相似三角形的性质及其应用PPT课件

合集下载

相似三角形的性质ppt课件-2024鲜版

相似三角形的性质ppt课件-2024鲜版
误用判定方法
不同的判定方法有不同的适用条件,应根 据题目条件选择合适的判定方法。
忽视单位换算
在实际问题中,不同单位之间的换算可能 导致计算错误,应注意单位统一。
25
拓展延伸:相似多边形性质探讨
相似多边形的定义与性质
两个多边形如果它们的对应角相等且对应边成比例,则称这两个多边形相似。相似多边形 的性质与相似三角形类似,包括对应角相等、对应边成比例、面积比等于相似比的平方等 。
20
解决角度问题
2024/3/28
利用相似三角形对应角相等的性质,求解 未知角度。 通过构造相似三角形,利用已知角度求解 其他角度。 应用相似三角形性质于实际问题中,如测 量角度、计算角度等。
21
解决面积问题
利用相似三角形面积比等于相似 比的平方的性质,求解未知面积

2024/3/28
通过构造相似三角形,利用已知 面积求解其他面积。
在证明两个三角形相似时 ,有时可以通过证明两个 三角形全等来得出相似的 结论。

2024/3/28
02
相似三角形对应边成比例
7
对应边比例关系
2024/3/28
01
相似三角形对应边之间的比例相
等,即若两个三角形ABC和
A'B'C'相似,则有AB/A'B'
=
BC/B'C' = CA/C'A'。
02
相似比:相似三角形对应边之间 的比例称为相似比。
判定定理2
判定定理3
如果两个三角形的两组对应边的比相等, 并且相应的夹角相等,那么这两个三角形 相似。
如果两个三角形的三组对应边的比相等,那 么这两个三角形相似。

相似三角形的性质pptPPT课件-2024鲜版

相似三角形的性质pptPPT课件-2024鲜版
16
解决实际问题举例
航海问题
在航海中,可以利用相似三角形来测量船只与陆地之间的距离。通过观测陆地 上的两个目标点,并测量它们与船只之间的夹角,可以构造相似三角形,进而 计算出船只与陆地之间的距离。
军事应用
在军事领域,相似三角形可以用于计算炮弹的射程和角度。通过观测目标点和 测量炮弹的初速度、角度等信息,可以构造相似三角形,从而计算出炮弹的落 点和命中目标的可能性。
18
2024/3/28
05
总结与回顾
19
知识点总结
• 相似三角形的定义:两个三角形如果它们的对应角相等, 则称这两个三角形相似。
2024/3/28
20
知识点总结
相似三角形的性质 对应角相等; 对应边成比例;
2024/3/28
21
知识点总结
2024/3/28
面积比等于相似比的平方。 相似三角形的判定 两角对应相等,则两个三角形相似;
对应角相等是相似三角形 的基本性质之一,也是判 断两个三角形是否相似的 重要依据。
在几何学中,对应角相等 通常用于证明两个三角形 相似或全等。
8
对应边成比例
当两个三角形相似时,它们的对应边成比例。
对应边成比例是相似三角形的另一个基本性质,它表明相似三角形的各边长度之间 的比例关系。
2024/3/28
1. 题目
已知△ABC和△DEF中,∠A=∠D, ∠B=∠E,则△ABC和△DEF一定相
似吗?为什么?
答案
是的,因为两个三角形中有两组对 应角相等,根据相似三角形的判定 条件,可以判定△ABC和△DEF相似。
2024/3/28
答案
已知△ABC和△DEF的相似比为2:3, 且△ABC的面积为16cm²,求△DEF 的面积。

相似三角形ppt课件免费

相似三角形ppt课件免费

构造相似三角形解决函数图像问题
在某些情况下,可以通过构造相似三角形来解决与函数图像相关的问题,如求函数的值域、判断函数的单调性等 。
2024/1/27
18
05
相似三角形在生活中的实际应用
2024/1/27
19
建筑设计中视觉效果优化
利用相似三角形原理,建筑师 可以在设计过程中调整建筑物 的比例和角度,使其在视觉上 更加和谐、美观。
的对应边之间的比值相等。
这一性质可以用来解决一些与比 例有关的问题,例如通过已知的 两边长度来求解第三边的长度。
在实际应用中,相似三角形的对 应边成比例这一性质也经常被用
来进行长度或距离的测量。
2024/1/27
9
面积比与相似比关系
相似三角形的面积比等于相似比的平 方,即如果两个三角形相似且相似比 为k,那么它们的面积之比为k^2。

14
04
相似三角形在代数中的应用
2024/1/27
15
方程求解问题
2024/1/27
利用相似三角形性质建立方程
通过相似三角形的边长比例关系,可以建立与未知数相关的 方程,进而求解未知数。
构造相似三角形解方程
在某些情况下,可以通过构造相似三角形来简化方程求解过 程,使问题更加直观易懂。
16
不等式证明问题
相似三角形还可以用于解决测量中的视线问题。当测量点与目标点之间 存在障碍物时,可以通过相似三角形原理确定视线与障碍物的交点,进 而计算出目标点的位置。
2024/1/27
在地形测量中,相似三角形可以帮助测量人员根据地形起伏调整测量方 案,提高测量精度。
21
艺术创作中透视原理应用
艺术家在创作过程中经常运用相似三角 形原理来实现透视效果。通过绘制不同 比例的相似三角形,可以在平面上呈现

相似三角形的性质(1)PPT课件(华师大版)

相似三角形的性质(1)PPT课件(华师大版)

当堂训练
3.把一个三角形变成和它类似的三角形,
(1)如果边长扩大为本来的5倍,那么面积扩大为本来
的____2_5_____倍。
(2)如果面积扩大为本来的100倍,那么边长扩大为本
来的____1_0_____倍。
4.两个类似三角形的一对对应边分别是35厘米和14 厘米, (1)它们的周长差60厘米,这两个三角形的周长分别是 _____1__0_0_c_m__、__4_0_。cm(2)它们的面积之和是58平方厘米, 这两个三角形的面积分别是_______5_0_c_m__2_、_。8cm2
类似三角形面积的比等于_类__似___比__的__平__方__.
类似多边形 也有同样的
结论
当堂训练
1.如果两个三角形类似,类似比为3∶5,则 对应角的角平分线的比等于_____3_∶. 5 2.类似三角形对应边的比为0.4, 那么类似比为____0_.4__, 对应角的角平分线的比为__0_.4___, 周长的比为___0_.4_____, 面积的比为___0_.1_6____.
A
(2)
C A′
B′
C′

相似比为1 2
对应角平分线的比
B
AD AD ___________
A
(3)
C A′
B′
C′
探索新知 类似三角形的性质
问题1: 如图, ABC∽ ABC,相似比为k,
其中AD、 AD分别为BC、 BC边上的高, ABD与ABD相似吗?

已知
所以∠B=∠B′( 类似三角形的对应角相)等 又ADB ADB 90.
k AE 1 CD 2
则∆CDF的面积为____2_0_c.m2 D
C

相似三角形性质的应用PPT课件

相似三角形性质的应用PPT课件
在地图绘制中,利用相似三角形的性质可以确定地球上各个地点的相对位置和距离。
通过相似三角形,可以将地球上的大范围区域缩小到地图上,方便人们理解和研究 地理分布和特征。
地图绘制中的比例尺就是利用相似三角形的原理,将实际距离按照一定比例缩小到 地图上。
在物理实验中的应用
在物理实验中,常常需要利用 相似三角形来测量和计算各种 物理量,例如力、速度、加速 度等。
面积比等于相似比的平方
两个相似三角形的面积比等于它们的相似比的平方,即 (AB/DE)^2=(BC/EF)^2=(CA/FD)^2。
相似三角形的判定方法
01
02
03
平行线判定法
如果一个三角形与另一个 三角形的一边平行且等于 这边上的一个线段,则这 两个三角形相似。
角角判定法
如果两个三角形有两个对 应的角相等,则这两个三 角形相似。
利用相似三角形解决长度问题
总结词
通过相似三角形的性质,可以解决一些长度问题,如求线段长度ຫໍສະໝຸດ 判断线段大小关系等。详细描述
利用相似三角形的对应边成比例性质,可以通过已知线段长度求解未知线段长度,或者判断线段的大小关系。例 如,在解题过程中,可以通过构建相似三角形,利用对应边成比例的特点,将未知线段长度转化为已知线段长度, 从而求解问题。
相似三角形与面积
相似三角形的面积比等于其对应边长的平方 比。
相似三角形与角平分线
角平分线将相对边分为两段,与角平分线所 形成的两个小三角形相似。
实际问题实例
测量问题
建筑设计
利用相似三角形的性质,可以方便地测量 无法直接到达的物体的高度或距离。
在建筑设计过程中,可以利用相似三角形 的性质来计算建筑物的尺寸和角度,以确 保建筑物的外观和稳定性。

相似三角形完整版PPT课件

相似三角形完整版PPT课件
通过已知条件推导出新的相似关系,逐步 构建完整的相似三角形体系。
强调逻辑推理的严密性和条理性,培养学 生分析问题和解决问题的能力。
分析法证明
从结论出发,逆向分析, 寻找使结论成立的条件。
通过分析已知条件和结论 之间的关系,找到证明相 似三角形的关键步骤。
培养学生的逆向思维能力 和分析问题的能力。
构造法证明
相似三角形在几何变换中的应用
在平移、旋转、轴对称等几何变换中,相似三角形可以保持其形状不变,因此具有一些重要的应用。例 如,在建筑设计、地图制作等领域中,常常需要利用相似三角形进行比例缩放和形状保持。
谢谢您的聆听
THANKS
04
相似三角形在代数中的应用
比例性质在方程求解中应用
利用相似三角形的比例性质,可以建立方 程求解未知数。
通过已知两边比例关系,可以推导出第三 边的长度,进而求解方程。
在复杂几何图形中,利用相似三角形的比 例关系可以简化计算过程。
比例中项在数列求和中应用
比例中项的概念可以 应用于等比数列的求 和问题。
性质
相似三角形的对应边成比例,对 应角相等。
判定方法
预备定理
SSS相似
平行于三角形的一边,并且和其他两边相 交的直线,所截得的三角形的三边与原三 角形三边对应成比例。
如果两个三角形的三组对应边的比相等, 那么这两个三角形相似。
SAS相似
AA相似
如果两个三角形的两组对应边的比相等, 并且夹角相等,那么这两个三角形相似。
在证明两个三角形相似时,要严 格按照相似三角形的判定定理进
行推导,避免出现逻辑错误。
拓展延伸:更高阶相似性质探讨
相似多边形
对应角相等,对应边成比例的两个多边形相似。相似多边形具有与相似三角形类似的性质。

相似三角形ppt课件

相似三角形ppt课件
注意事项
角边判定定理要求一个三角形的两条边与另一个 三角形的两条边成比例,并且这两个三角形有一 个对应的角相等,如果这些条件不满足,则不能 判定两个三角形相似。
03
相似三角形的应用
在几何图形中的应用
解决几何证明问题
相似三角形常被用于证明各种几何关 系和定理,如勾股定理、毕达哥拉斯 定理等。
理解几何图形的性质
面积比等于相似比的平方
两个相似三角形的面积比等于它们的相似比的平方,即 (AB:DE)^2=(BC:EF)^2=(CA:FD)^2。
相似三角形的分类
根据用途分类
根据相似三角形在几何学中的应 用,可以将相似三角形分为标准 型、等腰型、直角型等类型。
根据形状分类
根据两个相似三角形的形状,可 以将它们分为锐角三角形、直角 三角形和钝角三角形。
△ABC∽△A'B'C'。
边边判定定理的证明
总结词
通过比较两个三角形的对应边,如果两个三角形有三组对应边成比例,则这两个三角形相 似。
详细描述
在两个三角形ABC和A'B'C'中,如果AB/A'B'=BC/B'C'=AC/A'C',则根据边边判定定理, △ABC∽△A'B'C'。
证明过程
首先,由于AB/A'B'=AC/A'C',根据交叉相乘性质,我们可以得到∠BAC=∠B'A'C'。再由 于BC/B'C'=BA/B'A',根据交叉相乘性质,我们可以得到∠ACB=∠A'C'B'。因此,根据 AA相似判定定理,△ABC∽△A'B'C'。

27.2.3相似三角形应用举例课件(共33张PPT)(共33张PPT)

27.2.3相似三角形应用举例课件(共33张PPT)(共33张PPT)
A
B
D
C
E
如图:为了估算河的宽度,我们可以在河对岸
选定一个目标作为点A,再在河的这一边选点B和C,
使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC
和AE的交点D.此时如果测得BD=120米,DC=60
米,EC=50米,求两岸间的大致距离AB.
解: ∵ ∠ ADB = ∠ EDC
A
∠ ABC =∠ECD =900.
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

温馨提示:
1、旗杆的高度是线
段 BC ;旗杆的高
度与它的影长组成什
么三角R形t△?ABC

)这个三
角形有没有哪条边可
以直接测量?

6m
P
Q Rb
a
S
T
知பைடு நூலகம்要点
测距的方法 测量不能到达两点间的距离,常构造 相似三角形求解。
如图:为了估算河的宽度,我们可以
在河对岸选定一个目标作为点A,再在河的 这一边选点B和C,使AB⊥BC,然后,再选点E, 使EC⊥BC,用视线确定BC和AE的交点D.此 时如果测得BD=120米,DC=60米,EC=50米, 求两岸间的大致距离AB.
毫米。 因为PN∥BC,所以△APN∽ △ABC
PE N
所以
AE
PN =
AD
BC
B Q DM C
因此
80–x =
x
,得 x=48(毫米)。答:-------。
80
120
课堂小结
一 、相似三角形的应用主要有如下两个方面

《相似三角形》完整版教学课件

《相似三角形》完整版教学课件

易错点及注意事项
易错点
在判定两个三角形是否相似时,容易 忽略对应角和对应边的关系,导致判 断错误。
注意事项
在解答相似三角形问题时,要注意单 位统一和比例关系的正确应用,避免 计算错误。
拓展知识点介绍
射影定理
在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射 影和斜边的比例中项。
、建筑物等的高度。
又如,利用相似三角形的性质, 可以测量河流的宽度或海峡的宽
度等。
求解比例尺问题
比例尺是一种表示实际距离与地图上 距离之间比例关系的工具。
例如,已知比例尺和地图上的距离, 可以计算出实际的距离;反之,已知 实际距离和比例尺,也可以计算出地 图上的距离。
利用相似三角形的性质,可以通过比 例尺求解实际距离或地图上距离。
相似比概念
相似比
相似三角形对应边的比值叫做相似比 。
性质
相似三角形的周长之比等于相似比, 面积之比等于相似比的平方。
应用举例
利用相似三角形测量高度
01
通过构造相似三角形,可以测量出建筑物、山峰等高大物体的
高度。
利用相似三角形证明几何题
02
在几何证明题中,经常需要利用相似三角形的性质来证明线段
或角的相等或比例关系。
对应边与相似比关系
在相似三角形中,对应边的长度之比等于相似比。通过已知 的两边长度,可以计算出相似比,进而求出第三边的长度。
面积比与相似比关系
面积比等于相似比的平方
相似三角形的面积之比等于相似比的平方。这是因为在相似三角形中,面积与对应边长度的平方成正 比。
利用面积过开方运算求出它们的相似比。
性质应用举例

《相似三角形的性质》PPT课件

《相似三角形的性质》PPT课件
《相似三角形的性质》PPT 课件
目录
• 相似三角形基本概念 • 相似三角形性质探究 • 相似三角形在几何证明中应用 • 相似三角形在解决实际问题中应用 • 拓展:全等三角形与相似三角形联系
与区别
01
相似三角形基本概念
定义及判定方法
定义
两个三角形如果它们的对应角相等,那 么这两个三角形相似。
AAA相似
01
利用相似三角形对应角相等 的性质,可以证明两个角相
等。
02
通过构造相似三角形,将待 证相等的两个角作为对应角 ,从而证明角度相等关系。
03
相似三角形中,若已知两角 对应相等,则第三角也必然 相等,这一性质可用于证明
复杂角度相等关系。
证明图形形状和大小关系
利用相似三角形形状相同的性质 ,可以证明两个图形形状相同。
01
04
对应角相等;
全等三角形的性质
02
05
面积相等;
对应边相等;
03
06
周长相等。
全等与相似关系探讨
联系 全等三角形是相似三角形的特例,即
相似比为1:1的情况;
全等和相似都涉及到两个三角形的形 状和大小关系。
区别
全等要求两个三角形完全重合,而相 似只要求形状相同,大小可以不同;
全等三角形的对应边和对应角都相等 ,而相似三角形只要求对应角相等, 对应边成比例。
02
相似三角形性质探究
对应角相等性质
01Biblioteka 0203性质描述
相似三角形的对应角相等 。
证明方法
通过三角形的相似定义和 角的对应关系进行证明。
应用举例
在几何问题中,利用相似 三角形的对应角相等性质 ,可以解决角度相关的问 题。

相似三角形的性质PPT通用课件

相似三角形的性质PPT通用课件
比例
相等
1、相似三角形对应边成____,对应角______.
2、相似三角形对应边上的高、对应边上的中线、
相似比
对应角平分线的比都等于________.
相似比
3、相似三角形周长的比等于________,
相似三角形面积的比等于______________.
当堂训练
1.已知△ABC∽△DEF,BG、EH分别是△ABC和 △DEF的
求它们的相似比. 1∶4
1∶4
(2) △ADE的周长︰△ABC的周长=_______.
A

SADE
.
(3)
_______
D
E
S
ABC
(4)
SADE
S四边形BCED

1
15
B
C
7、如图,在 ABCD中,若E是AB的中点,
1:2
则(1)∆AEF与∆CDF的相似比为______.
AE 1
线AD=40cm,要把它加工成正方形零件,使正方
形的一边在BC上,其余两个顶点分别在AB,AC上
(1)△ ASR与△ ABC相似吗?为什么?
(2)求正方形SPQR的面积。
A
S
B
P
E R
D
Q
C
A
例题解析
(1)△ASR与△ABC相似吗?为什么?
40
(2)求正方形PQRS的面积.
分析:(1) △ASR∽△ABC.理由是:
100厘米、40厘米
———————。
(2)它们的面积之和是58平方厘米,这
两个三角形的面积分别是——————
50平方厘米、8平方厘米
——。
(1)与(2)的相似比=______

相似三角形ppt教学课件完整版

相似三角形ppt教学课件完整版
在摄影测量学中,通过拍摄地面的照片,并利用射影几何的原理进行解析,可以精确地测量 出地面点的三维坐标,为地图制作和地形分析提供重要数据。
计算机视觉中的应用
在计算机视觉领域,射影几何被广泛应用于图像匹配、三维重建、摄像机标定等方面。通过 对图像进行射影变换和处理,可以实现图像的自动识别和场景的三维重建。
典型例题解析
解析
根据全等三角形的定义,两个三 角形如果三边分别相等,则这两 个三角形全等。因此,可以直接
得出△ABC≌△DEF。
2. 例2
已知两个相似三角形ABC和DEF, 其中
AB/DE=BC/EF=CA/FD=2/3, 求∠A和∠D的度数关系。
解析
根据相似三角形的性质,对应角 相等。因此,∠A=∠D。同时, 由于对应边成比例,可以得出两 个三角形的形状相同但大小不同。
对应角相等 面积相等
周长相等
相似与全等关系辨析
相似之处
都有对应边的关系
相似与全等关系辨析
不同之处
全等三角形可以完全重合,而相似三角形 不一定能完全重合
全等要求三边三角完全相等,相似只要求 对应边成比例、对应角相等
相似三角形可以有不同的形状和大小,只 要满足相似条件即可
水利工程中的水流分析
利用相似三角形的原理,可以模拟和分析水流在不同条件下的流速、 流量和水压等参数,为水利工程的设计和施工提供重要依据。
相似三角形与全等三角形关
04
系探讨
全等三角形定义及性质回顾
全等三角形的定义:两个三角形如果 三边及三角分别相等,则称这两个三
角形全等。
全等三角形的性质
对应边相等
相似三角形ppt教学 课件完整版
目录
• 相似三角形基本概念与性质 • 相似三角形在几何证明中的应用 • 相似三角形在解决实际问题中的应

相似三角形的判定全ppt课件

相似三角形的判定全ppt课件

2024/1/27
5
相似三角形性质总结
对应边成比例
相似三角形的对应边之比等于相似比。
对应高、中线、角平分线成比例
相似三角形的对应高、中线、角平分线之 比也等于相似比。
周长比等于相似比
相似三角形的周长之比等于相似比。
2024/1/27
面积比等于相似比的平方
相似三角形的面积之比等于相似比的平方 。
6
02
相似三角形的判定全ppt课件
2024/1/27
1
目 录
2024/1/27
• 相似三角形基本概念及性质 • 判定方法一:两边成比例且夹角相等 • 判定方法二:三边成比例 • 判定方法三:直角三角形中斜边和一直角边成
比例 • 综合运用及拓展延伸 • 课堂小结与作业布置
2
01
相似三角形基本概念及性质
2024/1/27
判定方法一:两边成比例且夹角 相等
2024/1/27
7
定理内容阐述
01
02
03
定理描述
如果两个三角形有两边成 比例,并且夹角相等,则 这两个三角形相似。
2024/1/27
定理条件
两个三角形中,任意两边 长度之比等于另两边长度 之比,且这两边所夹的角 相等。
定理
8
18
05
综合运用及拓展延伸
2024/1/27
19
不同判定方法之间的联系与区别
角角角(AAA)相似
三个内角分别相等,则两个三角形相 似。此方法简单易行,但需注意AAA 相似不能推出边长成比例。
边角边(BAB)相似
两边成比例且夹角相等,则两个三角 形相似。此方法结合了边的长度和角 的大小,较为常用。

《相似三角形的性质和判定》PPT课件

《相似三角形的性质和判定》PPT课件

全等三角形是特殊的相似三角形,当相似比为1时性质探究
对应角相等
01
定义
两个三角形如果它们的对应角 相等,则称这两个三角形相似

02
性质
相似三角形的对应角相等,即 如果∠A = ∠A',∠B = ∠B',
则∠C = ∠C'。
03
示例
通过测量和比较两个三角形的 对应角度,可以判断它们是否
相似。
对应边成比例
03
定义
性质
示例
两个三角形如果它们的对应边成比例,则 称这两个三角形相似。
相似三角形的对应边成比例,即如果 AB/A'B' = BC/B'C' = CA/C'A',则△ABC ∽ △A'B'C'。
通过测量和比较两个三角形的对应边长, 可以判断它们是否相似。
面积比与边长比关系
01
平行线截割定理证明
平行线截割定理应用
在解决相似三角形问题时,可以利用 平行线截割定理来寻找相似三角形的 对应边。
通过相似三角形的性质,可以证明对 应线段之间的比例关系。
三角形中位线定理
三角形中位线定理内容
三角形的中位线平行于第三边,且等于第三边的一半。
三角形中位线定理证明
通过相似三角形的性质和平行线截割定理,可以证明三角形中位线 与第三边的关系。
01
更高层次相似三角形知识
02
相似多边形的性质和判定方 法
03
相似三角形与相似多边形之 间的关系和联系
拓展延伸:介绍更高层次相似三角形知识
• 相似三角形在几何变换中的应用,如平移、旋转、对 称等
拓展延伸:介绍更高层次相似三角形知识
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、在平面直角坐标系中,B(1,0),A(3,-3),C(3,0), 点P在y轴正半轴上运动,若以O、B、P三点为顶点 的三角形与三角形ABC相似,则点P的坐标为( )
2、如图小李在晚上有路灯A走向路灯B,当他走到点 P时,测得其身后的影长为2米,身前的影长3米,已 知小李的身高是1.7米,两路灯的高度都是10.2米。 (1)求两路灯之间的距离 (2)当小李走到路灯B时, 他在路灯A下的影长是多少?
A PE N
Q DM C
14
一 、相似三角形的应用主要有如下两个方面
1 测高(不能直接使用皮尺或刻度尺量的) 2 测距(不能直接测量的两点间的距离)
二、测高的方法
测量不能到达顶部的物体的高度,通常用“在同一时刻物 高与影长的比例”的原理解决
三、测距的方法
测量不能到达两点间的距离,常构造相似三角形求解 解决实际问题时(如测高、测距), 一般有以下步骤:①审题;②构建图形;③利用相似解决问题15
A
E
F
A
N

B 如图(1)
B C
B
H
MG C
A
E

H
G
C
11
变式:在直径为AB的半圆内,划出一个三角形
区域,使三角形的一边为AB,顶点C在半圆周
上,现要建造一个内接于三角形ABC的矩形水
池DEFN,其中DE在AB上,如图设计方案是使
AC=8,BC=6,
求(1)三角形AB边上的高线CH
(2)设DN=x,NF=y,求y关于x的函数解析式
§4.5 相似三角形的性质及其应用(3)
1
如图. 有一路灯杆AB,小明在灯光下看
到自己的影子DF,那么
(1)在图中有相似三角形吗?如有,请写出.
(2)如果已知BD=3m,DF=1m,小明身高为
1.6m,你能求得路灯杆的高吗?
A
C F
D
B2
例2 如图,屋架跨度的一半OP=5m,高 度OQ=2.25m,现要在屋顶上开一个天 窗,天窗高度AC=1.20m,AB在水平位 置。求AB的长度(精确到0.01m)。
Q
A
B
C
P
O
3
正在观看升旗仪式的 小明很想知道旗杆的 高度,又很难直接测 量,你能帮帮他吗?
4
方法一
A
C
F
DE
B
把长为2.40m的标杆CD直立在地面上,量出旗的影 长为2.80m,标杆的影长为1.47m。这时旗高多少?你能 解决这个问题吗?
5
A
方法二
C
D
E
B
把一小镜子放在离红旗(AB)8米的点E处,然后沿
=
所以 因此
AD 80–x
=,得xxB=C48(毫米)。答:边B长为48Q毫米D。
M
C
80
120
10
变式:有一批形状相同的不锈钢片,呈直角三角形,
如图(1)所示,已知∠A=90°,AB=8cm,
BC=10cm,用这批不锈钢片裁出面积最大的正方
形不锈钢片,如图,甲、乙各设计一种方案,你觉
得哪种方案更好,为什么?
一棵大树,问这棵大树是否位于最大矩形水池的
边上?如果在,为保护大树请你设计另外的方案,
使内接于满足条件的三角形中
C
欲建的最大水池能避开大树;
N
F
如果不在,请说明理由.
A
D
E 1B3
变式:如图,△ABC是一块 锐角三角形余料,边 BC=120mm,高 AD=80mm,要把它加工 成长方形零件,使长方形 的一边在BC上,其余两个 B 顶点分别在AB、AC上, 这个长方形零件的最大面 积是多少?
杆EF=2.5,求旗高。 7
方法四
A
E
C
G
H
F B
D
如图,用手举一根标尺EF长0.4,使标尺与地面垂
直,当标尺刚好挡住旗的高度时,量出眼睛到标尺的
距离CG为0.7,人到旗的距离CH长8,求旗的高度
8
A E
B
CD
影长法
平面镜法 C
A
EEFGA NhomakorabeaG
F
B 标杆法C D
标尺法D
B9
1、如图,△ABC是一块锐角三角形余料,边
着直线BE后退到点D,这时恰好在镜子里看到红旗顶点
A,再用皮尺量得DE=2.8m,观察者目高CD=1.6m。这时
旗高多少?你能解决这个问题吗?
6
A
方法三
E
C G
H
D
F
B
如图,在地面上直立一根标杆EF,沿着直线BF后
退到点D,使眼睛C、标杆的顶端E、树梢顶点A在同
一直线上,已知BF=3.6,DF=1.2,身高CD=1.5,标
(3)当x为何值时,水池DEFN的面积最大,最大
为多少?
C
N
F
A
D
E B12
变式:在直径为AB的半圆内,划出一个三角形 区域,使三角形的一边为AB,顶点C在半圆周上,
现要建造一个内接于三角形ABC的矩形水池
DEFN,其中DE在AB上,如图设计方案是使
AC=8,BC=6,
求(4)在实际施工时,发现AB上距B点1.85米处有
A
P
B
16
17
BC=120毫米,高AD=80毫米,要把它加工成正
方形零件,使正方形的一边在BC上,其余两个顶
点分别在AB、AC上,这个正方形零件的边长是多
少解?:设正方形PQMN是符合要求的△ABC的高
A
AD与PN相交于点E。设正方形PQMN的边长为
x毫米。
PE N
因为PN∥ABCE ,所以△PANPN∽ △ABC
相关文档
最新文档