容式液位计12、智能电浮筒液位计13、浮标液位计14、浮筒液位变送器15、电接点液位计16、磁敏双色电子液位计17、外测液位计18、静压式液位计19、超声波液位计20、差压式液位计(双法兰液位计)常用液位计的工作原理1、磁翻板液位计磁翻板液位计:又叫磁浮子液位计,磁翻柱液位计。
原理:连通器原理,根据浮力原理和磁性耦合作用研发而成,当被测容器中的液位升降时,浮子内的永久磁钢通过磁耦合传递到磁翻柱指示面板,使红白翻柱翻转180°,当液位上升时翻柱由白色转为红色,当液位下降时翻柱由红色转为白色,面板上红白交界处为容器内液位的实际高度,从而实现液位显示。
2、浮球液位计浮球液位计结构主要基于浮力和静磁场原理设计生产的。
带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。
浮球中的磁体和传感器(磁簧开关)作用,使串连入电路的元件(如定值电阻)的数量发生变化,进而使仪表电路系统的电学量发生改变。
也就是使磁性浮子位置的变化引起电学量的变化。
通过检测电学量的变化来反映容器内液位的情况。
3、钢带液位计它是利用力学平衡原理设计制作的。
当液位改变时,原有的力学平衡在浮子受浮力的扰动下,将通过钢带的移动达到新的平衡。
液位检测装置(浮子)根据液位的情况带动钢带移动,位移传动系统通过钢带的移动策动传动销转动,进而作用于计数器来显示液位的情况。
4、雷达液位计雷达液位计是基于时间行程原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20余种液位测量方法分析比较20余种液位测量方法分析比较作者:发布时间:2009-5-5 11:34:14 阅读次数:985物位包括液位和料位两类。
液位又包括液位信号器和连续液位测量两种。
液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。
连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。
文中对20余种连续液位测量方法进行比较分析。
1、玻璃管法、玻璃板法、双色水位法、人工检尺法玻璃管法:该方法利用连通器原理工作,如图1—1所示[1]。
图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。
液位直接从指示标度尺读出。
玻璃板法:玻璃板可通过连通器安装,也可在容器壁上开孔安装,并可串联几段玻璃板以增大量程。
液位数值直接从玻璃板刻度尺读出。
双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,从而指示出水位[2]。
人工检尺法:该方法用于测量油罐液位。
测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。
根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高[3]。
以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。
2、吹气法、差压法、HTG法吹气法:该方法的工作原理如图2—1所示[4]。
图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。
因吹气管内压力近似等于液柱的静压力,故P=ρgH式中,ρ-液体密度;H-液位。
故由静压力P即可测量液位H。
吹气法适用于测量腐蚀性强、有悬浊物的液体,主要应用在测量精度要求不高的场合。
差压法:该方法的工作原理如图2-2所示[4]。
图中,1、2-阀门;3-差压变送器。
对于开口容器或常压容器,阀门1及气相引压管道可以省掉。
压力差与液位的关系为ΔP=P2-P1=ρgH式中:G-油品重量;Sav-油罐平均截面积;ρav-介于压力传感器P1、P2之间油品平均密度;g是重力加速度;H是压力传感器P1、P2之间的距离;h是油品高度;h0是压力传感器P1的高度。
RTD用于测量油品温度,以对测量数值进行温度补偿。
HTG测量系统价格较低,但液位测量精度较低,安装须在罐壁开孔。
以上3种方法都是利用液体的压力差来测量液位的。
3、浮子法、浮筒法、浮球法、伺服法、沉筒法浮子法:该方法采用浮子作为液位测量元件,并驱动编码盘或编码带等显示装置,或连接电子变送器以便远距离传输测量信号。
浮筒法:该方法采用中间带孔的磁浮筒作为液位敏感元件,如图3—1所示。
不锈钢套管从浮筒中间孔穿过,固定在罐顶和罐底之间。
液位变化带动空心磁浮筒(内藏永久磁铁)沿套管上下移动,并吸引套管内的磁铁沿套管内壁上下移动,二次仪表根据磁铁的移动量计算出液位。
浮球法:该方法利用杠杆原理工作,如图3—2所示[4]。
图中:1-浮球;2-连杆;3-转轴;4-平衡重;5-杠杆。
浮球跟随液位变化而绕转轴旋转,带动转轴上的指针转动,并与杠杆另一端的平衡重平衡,同时在刻度盘上指示出液位数值。
浮球法有内浮球式和外浮球式两种,如图3—2所示。
浮球法主要用于测量温度高、粘度大的液位,但量程较小。
伺服法:该方法采用波动积分电路,消除抖动、延长寿命、提高液位测量精度。
现代伺服液位仪的测量精度较高,已达到40 m量程内小于1 mm的精度,且一般都具有测量密度分布和平均密度的功能。
沉筒法:沉筒的位置随着液位的变化而变化,但其变化量并不与液位变化量相等。
在图3-3a中[4],液位与浮筒位置的关系如下:上式中:ΔH-液位变化量;C-弹簧的弹性系数;A-沉筒截面积;ρ液体密度;ΔX-沉筒位置变化量。
通常情况下,浮筒位置变化量ΔX远小于液位变化量ΔH。
图3—3b是扭力管式沉筒法原理[4],图中:1-沉筒;2-杠杆;3-扭力管;4-芯轴;5-外壳。
沉筒位置随液位变化而变化,在杠杆的作用下,扭力管芯轴的扭角发生变化,二次仪表根据扭角的变化量计算出液位。
以上5种方法都是利用浮力原理来工作的。
4、电容法、电阻法、电感法电容法:用于测量非导电液体的电容法原理如图4—1所示[4]。
图4—1中,电容由两块同心的圆柱面极板组成,其电容量CH为上式中:ε1-被测液体的相对介电常数;ε2-气相介质的相对介电常数;H-电容传感器浸入液体的深度(m);l-电容传感器垂直高度(m);R-内极板圆柱底面半径(m);r-外极板圆柱底面半径(m)。
由于R、r、l等都是固定值,只要利用ε1、ε2、CH就能计算出液位H。
图4—2是用于测量导电液体的电容法原理[4],其公式推导略。
电容式液位仪价格较低,安装容易,且可以应用于高温、高压的场合。
但电容液位仪测量重复精度较低,需定期维修和重新标定,工作寿命也不是很长。
电阻法:该方法[5]特别适用于导电液体的测量,敏感器件具有电阻特性,其电阻值随液位的变化而变化,故将电阻变化值传送给二次电路即得到液位。
探针式利用跟踪测量法来测量液位,以液位上升的情形为例来说明液位测量原理,当液位上升时,提起探针完全脱离液体,然后缓慢降低探针寻找液面,则探针与液体刚接触时的位置即与液位相对应。
探针式的特点是测量精度很高、控制电路复杂。
电感法:该方法[5]适用于导电液体的液位测量,特别是液态金属。
电感法的原理是,液位变化使得电感元件的自感、互感或导磁率发生变化,故将该变化量送往二次电路即可得到相应的液位数值。
电感法应用最为广泛的是高频液位计。
该液位计的测量原理是,频率调制信号通过射频电缆耦合到传输线传感器谐振回路,谐振回路的输出电压经过检波电路和射频电缆传送给低通滤波器,然后根据低通滤波器的输出电压控制调谐电路,产生新的振荡频率,直到传感器谐振电路处于完全谐振状态为止,则此时的振荡频率即与传感器的电感量相对应,从而与液位相对应。
以上3种方法都是利用液位传感器的电参数产生变化的方法来测量液位的。
5、磁致伸缩法、超声波法、调制型光学法、微波法磁致伸缩法:该方法用于测量油罐液位的原理如图5—1所示[6]。
图5—1中有两个浮子,分别用来检测油气界面和油水界面。
各浮子内都藏有一组永久磁铁,用来产生固定磁场。
测量时,液位计头部发出低电流“询问”脉冲,该电流产生的磁场沿波导管向下传导。
当电流磁场与浮子磁场相遇时,产生“返回”脉冲(也称“波导扭曲”脉冲)。
询问脉冲与返回脉冲之间的时间差即对应油水界面和油气界面的高度。
磁致伸缩液位计安装容易,测量精度很高,但液体密度变化和温度变化会带来测量误差[7],浮子沿着波导管外的护导管上下移动,容易被卡死。
超声波法:换能器将电功率脉冲转换为超声波,射向液面,经液面反射后再由换能器将该超声波转换为电信号。
超声波是机械波,传播衰减小,界面反射信号强,且发射和接收电路简单,因而应用较为广泛;但超声波的传播速度受介质的密度、浓度、温度、压力等因素影响,其测量精度较低。
微波法:微波通过天线(大多为口径天线,也有平面天线)辐射出去,经液面反射后被天线接收,然后由二次电路计算发射信号与接收信号的时间差得液位。
连续波雷达液位仪原理如图5—2所示,该液位仪采用三角波频率调制形式,并通过对发射信号与接收信号混频后得到的差额信号的分析,得到微波传输时间,从而计算出液位。
微波速度受传播介质、温度、压力、液体介电常数的影响很小,但液体界面的波动、液体表面的泡沫、液体介质的介电常数对微波反射信号强弱有很大影响。
当压力超过规定数值时,压力对液位测量精度将产生显著影响。
对于介电常数小于规定数值的液体,大部分雷达液位仪都需要采用波导管,但波导管的锈蚀、弯曲和倾斜都会影响测量精度。
例如:当空高h为20 m,导波管与垂直方向倾斜角度α只要超过0.573°,则引起的液位误差Δh将超过1 mm,由此证明,在倾斜角度α(单位为度)较小时,Δh满足:雷达液位仪特别适合于高污染度或高粘度的产品,如沥青等。
雷达液位仪测量的重复精度较高,无须定期维修和重新标定,测量精度也较高,但价格较高,测量油水界面困难。
调制型光学法与微波法类似,只是采用相位或频率调制的光信号代替微波信号。
图5—3是一种激光雷达液位仪原理图[8]。
但光信号受水蒸汽、油蒸汽影响较大,并对液面波动很敏感,且必须采用易受污染的光学镜头。
以上3种方法都是通过检测信号传播的时间来确定液位的。
设发射信号与接收信号的时间差为t,则空高h=vt/2,v为波的传播速度。
6、磁翻板法、振动法、核辐射法、光纤传感器法磁翻板法原理如图6—1a所示[1],1-翻板指示组件;2-浮子;3-连通管组件;4-调整螺钉;5-放泄塞。
浮子装有一组永久磁铁,随液位变化而上下移动,通过磁耦合作用带动磁翻板组件翻转。
当液位上升时,磁翻板的红色面朝外;液位下降时,白色面朝外。
故根据磁翻板的颜色即可确定液位。
浮子内磁铁与磁翻板磁性结构如图6—1b所示[5],每片翻板间的距离为10 mm。
采用几台磁翻板装置串联可增大量程。
振动法的原理如图6—2所示[9]。
振动液位仪由导轨、测试架、激锤、振动传感器、伺服机构等组成。
伺服机构控制振锤上下爬动并激振,激振后的自由振动被振动传感器检测,该检测信号经FET变换后得到最大功率处的频率,最后由空罐时固有频率/液位关系得到液位。
这种液位测量方法需要激锤、伺服机构等机械运动部件,其工作寿命不是很长,须定期维修和重新标定,安装也较复杂。
辐射法:放射性同位素在衰变过程中会辐射射线,常见的射线有α、β、γ射线。
其中,γ射线的穿透力强,射程远,故在核辐射液位测量中广泛采用。
实验证明,穿过物质前后γ射线强度会发生变化,并满足以下关系[5]上式中:J0-穿过物质前的强度;J-穿透物质后的强度;μ-物质对γ射线的衰减特性;d-物质的厚度。
核辐射式液位仪由放射源、探测器及处理电路组成。
放射源大都采用钴-60或铯-137。
探测器有电离室、记数管、闪烁计数器等几种,其作用是探测射线穿透物质后的强度。
核辐射液位仪采用非接触式安装,如图6—3所示。
图6—3a采用点式放射源、探测器,测量范围较小;图6—3b采用点式放射源、线状探测器,测量范围较大;图6—3c采用线状放射源、探测器,测量范围最大。
除γ射线外,中子射线也可用来测量液位。
中子射线的穿透能力极强,比γ射线强10倍以上,可穿透壁厚达9英寸的钢质容器[10]。
射线液位仪安装方便,测量精度能满足大罐测量的需要,有一定的应用场合。
光纤传感法:文献[11]提出了一种光纤液位传感器,当液位变化时,压力传感器的敏感弹性膜片产生位移,带动反光膜移动,使探头感受的光强发生变化,从而计算出液位。
文献[12]提出了又一种光纤液位传感器,根据探头在气相和液相介质中感受到光强的差异,判断探头的位置,并控制探头跟踪液位的变化,从而得到液位数值。