圆中角的关系培训资料
《圆——圆周角和圆心角的关系》数学教学PPT课件(6篇)
谢谢观看!
第三章 圆
圆周角和圆心角的关系
第1课时
第三章
第1课时
圆周角定理及其推论1
知识要点基础练
知识点1 圆周角的定义
1.如图,∠BAC是圆周角的是 ( B )
综合能力提升练
拓展探究突破练
-17-
第三章
第1课时
圆周角定理及其推论1
知识要点基础练
综合能力提升练
拓展探究突破练
-18-
知识点2 圆周角定理
-19-
第三章
第1课时
圆周角定理及其推论1
知识要点基础练
综合能力提升练
拓展探究突破练
-20-
知识点3 圆周角定理的推论1
5.(柳州中考)如图,A,B,C,D是☉O上的点,则图中与∠A相等的角是 ( D )
A.∠B
B.∠C
C.∠DEB
D.∠D
6.(赤峰中考)如图,AB是☉O的弦,OC⊥AB交☉O于点C,D是☉O上一点.若∠ADC=30°,
学生练习2 课本83页随堂练习第1题、第2题、第3题.
北京师范大学出版社 九年级 | 下册
【巩固提高】
课堂小结:
本节课学到那些知识?发现了什么?在运用所学的知识解决问题时应注意什么?
1、概念:圆周角,圆内接四边形,四边形的外接圆.
2、圆周角的定理:圆周角的度数等于它所对弧上的圆心角度数的一半;
3、圆周角定理的推论1:同弧或等弧所对的圆周角相等.
第1课时
圆周角定理及其推论1
知识要点基础练
综合能力提升练
拓展探究突破练
4.如图,A,B,C是半径为6的☉O上的三个点,且∠BAC=45°,求弦BC的长.
解:连接 OB,OC.
北师大版九年级下册数学《圆周角和圆心角的关系》圆说课教学课件复习教学课件
分析:根据圆周角和圆心的位置关系,分三种情况讨论:
新课讲解
(1)圆心O在∠ C的一条边上,如图 (1); (2)圆心O在∠ C的内部,如图 (2); (3)圆心O在∠ C的外部,如图 (3).
在三种位置关系中,我们选择(1)给出证明,其他情况可以 转化为(1)的情况进行证明.
证明:(1)圆心O在∠ C的一条边上,如图 (1).
个圆周角有什么关系?与同伴进行交流. (2 )这些圆周角与圆心角∠ AOB的大小有什 么关系?你是
怎样发现的?与同伴进行交流. 在图中,改变∠ AOB的度数,你得到的结论还成立吗?
新课讲解
圆周角定理: 圆周角的度数等于它所对弧上的圆心角度数的一半.
新课讲解
1. 圆周角定理的证明:
已知:如图, ∠ C是 AB 所对的圆 周角, ∠ AOB是 AB 所对的圆心角. 求证: ∠ C= 1 ∠ AOB
例 如图所示,已知经过原点的⊙ P 与x 轴、y 轴分别交于A,B 两
点,点C 是弧AB 上一点,则∠ ACB 的度数是( B )
A. 80° B. 90°
C. 100° D. 无法确定
分析:利用“直角所对的弦是直径”,结合“直 径所对的圆周角是直角”求解.
解:连接AB,如图所示. ∵∠ AOB=90°, ∴ AB 是⊙ P 的直径. ∴∠ ACB=90°.
ADC 所对的圆心角是∠AOC,所对的圆周角是∠ABC ,ABC 所对的圆心角是大于平角的∠α,所对的圆周 角是∠ADC.
新课讲解
解:∵∠AOC=150°,∴∠ABC=
1 2
∠AOC=75°.
∵∠α=360°-∠AOC=360°-150°=210°,
∴∠ADC= 1 ∠α=105°. 2
圆中有关的角
年 级 初三 学 科 数学 编稿老师 田一鹏 课程标题 圆中有关的角一校 张琦锋二校林卉审核孙永涛一、考点突破1. 掌握和圆有关的角:圆心角、圆周角、圆内角、圆外角、弦切角的定义及其度量。
2. 掌握圆内接四边形的性质定理。
3. 了解弧、弦、圆心角、圆周角之间的关系,并能运用这些关系解决有关问题。
二、重难点提示重点:弧、弦、圆心角、圆周角之间的关系。
难点:圆周角定理的应用和分类讨论的思想在解题中的应用。
一、圆中有关的角⎧⎪⎪⎪⎨⎪⎪⎪⎩圆心角圆周角圆中有关的角圆内角圆外角弦切角1. 圆心角:顶点在圆心的角叫做圆心角。
OCB把整个圆周等分成360份,每一等份弧是1°的弧,圆心角的度数和它所对的弧的度数相等。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等,那么它们相对应的其余各组量都相等。
2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角。
OBCA一条弧所对的圆周角等于它所对的圆心角的一半,同弧或等弧所对的圆周角相等;反之也成立。
直径所对的圆周角是直角。
BCAO3. 圆内角:顶点在圆内(两边自然和圆相交)的角叫圆内角。
P OBA圆内角的度数等于它所对的弧的度数与它的对顶角所对的弧的度数的和的一半。
DPB COA4. 圆外角:顶点在圆外,并且两边都和圆相交(或相切)的角叫圆外角。
DPBCAO圆外角的度数等于它所夹的两弧度数的差(较大弧的度数减去较小弧的度数)的一半。
5. 弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
弦切角等于它所夹的弧对的圆周角。
推论①弦切角等于它所夹的弧所对的圆心角的一半。
推论②如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
二、圆的内接四边形如果一个多边形的所有顶点都在同一个圆上,那么这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。
初三数学圆周角与圆心角的关系讲义
学科教师辅导讲义体系搭建一、知识梳理圆.(五)三角形的外接圆1、外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.2、外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.注意:①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个而一个圆的内接三角形却有无数个.考点一:圆周角的定义与圆周角定理例1、请用科学的方法证明圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.例2、如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°例3、如图将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,∠APB的度数()A.45°B.30°C.75°D.60°例4、如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是()A.60°B.120°C.60°或120°D.30°或150°考点二:圆周角定理的推论例1、如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定例2、如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且=.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.考点三:圆内接四边形例1、如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD=()A.128°B.100°C.64°D.32°例2、如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°考点四:确定圆的条件、三角形的外接圆与外心例1、小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块例2、如图,已知点平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P经过点A、B、C,则点P的坐标为()A.(6,8)B.(4,5)C.(4,)D.(4,)例3、如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE实战演练➢课堂狙击1、如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°第1题第2题2、如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110°D.130°3、如图,AB是⊙O的直径,C、D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°4、点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°5、如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°6、下列四个命题:①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧.其中真命题的个数有()A.1个B.2个C.3个D.4个7、如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.➢课后反击1、如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100°D.130°2、如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口A,B,C,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.△ABC的三边高线的交点P处B.△ABC的三角平分线的交点P处C.△ABC的三边中线的交点P处D.△ABC的三边中垂线的交点P处3、下列命题正确的个数有()①过两点可以作无数个圆;②经过三点一定可以作圆;③任意一个三角形有一个外接圆,而且只有一个外接圆;④任意一个圆有且只有一个内接三角形.A.1个B.2个C.3个D.4个4、如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A.80°B.100°C.60°D.40°5、如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,BD⊥AC于点D,AB=8,则tan∠CBD的值等于()A.B.C.D.6、已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.7、如图,A、B、C、D是⊙O上的四个点,AB=AC,AD交BC于点E.(1)求证:∠ABC=∠ADB;(2)若AE=2,ED=4,求AB的长.8、如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE.(1)求BE的长;(2)求△ACD外接圆的半径.直击中考1、【2015•巴中】如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25°B.50°C.60°D.30°2、【2015•荆州】如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.55°B.60°C.65°D.70°3、【2015•深圳】如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50° B.20°C.60° D.70°4、【2012•深圳】如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5C.3 D.35、【2015•深圳】如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.重点回顾1、圆周角的定义、圆周角定理及其推论内容及常作辅助线2、圆的内接四边形的对角互补3、确定圆的条件:不在同一直线上的三个点确定唯一的一个圆4、圆的外接圆与外心锐角、直角、钝角三角形的外心,外心的确定名师点拨本节性质定理内容较多,但整体难度不大,也是中考的重点内容。
自学初中数学资料 圆之垂径定理、圆心角、圆周角定理 (资料附答案)
自学资料一、圆的相关定义【知识探索】1.定理:不在同一直线上的三点确定一个圆.【说明】(1)过平面上一点能作无数多个圆;(2)过平面上两点能做无数多个圆,这些圆的圆心在两点连线的垂直平分线上;(3)过平面上三点:①三点不在同一直线上,能作唯一一个圆;②三点在同一直线上,不能作圆.【错题精练】例1.下列命题正确的个数有()①过两点可以作无数个圆;②经过三点一定可以作圆;③任意一个三角形有一个外接圆,而且只有一个外接圆;④任意一个圆有且只有一个内接三角形.A. 1个B. 2个C. 3个D. 4个第1页共23页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训【解答】解:①过两点可以作无数个圆,正确;②经过三点一定可以作圆,错误;③任意一个三角形有一个外接圆,而且只有一个外接圆,正确;④任意一个圆有且只有一个内接三角形,错误,正确的有2个,故选:B.【答案】B例2.有下列四个命题,其中正确的有()①圆的对称轴是直径;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.A. 4个B. 3个C. 2个D. 1个【答案】C例3.如图,在平面直角坐标系中,点A坐标为(﹣4,0),⊙O与x轴的负半轴交于B(﹣2,0).点P是⊙O上的一个动点,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于()A.B.C.D.【解答】第2页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】C例4.如图,已知△ABC.(1)尺规作图作△ABC的外接圆(保留作图痕迹,不写作法);(2)设△ABC是等腰三角形,底边BC=10,腰AB=6,求圆的半径r.【答案】解:(1)如图所示;(2)连接OB,连接OA交BC于点E,∵△ABC是等腰三角形,底边BC=10,腰AB=6,∴BE=CE=5,AE=√AB2−BE2=√11,在Rt△BOE中,r2=52+(r-√11)2∴r=18√11=18√1111.第3页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第4页 共页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【解答】【解答】解:如图:连接OA,作OM⊥AB与M,∵⊙O的直径为10,∴半径为5,∴OP的最大值为5,∵OM⊥AB与M,∴AM=BM,∵AB=6,∴AM=3,在Rt△AOM中,OM==4,OM的长即为OP的最小值,∴4≤OP≤5.【答案】4≤OP≤55.已知:△ABC(如图)(1)求作:△ABC的外接圆(要求:用尺规作图,保留作图痕迹,不要求写作法及证明).(2)若∠A=60°,BC=8√3,求△ABC的外接圆的半径.【答案】解:(1)如图所示:⊙O即为所求△ABC的外接圆;(2)过点O作OD⊥BC于点D,∵∠A=60°,BC=8√3,∴∠COD=60°,CD=4√3,第5页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训∴CO=4√3sin60°=8,答:△ABC的外接圆的半径为8.二、圆心角、弧、弦、弦心距、圆周角之间的关系【知识探索】年份题量分值考点题型2015114圆内接四边形的性质;点与圆的位置关系选择、简答201613圆周角定理;填空2017219弧长面积;切线的性质;圆周角定理选择、填空、简答201824圆周角定理;填空2019216扇形面积;切线长定理;圆心角、圆周角、垂径定理填空、解答【错题精练】例1.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=52°,则α的度数是()A. 51.5°B. 60°C. 72°D. 76°【解答】解:连接OD.∵∠BAO=∠CBO=α,∴∠AOB=∠BOC=∠COD=∠DOE,∵∠AOE=52°,∴∠AOB=(360°-52°)÷4=77°,第6页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第7页 共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼 非学科培训∴α=(180°-77°)÷2=51.5°. 故选:A .【答案】A例2.如图,在△ABC 中,∠C=90°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E .(1)若∠A=25°,求BD̂的度数. (2)若BC=9,AC=12,求BD 的长.【答案】解:(1)连接CD ,如图, ∵∠ACB=90°,∴∠B=90°-∠A=90°-25°=65°,∵CB=CD ,∴∠CDB=∠B=65°, ∴∠BCD=180°-2∠B=50°, ∴BD ̂的度数为50°;(2)作CH ⊥BD ,如图,则BH=DH , 在Rt △ACB 中,AB=√92+122=15, ∵12CH•AB=12BC•AC , ∴CH=9×1215=365, 在Rt △BCH 中,BH=√92−(365)2=275,∴BD=2BH=545.̂的度数为()例3.已知如图,在⊙O中,OA⊥OB,∠A=35°,则CDA. 20°B. 25°C. 30°D. 35°【解答】解:连接OC,∵OA⊥OB,∴∠AOB=90°,∵∠A=35°,∴∠OBC=90°-35°=55°,∴OB=OC,∴∠OBC=∠OCB=55°,∴∠COB=70°,∴∠COD=90°-70°=20°,̂的度数为20°,∴CD故选:A.【答案】A例4.已知AB是⊙O的直径,点C,D是⊙O上的点,∠A=50°,∠B=70°,连接DO,CO,DC (1)如图①,求∠OCD的大小:(2)如图②,分别过点C,D作OC,OD的垂线,相交于点P,连接OP,交CD于点M已知⊙O的半径为2,求OM及OP的长.第8页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】解:(1)∵OA=OD,OB=OC,∴∠A=∠ODA=50°,∠B=∠OCB=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=180°-∠AOD-∠BOC=60°,∵OD=OC,∴△COD是等边三角形,∴∠OCD=60°;(2)∵PD⊥OD,PC⊥OC,∴∠PDO=∠PCO=90°,∴∠PDC=∠PCD=30°,∴PD=PC,∵OD=OC,∴OP垂直平分CD,∴∠DOP=30°,∵OD=2,∴OM=√32OD=√3,OP=4√33.例5.如图,AB为⊙O的直径,△ABC的边AC,BC分别与⊙O交于D,E,若E为BD̂的中点.(1)求证:DE=EC;(2)若DC=2,BC=6,求⊙O的半径【答案】解:(1)连结AE,BD,∵E为BD̂的中点,∴ED̂=BÊ,∴∠CAE=∠BAE,∵∠AEB是直径所对的圆周角,第9页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第10页 共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练 非学科培训∴∠AEB=90°, 即AE ⊥BC ,∴∠AEB=∠AEC=90°,在△AEC 和△AEB 中{∠CAE =∠BAE AE =AE ∠AEC =∠AEB ,∴△AEC ≌△AEB (ASA ), ∴CE=BE , ∴DE=CE=BE=12BC ;(2)在Rt △CBD 中,BD 2=BC 2-CD 2=32, 设半径为r ,则AB=2r , 由(1)得AC=AB=2r , AD=AC-CD=2r-2,在Rt △ABD 中AD 2+BD 2=AB 2, ∴(2r-2)2+32=(2r )2, 解得:r=4.5,∴⊙O 的半径为4.5.例6.如图,点A ,B ,C 在⊙O 上,AB ∥OC .(1)求证:∠ACB+∠BOC=90°;(2)若⊙O 的半径为5,AC=8,求BC 的长度.【答案】(1)证明:∵AB̂对的圆周角是∠ACB ,对的圆心角是∠AOB , ∴∠AOB=2∠ACB , ∵OB=OA ,∴∠ABO=∠BAO , ∵AB ∥OC ,∴∠ABO=∠BOC ,∠BAO+∠AOC=180°, ∴∠BAO+∠AOB+∠BOC=180°, 即2∠ACB+2∠BOC=180°, ∴∠ACB+∠BOC=90°;(2)延长AO 交⊙O 于D ,连接CD ,则∠ACD=90°,由勾股定理得:CD=√AD2−AC2=√(5+5)2−82=6,∵OC∥AB,∴∠BOC=∠ABO,∠COD=∠BAO,∵∠BAO=∠ABO,∴∠BOC=∠COD,在△BOC和△DOC中{OB=OD∠BOC=∠DOC OC=OC∴△BOC≌△DOC(SAS),∴BC=CD,∵CD=6,∴BC=6.例7.如图,AB是半圆O的直径,AC是弦,∠CAB=60∘,若AB=6cm.(1)求弦AC的长;(2)点P从点A开始,以1cm/s的速度沿AB向点B运动,到点B停止,过点P作PQ∥AC,交半圆O于点Q,设运动时间为t(s).①当t=1时,求PQ的长;②若△OPQ为等腰三角形,直接写出t(t>0)的值.【解答】(1)解:如图1中,∵OA=OC,∠CAB=60∘,∴△AOC是等边三角形,∴AC=OA=3(cm);(2)解:①如图2中,作OH⊥PQ于H,连接OQ,由题意得:AP=1,OP=2,∵PQ∥AC,∴∠OPH=∠CAB=60∘,在Rt△OPH中,∵∠POH=90∘−∠OPH=30∘,OP=2,∴PH=1OP=1,OH=√3PH=√3,2在Rt△QOH中,HQ=√OQ2−OH2=√6,∴PQ=PH+HQ=1+√6;②如图3中,∵△OPQ是等腰三角形,观察图象可知,只有OP=PQ,作PH⊥OQ于H.∵PQ∥AC,∴∠QPB=∠CAB=60∘,∵PQ=PO,PH⊥OQ,,∠POQ=∠PQO=30∘,∴OH=HQ=32∴OP=OH÷cos30∘=√3,∴AP=3+√3,∴t=3+√3秒时,△OPQ是等腰三角形.【答案】(1)3cm;(2)①1+√6;②t=3+√3.例8.如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.【解答】(1)解:△ABC为等腰三角形.理由如下:连结AE,如图,∵,∴∠DAE=∠BAE,即AE平分∠BAC,∵AB为直径,∴∠AEB=90∘,∴AE⊥BC,∴△ABC为等腰三角形;(2)解:∵△ABC为等腰三角形,AE⊥BC,∴BE=CE=12BC=12×12=6,在Rt△ABE中,∵AB=10,BE=6,∴AE=√102−62=8,∵AB为直径,∴∠ADB=90∘,∴12AE⋅BC=12BD⋅AC,∴BD=8×1210=485,在Rt△ABD中,∵AB=10,BD=485,∴AD=√AB2−BD2=145,∴sin∠ABD=ADAB =14510=725.【答案】(1)略;(2)725.【举一反三】1.如图,弦AC、BD相交于点E,且AB̂=BĈ=CD̂,若∠AED=80°,则∠ACD的度数为()A. 20°B. 25°C. 30°D. 15°【解答】解:如图,设AB̂的度数为m,AD̂的度数为n,∵AB̂=BĈ=CD̂,∴BĈ、CD̂的度数都为m,∴3m+n=360°①∵∠AED=80°,∴∠C+∠D=80°,∴12m+12n=80°②,由①②组成{3m+n=360°12m+12n=80°,解得m=100°,n=60°∴∠ACD=12n=30°.故选:C.【答案】C2.已知△ABC内接于⊙O,点D平分弧BmĈ.(1)如图①,若∠BAC=2∠ABC.求证:AC=CD;(2)如图②,若BC为⊙O的直径,且BC=10,AB=6,求AC,CD的长.【答案】(1)证明:∵点D平分弧BmĈ,∴弧DC=弧DB,∵∠BAC=2∠ABC,∴弧BDC=2弧AC,∴弧CA=弧CD,∴AC=CD;(2)解:连结BD,如图②,∵BC为⊙O的直径,∴∠BAC=∠BDC=90°,在Rt △BAC 中,∵BC=10,AB=6,∴AC=√BC 2−AB 2=8;∵弧DC=弧DB ,∴DB=DC ,∴△BCD 为等腰直角三角形,∴CD=√22BC=5√2.3.如图,在⊙O 中,点C 是优弧ACB 的中点,D 、E 分别是OA 、OB 上的点,且AD=BE ,弦CM 、CN 分别过点D 、E .(1)求证:CD=CE .(2)求证:AM̂=BN ̂.【答案】(1)证明:连接OC .∵AĈ=BC ̂, ∴∠COD=∠COE ,∵OA=OB ,AD=BE ,∴OD=OE ,∵OC=OC ,∴△COD ≌△COE (SAS ),∴CD=CE .(2)分别连结OM ,ON ,∵△COD ≌△COE ,∴∠CDO=∠CEO ,∠OCD=∠OCE ,∵OC=OM=ON ,∴∠OCM=∠OMC ,∠OCN=∠ONC ,∴∠OMD=∠ONE ,∵∠ODC=∠DMO+∠MOD ,∠CEO=∠CNO+∠EON ,∴∠MOD=∠NOE ,∴AM̂=BN ̂.4.如图,已知△ABC中,AB=AC,以AB为直径的⊙O与边BC相交于点D,过点D作⊙O的切线与AC交于点E.(1)求BDBC的值.(2)判断DE与AC的位置关系,并证明你的结论.(3)已知BC:AB=2:3,DE=4√2,求⊙O的直径.【解答】(1)解:如图,连接AD,∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=DC,∴BDBC =12;(2)解:DE⊥AC;连接OD,∵DE是⊙O的切线,∴DE⊥OD,∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠ODB=∠C,∴AC∥OD,∴DE⊥AC;(3)解:∵BDBC =12且BC:AB=2:3,∴AB:CD=3,∵∠ADB =∠DEC =90∘,∠B =∠C ,∴△ABD ∽△DCE ,∴DC AB =CE BD =13,设CE =a ,则BD =CD =3a ,AB =9a ,在Rt△DEC 中,由勾股定理得:DE =2a √2=4√2,∴a =2,∴AB =18.【答案】(1)12;(2)DE ⊥AC ;(3)18.5.已知直径CD ⊥弦BF 于 E ,AB 为ʘO 的直径.(1)求证:FD̂=AC ̂; (2)若∠DAB=∠B ,求∠B 的度数.【答案】(1)证明:∵直径CD ⊥弦BF ,∴FD̂=BD ̂, ∵∠AOC=∠BOD ,∴BD̂=AC ̂, ∴FD̂=AC ̂; (2)解:由圆周角定理得,∠BOD=2∠DAB ,∵∠DAB=∠B ,∴∠BOD=2∠B ,∵CD ⊥BF ,∴∠B=30°.6.如图,⊙O 的半径为2,弦BC =2√3,点A 是优弧BC 上一动点(不包括端点),△ABC 的高BD 、CE 相交于点F ,连结ED .下列四个结论:①∠A 始终为60°;②当∠ABC =45∘时,AE =EF ;③当△ABC 为锐角三角形时,ED =√3;④线段ED 的垂直平分线必平分弦BC .其中正确的结论是 .(把你认为正确结论的序号都填上)【答案】①②③④.7.圆O的直径为10cm,A是圆O内一点,且OA=3cm,则圆O中过点A的最短弦长=__________cm【答案】88.如图,在圆O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD=__________°【答案】501.如图,AB圆O的直径,点C在圆O上,若∠OCA=50°,AB=4,则弧BC的长为()πA. 103B. 109π C. 59πD. 518π【答案】B2.如图,将钢珠放在一个边长AB=8mm 的正方形的方槽内,测得钢珠顶端离零件表面的距离为8mm ,则这个钢珠的直径为______mm .【答案】103.如图,AB 是半圆的直径,E 是弦AC 上一点,过点E 作EF ⊥EB ,交AB 于点F ,过点A 作AD ∥EF ,交半圆于点D .若C 是BD ̂的中点,AF AE =√54,则EFAD 的值为 .【解答】解:延长BE 交AD 于A',∵AD ∥EF ,EF ⊥BE ,∴AA'⊥BA',∴∠AA'B=90°,∵AB 为⊙O 的直径,∴∠ADB=90°,∴D 与A'重合,∵AFAE =√54,∴设AF=√5a,AE=4a,过F作FG⊥AE于G,∵C是BD̂的中点,∴CD̂=BĈ,∴∠DAC=∠BAC,∵AD∥EF,∴∠BFE=∠DAB=2∠BAC=∠BAC+∠AEF,∴∠BAC=∠AEF,∴AF=EF,∴AG=EG=2a,由勾股定理得:FG=a,∵∠DAE=∠GAF,∠ADE=∠AGF=90°,∴△ADE∽△AGF,∴ADAE =AGAF,∴AD4a =2a√5a,AD=8a√5,∴EFAD =√5a8a√5=58,故答案为:58.【答案】584.在⊙O的内接△ABC中,AD⊥BC于D,(1)①图1中,若作直径AP,求证:AB.AC=AD.AP;②已知AB+AC=12,AD=3,设⊙O的半径为y,AB的长为x.求y与x的函数关系式及自变量x的取值范围;(2)图2中,点E为⊙O上一点,且弧AE=弧AB,求证:CE+CD=BD.【答案】5.在⊙O的内接△ABC中,AB+AC=12,AD⊥BC,垂足为D,且AD=3,设⊙O的半径为y,AB的长为x。
9上09章 圆中的角
主讲:土豆
基础知识
圆周角:顶点在圆周上,并且两边都和圆相交的角.
圆的内接四边形:在圆的内部,四个顶点都在圆周上的四边形.
入门篇
基础篇 提高篇
竞赛篇
入门篇
【 例题】 如图 , ⊙ ������ 是 ������������ ������������ 的 外接 圆, ������������ 是 直径 , ∠ ������ = 40° , 则 ∠ ������������������ 的度 数是 .
������
【 例题】 如图 ,已知 ������ ������ 是 ⊙ ������ 的 直径, ������������ 平 分 ∠ ������������������ . 求 证: ������ ������ + ������ ������ = 2������������
�1
������2
基础篇
【 例题】 如图 ,已知 ⊙ ������ 的 内 接四边 形 ������������ ������������ 的 对角线 ������ ������ 平 分 ∠ ������������������ , ������������ = ������ ������ , ������ ������ ⊥ ������ ������ 于 ������ ,给出 下列结 论: 其中,正确结论的序号是 . ① ������ ������ ⊥ ������ ������ ; ② ������ ������ + ������������ = 2������ ������ ; ③ ∠ ������������������ − ∠ ������ ������������ = ∠ ������������������ .
弧、弦、圆心角的关系
M
N
今天作业 课本第94页 3,10
·
把圆O的半径ON绕圆心O旋转任意一个角度,
N O
把圆O的半径ON绕圆心O旋转任意一个角度,
N' N
O
把圆O的半径ON绕圆心O旋转任意一个角度,
N'
N
O
把圆O的半径ON绕圆心O旋转任意一个角度,
N'
N
O
把圆O的半径ON绕圆心O旋转任意一个角度, 由此可以看出,点N'仍落在圆上。
N' N
O
定理:把圆绕圆心旋转任意一个角度后,仍与原来的圆重合( 圆的旋转不变性) 。
A 求证:∠AOB=∠BOC=∠AOC
证明: ∵ A⌒B=A⌒C
∴ AB=AC, △ABC是等腰
O
三角形.
又 ∠ACB=60° ,
B
C
∴ △ABC是等边三角形,
∴ AB=BC=CA.
∴ ∠AOB=∠BOC=∠AOC.
例如图,AC与BD为⊙O的两条
互相垂直的直径
求证:A⌒B=B⌒C=C⌒D=D⌒A;
反馈练习
1、在⊙O中,AB⌒=AC⌒,∠AOB=70°,E
则∠AOC =
70°
D C
2、如图,AB是⊙O 的直径,
A
·
O
B
,∠COD=35°,
则∠AOE 的度数是 75°
3、在⊙O中,弦AB所对的劣弧
为圆的1/3,圆的半径为2㎝,那么
AB =
㎝
最新整理圆的确定,圆心角、圆周角、弧、弦、弦心距之间的关系教案资料
儒洋教育学科教师辅导讲义6、多边形与圆如果一个圆经过一个多边形的各顶点,那么这个圆叫做这个多边形的外接圆,这个多边形叫做这个圆的内接多边形,提示:1、与圆的确定有关的两个图形一定要学生重点理解。
2、补充两个知识点:线段垂直平分线的性质和角平分线的性质3、和学生一起重点分析课本例题1和2,理解题目考察的细节和解题方法。
二、例题分析:1、以线段AB为弦的圆的圆心的轨迹是___________。
cm。
2、已知扇形的圆心角为120°,半径为2cm,则扇形的弧长是cm,扇形的面积是23、点和圆的位置关系有三种:点在圆,点在圆,点在圆;例1:已知圆的半径r等于5厘米,点到圆心的距离为d,(1)当d=2厘米时,有d r,点在圆(2)当d=7厘米时,有d r,点在圆(3)当d=5厘米时,有d r,点在圆4、下列四边形:①平行四边形,②菱形;③矩形;④正方形。
其中四个顶点一定能在同一个圆上的有()A、①②③④B、②③④C、②③D、③④5、(07上海中考)小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块 B.第②块C.第③块 D.第④块6、三角形的外接圆的圆心是(),A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点7、直角三角形的两条直角边分别为5cm和12cm,则其外接圆半径长为。
(三)巩固练习1、圆是轴对称图形,其对称轴是任意一条的直线;圆是中心对称图形,对称中心为.2、三角形的外接圆的圆心——三角形的外心——三角形的交点;三角形的内切圆的圆心——三角形的内心——三角形的交点;3、三角形的外心一定在该三角形上的三角形()22BD =,连结CD ,则D ∠= o ,BC = .第7题 (第2题) 7、如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=_______8、如图,OE ⊥AB 、OF ⊥CD ,如果OE=OF ,那么_______(只需写一个正确的结论)B A CEDOF(第8题) (第11题)9、已知,如图所示,点O 是∠EPF 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B和C 、D 。
3.4.1圆周角和圆心角的关系(教案)
在今天的教学中,我发现学生们对圆周角和圆心角的关系这一部分内容兴趣浓厚,但也存在一些理解上的难点。首先,他们对圆周角和圆心角的定义掌握得相对较好,但在应用到具体问题时,还是会出现一些困惑。我意识到,这主要是因为他们在将理论知识转化为实际应用时,缺乏足够的练习和经验。
在讲授过程中,我尽量用生动的例子和直观的图形来解释这两个概念,但效果似乎并不如预期。我反思,可能需要更多的互动和实际操作,让学生在动手实践中感受圆周角和圆心角的关系。比如,可以设计一些更具挑战性的题目,让学生分组讨论,通过合作解决问题,加深对知识点的理解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆周角和圆心角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
还有一个值得注意的问题是,在小组讨论过程中,部分学生表现出较强的依赖性,不够独立思考。针对这一问题,我将在后续教学中加强对学生的引导,培养他们独立思考的能力,鼓励他们大胆提出自己的观点和疑问。
三、教学难点与重点
1.教学重点
-理解并掌握圆周角和圆心角的定义:这是本节课的基础,要求学生能够明确圆周角和圆心角的含义,并能够正确画出相应的图形。
-掌握圆周角和圆心角的关系:学生需要理解在同圆或等圆中,相等的圆周角所对的圆心角相等,反之亦然。
-应用圆周角和圆心角的关系解决实际问题:学生应学会运用这一关系进行几何证明和计算,解决与圆相关的实际问题。
2.提高学生的逻辑推理能力:引导学生通过严密的逻辑推理证明圆周角和圆心角的关系,培养他们运用几何知识分析和解决问题的能力。
圆周角和圆心角的关系ppt课件
-18-
3.4 圆周角和圆心角的关系
解析:如解析图,连接 AB,DE,则∠ABE=∠ADE. ∵ 所对的圆心角的度数为 50°,∴∠ABE= ∠ADE =25°. ∵ 点 A,B,C,D 在 ⊙O 上 ,∴四边形 ABCD 是圆内接四边形, ∴∠ABC+∠ADC=180°, ∴∠ABE+∠EBC+∠ADC=180°, ∴∠EBC+∠ADC=180°-∠ABE=180°-25°=155°. 答案:155° 题型解法:本题考查了圆周角定理和圆内接四边形的 性质,作出辅助线构建圆内接四边形是解题的关键.
-10-
3.4 圆周角和圆心角的关系
■考点四 圆内接四边形
定义
四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个 圆叫做四边形的外接圆
推论 圆内接四边形的对角互补
拓展 圆内接四边形的任何外角等于内对角
注意 并不是所有的四边形都存在外接圆,只有对角互补的四边形才存在外接圆
-11-
3.4 圆周角和圆心角的关系
A. 20° B. 40°
C. 50° D. 70°
-7-
3.4 圆周角和圆心角的关系
3. 如图,已知△ABC 的三个顶点都在同一圆上,且 AC=6,BC=8,AB=10, 则该圆的半径长是 ________.
(第 3 题图)
(第 4 题图)
4. 如图,AB=BC,∠ABC =120°,AD 为 ⊙O 的直径 ,AD=6,那么 AB 的
值为 ______.
-8-
3.4 圆周角和圆心角的关系
5. 如图,AB=AC,AB 是直径,求证:BC=2DE. (第 5 题图)
《圆周角和圆心角的关系》 讲义
《圆周角和圆心角的关系》讲义一、引入在我们探索圆的奇妙世界时,圆周角和圆心角是两个非常重要的概念。
它们之间存在着独特而又紧密的关系,理解这种关系对于解决与圆相关的数学问题至关重要。
想象一下,我们在一个圆中,随意画出一个圆周角和一个圆心角,你是否好奇它们之间到底有着怎样的关联呢?接下来,让我们一起深入研究。
二、圆周角的定义圆周角是指顶点在圆上,并且两边都和圆相交的角。
比如说,在圆O 中,点 A 在圆上,角 A 的两边分别与圆相交于 B、C 两点,那么角A 就是一个圆周角。
圆周角的度数大小取决于它所对的弧的长度。
这是一个非常关键的性质,也是我们后面探讨圆周角和圆心角关系的重要基础。
三、圆心角的定义圆心角则是指顶点在圆心的角。
同样在圆 O 中,如果角 BOC 的顶点 O 是圆心,那么角 BOC 就是一个圆心角。
圆心角的度数等于它所对的弧的度数。
四、圆周角和圆心角的大小关系1、同弧所对的圆周角和圆心角在同一个圆中,如果一个圆周角和一个圆心角都对着同一条弧,那么这个圆周角的度数是圆心角度数的一半。
例如,在圆 O 中,圆心角∠AOB 所对的弧是弧 AB,圆周角∠ACB 也对着弧 AB,那么∠ACB = 1/2 ∠AOB。
证明如下:连接 OC,因为 OA = OC,所以∠A =∠ACO;同理,因为 OB = OC,所以∠B =∠BCO。
所以∠AOB =∠A +∠B = 2∠ACB,即∠ACB = 1/2 ∠AOB。
2、等弧所对的圆周角和圆心角如果两条弧相等,那么它们所对的圆周角相等,所对的圆心角也相等。
因为等弧意味着它们的长度相等,而圆周角的度数取决于所对弧的长度,圆心角的度数等于所对弧的度数,所以等弧所对的圆周角和圆心角具有这样的关系。
3、半圆(或直径)所对的圆周角半圆(或直径)所对的圆周角是直角。
在圆 O 中,AB 是直径,点 C 在圆上,那么∠ACB = 90°。
证明:因为∠AOB = 180°,根据同弧所对的圆周角是圆心角的一半,所以∠ACB = 1/2 × 180°= 90°五、圆周角和圆心角关系的应用1、求角度已知圆中的某些角度关系,可以利用圆周角和圆心角的关系求出未知角度。
北师大版九年级下册数学《圆周角和圆心角的关系》圆说课教学课件复习提升
2.如右图,⊙O中,∠ACB = 130º,
1
则∠AOB=_1_0_0_º__.
O B
A
C
3.求圆中 的度数.
O
C 70°
A
B
α 350
D
C 120°
1
O
A
B
α 1200
A
4.如图,OA BC,AOB 500
C
B
则 CDA = 25°
O
D
5.在半径为R的圆内,长为R的 弦所对的圆周角为 30°或 150°
2
2
\ACB 1 AOD - BOD
2
即
A C
B
1 2
A
OB
C
C
C
O
O
O
A
A
B
A
B
D
DB
圆周角定理:在同圆或等圆中,同弧或等弧所
对的圆周角等于它所对的圆心角的一半.
D
C O
丙
A
甲
仅从射门角度 大小考虑,谁 相对于球门的 角度更好?
B乙
1.下列命题中是真命题的是( D ) (A)顶点在圆周上的角叫做圆周角 (B)60º的圆周角所对的弧的度数是30º (C)一弧所对的圆周角等于它所对的圆心角 (D)120º的弧所对的圆周角是60º
即 ACB 2BAC
A
O C
B
2.如图,点A,B,C,D,E均在⊙0上,则
A + B + C + D + E 等于多少度?
为什么?
B
分析:A,B,C,D,E这 五个圆周角所对的的弧之 A
C
和正好是一个圆,一个圆
所对的圆心角为 360°
圆周角和圆心角的关系(第2课时)同步课件
(1)如图,A,B,C,D是⊙O上的四点,AC为⊙O的直径,
请问∠BAD与∠BCD之间有什么关系?为什么?
A
解:∠BAD与∠BCD互补.
D
∵AC为直径,
∴∠ABC=90°,∠ADC=90°.
∵∠ABC+∠BCD+∠ADC+∠BAD=360°,
B
∴∠BAD+∠BCD=180°.
∴∠BAD与∠BCD互补.
O
C
探究新知
自主合作,探究新知
(2)若C点的位置产生了变化,∠BAD与∠BCD之间的关系
还成立吗?为什么?
解:∠BAD与∠BCD的关系仍然成立.
D
A
如图8,连接OB,OD.
∵ ∠2=2∠BAD,∠1=2∠BCD,
C
1
O 2
(圆周角的度数等于它所对弧上圆心角的一半),
∵∠1+∠2=360°,
解:∵四边形ABCD是圆内接四边形,
E
∴∠ADC+∠CBA=180°(圆内接四边形的对角互补).
∵∠EDC+∠ADC=180°,
D
∠EBF+∠ABE=180°,
∴∠EDC+∠EBF=180°.
C
O
∵∠EDC=∠F+∠A,∠EBF=∠E+∠A,
∴∠F+∠A+∠E+∠A=180°.
∴∠A=40°.
A
B
F
圆内接四边形的对角互补.
D
D
A
A
C
O
O
B
C
B
几何语言:
∵四边形ABCD为圆内接四边形,
圆周角和圆心角的关系精品PPT课件
演讲人:XXXXXX
时 间:XX年XX月XX日
2、练习
①②
顶两
点边
A
在分
圆别
上与
圆
还
有
另
一
个
交
点
A
二、认识圆周角
A
P
B
P
B
O
O
P O
B
P
O
A
B
P O
A
B
三、探究圆周角与圆心角的关系
环节一:作图
.A B.
●O
我们今天就研究一条弧所对 圆周角与圆心角的大小关系
一条弧对1个圆心角,对无数个圆周角 从圆心与圆周角的位置关系来看,我们可以将这无数个圆心角分成三类:圆 心在圆周角的边上,圆心在圆周角的内部,圆心在圆周角的外部。
∠ABC=
1 2
∠AOC
三、探究圆周角与圆心角的关系 环节四:得出结论 圆周角定理 圆周角的度数等于它所对弧上的圆心角度数的_一__半__。
推论
同弧或等弧所对的圆周角______相__等。
三、探究圆周角与圆心角的关系
环节五:针对练习
1、如图,在⊙O中,∠BOC=50°,则∠BAC=
。
2、如图,点A,B,C是⊙O上的三点,∠BAC=40°,则∠BOC=
所用知识:①外角等于不相邻的 两个内角之和;②圆的半径相等
三、探究圆周角与圆心角的关系
环节三:推理证明
AD C
O
连接BO并延长作直径,将问题
转化为第一种情况解答,转化
B
是一种很重要的数学方法
∠B=
1 2
∠AOC
三、探究圆周角与圆心角的关系 环节三:推理证明
A C
《圆周角和圆心角的关系》圆PPT课件3(1)
E
●O
C
B
D
A
E B
C D
同弧或等弧所对的圆周角相等。
如图,在⊙O中,∠B,∠D,∠E的大小有什么关系?
为什么?
D
同弧或等弧所对的圆周角相等; 同圆或等圆中,相等的圆周角所 对的弧也相等。
B E
●O
A
C
⑴“同弧或等弧”能否改为“同弦或等弦” 不能 ?
⑵ “同圆或等圆”这一条件能否省去? 不能
随堂练习: 1.如图,在⊙O 中,∠BOC=50°,求∠BAC 的大小。
圆周角定理推论:
C
同弧(等弧)所对的圆周角相等.
都等于这条弧所对的圆心角的一半.
D
O
A
在同圆或等圆中, B 相等的圆周角所对的弧相等.
• 想一想:
• 在射门游戏中,当球员在B,D,E处射门时,他所处的位置对球 门AC分别形成三个角∠ABC, ∠ADC,∠AEC.这三个角的大 小有什么关系?你能用圆周角定理去解决问题。
九年级数学(下)第三章 圆
3.4 圆周角和圆心角的关系
A
E B
C D
知识回顾
1.圆是轴对称图形. 圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.
2.圆也是中心对称图形. 它的对称中心就是圆心.
3.顶点在圆心的角叫做圆心角.
4.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对 的弦相等。
A
E
●O
C
B
D
A
E B
C D
圆周角定义:
A
顶点在圆上,并且两边都和圆 E
相交的角叫圆周角.
●O
C
B
特征: ① 角的顶点在圆上. ② 角的两边都与圆相交 .
北师大版九年级下册数学《圆周角和圆心角的关系》圆说课教学复习课件
O
B
C
新知讲解
(2)如图,点C 的位置发生了变化,∠BAD 与
BCD 之间关系还成立吗?为什么?
D
∠BAD +∠BCD =180°还成立.
A
解:连接OB,OD
∵ ∠BAD
=
∠1 , ∠BCD
1
=
∠2
(圆周角的度数等于它所对弧上圆心角的一半)
∵∠1+∠2=360°
∴∠BAD+∠BCD=180°
A
根据圆周角定理,
1
A BOC,
2
∴∠BOC =2∠A = 180°,
∴弦 BC 是直径.
B
O
C
归纳总结
推论
直径所对的圆周角是直角;
90°的圆周角所对的弦是直径.
典例精析
例、如图,⊙O的直径AB =10cm,C 为⊙O上一点,∠B = 30°,求
AC的长.
解:∵AB为⊙O的直径,
∴∠ACB=90°.
A.30°
B.40°
C.50°
D.60°
课堂练习
3. 如图,AB是☉O的直径,C是☉O上的一点.
若BC=3,AB=5,OD⊥BC于点D,则OD的长为 2 .
4.如图,四边形ABCD是平行四边形,☉O经过点A,C,D,与BC交于点E,连接AE.
若∠D=70°,则∠BAE= 40 °.
课堂练习
5. 如图,☉C经过原点,且与两坐标轴分别交于点A,B,点A的坐标为(0,3),M是第
第三章 圆
圆周角和圆心角的关系
第1课时
XX
情景导入
当球员在B,D,E处射门时,他所处
的位置对球门AC分别形成三个张角
圆中角的关系
圆中角的关系
1•同弧(或等弧)所对的圆周角是圆心角的一半
2•同弧(或等弧)所对的圆周角相等
3•半圆(或直径)所对的圆周角是直角;90度的圆周角所对的弦是直径
4•弦切角等于它所夹的弧所对的圆周角
5•圆的切线垂直于经过切点的半径
6•过圆外一点引两条切线,连接该点与圆心的线段平分两条切线所成的角
7•圆内接四边形对角互补
血如图,AB为圆0直径,点(:为圆上一鼠将劣弧M沿弦AC觀拆交AB于.点D,连接3, 若点D与圆心0不重合,则ZZX24的度数是:()
A.30" 8.40' C.50* D.60"
2.如图,AB、AC为圆O的两条弦,延长CA到点D,使AD = AB,若.ADB = 25,则乙BOC的度数
为___________
3.如图,AB为圆O的直径,点C在圆O上,延长BC至点D,使DC = CB,延长DA与圆O的另一个
交点为E,连接AC,CE,OC,则下列判断正确的是()
A ACE = EA
B B. ACE 二BCE C. AO
C 二BCE D. CAB = EAB
4.如图,长方形ABCD内接于圆O , AB = 1,BC二・.3,K是劣弧DC上一点,则.ABK -• DCK的度
数为()
A 55 B. 60 C.65 D. 70。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆中角的关系
圆中角的关系
1.同弧(或等弧)所对的圆周角是圆心角的一半
2.同弧(或等弧)所对的圆周角相等
3.半圆(或直径)所对的圆周角是直角;90度的圆周角所对的弦是直径
4.弦切角等于它所夹的弧所对的圆周角
5.圆的切线垂直于经过切点的半径
6.过圆外一点引两条切线,连接该点与圆心的线段平分两条切线所成的角
7.圆内接四边形对角互补
2.如图,AC AB 、为圆O 的两条弦,延长CA 到点D ,使AB AD =,若ο
25=∠ADB ,则BOC ∠的度数为__________
3.如图,AB 为圆O 的直径,点C 在圆O 上,延长BC 至点D ,使CB DC =,延长DA 与圆O 的另一个交点为E ,连接OC CE AC ,,,则下列判断正确的是( )
.A EAB ACE ∠=∠ .B BCE ACE ∠=∠ .C BCE AOC ∠=∠ .D EAB CAB ∠=∠
4.如图,长方形ABCD 内接于圆O ,3,1==BC AB ,K 是劣弧DC 上一点,则DCK ABK ∠-∠的度数为( )
.A ο55 .B ο60 .C ο65 .D ο70。