材料现代分析方法知识点汇总

合集下载

材料现代分析方法复习要点总汇

材料现代分析方法复习要点总汇

材料现代分析方法复习要点总汇X射线衍射束的强度1.粉未多晶的衍射线强度2.影响衍射线强度的因素1.粉未多晶的衍射线强度布拉格方程是产生衍射的必要条件,但不是充分条件,描述衍射几何的布拉格定律是不能反映晶体中原子的种类和它们在晶体中的坐标位置的。

这就需要强度理论。

1.衍射线的绝对强度与相对强度①绝对强度(积分强度、累积强度)是指某一组面网衍射的X射线光量子的总数。

②相对强度用某种规定的标准去比较各个衍射线条的强度而得出的强度。

2.粉未多晶的衍射强度I相对=P·F2··e-2M·A衍射线的强度相对强度: I相对=F2P(1+cos22θ/ sin2θcosθ)e-2M 1/u式中:F——结构因子;P——多重性因子;分式为角因子,其中θ为衍射线的布拉格角;e-2M——温度因子;1/u-吸收因子。

以下重点介绍结构因子F§2 影响衍射线强度的其它因素1. 多重性因子P指同一晶面族{hkl}的等同晶面数。

晶体中面间距相等的晶面称为等同晶面。

根据布拉格方程,在多晶体衍射中,等同晶面的衍射线将分布在同一个圆锥面上,因为这些晶面对应的衍射角2θ都相等。

多晶体某衍射环的强度与参与衍射的晶粒数成正比,因此,在其他条件相同的情况下,多晶体中某种晶面的等同晶面数目愈多,这种晶面获得衍射的几率就愈大,对应的衍射线也必然愈强。

2. 角因子(1+Cos22θ)/Sin2θCosθ3.温度因子(第84页)e-2M )由于原子热振动使点阵中原子排列的周期性部份破坏,因此晶体的衍射条件也部份破坏,从而使衍射强度减弱。

晶体的中原子的热振动,衍射强度受温度影响,温度因子表示为e-2M。

4. 吸收因子A因为试样对X射线的吸收作用,使衍射线强度减弱,这种影响称吸收因子。

晶体的X射线吸收因子取决于所含元素种类和X射线波长,以及晶体的尺寸和形状。

思考题系统消光P78五个因子的定义、表达体心立方和面心立方结构点阵消光规律的推导多晶体X射线衍射分析方法X射线衍射的方法和仪器粉晶德拜照相法粉晶衍射仪法多晶—粉末法λ不变θ变化德拜法、衍射仪法单晶—λ变化θ不变劳厄法λ不变θ变化周转晶体法§1 粉晶德拜照相法定义:利用X射线的照相效应,用底片感光形式来记录样品所产生的衍射花样。

现代材料分析方法

现代材料分析方法

现代材料分析方法现代材料分析方法包括物理、化学、电子、光学、表面和结构等多个方面的技术手段,具有快速、准确、非破坏性的特点。

下面将针对常用的材料分析技术进行详细介绍。

一、物理分析方法1. 微观结构分析:包括金相显微镜分析、扫描电镜、透射电镜等技术。

通过观察材料的显微结构、晶粒尺寸、相组成等参数,揭示材料的内在性质和形貌特征。

2. 热分析:如热重分析、差示扫描量热仪等。

利用材料在高温下的重量、热容变化,分析材料的热行为和热稳定性。

3. 电学性能测试:包括电导率、介电常数、介电损耗等测试,用于了解材料的电导性和电介质性能。

4. 磁性测试:如霍尔效应测试、磁滞回线测试等,用于研究材料的磁性行为和磁性特性。

二、化学分析方法1. 光谱分析:包括紫外可见光谱、红外光谱、核磁共振等。

通过检测材料对不同波长的光谱的吸收、散射等现象,分析材料的组分和结构。

2. 质谱分析:如质子质谱、电喷雾质谱等。

通过挥发、电离和分离等过程,分析材料中不同元素的存在及其相对含量。

3. 电化学分析:包括电化学阻抗谱、循环伏安法等。

通过测量材料在电场作用下的电流、电压响应,研究材料的电化学性能和反应过程。

4. 色谱分析:如气相色谱、高效液相色谱等。

利用材料在色谱柱上的分离和吸附效果,分析材料中组分的种类、含量和分布。

三、电子分析方法1. 扫描电子显微镜(SEM):通过照射电子束,利用电子和物质的相互作用,获得样品表面的详细形貌和成分信息。

2. 透射电子显微镜(TEM):通过透射电子束,观察材料的细观结构,揭示原子尺度的微观细节。

3. 能谱分析:如能量色散X射线谱(EDX)、电子能量损失谱(EELS)等。

通过分析材料与电子束相互作用时,产生的X射线和能量损失,来确定样品的元素组成和化学状态。

四、光学分析方法1. X射线衍射:通过物质对入射的X射线束的衍射现象,分析材料的晶体结构和晶格参数。

2. 红外光谱:通过对材料在红外辐射下的吸收和散射特性进行分析,确定材料的分子结构和化学键。

材料现代分析测试方法复习

材料现代分析测试方法复习

XRD X 射线衍射 TEM 透射电镜—ED 电子衍射 SEM 扫描电子显微镜—EPMA 电子探针(EDS能谱仪 WPS 波谱仪) XPS X 射线光电子能谱分析 AES 原子发射光谱或俄歇电子能谱IR —FT —IR 傅里叶变换红外光谱 RAMAN 拉曼光谱 DTA 差热分析法 DSC 差示扫描量热法 TG 热重分析 STM 扫描隧道显微镜 AFM 原子力显微镜测微观形貌:TEM 、SEM 、EPMA 、STM 、AFM 化学元素分析:EPMA 、XPS 、AES (原子和俄歇)物质结构:远程结构(XRD 、ED )、近程结构(RAMAN 、IR )分子结构:RAMAN官能团:IR 表面结构:AES (俄歇)、XPS 、STM 、AFMX 射线的产生:高速运动着额电子突然受阻时,随着电子能量的消失和转化,就会产生X 射线。

产生条件:1.产生并发射自由电子;2.在真空中迫使电子朝一定方向加速运动,以获得尽可能高的速度;3.在高速电子流的运动路线上设置一障碍物(阳极靶),使高速运动的电子突然受阻而停止下来。

X 射线荧光:入射的X 射线光量子的能量足够大将原子内层电子击出,外层电子向内层跃迁,辐射出波长严格一定的X 射线俄歇电子产生:原子K 层电子被击出,L 层电子如L2电子像K 层跃迁能量差不是以产生一个K 系X 射线光量子的形式释放,而是被临近的电子所吸收,使这个电子受激发而成为自由电子,即俄歇电子14种布拉菲格子特征:立方晶系(等轴)a=b=c α=β=γ=90°;正方晶系(四方)a=b ≠cα=β=γ=90°;斜方晶系(正交)a ≠b ≠c α=β=γ=90°;菱方晶系(三方)a=b=c α=β=γ≠90°;六方晶系a=b ≠c α=β=90°γ=120°;单斜晶系a ≠b ≠c α=β=90°≠γ;三斜晶系a ≠b ≠c α≠β≠γ≠90°布拉格方程的推导 含义:线照射晶体时,只有相邻面网之间散射的X 射线光程差为波长的整数倍时,才能产生干涉加强,形成衍射线,反之不能形成衍射线。

材料现代分析方法知识点汇总

材料现代分析方法知识点汇总

材料现代分析方法知识点汇总1.基础分析技术:材料现代分析方法常用的基础分析技术包括光学显微镜、电子显微镜、X射线衍射、扫描电子显微镜等。

这些技术可以用于材料样品的形态、结构和成分的分析和表征。

2.元素分析方法:材料中元素的分析是材料研究中的重要内容。

现代元素分析方法包括原子吸收光谱、原子发射光谱、原子荧光光谱、质谱等。

通过这些方法可以获取样品中各个元素的含量和分布情况。

3.表面分析技术:材料的表面性质对其性能有着重要影响。

表面分析技术包括扫描电子显微镜、原子力显微镜、拉曼光谱等。

这些技术可以用于研究材料表面形貌、结构和成分,以及表面与界面的性质。

4.结构分析方法:材料的结构对其性能有着决定性的影响。

结构分析方法包括X射线衍射、中子衍射、电子衍射等。

这些方法可以用于确定材料的晶体结构、非晶态结构和纳米结构,从而揭示材料的物理和化学性质。

5.磁学分析方法:材料的磁性是其重要的性能之一、磁学分析方法包括霍尔效应测量、磁化率测量、磁滞回线测量等。

这些方法可以用于研究材料的磁性基本特性,如磁场效应、磁滞行为和磁相互作用。

6.热学分析方法:材料的热性质对其在高温、低温等条件下的应用具有重要意义。

热学分析方法包括热重分析、差示扫描量热法、热导率测量等。

这些方法可以用于研究材料的热稳定性、相变行为和导热性能。

7.分子分析技术:材料中分子结构的分析对于研究其化学性质具有重要意义。

分子分析技术包括红外光谱、拉曼光谱、核磁共振等。

通过这些技术可以确定材料的分子结构、键合方式和功能性分子的存在情况。

8.表征方法:材料的表征是指对其特定性能的评估和描述。

表征方法包括电阻率测量、粘度测量、硬度测量等。

这些方法可以用于研究材料的电学、力学和流变学性质。

总之,材料现代分析方法是一门综合应用各种科学技术手段对材料样品进行分析与表征的学科。

掌握这些现代分析方法的知识,可以帮助科学家和工程师更好地了解材料的性质和特点,为材料设计和应用提供科学依据。

材料现代分析方法知识点

材料现代分析方法知识点

材料现代分析方法知识点材料现代分析方法知识点1.什么是特征X射线?当管压增至与阳极靶材对应的特定值U k时,在连续谱的某些特定波长位置上出现一系列陡峭的尖峰。

该尖峰对应的波长λ与靶材的原子序数Z存在着严格的对应关系,尖峰可作为靶材的标志或特征,故称尖峰为特征峰或特征谱。

2.什么是电子探针的点分析、线分析、面分析?①点分析:将电子束作用于样品上的某一点,波谱仪分析时改变分光晶体和探测器的位置,收集分析点的特征X射线,由特征X射线的波长判定分析点所含的元素;采用能谱仪工作时,几分钟内可获得分析点的全部元素所对应的特征X射线的谱线,从而确定该点所含有的元素及其相对含量。

②线分析:将探针中的谱仪固定于某一位置,该位置对应于某一元素特征X射线的波长或能量,然后移动电子束,在样品表面沿着设定的直线扫描,便可获得该种元素在设定直线上的浓度分布曲线。

改变谱仪位置则可获得另一种元素的浓度分布曲线。

③面分析:将谱仪固定于某一元素特征X射线信号(波长或能量)位置上,通过扫描线圈使电子束在样品表面进行光栅扫描(面扫描),用检测到的特征X射线信号调制成荧光屏上的亮度,就可获得该元素在扫描面内的浓度分布图像。

3. XRD对样品有何要求?粉末样品应干燥,粒度一般要求约10~80μm,应过200目筛子(约0.08mm),且避免颗粒不均匀。

块状样品应将其处理成与窗孔大小一致,可扫描宽度宜大于5mm,小于30mm,至少保证一面平整。

4.电子探针分析原理?电子探针是一中利用电子束作用样品后产生的特征X射线进行微区成分分析的仪器。

其结构与扫描电竞基本相同,所不同的只是电子探针检测的是特征X射线,而不是二次电子或背散射电子。

5.结构因子的计算?P68(1)简单点阵:简单点阵的晶胞仅有一个原子,坐标为(0,0,0),即X=Y=Z=0,设原子的散射因子为f,则(公式3-69) (2)底心点阵:底心点阵的晶胞有两个原子,坐标分别为(0,0,0),(1/2,1/2,0)各原子的散射因子为f,则(公式3-70)(3)体心点阵:体心点阵的晶胞有两个原子,坐标分别为(0,0,0),(1/2,1/2,1/2)各原子的散射因子为f,则(公式3-71)(4)面心点阵:面心点阵的晶胞有4个原子,坐标分别为(0,0,0),(1/2,1/2,0),(1/2,0,1/2),(0,1/2,1/2)各原子的散射因子为f,则(公式3-72)6.X射线衍射与电子衍射的关系(比较)?P150(1)电子波的波长短,远远小于X射线,同等衍射条件下,它的衍射半角很小,衍射束集中在前方额,而x射线的衍射半角可接近90度。

材料现代分析方法

材料现代分析方法

1、埃利斑由于光的波动性,光通过小孔发生衍射,明暗相间的条纹衍射的图样,条纹间距随小孔尺寸的变大,衍射的图样的中心有最大的亮斑,称为埃利斑。

2、差热分析是在程序的控制条件下,测量在升温、降温或恒温过程中样品和参比物之间的温差。

3、差示扫描量热法(DSC)是在程序控制条件下,直接测量样品在升温、降温或恒温过程中所吸收的或放出的热量。

4、倒易点阵是由晶体点阵按照一定的对应关系建立的空间点阵,此对应关系可称为倒易变换。

5、干涉指数在(hkl)晶面组(其晶面间距记为dhkl)同一空间方位,设若有晶面间距为dhkl/n (n 为任意整数)的晶面组(nh,nk,nl)即(H,K,L)记为干涉指数。

6、干涉面简化布拉格方程所引入的反射面(不需加工且要参与计算的面)7、景深当像平面固定时(像距不变)能在像清晰地范围内,允许物体平面沿透镜轴移动的最大距离。

8、焦长固定样品的条件下,像平面沿透镜主轴移动时能保持物象清晰的距离范围。

9、晶带晶体中,与某一晶向【uvw】平行的所有(HKL)晶面属于同一晶带,称为晶带10、射线若K 层产生空位,其外层电子向K 层跃迁产生的X 射线统称为K 系特征辐射,其中有L 层电子跃迁产生的K 系特征辐射称为Ka.11、数值孔径子午光线能进入或离开纤芯(光学系统或挂光学器件)的最大圆锥的半顶角之余弦,乘以圆锥顶所在介质的折射率。

12、透镜分辨率用物理学方法(如光学仪器)能分清两个密切相邻物体的程度13 衍射衬度由样品各处衍射束强度的差异形成的衬度成为衍射衬度。

15 质厚衬度由于样品不同区间存在原子序数或厚度的差异而形成的非晶体样品投射电子显微图像衬度,即质量衬度,简称质厚衬度。

16 质谱是离子数量(强度)对质荷比的分布,以质谱图或质谱表的形式的表达。

一、判断题1)埃利斑半径与照明光源波长成反比,与透镜数值孔径成正比。

、(×)14)、产生特征x 射线的前提是原子内层电子被打出核外,原子处于激发态。

材料现代分析方法(1)

材料现代分析方法(1)

材料现代分析方法重点(彭美勋部分)名词解释部分1,石墨单色器与分光晶体石墨单色器:利用衍射方法过滤杂色X射线的晶体单色器,比较滤波片更有效的消除x射线背底。

2,明场像与暗场像明场像:在电子显微镜中,用透过样品的非散射电子以及在物镜孔径角区域内的散射电子的电子束对样品所形成的像暗场像:在电子显微镜中,仅利用透过样品的散射电子束对样品所形成的像。

3,质厚衬度与衍射衬度以及原子序数衬度质量衬度:由于样品不同微区间存在原子序数或厚度的差异而形成的衍射衬度:由样品各衍射束强度差异形成的衬度。

影响因素主要是晶体取向和结构振幅原子序数衬度:由于试样表面物质原子序数或化学成分差别而引起的衬度4,wds与edsWds:波谱仪Eds:能谱仪能谱仪的优点有:分析速度快,灵敏度高,谱线重复性好。

缺点有:能量分辨率低,峰背比低。

工作条件要求严格。

波谱仪的优点有:波长分辨率很高。

5,二次电子与背散射电子二次电子成:在单电子激发过程中被入射电子轰击出来的核外电子背散射电子成:被固体样品原子反射回来的一部分入射电子5.1,二次电子像与背散射电子像答:二次电子象:是表面形貌衬度,它是利用对样品表面形貌变化敏感的物理信号作为调节信号得到的一种象衬度背散射电子像:背散射电子像的形成,就是因为样品表面上平均原子序数Z大的部位而形成较亮的区域,产生较强的背散射电子信号;而平均原子序数较低的部位则产生较少的背散射电子,在荧光屏上或照片上就是较暗的区域,这样就形成原子序数衬度。

6,物相定性分析与物相定量分析物相定性分析:鉴定试样中各种组成的构成,包括的元素、根或官能团等的分析。

物相定量分析:测定试样中各种组分(如元素、根或官能团等)含量的操作。

6.1,单晶衍射和多晶衍射单晶衍射:每一个斑点对应一个衍射面多晶衍射:每一个圆环是一系列等间距的衍射面问答部分7,扫描电子显微镜与透射电子显微镜异同答:相同之处:都是电真空设备,使用绝大部分部件原理相同,例如电子枪,磁透镜,各种控制原理,消象散,合轴等等。

现代材料分析方法复习资料

现代材料分析方法复习资料

现代材料分析方法第三章当一束聚焦电子沿一定方向射到样品上时,在样品物质原子的库仑电场作用下,入射电子方向将发生改变,称为散射。

原子对电子的散射还可以进一步分为弹性散射和非弹性散射。

在弹性散射中,电子只改变运动方向,基本上无能量变化。

在非弹性散射中,电子不但改变方向,能量也有下同程度的衰减,衰减部分转变为热、光、x射线、二次电子等。

原于中核外电子对入射电子的散射作用是一种非弹性散射,散射过程中入射电子所损失的能量部分转变为热,部分使物质中原子发生电离或形成自由载流子,并伴随着产生各种有用信息,如二次电子、俄歇电子、特征x射线、特征能量损失电子、阴极发光、电子感生电导等当入射电子与原子核外电子发生相互作用时,会使原子失掉电子而变成离子,这种现象称为电离,而这个脱离原子的电予称为二次电子。

二次电子是指被入射电子轰击出来的核外电子。

入射电子在样品内遭到散射,改变前进方向,在非弹性散射信况下,还会损失一部分能量。

在这种弹佳和非弹性散射过程中,有些入射电子累计散射角超过90o,这些电子将重新从样品表面逸出,称为背散射电子。

背散射电于是指被固体样品中的原子核反弹回来的一部分入射电子。

在电子显微分析仪器中利用背散射电子信号通常是指那些能量较高的电子,其中主要是能量等于或接近尽的电子,其特点如下。

1.对样品物质的原子序数敏感;2.分辨率及信号收隼率较低当样品较厚时,例如达到微米数量级,入射电子中的一部分在样品内经过多次非弹性散射后,能量耗尽,既无力穿透样品,也不能逸出表面,称为吸收电子。

具有特征能量值的电子称为俄歇电子(AUE)。

利用俄歇电子进行元素分析的仪器称谓俄歇电子能谱仪(AES)c。

如果原子内层电子能级跃迁过程中释放出来的能量 E不以X射线的形式释放,而是用该能量将核外另一电子打出,脱离原子变为二次电子,这种二次电子叫做俄歇电子。

俄歇电子具有以下特点l. 适于分析轻元素及超轻元素;因为这些元素的特征x射线产额很低,俄歇电子产额很高2.适于表面薄层分析真正能够保持其特征能量而逸出表面的俄歇电子只限子表层以下1nm以内的深度范围。

材料现代分析方法

材料现代分析方法

材料现代分析方法一.绪论1.材料现代分析方法:是关于材料成分、结构、微观形貌与缺陷等的现代分析,测试技术及其有关理论基础的科学。

2.基于电磁辐射及运动粒子束与物质相互作用的各种性质建立的各种分析方法已成为材料现代分析方法的重要组成部分,大体可分为光谱分析、电子能谱分析、衍射分析与电子显微分析等四大类方法。

3.各种方法的分析、检测过程均可大体分为信号发生器、检测器、信号处理器与读出装置等几部分组成。

二.核磁共振1.核磁共振(Nuclear Magnetic Resonance,NMR):无线电波照射样品时,使特定化学结构环境中的原子核发生的共振跃迁(核自旋能级跃迁)。

2.拉摩尔进动:外磁场与核自旋磁场的相互作用,导致核自旋轴绕磁场方向发生回旋,称为拉摩尔进动。

3.核磁共振现象的产生机理:主要是由核的自旋运动引起的,核的自旋产生了不同的核自旋能级,当某种频率的电磁辐射与核自旋能级差相同时,原子核从低自旋能级跃迁到高自旋能级,产生了核磁共振现象。

4.描述核自旋运动的量子数I与原子核的质子数和中子数有关,有下列三种情况:(1)偶-偶核,I=0;(2)奇-偶核,I为半整数;(3)奇-奇核,I为整数。

5.核磁共振的条件:(1)原子核有自旋现象(I﹥0);(2)在外磁场中发生能级裂分;(2π)。

(3)照射频率与外磁场的比值υB=γIB。

6.1H核磁共振条件:υO=γI2π7.化学位移:某一质子吸收峰出现的位置,与标准物质质子吸收峰出现的位置之间的差异,称为该质子的化学位移δ。

8.化学位移现象:同一种类原子核,但处在不同的化合物中,或是虽在同一种化合物中,但所处的化学环境不同,其共振频率也稍有不同,这就是所谓的化学位移现象。

9.影响化学位移的因素:诱导效应、共轭效应、磁各向异性效应、氢键效应和溶剂效应。

质子周围电子云密度↑,屏蔽效应↑,在较高磁场强度处(高场)发生核磁共振,δ小;电子云密度↓,屏蔽效应↓,在较低磁场强度处(低场)发生核磁共振,δ大。

材料现代分析方法期末总结

材料现代分析方法期末总结

材料分析方法习题1、晶带定律:凡是属于[uvw]晶带的晶面,它的晶面指数(hkl)都必须符合hu+kv+lw=0,通常把这种关系式称为晶带定律。

2、暗场像:用物镜光阑挡住透射束及其余衍射束,而只让一束强衍射束通过光阑参与成像的方法,称为暗场成像,所得图象为暗场像。

3、中心暗场像:用物镜光阑挡住透射束及其余衍射束,而只让一束强衍射束通过光阑参与成像的方法,称为暗场成像,所得图象为暗场像。

如果物镜光阑处于光轴位置,所得图象为中心暗场像。

4、衍射衬度:入射电子束和薄晶体样品之间相互作用后,样品内不同部位组织的成像电子束在像平面上存在强度差别的反映。

衍射衬度主要是由于晶体试样满足布拉格反射条件程度差异以及结构振幅不同而形成电子图象反差。

5、背散射电子:入射电子被样品原子散射回来的部分;它包括弹性散射和非弹性散射部分;背散射电子的作用深度大,产额大小取决于样品原子种类和样品形状。

6、吸收电子:入射电子进入样品后,经多次非弹性散射,能量损失殆尽(假定样品有足够厚度,没有透射电子产生),最后被样品吸收。

吸收电流像可以反映原子序数衬度,同样也可以用来进行定性的微区成分分析。

7、特征X射线:原子的内层电子受到激发以后,在能级跃迁过程中直接释放的具有特征能量和波长的一种电磁波辐射。

利用特征X射线可以进行成分分析。

8、二次电子:二次电子是指被入射电子轰击出来的核外电子。

二次电子来自表面50-100 Å的区域,能量为0-50 eV。

它对试样表面状态非常敏感,能有效地显示试样表面的微观形貌。

9、俄歇电子:如果原子内层电子能级跃迁过程中释放出来的能量不以X射线的形式释放,而是用该能量将核外另一电子打出,脱离原子变为二次电子,这种二次电子叫做俄歇电子。

俄歇电子信号适用于表层化学成分分析。

简答题1. 什么叫“相干散射”?答:相干散射,物质中的电子在X射线电场的作用下,产生强迫振动。

这样每个电子在各方向产生与入射X射线同频率的电磁波。

材料现代分析总结

材料现代分析总结

绪论:1.材料的设计、制备和表征是材料研究中三个重要的方面。

2.材料结构与性能表征包括了材料性能,微观结构和成分测试与表征。

材料的性能是由其结构决定的。

描述或鉴定材料的结构涉及它的化学性成分、组成相的结构及其缺陷的组态、组成相的形貌、大小、和分布以及各组成相之间的取向关系和界面状态。

3.材料成分和微观结构分析可分为三个层次:化学成分分析、晶体结构分析、显微结构分析。

4.化学成分分析:x射线荧光光谱、电子探针、光电子能谱和俄谢尔电子能谱等。

5.晶体结构分析:x射线衍射、电子衍射6.显微结构分析:光学显微镜、透射电子显微镜、扫描电子显微镜、扫描隧道显微镜、原子力显微镜、场离子显微镜等7.材料的性能:物理、化学、力学。

第一章:X射线衍射分析原理概述X射线是1895年伦琴发现的,故又称伦琴射线。

最早应用于医学,后来用来金属探伤,这些方面属于x射线投射学。

X射线在材料学中应用归纳为四方面:晶体结构研究物相分析精细结构分析单晶体取向及多晶织构的测定X射线物理学基础X射线产生原理:高速电子流撞击金属阳极靶,产生x射线。

X射线本质:一种电磁波。

波长在0.001-100nm之间,介于紫外线和γ射线之间,但没有明显的分界线。

能量E=hυ=hc/λ(爱因斯坦方程式)连续谱:x射线管中发射出x射线有两种不同的波谱,强度随波长连续变化的部分称为连续谱。

特征谱:叠加在连续谱上面的是强度很高的具有一定波长的x射线称为特征谱。

E=eU =hυ=hc/λ。

故λ。

=h c / ( e U )=1.24/U电子能量绝大部分在撞击阳极时,生成热量而损失掉,因此要设法冷却阳极,为提高x射线的效率就要选用重金属耙,并施加高电压。

不同靶材的同名特征谱线,其波长λ随靶材原子序数Z的增大而变短。

√1/λ=K(Z-σ)X射线与物质的相互作用:散射x射线、电子(反冲电子、俄歇电子、光电子)荧光x射线、透射x射线、热能。

X射线的散射:沿一定方向运动的x射线光自流与物质电子相互碰撞之后,向四周弹射开来,这便是x射线。

材料现代分析方法知识点

材料现代分析方法知识点

材料现代分析方法知识点1.光谱学分析方法:包括紫外可见吸收光谱、红外光谱、拉曼光谱、荧光光谱等。

光谱学分析方法通过材料对不同波长的光的吸收、散射和发射来研究材料的内部结构和性质。

2.质谱分析方法:质谱分析是一种根据材料中不同元素或分子的质量比例来确定其组成和结构的方法。

常见的质谱技术包括质谱仪、傅里叶变换质谱仪、气相色谱质谱联用技术等。

3.微观结构分析方法:包括电子显微镜、透射电子显微镜、扫描电子显微镜等。

这些方法可以观察和分析材料的微观结构、晶体结构以及元素的分布情况。

4.表界面分析方法:包括扩散反射红外光谱、X射线光电子能谱等。

通过表界面分析方法可以了解材料的表面组成、性质和反应过程,对材料的表面修饰和表面改性提供指导。

5.热物理分析方法:包括热重分析、差示扫描量热法等。

这些方法可以研究材料的热稳定性、热分解过程以及热性能等。

6.X射线衍射分析方法:通过测量材料对入射X射线的衍射图样,可以了解材料的晶体结构、晶格常数和晶体取向等信息。

7.分子动力学模拟方法:分子动力学模拟是一种适用于研究材料微观结构和动力学行为的计算方法。

通过建立材料的原子和分子模型,并运用分子力场等方法,可以模拟和预测材料的结构演化、热力学和动力学行为。

8.电化学分析方法:电化学分析是一种通过材料与电解质溶液之间的相互作用来研究材料电学性质和电化学反应机理的方法。

常见的电化学分析方法包括电化学阻抗谱、循环伏安法、线性扫描伏安法等。

9.磁学分析方法:磁学分析是一种研究材料磁性和磁性行为的方法。

常见的磁学分析方法包括磁化率测量、磁滞回线测量等。

10.输运性质分析方法:输运性质分析是一种研究材料的传导性能(如电导率、热导率等)的方法。

常见的输运性质分析方法包括四探针法、热电力学性质测量等。

以上是材料现代分析方法的一些知识点。

这些方法可以用于分析材料的组成、结构、性能和行为等方面,并为材料的研究和应用提供基础数据和理论依据。

同时,随着科学技术的不断发展,新的分析方法也不断涌现。

现代材料分析方法总结

现代材料分析方法总结

现代材料分析⽅法总结Themal analysis1、TG与DTGTG :themogravimetry ,热重法。

横坐标为温度或时间,纵坐标为剩余重量。

m~TDTG :derivative themogracimetry ,微商热重法。

横坐标为温度或时间,纵坐标为重量随温度或时间的变化率。

dm/dt or dm/dT ~T2、能⽤TG分析的问题Mass gain :absotption ,adsorptionMass lose :dehagration ,desolution ,desorption ,evaporation ,sublimation ,decompositon不能分析polyphormic transformations3、DTA与DSC(图形相反)DTA :diffrential thermal analysis ,差热分析。

A single heating source ,△T=0。

在程控温度下测量试样与参⽐物温度差的测量⽅法。

DSC:diffrential scanning calorimetry ,差⽰扫描量热计。

Individual heaters are used ,a differential power is needed to keep the sample and the reference at the same temperature .△T≠0。

在程控温度下,测量试样与参⽐物温度恒定时输⼊样品与参⽐物的功率差与温度关系的⽅法。

分为power-compensation DSC 和flux DSC。

4、DTA与DSC都是根据样品在不同的温度下发⽣量变或质变引起的热变化,即吸热或放热来分析的。

Endothermic(吸热):melting ,evaporation ,sublimation ,dehydration ,desorption ,decompositon ,desolution ,red uction(⽓态还原) ,glass transition .Exothermic(放热):adsorption(⽓体吸附) ,crystallization(结晶) ,oxidation(⽓态氧化) ,explosion,氧化降解 .Endothermic/exothermic:polymorphic transformation ,化学分解,氧化还原,固态反应。

材料现代分析方法重点笔记

材料现代分析方法重点笔记

材料现代分析方法重点笔记一、材料X射线衍射分析1、X射线的性质、产生及谱线种类及机理2、X射线与物质的相互作用:几种现象及机理3、X射线衍射方向:布拉格方程及推导,X射线衍射方法4、X射线衍射强度:多晶体衍射图相的形成过程,衍射强度影响因数及积分强度公式5、多晶体分析方法:X射线衍射仪的构造及各部件的作用,实验参数的选择6、物相分析及点阵常数精确测定二、x衍射线知识点1、X射线的本质一种电磁波(波长短:0.01-10nm)2、X射线产生原理由高速运动着的带电粒子与某种物质相撞击后淬然减速,且与该物质中的内层电子相作用而产生的。

3、X射线产生的几个基本条件(1)产生自由电子;(2)使电子作定向高速运动:(3)在电子运动的路径上设置使其突然减速的障碍物4、旋转阳极(用于大功率转靶XRD仪)工作原理:因阳极不断旋转,电子束轰击部位不断改变,故提高功率也不会烧熔靶面。

目前有100kW的旋转阳极,其功率比普通X射线管大数十倍。

5、X射线谱X射线强度与波长的关系曲线6、连续x射线谱管压很低时,例如小于20kv,X射线谱曲线是连续变化的。

7、形成连续x射线谱两种理论解释:1.经典物理学理论:一个带负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电磁波,或至少一个电磁脉冲。

由于极大数量的电子射到阳极上的时间和条件不可能相8/同,因而得到的电磁波将具有连续的各种波长,形成连续X 射线谱。

量子力学概念:当能量为ev的电子与靶的原子整体碰撞时,电子失去自己的能量,其中一部分以光子的形式辐射出去,每碰撞一次,产生一个能量为hv的光子,即“韧致辐射”。

大量的电子在到达靶面的时间、条件均不同,而且还有多次碰撞,因而产生不同能量不同强度的光子序列,即形成连续谱。

8、特征(标识)X射线谱当管电压等于或高于20KV时,则除连续X射线谱外,位于一定波长处还叠加有少数强谱线,它们即特征X射线谱。

9、形成特征X射线谱的理论解释:原子结构的壳层模型:特征X射线的产生机理与靶物质的原子结构有关。

材料现代分析技术整理

材料现代分析技术整理

第一部份 X 射线衍射分析(XRD )1. K 系特征谱线特点:由L 、M 、N 等壳层的电子跃迁到K 壳层的空位时发出的X 射线,别离称为K α、K β、K γ谱线,一路组成K 线系特征谱线。

K α特征谱线最强,比相邻谱线强90倍,是最常常利用的谱线。

2. 特征X 射线的产生:在原子内固定壳层上的电子具有特定能量,当外加能量足够大时,可将内层电子激发出去,形成一个内层空位,外壳层的电子跃迁到内层,多余的能量以X 射线形式放出。

3. X 射线的本质为电磁波。

4. 滤光片的目的和材料:用来过滤或降低X 射线光谱中的持续X 射线和K β线的金属薄片,K β大部份被吸收,K α损失较小,滤波片材料的原子叙述一般比X 射线管靶材的原子序数低1。

5. CuK α的含义:以Cu 作为靶材,高速电子轰击在铜靶上,使铜K 层产生了空位,L 层电子跃迁到K 层,产生K 系特征辐射。

6. X 射线的衍射方向是按照布拉格方程理论推导出的。

7. 布拉格方程的推导:含义:线照射晶体时,只有相邻面网之间散射的X 射线光程差为波长的整数倍时,才能产生干与增强,形成衍射线,反之不能形成衍射线。

λθn d hkl =sin 2讨论:(1) 当λ必然,d 相同的晶面,必然在θ相同的情况下才能取得反射。

(2) 当λ必然,d 减小,θ就要增大,这说明间距小的晶面,其掠过角必需是较大的,不然它们的反射线无法增强,在考察多晶体衍射时,这点由为重要。

(3) 在任何可观测的衍射角下,产生衍射的条件为:d 2≤λ,但波长太短致使衍射角过小,使衍射现象难以观测,常常利用X 射线的波长范围是0.25~0.05nm 。

(4) 波长一按时,只有2/λ≥d 的晶面才能发生衍射—衍射的极限条件。

8. X 射线的强度(严格概念)单位时间内通过衍射方向垂直单位面积上X 射线光量子数量。

表示方式:衍射峰高度或衍射峰积分面积。

理论计算)(2θφPF I =(P-多重性因数,F-结构因子,)(θφ-因数)。

材料现代分析方法知识点

材料现代分析方法知识点

材料现代分析方法知识点现代分析方法是指在分析领域中应用先进科学技术和设备对材料进行表征、分析和测试的一种方法。

它广泛应用于材料科学、化学、生物学、医学等领域。

本文将重点介绍几种常见的现代分析方法,包括质谱分析、光谱分析、扫描电镜、透射电镜和原子力显微镜等。

质谱分析是一种通过测量被测物质的质量和相对丰度来确定其分子结构和组成的方法。

它可以用来分析有机物、无机物和生物大分子等。

质谱仪通过将样品中的分子离子化,然后对离子进行加速、分选和检测,最终得到质谱图。

质谱图是指将离子的质量与相对丰度作为坐标绘制成的图形。

质谱分析可以用于研究材料的分子结构、元素组成、反应机理等。

光谱分析是一种利用物质与辐射相互作用来研究物质性质的方法。

常见的光谱分析方法有紫外可见吸收光谱、红外光谱和拉曼光谱等。

紫外可见吸收光谱通过测量物质对紫外或可见光的吸收强度与波长之间的关系来研究物质的电子结构和色素成分。

红外光谱通过测量物质对红外光的吸收强度与波数之间的关系来研究物质的分子结构和官能团。

拉曼光谱通过测量物质对激光散射光的频率移动来研究物质的分子振动和晶格结构。

扫描电镜是一种通过扫描样品表面的电子束来获得高分辨率图像的方法。

它可以提供材料的表面形貌、结构和成分等信息。

扫描电镜可以分为传统扫描电镜和透射电镜。

传统扫描电镜通过扫描物质表面的二次电子和反射电子来获得样品表面形貌和成分分布。

透射电镜则通过将电子束穿过样品来获得样品的内部结构和晶格信息。

扫描电镜在材料科学、生物医药和纳米材料等领域有着广泛的应用。

透射电镜是一种通过透射电子来研究材料的内部结构和成分的方法。

透射电镜可以提供更高分辨率的图像和更详细的晶格信息,可以用于研究材料的晶体结构、界面形貌、晶格缺陷等。

透射电镜主要包括透射电子显微镜和扫描透射电镜。

透射电子显微镜使用透射电子束来获得样品的高分辨率图像,可以观察到纳米尺度的细节。

扫描透射电镜则可以对样品进行局部扫描,获得不同区域的成分和结构信息。

材料现代分析方法归纳总结

材料现代分析方法归纳总结

材料现代分析方法归纳总结材料分析是研究和了解材料性质、组成以及结构的过程。

而随着科学技术的发展,材料现代分析方法不断丰富和完善,因此,本文将对常用的材料现代分析方法进行归纳总结。

通过这些方法,我们可以更加准确地了解材料的性质和特点,为材料研究和应用提供有力的支持。

一、X射线衍射分析方法1. X射线衍射仪原理X射线衍射是利用材料晶体对入射的X射线产生衍射现象,进而得到材料结构信息的方法。

X射线衍射仪包括X射线发生器、样品支架、衍射仪和探测器等组成。

2. X射线衍射应用范围X射线衍射广泛应用于材料相结构、晶体学、应力分析等领域。

通过X射线衍射分析,可以确定材料中存在的晶体结构、相变行为以及晶格常数等关键信息。

二、质谱分析方法1. 质谱仪原理质谱是一种通过分析样品中离子的质量和相对丰度,来确定样品组成的分析技术。

质谱仪包括进样系统、离子源、质谱分析器等组成。

2. 质谱分析应用领域质谱分析方法在有机物组成分析、无机元素分析以及分子结构分析等方面具有广泛的应用。

通过对样品分子离子的质量的检测和分析,可以获得样品化学成分以及分子结构等信息。

三、扫描电子显微镜(SEM)分析方法1. SEM原理扫描电子显微镜是利用电子束与样品表面相互作用产生的信号来获得样品表面形貌以及成分信息的一种显微镜。

SEM主要由电子光源、样品台、扫描控制系统、成像系统等部分构成。

2. SEM应用范围SEM广泛应用于材料表面形貌分析、晶体缺陷研究以及纳米材料分析等领域。

通过SEM技术,可以观察到材料表面的形貌、孔隙结构、晶体形态等微观特征。

四、透射电子显微镜(TEM)分析方法1. TEM原理透射电子显微镜是将电子束透射到样品上,通过电子束和样品发生相互作用产生的影像来获得样品内部的结构信息。

TEM主要由电子源、样品台、成像系统等部分构成。

2. TEM应用范围TEM主要应用于材料的内部结构分析,例如纳米材料的晶体结构、界面特性等。

通过TEM技术,可以观察到材料的晶体结构、晶界、缺陷以及纳米颗粒等细微结构。

材料现代分析测试方法知识总结

材料现代分析测试方法知识总结

材料现代分析测试方法知识总结现代分析测试方法是指在材料研究和应用过程中,通过各种仪器和设备对材料进行精确分析和测试的方法。

这些方法包括物理测试方法、化学测试方法和电子显微镜技术等。

以下是对现代分析测试方法的一些知识的总结。

一、物理测试方法:1.X射线衍射:通过X射线的衍射绘制出材料的结晶结构,确定材料的晶格常数、晶胞参数和晶体的相位等。

2.热重分析:通过加热材料并测量其重量的变化,判断其热稳定性、热分解性和可能的热分解产物。

3.红外光谱:通过测量材料在红外波段的吸收光谱,推断材料的分子结构、官能团以及物质的存在状态和纯度。

4.核磁共振:通过测量核磁共振信号,确定物质的结构、官能团和化学环境。

二、化学测试方法:1.光谱分析:包括紫外可见光谱、原子吸收光谱和发射光谱等,通过测量材料吸收或发射的光的波长和强度,确定材料的化学成分和浓度。

2.色谱分析:包括气相色谱、液相色谱和超高效液相色谱等,通过物质在固定相和流动相之间的相互作用,分离并测定材料中的组分。

3.原子力显微镜:通过测量微米和亚微米级尺寸范围内的力的作用,观察材料表面的形貌和物理特性。

4.微量元素分析:通过原子吸收光谱、荧光光谱和电感耦合等离子体发射光谱等方法,测量材料中的微量元素浓度。

三、电子显微镜技术:1.扫描电子显微镜:通过扫描电子束和样品表面之间的相互作用,观察材料表面的形貌、组成和结构。

2.透射电子显微镜:通过电子束穿透样品并与样品内部的原子发生相互作用,观察材料的晶格结构、晶格缺陷和界面等微观结构。

以上是现代材料分析测试方法的一些知识总结。

通过这些方法,我们可以准确地了解材料的组成、结构和性能,为材料的研究、设计和应用提供有力的支持。

现代材料研究方法知识点总结

现代材料研究方法知识点总结

现代材料研究方法知识点总结一、X 射线谱(连续和特征)X 射线与物质相互作用 1、吸收限及其应用定义:吸收系数发生突变的波长激发K 系荧光辐射,光子的能量至少等于激出一个K 层电子所作的功W k h νk = Wk= hc/λk 只有ν > νk 才能产生光电效应。

所以:λk 从激发荧光辐射角度称为激发限。

从吸收角度看称为吸收限。

吸收限λk 的应用(1)滤波片的选择主要目的去除k β原理:选择滤波片物质的λk 介于λ k α 和λk β之间。

即Z 滤=Z 靶-1(Z 靶<40)Z 滤=Z 靶-2 (Z 靶>40) (2)阳极靶的选择 (1) Z 靶< Z 试样(2) 自动滤波 Z 靶= Z 试样+1 或+2(3) Z 靶>> Z 试样最忌Z 靶+1或+2=Z 试样2、X 射线与物质相互作用产生那些信息。

X 射线通过物质,一部分被散射,一部分被吸收,一部分透射。

3、衰减公式I=I 0e -μm ρH1、衰减公式相对衰减:μ:线衰减系数负号厚度↑ I ↓积分:为穿透系数2、衰减系数1) 线衰减系数I :单位时间通过单位面积的能量μ的物理意义:通过单位体积的相对衰减。

2) 质量衰减系数X 射线的衰减与物质的密度有关,因此每克物质引起的相对衰减为μ/ρ= μm HH m eI I ρμ-=03) 复杂物质的衰减系数 w :重量百分比μm = w 1μm1+ w 2 μm2 + w 3 μm3 +….+ w n μmn 4) μm 与λ、Z 的关系μm ≈k λ3Z 3 λ<λk 时k=0.007λ>λk 时 k=0.009 二、晶体学内容7种晶系、倒易点阵。

晶系点阵常数间的关系和特点实例三斜单斜斜方(正交) 正方立方六方菱方a ≠b ≠c,α≠β≠γ≠90°a ≠b ≠c,α=β=90°≠γ(第一种) α=γ=90°≠β二种a ≠b ≠c,α=β=γ=90°a=b ≠c α=β=γ=90° a=b=c α=β=γ=90° a=b ≠c α=β=90γ=120 a=b=c α=β=γ≠ 90°K2CrO7 β-S CaSO 42H 2O Fe 3C TiO 2 NaCl Ni-As Sb,Bi倒易点阵的定义若正点阵的基矢为a 、b 、c 。

现代材料研究分析方法考研复习精华

现代材料研究分析方法考研复习精华
四部分:X光源;分光晶体; 检测器;记录显示; 按Bragg方程进行色散; 测量第一级光谱n=1; 检测器角度 2; 分光晶体与检测器同步转动进行扫描。
二、X射线荧光光谱仪 X-ray fluorescence spectrometer
(3)检测器
正比计数器(充气型): 工作气 Ar;抑制气 甲烷 利用X射线使气体电离的作用,辐射能转化电能; 闪烁计数器: 瞬间发光—光电倍增管; 半导体计数器:下图
背散射电子的特点
03
背散射电子能量很高,其中相当部分接近入射电子能量,在试样中产生的范围大,像的分辨率低;
背散射电子发射系数随试样原子序数增加而增大;
虽然作用体积虽入射束能量增加而增大,但背散射电子的发射系数受入射束能量影响不大;
当试样表面倾角增加时,作用体积改变,将显著增加被散射电子的发射系数;
DTA仪的基本结构
差热分析仪通常由加热炉、温度控制系统、信号放大系统、差热系统及记录系统组成。
影响曲线形状的因素
影响差热分析的主要因素有三个方面:仪器因素,实验条件和试样。 实验条件 升温速率;稀释剂的影响;
差热曲线分析
差热曲线分析就是解释曲线上每个峰谷产生的原因,从而分析被测物质是有那些物相组成的。峰谷产生的原因有: 矿物质脱水 相变 物质的化合或分解 氧化还原 差热分析的峰只表示试样的热效应,本身不反应更多的物理化学本质。为此,单靠差热曲线很难做正确的解释。现在普遍采用的联用技术。
定性物相分析原理
X射线衍射线的位置决定于晶胞的形状和大小,也即决定于各晶面的面间距,而衍射线的相对强度则决定于晶胞内原子的种类、数目及排列方式。每种晶态物质都有其特定的结构,不是前者有异,就是后者有别,因而就有其独特的衍射花样。 当试样中包含两种或两种以上的结晶物质时,它们的衍射花样同时出现,而不会相互干涉。 混合物中某相的衍射线强度取决于它在试样中的相对含量,因此根据各相衍射线的强度比,可以推算出它们的相对含量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料现代分析方法知识点1.什么是特征X射线?当管压增至与阳极靶材对应的特定值U k时,在连续谱的某些特定波长位置上出现一系列陡峭的尖峰。

该尖峰对应的波长λ与靶材的原子序数Z存在着严格的对应关系,尖峰可作为靶材的标志或特征,故称尖峰为特征峰或特征谱。

2.什么是电子探针的点分析、线分析、面分析?①点分析:将电子束作用于样品上的某一点,波谱仪分析时改变分光晶体和探测器的位置,收集分析点的特征X射线,由特征X射线的波长判定分析点所含的元素;采用能谱仪工作时,几分钟可获得分析点的全部元素所对应的特征X射线的谱线,从而确定该点所含有的元素及其相对含量。

②线分析:将探针中的谱仪固定于某一位置,该位置对应于某一元素特征X射线的波长或能量,然后移动电子束,在样品表面沿着设定的直线扫描,便可获得该种元素在设定直线上的浓度分布曲线。

改变谱仪位置则可获得另一种元素的浓度分布曲线。

③面分析:将谱仪固定于某一元素特征X射线信号(波长或能量)位置上,通过扫描线圈使电子束在样品表面进行光栅扫描(面扫描),用检测到的特征X射线信号调制成荧光屏上的亮度,就可获得该元素在扫描面的浓度分布图像。

3. XRD对样品有何要求?粉末样品应干燥,粒度一般要求约10~80μm,应过200目筛子(约0.08mm),且避免颗粒不均匀。

块状样品应将其处理成与窗孔大小一致,可扫描宽度宜大于5mm,小于30mm,至少保证一面平整。

4.电子探针分析原理?电子探针是一中利用电子束作用样品后产生的特征X射线进行微区成分分析的仪器。

其结构与扫描电竞基本相同,所不同的只是电子探针检测的是特征X射线,而不是二次电子或背散射电子。

5.结构因子的计算?P68(1)简单点阵:简单点阵的晶胞仅有一个原子,坐标为(0,0,0),即X=Y=Z=0,设原子的散射因子为f,则(公式3-69)(2)底心点阵:底心点阵的晶胞有两个原子,坐标分别为(0,0,0),(1/2,1/2,0)各原子的散射因子为f,则(公式3-70)(3)体心点阵:体心点阵的晶胞有两个原子,坐标分别为(0,0,0),(1/2,1/2,1/2)各原子的散射因子为f,则(公式3-71)(4)面心点阵:面心点阵的晶胞有4个原子,坐标分别为(0,0,0),(1/2,1/2,0),(1/2,0,1/2),(0,1/2,1/2)各原子的散射因子为f,则(公式3-72)6.X射线衍射与电子衍射的关系(比较)?P150(1)电子波的波长短,远远小于X射线,同等衍射条件下,它的衍射半角很小,衍射束集中在前方额,而x射线的衍射半角可接近90度。

(2)电子衍射反射球半径大(3)电子衍射散射强度高,物质对电子的散射比对x射线散射强约1000000倍(4) 电子衍射不仅可以进行微区结构分析,还可以进行形貌观察,而x射线衍射却无法进行形貌分析(5)薄晶样品的倒易点阵为沿厚度方向的倒易杆,大大增加了反射球与倒易杆相截的机会,即使偏离布拉格方程的电子束也能发生衍射。

(6)由于电子衍射角小,测量衍射斑点的位置精度远比x射线低,因此,不宜用于精确测定点阵常数。

7.扫描电镜的基本原理及结构原理:扫描电子显微镜利用电子枪产生的稳定电子束,以光栅状扫描方式照射到被分析试样表面,利用入射电子和试样表面物质互相作用所产生的二次电子和背散射电子成像,获得试样表面微观组织结构和形貌信息。

结构:扫描电镜主要由电子光学系统、信号检测处理、图像显示和记录系统及真空系统三大系统组成。

其中电子光学系统是扫描电镜的主要组成部分。

8.什么是成像操作与衍射操作?是如何实现的?p176成像操作:当中间镜的物平面与物镜的像平面重合时,投影屏上将出现微观组织的形貌像,这样的操作成为成像操作。

衍射操作:当中间镜的物平面与物镜的后焦面重合时,投影屏上将出现所选区域的衍射花样,这样的操作称为衍射操作。

两者是通过改变中间镜的励磁电流的大小来实现的。

调整励磁电流即改变中间镜的焦距,从而改变中间镜物平面与物镜后焦面之间的相对位置。

9.什么是光电效应?p47与特征X射线的产生过程相似,当X射线的能量足够高时同样可以将物质原子的层电子击出成为自由电子,并在层产生空位,使原子处于激发状态,外层电子自发回迁填补空位,降低原子的能量,产生辐射。

这种由入射X射线激发原子产生辐射的过程称为光电效应。

10.XRD衍射峰位的确定方法?p99(1)峰顶法当衍射峰非常尖锐时,直接以峰顶所在的位置定位为峰位(2)切线法当衍射峰两侧的直线部分较长时,一两侧直线部分的延长线的交点定为峰位(3)半高宽法图4-14(P100页)为半高宽法定位示意图,当Kɑ1和Kɑ2不分离时,如图4-14(a)所示,作衍射峰背底的连线pq,过峰顶m作横轴的垂直线mn,交pq于n,mn即为峰高。

过mn的中点K作pq的平行线PQ交衍射峰于P和Q,PQ为半高峰宽,再由PQ得中点R作横轴的垂线所得的垂足即为该衍射峰的峰位。

当Kɑ1和Kɑ2分离时,如图4-14(b)所示,应由Kɑ1衍射峰定位,考虑到Kɑ2的影响,取距峰顶1/8峰高处的峰宽中点定位峰位。

半高宽法一般适用于敏锐峰,当衍射峰较为漫散时应采用抛物线拟合法定位。

(4)当峰形漫散时,采用半高宽法产生的误差较大,此时可采用抛物线拟合法,就是将衍射峰的顶部拟合成对称轴平行于纵轴、口朝下的抛物线,以其对称轴与横轴的交点定位。

根据拟合时取点数目的不同,又可分为三点法、五点法和多点法等,此处介绍三点法和多点法。

11. TEM中的衬度的类型及适用围p188①衬度源于样品对入射电子的散射,当电子束穿透样品后,其振幅和相位均发生了变化,因此,电子显微图像的衬度可以分为振幅衬度和相位衬度,这两种衬度对同一幅图像的形成均有贡献,只是其中一个占助导而已。

根据产生振幅差异的原因,振幅衬度又可分为质厚衬度和衍射衬度两种。

②质厚衬度主要适用于非晶体成像。

衍射衬度主要适用于大于1nm的纤维组织结构。

相位衬度主要适用于晶格分辨率的测定以及高分辨率图像。

12.什么是像差?可以分为哪几种,各自的含义?p164①电磁透镜的像差主要是由外两种因素导致,由电磁透镜的几何形状﹙因﹚导致的像差称为几何像差,几何像差又包括球差和像散;而由电子束波长的稳定性﹙外因﹚决定的像差称为色差﹙光的颜色决定于波长﹚。

②分为球差,像差,色差。

③球差:由于电磁透镜的近轴区磁场和远轴区磁场对电子束的折射能力不同导致的。

像差:由于形成透镜的磁场非旋转对称引起的。

色差:由于波长不稳定导致的。

13.什么是二次电子与背散射电子?p146在电子束与样品发生作用时,非弹性散射是原子核外电子可能获得高于其电离的能量,挣脱原子核束缚,变成自由电子,那些在样品表层,且能量高于其逸出功的自由电子可能从样品表面逸出,称为真空中的自由电子,称之为二次电子背散射电子是指入射电子作用样品后被反射回来的部分入射电子,其强度用IB表示。

由弹性背散射电子和非弹性背散射电子。

14.什么是连续X射线?X射线谱线呈两种分布特征,一种连续状分布,另一种为陡峭状分布。

我们把连续分布的谱线称为X射线连续谱。

15.DTA差热分析是指在程序控温下,测量试样物质与参比物的温差随温度或时间变化的一种技术。

16.DSC差示扫描量热法是指在程序控温下,测量单位时间输入到样品和参比物之间能量差或功率差随温度变化的一种技术。

17.TG热重分析法是在程序控温下,测量物质的质量随温度变化的关系。

18.TEM透射电子显微镜,简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。

散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。

通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2&micro;m、光学显微镜下无法看清的结构,又称“亚显微结构”。

19.SEM扫描电子显微镜是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。

二次电子能够产生样品表面放大的形貌像,这个像是在样品被扫描时按时序建立起来的,即使用逐点成像的方法获得放大像。

20.能谱仪与波谱仪的比较?P244页(1)检测效率能谱仪中锂漂移硅探测器对X射线发射源所的立体角显著大于波谱仪,所以前者可以接受到更多的X射线;其次波谱仪因分光晶体衍射而造成部分X射线强度损失,因此能谱仪的检测效率较高。

(2)空间分辨能力能谱仪因检测效率高可在较小的电子束流下工作,使束斑直径减小,空间分析能力提高。

目前,在分析电镜中的微束操作方式下能谱仪分析的最小微区已经达到毫微米的数量级,而波谱仪的空间分辨率仅处于微米数量级。

(3)能量分辨本领能谱仪的最佳能量分辨本领为149eV,波谱仪的能量分辨本领为0.5nm,相当于5-10eV,可见波谱仪的分辨本领比能谱仪高一个数量级。

(4)分析速度能谱仪可在同一时间对分析点的所有X 射线光子的能量进行检测和计数,仅需几分钟时间可得到全谱定性分析结果;而波谱仪只能逐个测定每一元素的特征波长,一次全分析往往需要几个小时。

(5)分析元素的围波谱仪可以测量铍(Be)-铀(U)之间的所有元素,而能谱仪中Si(Li)检测器的铍窗口吸收超轻元素的X射线,只能分析纳(Na)以上的元素。

(6)可靠性能谱仪结构简单,没有机械传动部分,数据的稳定性和重现性较好。

但波谱仪的定量分析误差(1-5%)远小于能谱仪的定量分析误差(2-10%)。

(7)样品要求波谱仪在检测时要求样品表面平整,以满足聚焦条件。

能谱仪对样品表面没有特殊要求,适合于粗糙表面的成分分析。

根据上述分析,能谱仪和波谱一各有特点,彼此不能取代。

近年来,常将二者与扫描电境结合为一体,实质在一台仪器上实现快速地进行材料组织结构成分等资料的分析。

(太长了,精简)21.X射线物相分析步骤?(1)运用X射线仪获得待测样品前反射区(2θ<90°)的衍射花样。

同时由计算机获得各衍射峰的相对前度、衍射晶面的面间距或指数。

(2)当已知被测样品的主要化学成分是,可以利用字母索引查找卡片,在包含主元素各种可能的物相中,找出三强线符合的卡片,取出卡片,核对其余衍射峰,一旦符合,便能确定样品中含有该物相。

(3)当未知被测样品中的组成元素时,需要利用数字索引进行定性分析。

将衍射花样中相对强度最强的三强峰所对应的d1、d2、d3,由d1在索引中找到其所在的大组中,再按次强线的面间距d2在大组中找到与d2接近的几行,需要注意的是在同一大组中,各行是按d2值递减顺序编排的。

在d1、d2符合后,再对照第3、第4直至第8强线,若是八强峰均符合则可以取出该卡片,再对照剩余的d值和I1/I2,若d值在允许的误差围均符合,即可定相。

相关文档
最新文档