掌握内容热量传递的三种基本方式的概念特点及基本定律
传热学 知识点 概念 总结
一、参考书目:传热学A 《传热学》杨世铭、陶文铨,高等教育出版社,2006年二、基本要求1. 掌握热量传递的三种方式(导热、对流和辐射)的基本概念和基本定律;2. 能够对常见的导热、对流、辐射换热及传热过程进行定量的计算,并了解其物理机理和特点,进行定性分析;3. 对典型的传热现象能进行分析,建立合适的数学模型并求解;4. 能够用差分法建立导热问题的数值离散方程,并了解其计算机求解过程。
三、主要知识点第一章绪论:热量传递的三种基本方式;导热、对流和热辐射的基本概念和初步计算公式;热阻;传热过程和传热系数。
第二章导热基本定律和稳态导热:温度场、温度梯度;傅里叶定律和导热系数;导热微分方程、初始条件与边界条件;单层及多层平壁的导热;单层及多层圆筒壁的导热;通过肋端绝热的等截面直肋的导热;肋效率;一维变截面导热;有内热源的一维稳态导热。
第三章非稳态导热:非稳态导热的基本概念;集总参数法;描述非稳态导热问题的数学模型(方程和定解条件);第四章导热问题的数值解法:导热问题数值解法的基本思想;用差分法建立稳态导热问题的数值离散方程。
第五章对流换热:对流换热的主要影响因素和基本分类、牛顿冷却公式和对流换热系数的主要影响因素;速度边界层和热边界层的概念;横掠平板层流换热边界层的微分方程组;横掠平板层流换热边界层积分方程组;动量传递和热量传递比拟的概念;相似的概念及相似准则;管槽内强制对流换热特征及用实验关联式计算;绕流单管、管束对流换热特征及用实验关联式计算;大空间自然对流换热特征及对流换热特征及用实验关联式计算。
第六章凝结与沸腾换热:凝结与沸腾换热的基本概念;珠状凝结与膜状凝结特点;膜状凝结换热计算;影响膜状凝结的因素;大容器饱和沸腾曲线;影响沸腾换热的因素。
第七章热辐射基本定律及物体的辐射特性:热辐射的基本概念;黑体、白体、透明体;辐射力与光谱辐射力;定向辐射强度;黑体辐射基本定律:普朗克定律,维恩定律,斯忒藩-玻尔兹曼定律,兰贝特定律;实际固体和液体的辐射特性、黑度;灰体、基尔霍夫定律。
热量传递与热力学第一定律
热量传递与热力学第一定律热量(heat)是能量的一种传递形式,可以通过热传导、热对流和热辐射等方式传递。
热力学第一定律则是描述了能量守恒的基本原理。
本文将介绍热量的传递方式以及热力学第一定律的基本概念和应用。
I. 热量的传递方式热量可以通过三种主要的传递方式进行。
1. 热传导(Conduction)热传导是指热量通过固体或均匀的物质传递的过程。
在固体中,热量通过原子或分子之间的碰撞传递,导热性能高的物质能够更快地传导热量。
2. 热对流(Convection)热对流是指热量通过流体(气体或液体)的移动而传递的过程。
当流体受热后,其密度会减小,从而形成密度梯度并引起流动。
这种流动会带走热量,使流体中的热能均匀分布。
3. 热辐射(Radiation)热辐射是指热量通过电磁波的传播而传递的过程。
所有物体在温度高于绝对零度时都会发射热辐射,该辐射能够在真空中传播。
热辐射不需要介质,因此,它可以在没有空气的情况下传递热量。
II. 热力学第一定律的基本概念热力学第一定律(也称能量守恒定律)是热力学的基本原理之一。
它可以用来描述系统中能量的转化和守恒关系。
热力学第一定律的表达式为:△U = Q - W其中,△U表示系统的内能变化,Q表示系统吸收的热量,W表示系统对外界做的功。
根据热力学第一定律,当一个系统吸收热量时,系统的内能会增加;当一个系统做功时,系统的内能会减少;当一个系统既吸收热量又做功时,内能的变化取决于两者之间的相对大小。
III. 热力学第一定律的应用热力学第一定律在实际应用中有着广泛的应用。
1. 热机效率的计算根据热力学第一定律,热机效率可以通过以下公式计算:η = 1 - Qc/Qh其中,η表示热机的效率,Qc表示热机释放的热量,Qh表示热机吸收的热量。
这个公式显示了热机从热源吸热,然后将一部分热量转化为机械功,最后释放剩余的热量到冷源的过程。
2. 热传导率的计算热传导率描述了物质传导热量的能力。
4.1 传热概述及热传导
保温杯内胆与瓶身中间处于真空,
无气体分子,不导热。
27
4.2.1 傅立叶定律(Fourier's Law)
1.固体的导热系数
导热性能与导电性能密切相关,一般而言,良好的导电体必然是良好的导热体,
反之亦然。在所有固体中,金属的导热性能最好。 大多数金属的导热系数与金属温度和纯度有关,即
t , λ
t 0
t 0
非稳态(非定常)传热:间歇生产过程,开、停车阶段。
Q , q, t f x , y , z
本章只讨论稳定传热
17
4.1.3 传热过程 热载体及其选择
选择原则
①载热体的温度易调节控制;
②载热体的饱和蒸气压较低,加热时不易分解; ③载热体的毒性小,不易燃、易爆,不易腐蚀设备;
《化工原理》
第4章 传热
4.1 传热概述及热传导
新课导入
热传递3种方式
热 传 导
热 对 流
热 辐 射
热量传递可以依靠其中的一种方式或几种方式同时进行,净的热流方向总是 从高温处向低温处流动。
2
4.1.1 传热的三种基本方式
热传导
若物体各部分之间借分子、原子和自由电子等微观粒子的热运动 传递热量的过程为热传导(又称导热)。
物质种类
气体
液体
非导固体
金属
绝热材料
W/(m﹒oC) 0.006~0.6 0.07~0.7
0.2~3.0
15~420
﹤0.25
26
4.2.1傅立叶定律(Fourier's Law)
从导热系数的角度分析一下,泡沫箱和保温杯的保温原理。
泡沫箱中存在大量微孔,填充
了大量空气,同时其自身为绝
工程传热学第二讲热量传递的三种基本方式
辐射
定义
01
物体通过电磁波传递能量的过程。
影响因素
02
物体的温度、发射率、形状和大小,以及周围环境的温度和发
射率等。
应用
03
太阳能利用、红外加热和干燥、辐射测温等。
02
传导传热原理及影响因素
传导传热原理
微观解释
热量传递是通过物体内部微观粒子的热运动,即粒子间的相互碰撞传递能量的 过程。
实施方案
在两个物体之间填充具有高导热 性能的材料(如金属),通过直 接接触实现热量传递。同时,可 以通过增加接触面积、减小接触 热阻等措施来提高传导传热效率 。
06
工程应用与案例分析
工程领域中的热量传递问题
热量传递在工程中的重要性
工程领域中,热量传递问题广泛存在,如电子设备散热、建筑物保温、能源转换 等。热量传递问题的解决对于提高设备效率、保障安全运行、节能减排等方面具 有重要意义。
料、表面状态及温度。
A 温度
物体的温度越高,其发射的辐射面状况
物体表面的粗糙度、氧化程度、颜色等因 素都会影响其发射和吸收辐射能的能力。
形状与大小
物体的形状和大小影响其与周围环境的辐 射换热面积,从而影响辐射传热速率。
辐射传热计算方法
斯忒藩-玻尔兹曼
定律
描述黑体辐射力与其温度的四次 方成正比的关系,用于计算黑体 的辐射传热速率。
流体传热
在流体中,热量传递可以通过传导和对流两种方式进行。对于静止的流体,传导是主要的传热方式;而对于流动的流 体,对流则占据主导地位。因此,在流体传热中,需要根据流体的流动状态选择合适的传热方式。
真空或气体传热
在真空或气体环境中,由于传导和对流传热效率较低,辐射传热成为主要的传热方式。因此,提高辐射 传热效率是真空或气体传热的关键。
热量传递的三种基本方式导热(热传导)、对流(热对流)和热辐射。
一. 大空间自然对流换热的实验关联式 工程中广泛使用的是下面的关联式:
l / d 60
层流
湍流
二. 横掠管束换热实验关联式
• 外掠管束在换热器 中最为常见。 • 通常管子有叉排和 顺排两种排列方式。 顺叉排换热的比较: 叉排换热强、阻力 损失大并难于清洗。 影响管束换热的因 Pr 素除 Re 、 数外,还 有:叉排或顺排; 管间距;管束排数 等。
后排管受前排管尾流的扰动作用对平均表面传热系数的影 响直到10排以上的管子才能消失。 这种情况下,先给出不考虑排数影响的关联式,再采用管 束排数的因素作为修正系数。 气体横掠10排以上管束的实验关联式为
(5) 流体的热物理性质:
3 密度 [kg m ] 热导率 [ W (m C) ] 2 比热容 c [J (kg C) ] 动力粘度 [ N s m ] 运动粘度 [m 2 s] 体胀系数 [1 K ]
1 v 1 v T p T p
Nu c Re n Nu c Re n Pr m Nu c(Gr Pr)n
式中,c、n、m 等需由实验数据确定,通常由图解法和 最小二乘法确定
④常见准则数的定义、物理意义和表达式,及其各量的 物理意义
⑤模化试验应遵循的准则数方程 强制对流:
Nu f (Re, Pr); Nu x f ( x ' , Re, Pr)
导热热阻:平壁,圆筒壁
q
t w1 t w 2 t w1 t w 2
t r t R
t
t w1
dt
dx
Φ
A
Q
0
tw2
R A
r
热量传递的三种基本方式的概念
绪 论重点: ① 热量传递的三种基本方式的概念、特点及基本定律;② 传热过程、传热系数及热阻的概念。
了解内容:了解传热学的发展史、现状及发展动态。
一.传热学1.定义:传热学是研究热量传递过程规律的科学。
2.内容:①导热②对流换热③辐射换热④传热和换热器3.应用:介绍在建筑环境与设备工程领域中的应用。
二.传热的基本方式1.导热:是指物体各部分无相对位移或不同物体直接接触时依靠分子、原子及自由电子等微观粒子热运动而进行的热量传递的现象。
① tA ∆=δλφ 或 t q ∆=δλ A —面积,2mδ—壁厚,mλ—导热系数,C ︒⋅m w大平壁导热 t ∆—温差,℃②导热热阻tR t q 热阻温度差∆= λδ=t R ③λ的物理意义:具有单位温差的单位厚度物体,在它的单位面积上每单位时间的导热量,C ︒⋅m w2.热对流:依靠流体的运动,把热量由一处传递到另一处的现象。
①对流换热:流体与固体壁间的换热称为对流换热。
对流换热量:)(f w t t q -=α 2m ww t —固体壁表面温度,℃f t —流体温度,℃α—换热系数,C︒⋅m w②对流换热热阻:ht q 1∆= hR 1=α ③h 的物理意义:单位面积单位温差、单位时间内所传递的热量。
C 2︒⋅m w3.热辐射:依靠物体的表面发射可见和不可见的射线传递热量的现象。
①辐射换热:物体间靠热辐射进行的热量传递称为辐射换热。
②平壁间辐射换热:242412,1100100m W T T C q ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛= 2,1C —辐射系数,42k m W ⋅21,T T — 表面间的温度,k三.传热过程1.热量从壁一侧的流体通过壁传递给另一侧流体,称为传热过程。
2.传热量:)(21f f t t kA Q -= W K —传热系数,C 2︒⋅m w A —传热面积,2m 2,1f f t t —流体温度,℃3.传热热阻:2111h h R K ++=λδ 介绍公式推导:)(211f f t t h q -= )(21w w t t q -=δλ )(212f w t t h q -= )(1112121f f t t h h q -++=λδ 21111h h K ++=λδ==k R K 12111h h ++λδ。
能源第七章 热量传递的三种基本方式
Φ 1A1 (T14 -T24 ) W
A1 A2
T1 , A1,ε1 T2
热工基础与应用
4. 例题 已知:A=1.42m2(H=1.75m,d=0.25m),t1=30℃,t2=10 ℃(冬),t2=25℃(夏),ε1=0.95 求:冬天与夏天人体与内墙的辐射传热量
③h:表面传热系数,是表征对流传热过程强弱的 物理量。过程量,与很多因素有关(流体种类、表 面形状、流体速度大小等)
④记住 h 的量级,“个” “十” “百” “千” “成千上万”。(表4-1)
流动方式:强制>自然对流
介质:水>空气 相变:有相变>无相变
水蒸气凝结>有机蒸汽凝结
热工基础与应用
三、辐射(radiation, thermal radiation) 1. 定义 辐射:物体通过电磁波来传递能量的方式
q Φ A h(tw t f ) W m2 q Φ A h(t f tw) W m2
tw t f t f tw
流体力学研究:tw=tf , isothermal flow
①A:与流体接触的壁面面积
②约定对流传热量永远取正值(失去/得到)
热工基础与应用
③对流传热(convective heat transfer):流体流 过温度不同的固体壁面时的热量传递过程(工程 上感兴趣)
热工基础与应用
3. 分类 对流传热按照不同的原因可分为多种类型 流动起因,分为:强制对流和自然对流。 是否相变,分为:相变对流传热和无相变对流传热。
热工基础与应用
4. 基本计算式—(Newton’s Law of Cooling)
热量的传递与热量的传递速率计算方法
热量的传递与热量的传递速率计算方法热量传递是热力学中的基本概念之一,它涉及到热量从高温物体传递到低温物体的过程。
在工程实践中,我们经常需要计算热量的传递速率,以便合理设计和改善热力系统。
本文将介绍热量的传递方式以及常用的计算方法。
一、热量的传递方式热量的传递可以通过三种方式进行:传导、对流和辐射。
下面将对这三种方式进行详细阐述。
1. 传导传导是指物体内部或不相邻物体之间通过分子碰撞来传递热量的过程。
传导过程可以通过能量传递的方式进行,即分子通过碰撞将热量从高温区域传递到低温区域。
传导的速率与物体的导热性能有关,导热性能越高,传导速率越快。
2. 对流对流是指热量通过流体的运动传递的过程。
当流体受热后,流体的密度减小,形成浮力,产生对流流动。
对流传热速率与流体的性质、流动速度以及体积等因素有关。
对流传热速率通常比传导快,因为对流可以带走更多的热量。
3. 辐射辐射是指热量通过电磁波的辐射传递的过程。
所有物体在温度不为零时都会发出电磁波,这些电磁波的波长和强度与物体的温度有关。
辐射传热速率与物体的表面温度的四次方成正比,因此高温物体的辐射传热速率较快。
二、热量传递速率的计算方法热量传递速率是指单位时间内热量传递的量,通常用功率来表示。
下面将介绍几种常用的计算方法。
1. 传导热传递速率的计算传导热传递速率的计算可以使用傅里叶定律。
傅里叶定律表明,传热速率正比于温度梯度,反比于物体的导热系数和传热距离。
传导热传递速率可以用以下公式表示:Q = - k*A*(∆T/∆x)其中,Q表示传导热传递速率,k表示导热系数,A表示传热面积,∆T表示温度差,∆x表示传热距离。
2. 对流热传递速率的计算对流热传递速率的计算需要考虑流体的性质以及流动速度等因素。
常用的计算方法包括乌格尔数和努塞尔数,它们可以用以下公式表示:Nu = C*(Re^m)*(Pr^n)其中,Nu表示努塞尔数,Re表示雷诺数,Pr表示普朗特数,C、m 和n是与具体问题相关的常数。
主要内容本章介绍了三种基本传热方式,即导热、对流传热
t
Q qA 2rL dt 常数
dr
t
rQ
dt
dr
t1
r1 2rL
若为常数,则:
Q
t1 t ln r r1
--------可见温度分布 为对数关系
2L
0
t1 r1
r2Q Q t2 dr
薄壳衡b算法
§6.2.2一维稳态导热-----薄壳衡算法
Q t1 t2 ln r2 r1
恒压比热Cp: 恒压条件下,单位质量的物质升高或降低1℃所需(放
出)的热量,KJ/Kg.℃。取平均温度下的数值计算。 有相变时(蒸汽冷凝、液体沸腾)
相变热Q=qmr r:汽化潜热,KJ/Kg。 如热流体是饱和蒸汽,在换热器中冷凝后,冷凝液温度
T2低于饱和温度T1。 则 Q=qm1[r+Cp1(T1-T2)]=qm2Cp2(t2-t1)
t1 t2
r2 r1
2L 2L r2 r1 ln r2 r1 t
令rm
r2 r1 ln r2 r1
--------对数平均半径
当 r2 2 时,可用算术平均代替
r1
于是Q t1 t2 t1 t2
b
b
2Lrm Am
对照:平壁:Q
t1 t2
①对流传热过程的基本概念、定律、传热速率方程; ②管内强制湍流流动时表面传热系数的经验关联及影 响因素; ③总传热速率方程以及传热过程的计算。
6.1 概述
一、传热过程在工业生产中的应用 传热即热的传递(以温度差为推动力的能量传递现象)根据
热力学第二定律,凡是有温度差的存在就必然有热的传递,因 此传热是自然界和工程领域中较为普遍的一种传递过程。许多 单元操作,如蒸发、精馏、干燥、结晶、冷冻、吸收和萃取等, 无不直接或间接与传热有关。
第三章 热量传递的基本原理
2
d T 1 dT + = 0 2 dr r dr
• 导热问题的完整数学描述 无内热源、常物性、稳态一维问题的导热 微分方程 2
由
d t =0 2 dx
得
dt = c1 dx
得
t = c1 x + c2
问题不能确定,需有定解条件: 〈1〉 初始条件:τ = 0 时的温度分布 t τ = 0 =f (x,y,z) 〈2〉 边界条件:边界上的温度分布或换热条 件。
即 边界条件:
x
d 2t =0 2 dx
x = 0 t = t1 ; x = δ t = t 2
数学描述
d 2t =0 2 dx x = 0 , t = t1 x = δ , t =t 2
t = c1 x + c2
c2 = t1
温度分布
c1 =
t 2 − t1
δ
t=
dt dx
t 2 − t1
δ
x + t1
μ↑
Re ↓
h↓
4、换热表面的形状、大小、位置 壁面形状、位置形状(平板,圆管)、位置(横 放、竖放、管内、管外)
5、流体有无相变 有相变(沸腾或凝结),流体温度基本保持不 变,流体与壁面的换热量等于吸收或放出的汽化潜 热。有相变比无相变时换热系数大很多。 珠状凝结比膜状凝结换热系数大得多。
综上所述
动力消耗大
δ ↓ h↑
3、流体的物理性质
流速:V↑ h↑ V=0 无对流 物性-表征物质物理特性的物理量 密度,粘性,热导率,比热等 其他条件相同时,不同的流体换热量不 同,就是因为物性不同
λ的影响:
传热学内容总结
绪论部分一、热量传递的三种基本方式⒈导热应充分理解导热是物质的固有本质,无论是气体、液体还是固体液态还是固态,都具有导热的本领。
利用傅里叶定律进行稳态一维物体导热量的计算。
应能区分热流量Φ和热流密度q。
前者单位是w,后者单位是w/m2,且q=Φ/A。
同时还应将热流量Φ与热力学中的热量Q区别开来,后者的单位是J。
传热学中引入了时间的概念,强调热量传递是需要时间的。
充分掌握导热系数λ是一物性参数,其单位为w/(m·K);它取决于物质的热力状态,如压力、温度等。
对不同的物质,可用教材的附录查得导热系数值。
⒉对流掌握对流换热是流体流过固体壁面且由于其与壁面间存在温差时的热量传递现象,它与流体的流动机理密不可分;同时,由于导热也是物质的固有本质,因而对流换热是流体的宏观热运动(热对流)与流体的微观热运动(导热)联合作用的结果。
初步会运用牛顿冷却公式或计算对流换热量。
注意其中A为换热面积,必须是流体与壁面间相互接触的、与热量传递方向相垂直的面积。
掌握对流换热的表面传热系数h为一过程量,而不像导热系数λ那样是物性参数。
也正因为如此,不同对流换热过程的表面传热系数的数量级相差很大。
⒊热辐射掌握热辐射的特点,区分它与导热及对流的不同之处。
掌握黑体辐射的斯蒂藩—玻耳兹曼定律。
它是一个黑体表面向外界发射的辐射热量,而不是一个表面与外界之间以辐射方式交换的热量。
通过对两块非常接近的互相平行黑体壁面间辐射换热的计算,以了解辐射换热的概念。
应注意三种热量传递方式并不是单独出现,常常串联或并联在一起起作用。
可以结合日常生活及工程实际中的实例加深理解。
二、传热过程与传热系数⒈传热过程充分理解传热过程是热量在被壁面隔开的两种流体之间热量传递的过程。
在传热过程中三种热量传递方式常常联合起作用。
能对一维平壁的传热过程进行简单的计算。
理解传热系数K是表征传热过程强弱的标尺。
既然对流换热表面传热系数h是过程量,它常作为传热过程的一个环节,因而传热系数也是过程量。
传热的基本概念及三种基本方式特点、区别和联系
传热的基本概念及三种基本方式特点、区别和联系传热是热量从高温物体传递到低温物体或从物体的高温部分传递到低温部分的过程。
热传导、热对流和热辐射是传热的三种基本方式。
它们的特点、区别和联系如下:
1.特点:
•热传导:通过物体内部的微观粒子运动,将热量从高温区传递到低温区。
•热对流:由于流体(气体或液体)的运动,将热量从高温区传递到低温区。
•热辐射:通过电磁波的辐射和吸收,将热量从一个物体传递到另一个物体。
1.区别:
•热传导依赖于微观粒子的运动,而热对流和热辐射则与流体的运动和电磁波的传播有关。
•热对流和热辐射可以在气体、液体和固体中进行,而热传导主要在固体中进行。
1.联系:
•在某些情况下,传热过程可能同时包含热传导、热对流和热辐射。
•在传热过程中,三种方式的贡献可能相互影响,共同决定热量传递的总体效果。
简而言之,传热的基本概念及三种基本方式特点、区别和联系主要涉及热量在不同介质中的传递机制,以及它们在特定条件下的相互作用。
传热学总复习
一、热量传递的三种基本方式--导热、对流、热辐射: 1、概念:1)基本概念:ⅰ)、导热的概念:物体各部分之间不发生相对位移,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递。
ⅱ)、对流的概念:指由于流体的宏观运动,从而流体各部分之间发生相对位移、冷热流体相互掺混所引起的热量传递过程 ⅲ)、热辐射:物体因热的原因发出辐射能的现象2)、传热的机理:ⅰ)导热依靠微观粒子的热运动:分子、原子的相互碰撞、晶格的振动等ⅱ)对流依靠流动的宏观运动:流体的相互位移或掺混ⅲ)热辐射:发射电磁波 2、热量传递的三个基本公式 1)导热的傅里叶定律(一维):Φ-热流量(单位时间通过某一给定面积的热量),单位W q —单位时间内通过单位面积的热流量,单位W/m2 2) 对流换热的牛顿冷却定律: Ⅰ、对流换热:对流伴随有导热的现象 Ⅱ、牛顿冷却定律流体被加热时: 流体被冷却时: h —表面传热系数,与过程有关。
单位W/m2.K 3、热辐射(斯忒藩-玻尔兹曼定律): (σ-斯忒藩-玻尔兹曼常量(黑体辐射常数)σ=5.67×10-8 W/(m2.K4) 实际物体热辐射量: 二、传热过程:1、 传热过程的概念:热量由壁面一侧的流体通过壁面传到另一侧流体中去的过程。
2、传热过程热流量的计算:3、传热系数(单位W/m2.K):三、热阻:串联环节的总热阻等于各分热阻之和,且稳态时, 各环节的热流量相等。
第二章 导热基本定律及稳态导热一、温度场、等温面、等温线、温度梯度的意义等温线的特点:物体中的任一条等温线要么形成一个封闭的曲线,要么终止在物体表面上,而不会与另一条等温线相交。
温度梯度:空间某点的温度的变化率。
二、导热的基本定律、意义 1)(1dxdt λAΦ--=dxdt A q λ-=Φ=t Ah t t Ah f w ∆=-=Φ)(t Ah t t Ah w f ∆=-=Φ)(4T A σ=Φ4T A σε=ΦtAk h h t t A f f ∆=++-=Φ212111λδ21111h h k ++=λδ2121222*********Ah A Ah t t Ah t t A t t Ah t t f f f w w w w f ++-=-=-=-=Φλδλδn nt gradt ∂∂=∂t1、导热基本定律(傅里叶定律):2、傅里叶定律的意义:揭示了连续温度场内每一点的温度梯度与热流量间的联系。
热量传递主要有三种基本方式及导热对流和什么
热量传递主要有三种基本方式及导热对流和什么
热量传递的三种基本方式:热传导,热对流和热辐射。
1.热传导:通常也称为导热,是物体内部或相互接触的物体表面之间,由于分子、原子及电子等微观粒子的热运动而产生的热量传递现象。
导热依赖两个基本条件:一是必须有温差,二是必须直接接触(不同物体)或是物体内部传递。
2.热对流:是指由于流体的宏观运动,致使不同温度的流体相对位移而产生的热量传递现象,对流只能发生于流体中,且一定伴随着流体分子的不规则热运动产生的导热。
对流换热按流动的起因不同(流动的驱动力不同)分为自然对流和强迫对流两种。
自然对流是由于温差引起的流体不同部分的密度不同而自然产
生上下运动的对流换热。
因此,有温差不一定能发生自然对流,还应考虑表面的相对位置是否能形成因温度差导致的密度差引起的流体
运动。
当固体表面的温度高于环境的空气温度时,该表面上方的空气受热后密度变小,自由上升,从而发生自然对流换热。
在表面下方,紧挨表面的空气受热后密度变小,由于受到阻挡积聚在表面底下,难以产生空气的自由运动,从而没有自然对流换热的发生。
而表面的下方,空气受冷后自由下沉,则可以发生自然对流换热。
强迫对流则是流体在外力的推动作用下流动所引起的对流换热。
强迫对流换热程度比自然对流换热剧烈得多,当流体发生相变的时候,对流换热则分别称为沸腾换热和凝结换热。
3.热辐射,热辐射不需要任何中间介质而远距离传播,并且在传播过程中有热能-辐射能-热能的能量形式转换。
化工原理课件-热量传递的基本理论
、 滞导•流滞流和动流和对,内湍流沿层流 传壁部 流:之 热面分 体流间 同法热 的体, 时向阻温呈热 起没很度滞传 作有小差流,极传小热。速度极快,
用质,点热的阻移较动小和混合温,度即
• 由上分析可知,
。 变没式化有仅缓对是慢流热传传热导,。传 因热 为方 液
• 在对流传热时,
体导热系数小,因此热
接触面上的温度。
解:由式(2-6)可得
W / m2
兰州石化职业技术学院
t
t1
t2
t3
t4
x
兰州石化职业技术学院
• 表2-1 各层温度降和热阻
• 可见,在多层平壁稳定热传导过程中,各层平壁的温度 差与其热阻成正比,哪层热阻大,哪层的温度差一定 大。
兰州石化职业技术学院
2.圆筒壁的稳定热传导
• 圆筒壁的导热与平壁导热的不同之处在于圆筒壁的传热 面积和热通量不再是定值,而是随半径而变化。
兰州石化职业技术学院
化工保温材料
玻璃棉 导热率 0.03489 0.06978
W/m.K
兰州石化职业技术学院
• 保温材料外 层还要有保 护层:
• 镀锌铁皮等
兰州石化职业技术学院
聚苯乙烯泡沫板 导热率0.04185W/m.K
兰州石化职业技术学院
离心玻璃棉
• 是将处于熔融状态的玻璃用离心喷吹法工艺进行 纤维化喷涂热固性树脂制成的丝状材料,再经过 热固化深加工处理,可制成具有多种用途的系列 产品。
1 ln 75 1 ln 125
1
1
25 51 75
ln 75 1 ln 125
=1.64
51 25 1 75
• λ较小的材料放内层热损失较小。
兰州石化职业技术学院
建筑火灾蔓延过程中,热量传递的三种基本方式
建筑火灾蔓延过程中,热量传递的三种基本方式建筑火灾蔓延过程中,热量传递的三种基本方式在建筑火灾的蔓延过程中,热量传递的方式对火灾的发展起着至关重要的作用。
热量传递的三种基本方式分别是传导、对流和辐射。
本文将就这三种方式展开深入讨论,以帮助读者更好地理解建筑火灾蔓延的机理和特点。
1. 传导传导是指热量在固体介质内部传递的过程。
在建筑火灾中,建筑结构或物体的表面会受到火焰的热辐射作用,导致其表面温度升高。
随着时间的推移,高温表面上的热量会向内部传导,使得物体内部的温度也不断上升。
这种过程会导致建筑结构的破坏,加剧火势的蔓延。
传导还包括了传热系数的计算,可以帮助我们评估建筑材料的防火性能。
2. 对流对流是指热量通过流体介质的传递方式。
在建筑火灾中,空气是最常见的流体介质。
火灾将导致空气的流动,形成对流。
热空气会上升,冷空气会下沉,从而形成对流热量传递。
这种方式会导致火势快速蔓延,使得火灾范围不断扩大。
对流还会对人员逃生和消防作业产生影响,因此应当引起足够重视。
3. 辐射辐射是指热量在真空或介质间以电磁波的形式传递的过程。
在建筑火灾中,火焰释放的热辐射是主要的辐射形式。
辐射可以穿透空气,直接作用于建筑结构或物体的表面,使得其温度升高。
这种方式是火灾蔓延的主要原因之一,因为辐射可以快速传递热量,导致火势迅速升级。
建筑火灾蔓延过程中热量传递的三种基本方式——传导、对流和辐射,相互作用,共同推动着火势的蔓延。
要有效地遏制火灾的蔓延,我们需要全面理解这三种方式的特点和机理,并在预防和灭火工作中加以应用。
在个人观点方面,我认为加强对这三种方式的认识和研究,对防火和建筑安全具有重要意义。
只有深入理解火灾蔓延的机理,我们才能制定科学合理的防火措施,保障人们的生命财产安全。
总结回顾起来,本文从传导、对流和辐射三个方面对建筑火灾蔓延的热量传递方式进行了深入讨论。
通过对这些内容的了解,我们不仅能够更好地理解火灾蔓延的机理,还能够更有效地进行防火和灭火工作,从而保障人们的生命财产安全。
传热学复习 (1)
单值性条件(定解条件)(思考题8)
几何条件、物理条件、 初始条件 边界条件
第一类、第二类、第三类(思考题9、10) 第四类边界条件
热扩散系数 a
c
物性参数、物理意义 与导热系数的联系与区别(思考题17)
保温材料(思考题4)
2-2 物质的导热特性
不同物质的导热系数相差很大
一般情况下, 固体 > 液体 > 气体
同一种物质 晶体>非晶体
同一种物质 固态 > 液态 > 气态
0.0183
各向异性材料——木材、石墨、云母、动植物的肌肉和纤维组织等。
直角坐标系中导热微分方程的简化处理
t t t 一般形式 ( ct ) ( ) ( ) ( ) x x y y z y
变导热系数 ( 0 1 bt)
算术平均温度:tm
tw1 tw 2 2 平均导热系数:m 0 (1btm )
(习题3-5、3-9、3-11)
多层壁: t w1 twn 1
i i 1 i A
n
l
tw1 twn 1 n ri 1 1 ln ri i 1 2i
一般情况下,
固体 液体 气体
金属 非金属
金属 2.3~430 W (m K)
液体 0.07~0.7 W (m K)
气体 0.006~0.6 W (m K)
纯金属 合金
晶体 非晶体
20C常温下
空气 =0.0259 水 =0.599
物体的发射率 (物性参数)
2 传热系数k W/(m K)
传热过程
kA(t f 1 t f 2 ) q k (t w t f )
热量传递的三种方式
热量传递的三种方式
热量传递的三种方式:热传导、热辐射和热对流。
生产和生活中所遇到的热量传递现象往往是这三种基本方式的不同主次的组合。
扩展资料
热量传递基本方式
热传导:温度不同物体(一般是固体)相接触传递热量。
热对流:热对流指由于流体的宏观运动,冷热流体相互掺混而发生热量传递的方式。
这种热量传递方式仅发生在液体和气体中。
由于流体中的分子同时进行着不规则的热运动,因此对流必然伴随着导热。
热辐射:物体通过电磁波来传递能量的方式称为辐射。
辐射有多种类型,其中因热的原因而发出辐射能的现象称为热辐射。
热传递之间的分别
热传导是由于大量分子、原子等相互碰撞,使物体的内能从温度较高部分传至较低部分的过程。
热传导是固体热传递的主要方式,在气体和液体中,热传导往往与对流同时进行。
各种物质热传导的性能不同,金属较好,玻璃、羽毛、毛皮等很差。
对流是靠液体或气体的流动,使内能从温度较高部分传至较低部分的.过程。
对流是液体和气体热传递的主要方式,气体的对流比液体明显。
热辐射是物体不依靠介质,直接将能量发射出来,传给其他物体的过程。
热辐射是远距离传递能量的主要方式,如太阳能就是以热辐射的形式,经过宇宙空间传给地球的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章导热问题的数值解法1.重点内容:①掌握导热问题数值解法的基本思路;②利用热平衡法和泰勒级数展开法建立节点的离散方程。
2.掌握内容:数值解法的实质。
3.了解内容:了解非稳态导热问题的两种差分格式及其稳定性。
由前述可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。
但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。
随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种:(1)有限差分法;(2)有限元方法;(3)边界元方法。
数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。
如:几何形状、边界条件复杂、物性不均、多维导热问题。
分析解法与数值解法的异同点:相同点:根本目的是相同的,即确定①()gQ=。
x,y,z,τx,y,z,τft=;②()不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。
4-1 导热问题数值求解的基本思想及内节点离散方程的建立一.数值解法的基本概念1.实质:对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。
该方法称为数值解法。
这些离散点上被求物理量值的集合称为该物理量的数值解。
2.基本思路:数值解法的求解过程可用框图 4-1 表示。
由此可见: (1)物理模型简化成数学模型是基础; (2)建立节点离散方程是关键;(3)一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。
二.数值求解的步骤如图 4-2(a ),二维矩形域内无内热源、稳态、常物性的导热问题采用数值解法的步骤如下: (1)建立控制方程及定解条件控制方程:是指描写物理问题的微分方程。
针对图示的导热问题,它的控制方程(即导热微分方程)为:0y 2222=∂∂+∂∂tx t (a ) 边界条件:0=x 时,0t t =;H x =时,()[]f Hx t y H t h xtλ-=∂∂-=,2当0=y 时,()[]f y t x t h y t λ-=∂∂-=010,当W y =时,()[]f Wy t W x t h yt λ-=∂∂-=,3(2)区域离散化(确立节点)用一系列与坐标轴平行的网格线把求解区域划分成若干个子区域,用网格线的交点作为需要确定温度值的空间位置,称为节点(结点),节点的位置用该节点在两个方向上的标号m ,n 表示。
相邻两节点间的距离称步长,计为x ∆、y ∆。
每个节点都可以看成是以它为中心的一个小区域的代表,把节点代表的小区域称为元体(又叫控制容积),如图4-2(b)。
(3)建立节点物理量的代数方程(离散方程)节点上物理量的代数方程称离散方程。
其过程如下: 首先划分各节点的类型; 其次,建立节点离散方程;最后,代数方程组的形成。
对节点(m ,n )的代数方程,当x ∆=y ∆时,有:()1,1,,1,1,41-+-++++=n m n m n m n m n m t t t t t (b ) (4)设立迭代初场代数方程组的求解方法有直接解法与迭代解法,传热问题的有限差分法中主要采用迭代法。
采用迭代法求解时,需对被求的温度场预先设定一个解,这个解称为初场,并在求解过程中不断改进。
(5)求解代数方程组如图4-2(b ),除1=m 的左边界上各节点的温度已知外,其余()N M 1-个节点均需建立离散方程,共有()N M 1-个方程,则构成一个封闭的代数方程组。
求解时遇到的问题: ① 线性; ② 非线性; ③ 收敛性等。
①线性代数方程组:代数方程一经建立,其中各项系数在整个求解过程中不再变化;②非线性代数方程组:代数方程一经建立,其中各项系数在整个求解过程中不断更新。
③是否收敛判断:是指用迭代法求解代数方程是否收敛,即本次迭代计算所得之解与上一次迭代计算所得之解的偏差是否小于允许值。
关于变物性(物性为温度的函数)导热问题,建立的离散方程,四个邻点温度的系数不是常数,而是温度的函数。
在迭代计算时,这些系数应不断更新,这是非线性问题。
(6)解的分析通过求解代数方程,获得物体中的温度分布,根据温度场应进一步计算通过的热流量,热应力及热变形等。
因此,对于数值分析计算所得的温度场及其它物理量应作详细分析,以获得定性或定量上的结论。
三、稳态导热中位于计算区域内部的节点离散方程的建立方法 1.基本概念(1)内节点:位于计算区域内部的节点,称内节点。
(2)差分格式:差商中的差分可以用向前、向后、中心差分表示的格式称差分格式。
2.基本方法方法:① 泰勒级数展开法; ② 热平衡法。
以下分述之。
(1)泰勒级数展开法如图4-3所示,以节点(m ,n )处的二阶偏导数为例,对节点(1+m ,n ) 及(1-m ,n )分别写出函数t 对(m ,n )点的泰勒级数展开式:对(1+m ,n ):+∂∂∆+∂∂∆+∂∂∆+∂∂∆+=+nm nm n m nm nm n m x t x x t x x t x xt xt t ,444,333,222,,,12462 (c )对(1-m ,n ): +∂∂∆+∂∂∆-∂∂∆+∂∂∆-=-nm nm n m nm nm n m x t x x t x x t x xtxt t ,444,333,222,,,12462 (d )(a )+(b )得:+∂∂∆+∂∂∆+=-+nm nm nm n m n m x t x x t xt t t ,444,222,,1,1122+ (e )变形为nm x t,22∂∂的表示式得:()22,,1,1,2202x xt t t x t nm n m n m nm ∆∆∂∂-++-+=(f )上式是用三个离散点上的值计算二阶导数nm x t,22∂∂的严格表达式,其中:()20x ∆称截断误差,误差量级为2x ∆,即表示未明确写出的级数余项中x ∆的最低阶数为2。
在数值计算时,用三个相邻节点上的值近似表示二阶导数的表达式即可,则相应的略去()20x ∆。
于是得:2,,1,1,222xt t t x tnm n m n m nm ∆∂∂-+-+=(4-1a )同理: 2,1,1,,222y t t t ytnm n m n m nm ∆∂∂-+-+=(4-1b )根据导热问题的控制方程(导热微分方程) 0y2222=∂∂+∂∂tx t 得:0222,1,1,2,,1,1=-++-+yt t t xt t t nm n m n m nm n m n m ∆∆-+-+(4-2) 若x ∆=y ∆,则有:()1,1,,1,1,41-+-++++=n m n m n m n m n m t t t t t (2)热平衡法:其本质是傅里叶导热定律和能量守恒定律的体现。
对每个元体,可用傅里叶导热定律写出其能量守恒的表达式。
如图4-3所示,元体在垂直纸面方向取单位长度,通过元体界面(w,e,n,s) 所传导的热流量可以对有关的两个节点根据傅里叶定律写出:从节点(1-m ,n )通过界面W 传导到节点(m ,n )的热流量为:xt t ynm n m w ∆∆=Φ-,,1-λ (g )同理:通过界面 e,n,s 传导给节点(m ,n )的热流量: xt t ynm n m e ∆∆=Φ+,,1-λ (h )y t t xnm n m w ∆∆=Φ+,1,-λ (i )yt t xnm n m w ∆∆=Φ-,1,-λ (j )对元体(m ,n ),根据能量守恒定律可知:0=Φ+Φ+Φ+Φs n e w (4-3)其中规定:导入元体(m ,n )的热流量为正;导出元体(m ,n )的热流量为负。
将式(g )、(h )、(i )、(j )代入式(4-3),当y x ∆=∆时即得式(b)。
说明:① 上述分析与推导是在笛卡儿坐标系中进行的; ② 热平衡法概念清晰,过程简捷;③ 热平衡法与2—2建立微分方程的思路与过程一致,但不同的是前者是有限大小的元体,后者是微元体。
4-2 边界节点离散方程的建立及代数方程的求解对于第一类边界条件的导热问题,所有内节点的离散方程组成一个封闭的代数方程组,即可求解; 第二类或第三类边界条件的导热问题,所有内节点的离散方程组成的代数方程组是不封闭的,因未知边界温度,因而应对位于该边界上的节点补充相应的代数方程,才能使方程组封闭,以便求解。
一、用热平衡法导出典型边界点上的离散方程在下面的讨论中,先把第二类边界条件及第三类边界条件合并起来考虑,并以w q 代表边界上已知的热流密度值或热流密度表达式,用热平衡方法导出三类典型边界节点的离散方程,然后针对w q 的三种不同情况使导得的离散方程进一步具体化,为使结果更具一般性,假设物体具有内热源Φ (不必均匀分布)。
1.位于平直边界上的节点如图4-4所示有阴影线的区域,边界节点()n m ,只能代表半个元体,设边界上有向该元体传递的热流密度为w q ,据能量守恒定律对该元体有:0222,,1,,1,,,1=∆+Φ∆∆+∆∆+∆∆+∆∆-+-w n m n m n m n m n m nm n m yq y x y t t x y t t x x t t y---λλλ(4-4a )若y x ∆=∆时,则:⎪⎪⎭⎫ ⎝⎛∆+Φ∆+=-+-λλw nm n m n m n m nm xq x t t t t 2241,21,1,,1, ++ (4-4b ) 2.外部角点如图4-5所示,二维墙角计算区域中,节点A ~E 均为外部角点,其特点是每个节点仅代表1/4个以y x ∆∆、为边长的元体。
假设边界上有向该元体传递的热流密度为w q ,则据能量守恒定律得其热平衡式为:02422,,1,,,1=∆∆+Φ∆∆+∆∆+∆∆--w n m n m n m n m n m q yx y x y t t x x t t y +-- λλ (4-5a )若y x ∆=∆时,则: ⎪⎪⎭⎫ ⎝⎛∆+Φ∆=--λλw nm n m n m nm xq x t t t 2221,21,,1, ++ (4-5b ) 3.内部角点:图4-5中的F 点为内部角点,代表了3/4个元体,同理得:024322,,,1,1,,1,,,1=∆∆+Φ∆∆+∆∆∆∆∆∆+∆∆--w n m n m n m nm n m nm n m nm n m q y x y x x t t y yt t x yt t xx t t y+-+-+--++ λλλλ (4-6a )若y x ∆=∆时,则: ⎪⎪⎭⎫ ⎝⎛∆+Φ∆=--λλw nm n m n m n m n m nm xq x t t t t t 2232261,2,11,1,,1, ++++++ (4-6b )4.讨论有关w q 的三种情况: (1)若是绝热边界则0=w q ,即令上式0=w q 即可。