误差分析与数据处理

合集下载

数据处理与误差分析报告

数据处理与误差分析报告

数据处理与误差分析报告1. 简介数据处理是科学研究和实验中不可或缺的一部分。

在进行实验和收集数据后,常常需要对数据进行处理和分析,从而揭示数据背后的规律和意义。

本报告将对数据处理的方法进行介绍,并分析误差来源和处理。

2. 数据处理方法2.1 数据清洗数据清洗是数据处理的第一步,用于去除无效数据、异常数据和重复数据。

通过筛选和校对,确保数据的准确性和一致性。

2.2 数据转换数据转换是将数据转化为适合分析的形式,通常包括数据的格式转换、单位转换和数据归一化等。

这样可以方便进行后续的分析和比较。

2.3 数据归约数据归约是对数据进行压缩和简化,以便于聚类、分类和预测分析。

常见的数据归约方法包括维度约简和特征选择等。

2.4 数据统计数据统计是对数据进行整体分析和总结,通常采用统计学的方法,包括均值、方差、标准差、相关系数等。

通过统计分析,可以从整体上了解和描述数据的特征和分布情况。

3. 误差来源和分析3.1 观测误差观测误差是由于测量和观测过程中的不确定性引起的误差。

观测误差可以分为系统误差和随机误差两种类型。

系统误差是由于仪器偏差、人为因素等引起的,通常具有一定的规律性;随机误差是由于种种不可预测的因素引起的,通常呈现为无规律的波动。

3.2 数据采集误差数据采集误差包括采样误差和非采样误差。

采样误差是由于采样过程中的抽样方法和样本大小等因素引起的误差;非采样误差是由于调查对象的选择、问卷设计的不合理等因素引起的误差。

采取合理的抽样策略和数据校正方法,可以减小这些误差。

3.3 数据处理误差数据处理误差是由于处理方法和算法的选择、参数设置的不合理等因素引起的误差。

不同的处理方法和算法可能会导致不同的结果,因此需要进行误差分析和对比,选择最合适的方法。

3.4 模型误差如果使用数学模型对数据进行分析和预测,模型误差是不可避免的。

模型误差主要是由于模型的简化、假设条件的不严谨等因素引起的。

通过对模型进行误差分析和验证,可以评估模型的可靠性和精度。

误差分析与数据处理.

误差分析与数据处理.

误差分析与数据处理.《误差分析与数据处理》在我们的日常生活和各种科学研究、工程实践中,数据无处不在。

然而,数据往往并非绝对准确,总是存在着一定的误差。

理解误差的来源、性质,并掌握有效的数据处理方法,对于获取准确可靠的信息至关重要。

误差,简单来说,就是测量值与真实值之间的差异。

它的产生可能源于多个方面。

首先,测量工具本身就可能存在精度限制。

比如,我们用一把尺子去测量物体的长度,如果这把尺子的刻度不够精细,那么测量结果就可能存在误差。

其次,测量的环境条件也会影响结果。

例如,温度、湿度、压力等环境因素的变化,可能导致测量对象的性质发生改变,从而引入误差。

再者,测量者的操作水平和方法也不容忽视。

测量时的读数不准确、测量姿势不正确等,都可能导致误差的产生。

误差可以分为系统误差和随机误差两大类。

系统误差是指在相同条件下,多次测量同一量时,误差的大小和符号保持恒定,或者按照一定规律变化的误差。

这种误差通常是由于测量仪器的不完善、测量方法的不正确或者测量环境的影响等原因造成的。

例如,使用未经校准的仪器进行测量,每次测量都会得到偏大或偏小的结果,这就是系统误差。

与之相对的是随机误差,也称为偶然误差。

它是指在相同条件下,多次测量同一量时,误差的大小和符号以不可预知的方式变化的误差。

随机误差是由许多微小的、独立的、不可控的因素共同作用产生的。

比如,测量时的微小震动、电源电压的波动等。

虽然随机误差的具体值无法预测,但从大量的测量数据来看,随机误差的分布通常遵循一定的统计规律,比如正态分布。

了解了误差的类型,接下来我们要探讨如何进行误差分析。

误差分析的第一步是识别误差的来源。

这需要我们对测量过程进行仔细的观察和思考,找出可能导致误差的各个环节。

然后,通过对测量数据的统计分析,可以定量地评估误差的大小。

常用的误差分析方法包括计算平均值、标准差、相对误差等。

平均值是一组数据的算术平均值,它可以反映数据的集中趋势。

但平均值并不能完全反映数据的离散程度,这时候就需要用到标准差。

实验误差分析及数据处理

实验误差分析及数据处理

u + Δu = f (x + Δx, y + Δy,z + Δz)
由泰勒公式,并略去误差的高次项,得
115
地球物理实验
u + Δu = f (x, y,z) + ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z

Δu = ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z
该式即为误差传递公式。 例如我们通过直接测量圆柱形试件的直径D及高H来计算试件的体积V。
前面提到测量值=真值+误差,这里误差包含了系统误差和偶然误差,则测量值=真值+
系统误差+偶然误差,当系统误差修正后,误差主要即是偶然误差。在多次测量中,偶然误
差是一随机的变量,那么测量值也就是一随机变量,我们则可用算术平均值和标准误差来
描述它。
算术平均值 X :
X
=
1 n
n

i =1
xi
式中xi为第i次测量的测量值,n为测量次数,当n→∞时, X →xt(真值),但是当n增加到 一定程度时, X 的精度的提高就不显着了,所以一般测量中n只要大于10就可以了。
明误差在 ± 1.96s 以外的值都要舍去,这里
1.96s=1.96×1.12=2.19
我们以算术平均值代表真值,表中第4个测量值的偏差 di 为2.4,在 ± 2.19 以外,应当舍
去,再计算其余9个数据的算术平均值和标准误差,有
m = ∑ mi = 416.0 = 46.2
n
9
∑ s =
d
2 i
偶然误差是一种不规则的随机的误差,无法予测它的大小,其误差没有固定的大小和 偏向。

误差与分析数据的处理

误差与分析数据的处理

误差与分析数据的处理概述在科学研究和实验中,我们常常会遇到误差。

误差是指观测值与真实值之间的差异,是由各种不确定性引起的。

正确地处理误差并分析数据是科学研究和实验的重要环节。

本文将介绍误差的分类以及分析数据时常用的方法和技巧。

误差分类根据误差的来源和性质,可以将误差分为以下几类:1.系统误差:系统误差是由于实验仪器、测量方法或操作者的偏差引起的误差。

例如,仪器的不准确性、测量方法的局限性以及操作者的技术水平都可能导致系统误差。

系统误差在实验过程中是相对固定的,可以通过校正或调整仪器、改进测量方法和提高操作技巧来减小。

2.随机误差:随机误差是由于各种无法预测和无法避免的因素引起的误差。

例如,环境条件的变化、仪器的漂移以及实验中的偶然因素都可能导致随机误差。

随机误差在实验过程中是随机出现的,并且不具有固定的方向和大小。

减小随机误差的方法包括增加样本量、重复实验以及使用统计方法对数据进行分析。

数据处理方法在分析数据时,我们常常需要采用一些方法来处理误差和提取有用的信息。

下面是一些常用的数据处理方法和技巧:1.平均值:平均值是最基本的数据处理方法之一。

通过将多个观测值相加并除以观测值的个数,可以得到平均值。

平均值可以反映数据的总体趋势,但在存在较大偏差或异常值的情况下不具有代表性。

2.方差和标准差:方差和标准差是衡量数据分散度的指标。

方差是观测值与平均值之间差异的平方的平均值,标准差是方差的平方根。

较大的方差和标准差表示数据较为分散,较小的方差和标准差表示数据较为集中。

3.置信区间:置信区间是对数据的估计范围。

通过计算平均值和标准差,可以得到数据的置信区间。

较大的置信区间表示数据的估计范围较大,较小的置信区间表示数据的估计范围较小。

4.线性回归:线性回归是一种用于量化数据之间关系的方法。

通过将数据拟合到一条直线上,可以得到数据之间的线性关系和相关性。

线性回归可以帮助我们预测和预测数据。

数据分析技巧在进行数据分析时,我们还需要一些技巧和策略来处理误差和解释数据。

数据处理及误差分析

数据处理及误差分析

数据处理及误差分析1. 引言数据处理及误差分析是科学研究和工程实践中一个至关重要的领域。

在收集和处理数据的过程中,往往会受到各种因素的干扰和误差的影响。

因此,正确地处理这些数据并进行误差分析,对于准确得出结论和进行科学决策至关重要。

2. 数据处理数据处理是指对收集到的数据进行整理、分析和解释的过程。

它包括了数据清洗、数据转换、数据提取和数据集成等步骤。

2.1 数据清洗数据清洗是指对原始数据进行筛选、剔除异常值和填充缺失值等处理。

清洗后的数据更加可靠和准确,能够更好地反映实际情况。

2.2 数据转换数据转换主要是将原始数据转化为符合分析需求的形式。

比如,将连续型数据离散化、进行数据标准化等。

2.3 数据提取数据提取是指从庞大的数据集中挑选出有意义和相关的数据进行分析。

通过合理选择变量和提取特征,可以提高数据分析的效率和准确性。

2.4 数据集成数据集成是指将来自不同数据源的数据进行整合和合并,以满足分析需求。

通过数据集成,可以获得更全面、更综合的数据集,提高分析结果的可信度。

3. 误差分析误差分析是对数据处理过程中产生的误差进行评估和分析。

误差可以分为系统误差和随机误差两种类型。

3.1 系统误差系统误差是由于数据收集和处理过程中的系统性偏差导致的。

它们可能是由于仪器精度不高、实验环境变化等原因引起的。

系统误差一般是可纠正的,但要确保误差产生的原因被消除或减小。

3.2 随机误差随机误差是由于抽样误差、观察误差等随机因素导致的。

它们是不可预测和不可消除的,只能通过多次重复实验和统计方法进行分析和控制。

4. 误差分析方法误差分析通常采用统计学和数学方法进行。

其中,常用的方法有误差传递法、误差平均法、误差椭圆法等。

4.1 误差传递法误差传递法是将各个步骤中产生的误差逐步传递,最终计算出整个数据处理过程中的总误差。

它能够帮助我们了解每个步骤对最终结果的影响程度,并找出影响结果准确性的关键因素。

4.2 误差平均法误差平均法是通过多次实验重复测量,并计算平均值来减小随机误差的影响。

物理实验中的数据处理与误差分析

物理实验中的数据处理与误差分析

物理实验中的数据处理与误差分析在物理实验中,数据处理与误差分析是非常重要的环节。

准确地处理实验数据并分析误差,可以提高实验结果的可靠性和准确性。

本文将介绍一些常见的数据处理方法和误差分析技巧,帮助读者更好地理解和应用这些知识。

一、数据处理方法1.平均值的计算在实验中,经常需要多次测量同一物理量,然后将测量结果求平均值。

计算平均值可以减小测量误差的影响,提高结果的准确性。

求平均值的方法很简单,只需要将所有测量结果相加,然后除以测量次数即可。

2.误差的传递在物理实验中,往往需要通过测量一些基本物理量来计算其他物理量。

当存在多个物理量的测量误差时,需要对误差进行传递计算。

常见的误差传递公式有乘法、除法和幂函数的误差传递公式。

3.直线拟合与斜率的计算在一些实验中,我们需要通过实验数据拟合一条直线来获得一些重要信息,如斜率、截距等。

直线拟合可以通过最小二乘法来完成,根据实验数据点与拟合直线的最小距离来确定直线的参数。

而斜率的计算可以通过拟合得到的直线参数来得出。

二、误差分析技巧1.随机误差与系统误差在物理实验中,误差通常分为随机误差和系统误差。

随机误差是由实验条件不完全相同或测量仪器精度的限制造成的,它的值在一定范围内变化。

系统误差是由于实验条件的固有缺陷或仪器的固有误差造成的,它的值通常是恒定的。

在误差分析中,需要分别考虑和处理这两种误差。

2.误差的类型与来源误差可以分为绝对误差和相对误差。

绝对误差是指测量结果与真实值之间的差值,而相对误差是指绝对误差与测量结果之间的比值。

误差的来源主要有仪器误差、人为误差和环境误差等。

3.误差的评估与控制误差的评估是确定测量结果可靠性和准确性的重要步骤。

通常可以采用标准差、百分误差和置信区间等方法来评估误差。

同时,通过合理地控制实验条件、使用精密的仪器和注意操作技巧等措施,可以降低误差的产生。

三、实例分析为了更好地理解数据处理与误差分析的应用,我们以一次重力实验为例进行分析。

数据处理及误差分析

数据处理及误差分析

数据处理及误差分析1.实验操作仪器的使用要严格按照操作规程进行,对于实验操作步骤,通过预习应心中有数。

实验过程中要仔细观察实验现象,严格控制实验条件发现异常现象应仔细查明原因,或请教指导教师帮助分析处理。

2.数据处理物理化学实验数据的表示法主要有如下三种方法:列表法、作图法和数学方程式法。

(1)列表法将实验数据列成表格,排列整齐,使人一目了然。

这是数据处理中最简单的方法,列表时应注意以下几点:a.表格要有名称。

b.每行(或列)的开头一栏都要列出物理量的名称和单位,并把二者表示为相除的形式。

因为物理量的符号本身是带有单位的,除以它的单位,即等于表中的纯数字。

c.数字要排列整齐,小数点要对齐,公共的乘方因子应写在开头一栏与物理量符号相乘的形式,并为异号。

d.表格中表达的数据顺序为:由左到右,由自变量到因变量,可以将原始数据和处理结果列在同一表中,但应以一-组数据为例,在表格下面列出算式,写出计算过程。

表示例:液休饱和蒸气压测定数据表(2)作图法作图法可更形象地表达出数据的特点,如极大值、极小值、拐点等,并可进一步用图解求积分、微分、外推、内插值。

作图应注意如下几点:a.图要有图名。

例如“InP-1/T图I",“V—t图”等。

b.要用市售的正规直角坐标纸。

c.在直角坐标中,一般以横轴代表自变量,纵轴代表因变量,坐标在轴旁须注明变量的名称和单位。

d.适当选择坐标比例,以表达出全部有效数字为准,即最小的毫米格内表示有效数字的最后一位。

如果作直线,应正确选择比例,使直线呈45。

倾斜为好。

e.坐标原点不一定选在零,应使所作直线与曲线匀称地分布于图面中。

在两条坐标轴上每隔ICm或2cm均匀地标上所代表的数值,而图中所描各点的具体坐标值不必标出。

f.描点时,应用细铅笔将所描的点准确而清晰地标在其位置上,可用O,Δ,口,X等符号表示,同一图中表示不同曲线时,要用不同的符号描点,以示区别。

g.作曲线时,应尽量多地通过所描的点,但不要强行通过每一个点。

实验数据误差分析和数据处理

实验数据误差分析和数据处理

实验数据误差分析和数据处理数据误差分析是首要的步骤,它通常包括以下几个方面:1.随机误差:随机误差是指在重复实验的过程中,由于个体差异等原因引起的测量结果的离散性。

随机误差是不可避免的,并且符合一定的统计规律。

通过进行多次重复测量,并计算平均值和标准差等统计指标,可以评估随机误差的大小。

2.系统误差:系统误差是由于仪器、测量方法或实验条件所引起的,使得测量结果与真实值的偏离。

系统误差可能是由于仪器刻度的不准确、环境温度的变化等原因导致的。

通过合理校准仪器、控制环境条件等方式可以减小系统误差。

在数据误差分析的基础上,进行数据处理是必不可少的步骤。

数据处理的目的是通过对实验结果的合理处理,得到更为准确的结论。

1.统计处理:统计方法是最常用的数据处理方法之一、通过使用统计学中的概率分布、假设检验、方差分析等方法,可以对实验数据进行科学、客观的分析和处理。

2.回归分析:回归分析是一种通过建立数学模型来研究变量之间关系的方法。

通过对实验数据进行回归分析,可以确定变量之间的数学关系,并预测未知数据。

3.误差传递与不确定度评定:在实验中,不同参数之间的误差如何相互影响,以及这些误差如何传递到最终结果中,是一个重要的问题。

通过不确定度评定方法,可以定量评估各个参数的不确定度,并估计最终结果的不确定度。

4.数据可视化和图表展示:通过绘制合适的图表,可以更直观地展示实验数据的分布规律、趋势以及变化情况。

例如,折线图、散点图、柱状图等可以有效地展示数据的分布和相关关系。

综上所述,实验数据误差分析和数据处理是进行科学研究的重要环节。

准确评估和处理数据误差可以提高实验结果的可靠性和准确性,为研究结果的正确性提供基础。

通过合理选择和应用适当的数据处理方法,可以从实验数据中得出有意义的结论,并为进一步研究提供指导。

误差分析与数据处理

误差分析与数据处理

误差分析与数据处理在我们的日常生活和各种科学研究、工程实践中,数据的获取和处理是至关重要的环节。

然而,由于各种因素的影响,我们所获得的数据往往存在一定的误差。

这些误差可能会对我们的分析结果产生误导,甚至导致错误的决策。

因此,误差分析与数据处理就成为了确保数据质量和可靠性的关键步骤。

首先,我们需要了解误差的来源。

误差大致可以分为两类:系统误差和随机误差。

系统误差是由于测量仪器的不准确、测量方法的不完善或者环境因素的恒定影响等原因导致的,其特点是误差的大小和方向具有一定的规律性。

例如,使用未经校准的温度计测量温度,每次测量结果都会偏高或偏低一个固定的值,这就是系统误差。

随机误差则是由一些不可预测的偶然因素引起的,其特点是误差的大小和方向没有明显的规律。

比如,在测量物体的长度时,由于人的读数瞬间的差异,每次测量结果可能会有所不同,这就是随机误差。

在进行误差分析时,我们需要对误差的大小和性质进行评估。

常用的误差衡量指标包括绝对误差、相对误差和标准误差等。

绝对误差是测量值与真实值之间的差值,它直接反映了误差的大小。

相对误差则是绝对误差与真实值的比值,能够更直观地反映测量的准确度。

标准误差则用于衡量多次测量结果的离散程度。

为了减小误差,我们可以采取多种措施。

在测量前,要对测量仪器进行校准和调试,选择合适的测量方法,并控制好测量环境。

在测量过程中,要严格按照操作规程进行操作,多次测量取平均值可以有效地减小随机误差。

此外,还可以采用更先进的测量技术和设备来提高测量的精度。

数据处理是对测量得到的数据进行整理、分析和计算的过程。

在数据处理中,我们需要对异常数据进行识别和处理。

异常数据是指与其他数据明显不符的数据点,可能是由于测量错误或者特殊情况导致的。

对于异常数据,我们不能简单地将其舍去,而需要进行仔细的分析和判断。

如果确定是由于测量错误导致的异常数据,应该予以剔除;如果异常数据是真实存在的,我们需要对其原因进行研究,并在后续的分析中给予适当的考虑。

误差分析与数据处理ppt课件.ppt

误差分析与数据处理ppt课件.ppt
(4)缓变误差: 是指数值上随时间缓慢变化的误差,一般它是由零部件的
老化、机械零件内应力变化引起的。由于它有不平稳随机 过程的特点,误差值在单调缓慢变化,因此不能象对系统 误差那样引进一次修正量即能校正,又不能象对一般随机 误差那样按平稳随机过程的特点来处理,因而常需不断进 行校正,测量准确度与对仪器仪表的校正周期有关。
1) 直间接测量:从一个或几个直接测
或量具就可直接得到被测量 量结果按一定的函数关系计算出来
值的测量;
的过程,称为间接测量。
➢例如:用直尺测量长度;
以表计时间;
天平称质量;
M
安培表测电流。
d
V hd 2
h
4
M V
4M
d 2h
1
2)等精度测量和非等精度测量
2
1.2真值、代表值与误差
1.2.1真值
指在某一时刻和某一位置的某个物理量客观存在的真实值。严 格地讲,真值是无法测得的,只能测得真值的近似值。实际应 用中真值是指测量次数无限多时的平均值作为真值。
➢理论真值:理论上证明过的某些已知的固定量值,如三角 形之和为180º。
➢约定真值:国际计量组织通过决议规定的某些计量单位的 量值,如规定铂铱合金的国际千克原器为1kg的质量单位。 光在真空中1s时间内传播距离的1/299792485为1米。
仪器
天平不等臂
6
➢系统误差的分类
1)按系统误差产生的原因分 ➢设备误差:由于测量仪器、工具的不准确或安装不正确造成的,如 仪器的零位不准,空行程、不水平、不垂直、导线的影响等。 ➢环境误差:由于测量环境条件变化的影响,如温度、压力、外电磁 场的影响。 ➢人员误差:由测量人员自身造成的,如读数的偏大、偏小、测量的 超前或滞后等。 ➢方法误差:由于测量方法不完善,计算公式的近似简化引起的。

误差分析和数据处理

误差分析和数据处理

误差分析、数据处理和物理实验不同,电子电路基础实验通常采用的是单次测量,对误差处理要求相对较低。

1.误差绝对误差设被测量量的真值为Ao,测量仪器的示值为X,则绝对值为△X=X-Ao在某一时间及空间条件下,被测量量的真值虽然是客观存在的,但一般无法测得,只能尽量逼近它。

故常用高一级标准测量仪器的测量值A代替真值Ao,则△X=X-A相对误差是用绝对误差△X与被测量的实际值A的比值的百分数来表示的相对误差。

在电子电路一般的实验中,由于已经可以利用已有的公式计算,所以一般直接用理论值代替真值A,然后进行误差计算。

2.测量数据处理1.测量结果的数据处理(1)有效数字由于存在误差,所以测量资料总是近似值,它通常由可靠数字和欠准数字两部分组成。

例如,由电流表测得电流为12.6mA,这是个近似数,12是可靠数字,而末位6为欠准数字,即12.6为三位有效数字。

有效数字对测量结果的科学表述极为重要。

对有效数字的正确表示,应注意以下几点:①与计量单位有关的"0"不是有效数字,例如,0.054A与54mA这两种写法均为两位有效数字。

②小数点后面的"0"不能随意省略,例如,18mA与18.00mA是有区别的,前者为两位有效数字,后者则是四位有效数字。

③对后面带"0"的大数目数字,不同写法其有效数字位数是不同的,例如,3000如写成30×10 2,则成为两位有效数字;若写成3×103,则成为一位有效数字;如写成3000±1,就是四位有效数字。

④如已知误差,则有效数字的位数应与误差所在位相一致,即:有效数字的最后一位数应与误差所在位对齐。

如;仪表误差为±0.02V,测得数为3.2832V,其结果应写作3.28V。

因为小数点后面第二位"8"所在位已经产生了误差,所以从小数点后面第三位开始后面的"32"已经没有意义了,写结果时应舍去。

误差分析与数据处理

误差分析与数据处理

误差分析与数据处理物理化学实验是研究物质的物理性质以及这些物理性质与其化学反应间关系的一门实验科学。

在实验研究工作中,一方面要拟定实验的方案,选择一定精度的仪器和适当的方法进行测量;另一方面必须将所测得的数据加以整理归纳,科学地分析并寻求被研究变量间的规律。

但由于仪器和感觉器官的限制,实验测得的数据只能达到一定程度的准确性。

因此,在着手实验之前要了解测量所能达到的准确度以及在实验以后合理地进行数据处理,都必须具有正确的误差概念,在此基础上通过误差分析,选用最合适的仪器量程,寻找适当的实验方法,得出测量的有利条件。

下面首先简要介绍有关误差等几个基本概念。

一、一、基本概念1.误差。

在任何一种测量中,无论所用仪器多么精密,方法多么完善,实验者多么细心,所得结果常常不能完全一致而会有一定的误差或偏差。

严格地说,误差是指观测值与真值之差,偏差是指观测值与平均值之差。

但习惯上常将两者混用而不加区别。

根据误差的种类、性质以及产生的原因,可将误差分为系统误差、偶然误差和过失误差三种。

系统误差:这种误差是由于某种特殊原因所造成的恒定偏差,或者偏大或者偏小,其数值总可设法加以确定,因而一般说来,它们对测量结果的影响可用改正量来校正。

系统误差起因很多,例如:(1)仪器误差。

这是由于仪器构造不够完善,示数部分的刻度划分得不够准确所引起,如天平零点的移动,气压表的真空度不高,温度计、移液管、滴定管的刻度不够准确等。

(2)测量方法本身的限制。

如根据理想气体方程式测量某蒸汽的相对分子质量时,由于实际气体对理想气体有偏差,不用外推法求得的相对分子质量总较实际的相对分子质量为大。

(3)个人习惯性误差。

这是由于观测者有自己的习惯和特点所引起,如记录某一信号的时间总是滞后、有人对颜色的感觉不灵敏、滴定等当点总是偏高等。

系统误差决定测量结果的准确度。

它恒偏于一方,偏正或偏负,测量次数的增加并不能使之消除。

通常是用几种不同的实验技术或用不同的实验方法或改变实验条件、调换仪器等以确定有无系统误差存在,并确定其性质,设法消除或使之减少,以提高准确度。

误差分析与数据处理

误差分析与数据处理

产生原因-人操作上的粗心大意,外界的强大干扰。
消除方法-当发现粗大误差时,应予以剔除。 结论:在进行误差分析时,粗差剔除,系统误差和随机误 差要用适当的方法进行处理和估算。
课堂提问:
1.请举出生话中的系统误差、随机误差、粗大误差的 实例。 2.第1章讲过一些仪表性能指标,其中就涉及哪个误 差概念?
系统误差: 与真值之差。 随机误差:某一测量值与 的差值。 2.对称性:xi大致地分布于 两侧。 剩余误差(残差)Vi= xi - 残差基本互相抵消。残差总和:
3.有界性:在一定的条件下, xi有一定的分布范围,超过这个范围的可能性很 小,一般作为粗大误差处理。

当n→∞时,测量列xi的算术平均值 可认为是测量值的最可信值,但无 法表达出测量值的误差范围和精度高低。一般用下式表示存在随机误差时的 测量结果:
解: 1.按照测量读数的顺序列成表格。 2.计算测量列xi的算术平均值: =(633.97/16)=39.623 mm。 3.算出每个测量读数的残差Vi ,填写在xi的右边。并验证了 。 4.在每个残差旁算出 和 必须的中间过程值 , 然后求出 =2.140mm2 5.计算出方均根误差 =0.378mm
2.2.1随机误差的统计特性
单次测量具有随机性,但多次测量其总体误差具有规律性特征。 测量列:保持测量条件不变,对同一测量对象进行多次重复测量得到一系列包含 随机误差的读数x1、x2、…,xn。 统计直方图:以测得的数据为横坐标,出现的次数为纵坐标。 正态分布曲线(随机误差的概率密度,高斯误差):当测量次数n→∞ 时,则无 限多的直方图的顶点中线的连线就形成一条光滑的连续曲线。有如下规律: 1.集中性:大量的测量值集中分布于算术平均值 附近。
2.随机误差-在同一条件下,多次测量同一被测量,有时 会发现测量值时大时小,机误差。随机误差反映了测 量值离散性的大小。 产生原因(随机效应)-随机误差是测量过程中许多独立 的、微小的、偶然的因素引起的综合结果。 消除方法-单个测量值误差是随机的,难以消除或修正; 但误差的整体服从正态分布统计规律,因此可以增加测量 次数,并对测量结果进行数据统计处理。 3.粗大误差-明显偏离真值的误差称为粗大误差(过失误 差)。

误差分析与数据处理

误差分析与数据处理

第一章 误差分析与数据处理1-1 误差分析的意义何在?1-2 误差有几种类型?总结系统误差与随机误差的异同点。

1-3 试验数据的准确度和精密度如何表示,它们之间有何关系? 1-4 什么叫有效数字,有效数字的误差如何计算? 1-5 数据有几种表示方法,各有何优缺点? 1-6 可疑观测值的取舍有哪些方法?简述其步骤。

1-7 测得某三角块的三个角度之和为180º00′02″,试求测量的绝对误差和相对误差。

1-8 在万能测长仪上,测量某一被测件的长度为50 mm ,已知其最大绝对误差为1 m ,试问该被测件的真实长度为多少?1-9 在测量某一长度时,读数值为2.31 m ,其最大绝对误差为20 m ,试求其最大相对误差。

1-10 使用凯特摆时,g 由公式2212/)(4T h h g +=π给定。

今测出长度(h 1+h 2)为(1.04230±0.00005) m ,振动时间T 为(2.0480±0.0005) s 。

试求g 及其最大相对误差。

如果(h 1+h 2)测出为(1.04220±0.0005) m ,为了使g 的误差能小于0.001 m/s 2,T 的测量必须精确到多少?1-11 检定2.5级(即引用误差为2.5%)、量程为100 V 的电压表,发现50 V 刻度点的示值误差2 V 为最大误差,问该电压表是否合格?1-12 为什么在使用微安表等各种电表时,总希望指针在全量程的2/3范围内使用?1-13用两种方法测量L 1=50 mm ,L 2=80 mm ,测量结果为50.004 mm ,80.006 mm 。

试评定两种方法测量精度的高低。

1-14 多级弹导火箭的射程为10000 km 时,其射击偏离预定点不超过0.1 km ,优秀射手能在距离50 m 远处准确地射中直径为2 cm 的靶心,试评述哪一个射击精度高?1-15 测量某物体重量共8次,测得数据(单位为g)为236.45,236.37,236.51,236.34,236.39,236.48,236.47,236.40。

实验数据误差分析与数据处理

实验数据误差分析与数据处理

实验数据误差分析与数据处理实验数据误差分析主要包括两个方面:系统误差和随机误差。

系统误差是由于实验仪器、实验方法或实验条件等产生的固定的、有方向性的误差,它的大小和方向在一定范围内是恒定的。

而随机误差是由于实验过程中的偶然性因素导致的误差,其大小和方向是随机的。

对于系统误差,我们可以通过改进实验仪器或实验方法来减小其影响;对于随机误差,我们可以通过多次实验取平均值或者进行统计处理来减小其影响。

在数据处理中,我们常用的方法有拟合曲线、计算平均值和标准差等。

拟合曲线方法主要用于实验数据呈现出一定的规律性和趋势性时,通过曲线拟合来找到其中的关系式,并预测出实验数据在其他条件下的取值。

计算平均值和标准差方法主要用于对大量实验数据进行统计处理。

平均值可以反映实验结果的集中趋势,而标准差则可以反映实验结果的离散程度。

当我们得到一组实验数据时,可以计算其平均值和标准差,并通过比较不同组数据的平均值和标准差,来判断实验结果的可靠性和误差的大小。

另外,还有一些常用的统计学方法和误差分析方法可以用于数据处理,例如方差分析法、卡方检验法、t检验法等。

方差分析法适用于多组实验数据之间的比较,可以通过分析组间和组内的方差来判断实验结果是否显著。

卡方检验法适用于对分类数据的处理,可以通过比较实际观测频数和理论计算频数的差异来判断数据是否符合其中一种假设。

t检验法适用于小样本数据的处理,可以通过比较样本均值和总体均值之间的差异来判断数据是否显著。

在进行数据处理之前,我们还需要对实验数据进行合理的选择和处理。

首先,要注意选择适当的实验方法和仪器,以确保实验数据的准确性和可靠性。

其次,要注意采样的代表性,即所选样本应该具有一定的代表性,能够反映出总体的特征。

此外,还要注意避免数据中的异常值或者异常结果对数据处理的影响,可以通过排除异常值或者重新进行实验来解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

桥梁模型试验与量测技术1钢筋混凝土桥梁剩余寿命评估方法研究2006ZB012自预应力钢管混凝土开发应用试验研究2006ZB023 GPS长距离高精度高程传递关键技术研究2006ZB034公路隧道松弛荷载预测理论与预警系统及设计方法研究 2006ZB045大跨径预应力混凝土桥梁主梁下挠原因分析及对策研究 2006ZB056 FRP在混凝土桥梁预应力体系和构件中的应用技术研究 2006ZB067钢筋砼肋拱桥现状评价与加固技术研究2006ZB078斜拉—悬索协作体系桥梁的研究 2006ZB089公路隧道建设中数字化技术应用研究2006ZB0910混凝土桥梁耐久性设计方法和设计参数研究2006ZB1011桥梁结构表面防护耐久性材料的研究2006ZB1112跨江海大型桥梁结构混凝土裂化性能与耐久性对策措施的研究 2006ZB1213高性能预拌式冷铺沥青混合料的研制和应用技术研究 2006ZB1314沥青路面热反射与热阻技术应用研究2006ZB1415基于弹粘性的沥青混合料设计分析体系研究2006ZB1516 沿海港口深水航道选线及设计主要参数研究2006ZB16课程内容:《桥梁模型试验与量测技术》课教学实施计划表课程特点:内容多、涉及面宽、比较难学。

学习方法:认真笔记、完成思考题第一章误差分析与实验数据处理研究误差的意义人类为了认识自然与改造自然,需要不断地对自然界的各种现象进行测量和研究,由于实验方法和实验设备的不完善,周围环境的影响,以及受人们认识能力所限等,测量和实验所得数据和被测量的真值之间,不可避免地存在着差异,这在数值上即表现为误差。

随着科学技术的日益发展和人们认识水平的不断提高,虽可将误差控制得愈来愈小,但终究不能完全消除它。

误差存在的必然性和普遍性,已为大量实践所证明,为了充分认识并进而减小或消除误差,必须对测量过程和科学实验中始终存在着的误差进行研究。

研究误差的意义为:①正确认识误差的性质,分析误差产生的原因,以消除或减小误差。

②正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的效据。

③正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

第一节误差的基本概念一、真值、实验值、平均值、理论值、误差真值:是指在观测一个量时,该量本身所具有的真实大小。

量的真值是一个理想的概念,一般是不知道的。

但在某些特定情况下,真值又是可知的。

理论真值:例如:三角形三个内角之和为180º;一个整圆周角为360º。

规定真值:例如:1982年,国际计量局召开会议提出“米”的新定义为:1等于光在真空中1/299792458秒时间间隔内所经过的路径长度。

相对真值:为了使用上的需要,在实际测量中,常用被测的量的实际值来代替真值,而实际值的定义是满足规定精确度的用来代替真值使用的量值。

例如在检定工作中,把高一等级精度的标准所测得的量值称为真值。

实验值:通过实验方法得到某个物理量的数值。

算术平均值:有限次观测值的平均值。

n xxni ∑=1理论值:通过理论公式计算得到某个物理量的数值。

误 差: 实验误差=测量值-真值理论误差=理论值-真值注意:真值≠理论值真值与算术平均值:任何物理量的真值,由于各种条件的限制是无法测得的,所以,一般说来,真值是未知的。

为了使真值这个概念具有现实意义,通常可将真值定义为:在无系统误差和过失误差的条件下,观测次数为无限多时的平均值即为真值。

但在实践中不可能观测无限多次,而只能是有限次,对于有限次观测值的平均值只能是近似真值或最佳值,称此最佳值为平均值。

常用的平均值有算术平均值和加权平均值两种,其中算术平均值为最佳值。

二、误差的表示方法绝对误差:某量值的测量值和真值之差为绝对误差,通常简称为误差。

绝对误差=测量值-真值由上式可知,绝对误差可能是正值或负值。

相对误差:绝对误差与被测量的真值之比值称为相对误差,因测得值与真值接近,故也可近似用绝对误差与测得值之比值作为相对误差,即相对误差=绝对误差/真值≈绝对误差/测量值由于绝对误差可能为正值或负值,因此相对误差也可能为正值或负值。

相对误差是无名数,通常以百分数(%)来表示。

例如用水银温度计测得某一温度为20.3℃,该温度用高一等级的温度计测得值为20.2℃,因后者精度高,故可认为20.2℃接近真实温度,而水银温度计测量的绝对误差为0.1℃,其相对误差为 2.201.0≈3.201.0≈%5.0 对于相同的被测量,绝对误差可以评定其测量精度的高低,但对于不同的被测量以及不同的物理量,绝对误差就难以评定其测量精度的高低,而采用相对误差来评定较为确切。

例如:用两种方法来测量L l =lOOmm 的尺寸,其测量误差分别为m m μδμδ8,1021±=±=, 根据绝对误差大小,可知后者的测量精度高。

但若用第三种方法测量L 2=80mm 的尺寸,其测量误差为m μδ73±=,此时用绝对误差就难以评定它与前两种方法精度的高低,必须采用相对误差来评定。

第一种方法的相对误差为: %01.0100000101001011±=±=±=mm m L μδ 第二种方法的相对误差为: %008.01000008100822±=±=±=mm m L μδ 第三种方法的相对误差为: %009.080000780733±≈±=±=mm m L μδ 引用误差所谓引用误差指的是一种简化和实用方便的仪器仪表示值的相对误差,它是以仪器仪表 某一刻度点的示值误差为分子,以测量范围上限值或全量程为分母,所得的比值称为引用误 差,即:引用误差=示值误差/测量范围上限值例如测量范围上限为19600N 的工作测力计(拉力表),在标定示值为14700N 处的实际作用力为14778.4N ,则此测力计在该刻度点的引用误差为%4.01960004.781960004.1477814700=-=-N N N 三、误差来源在测量过程中,误差产生的原因可归纳为以下几个方面:1. 测量装置误差1)标准量具误差以固定形式复现标准量值的器具,如标准量块、标准线纹尺、标准电阻、标准砝码等,它们本身体现的量值,不可避免地都含有误差。

2)仪器误差凡用来直接或间接将被测量和已知量进行比较的器具设备,称为仪器或仪表,如天平等比较仪器,压力表、温度计等指示仪表,它们本身都具有误差。

3)附件误差仪器的附件及附属工具,如测长仪的标准环规,千分尺的调整量棒等的误差,也会引起测量误差。

2.环境误差由于各种环境因素与规定的标准状态不一致而引起的测量装置和被测量本身的变化所造 成的误差,如温度、湿度、振动等所引起的误差。

3.方法误差由于测量方法不完善所引起的误差,如采用近似的测量方法而造成的误差,例如用钢卷 尺测量大轴的圆周长S ,再通过计算求出大轴的直径πS D =,因近似数π取值的不同,将 会引起误差。

4.人员误差由于测量者受分辨能力的限制,因工作疲劳引起的视觉器官的生理变化,固有习惯引起 的读数误差,以及精神上的因素产生的一时疏忽等所引起的误差。

总之,在计算测量结果的精度时,对上述四个方面的误差来源,必须进行全面的分析, 力求不遗漏、不重复,特别要注意对误差影响较大的那些因素。

四、误差分类误差的产生是不可避免的,但是随着科学技术的提高,人们的经验,技巧和专门知识的不断丰富,在测试过程中误差可被控制得越来越小。

也就是说,对于某些因素引起的误差,可经过周密考虑与必要的准备,在测试过程中加以消除或减小,对于另一些因素引起的误差也可设法估计出它们的大小,然后对量测结果给予修正,对于不能确切估计出大小的误差,也应设法知道它们可能的最大值,据以确定量测结果的可靠程度。

误差根据其性质,特点和产生原因,可分为三类:1.系统误差在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或在条件改变时,按一 定规律变化的误差称为系统误差。

特点:有一定规律性,但不易发现,不能靠重复测试来发现。

来源:工具误差(例如标准量值的不准确、仪器刻度的不准确)、调整误差(0t )、习惯误差、条件误差、方法误差(回弹法测值修正)等。

判断方法:对比法2.随机误差(偶然误差)在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化着的误差 称为随机误差。

特点:时大时小、时正时负、随机变化、无法消除。

来源:测量仪器、测量方法、测量条件。

3.粗大误差(过失误差)超出在规定条件下预期的误差称为粗大误差。

特点:误差值较大,明显歪曲测量结果,来源:如测量时对错了标志、读错或记错了数、使用有缺陷的仪器以及在测量时因操作不细心而引起的过失性误差等。

上面虽将误差分为三类,但必须注意各类误差之间在一定条件下可以相互转化。

对某项具体误差,在此条件下为系统误差,而在另一条件下可为随机误差,反之亦然。

如按一定基本尺寸制造的量块,存在着制造误差,对某一块量块的制造误差是确定数值,可认为是系统误差,但对一批量块而言,制造误差是变化的,又成为随机误差。

在使用某一量块时,没有检定出该量块的尺寸偏差,而按基本尺寸使用,则制造误差属随机误差。

若检定出量块的尺寸偏差,按实际尺寸使用,则制造误差属系统误差。

掌握误差转化的特点,可将系统误差转化为随机误差,用数据统计处理方法减小误差的影响;或将随机误差转化为系统误差,用修正方法减小其影响。

总之,系统误差和随机误差之间并不存在绝对的界限。

随着对误差性质认识的深化和测试技术的发展,有可能把过去作为随机误差的某些误差分离出来作为系统误差处理,或把某些系统误差当作随机误差来处理。

五、精度反映测量结果与真值接近程度的量,称为精度,它与误差的大小相对应,因此可用误差大小来表示精度的高低,误差小则精度高,误差大则精度低。

精度可分为:1 准确度它反映测量结果中系统误差的影响程度。

2 精密度它反映测量结果中随机误差的影响程度。

3 精确度它反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可用测量的不确定度(或极限误差)来表示。

精度在数量上有时可用相对误差来表示,如相对误差为0.01%,可笼统说其精度为10-4,若纯属随机误差引起,则说其精密度为10-4,若是由系统误差与随机误差共同引起,则说其精确度为10-4。

对于具体的测量,精密度高的而准确度不一定高,准确度高的而精密度也不一定高,但精确度高,则精密度与准确度都高。

如图1-1所示的打靶结果,子弹落在靶心周围有三种情况,图2-1a的系统误差与随机误差都小,即精确度高,我们希望得到精确度高的结果。

图1-1b的系统误差大而随机误差小,即准确度低而精密度高。

相关文档
最新文档